当前位置:文档之家› 填料种类和功能 新型填料的发展

填料种类和功能 新型填料的发展

填料种类和功能 新型填料的发展
填料种类和功能 新型填料的发展

Summary of Packing Kinds And Function,Including The

Development of New Kinds of Packings

In many cases, packing tower performs better than plate tower because the packings can be easily replaced and packing tower save more energy. Therefore, people have attached increasingly attention to packing tower recent years.

Packing is the core of packing tower and its characteristics determine the performance of the tower.

There are many kinds of packing used in the industry, which can be classified as solid packing and net packing. Solid packing includes ring packing, saddles, grid packing and Corrugated packing, etc. The net packing is made of metal mesh mainly.

One. Solid Packing

(1)Raschig rings

Raschig rings is a kind packing earliest used. Its diameter is

equal to the height, and it’s usually made of metal, plastic and

ceramics. The structure of the Raschig rings is simple and easy to

produce, but the packing which is formed from Raschig rings is

uneven, which makes the fluid flows toward the wall of the tower.

Therefore, Raschig rings is out of date.

(2)Pall rings

Pall rings is improved from Raschig rings. As shown in the

picture, one or two rows of rectangular holes are opened on the wall

of Raschig rings and keep the rectangular pieces attaching to the

wall which was bend toward the center of the ring. The structure of

Pall rings increase the usage of inner space surface of the ring, and

decrease the resistance.

(3)Berl saddle

This kind of packing looks like saddle, which has no inner

surface. Compared with Raschig rings, the utilization of the surface

is high and the resistance of gas flow is small. But because the Berl

saddle can overlap on each other, the exposed surface is small. In

addition, Berl saddle is easy to have channeling phenomenon.

(4)Intalox saddle

Compared with Berl saddle, intalox saddle can’t overlap on

each other, and it’s more easily to produce.

(5)Cascade rings

Cascade rings is reformed from Pall rings. As shown in the

picture, cascade rings looks like Pall rings. Its height usually is half

of the diameter. The packing that the cascade rings form is uniform

and porosity is big.

Two. Net Packing

There are many kinds of net packing, such as mesh rings, saddle

rings, etc. The characteristics of the net packing is the mesh is very

thin, while the specific surface area and the porosity is big. Net packing is suitable for precise distillation and vacuum distillation.

Three. Some Kinds of Usually Used Packings

Four. New Kinds Of Packing

(1)IMPAC packing

IMPAC packing can be seen as a kind of packing that many intalox packings joint together, with flat, saddle and ring structure. There are approximately 50 thousand water drops per square meter. Compared with present packings, the efficiency of IMPAC packing increases by 40% , and the packing can be used 10 years long.

(2)Super flat ring packing

QH-1 flat ring packing is created by Qsinghua University. When used in the liquid-liquid extraction, QH-1 flat ring packing perform better than Pall, Intalox and so on.

In order to improve the flat ring packing, QH-2 flat ring packing was created, whose Processing capacity increase by 15% to 25% roughly.

(3)Cascade mini ring(CMR)

Cascade mini ring perform better than Pall rings and sieve column. The pressure drop of CMR is 30% of the Raschig ring while the mass transfer factor increases by 50% comparing to Raschig ring. CMR can be made of many kinds of material, such as Carbon steel, stainless steel, plastic and porcelain, etc. Therefore, CMR is widely used in the industry.

(4)SINOPAK packing

SINOPAK packing is created by Nanjing University. This kind of packing can avoid fluid flowing toward the wall. The separation efficiency is higher than other common corrugated structured packing 10% to 25%.

There are many other new kinds of packing with good performance, such as BSH packing, CHINAPAK packing, Optiflow packing and so on.

Reference:

1.王志魁, 刘丽英, 刘伟. 化工原理第四版[Z]. 北京: 化学工业出版社,2010.

2.Warren, L, McCabe, [美]Julian, C, Smith, Peter, Harriott. Unit Operations of Chemical

Engineering[Z]. 北京: 化学工业出版社,2013.

3.邹华生, 黄少烈. 化工原理第二版[Z]. 北京: 高等教育出版社,2009.

4.蒋庆哲, 宋昭峥, 彭洪湃, 等. 塔填料的最新研究现状和发展趋势[J]. 现代化工,

2008, 28(S1).

5.晏莱, 周三平. 现代填料塔技术发展现状与展望[J]. 化工装备技术, 2007, 28(3).

填料塔设计说明书

填 料 塔 设 计 说 明 书 设计题目:水吸收氨填料吸收塔学院:资源环境学院 指导老师:吴根义罗惠莉 设计者:海江 学号:7 专业班级:08级环境工程1班

一、设计题目 试设计一座填料吸收塔,用于脱出混于空气中的氨气。混合气体的处理为2400m3/h,其中含氨5%,要求塔顶排放气体中含氨低于0.02%。采用清水进行吸收,吸收剂的用量为最小量的1.5倍。 二、操作条件 1、操作压力常压 2、操作温度 20℃ 三、吸收剂的选择 吸收剂对溶质的组分要有良好地吸收能力,而对混合气体中的其他组分不吸收,且挥发度要低。所以本设计选择用清水作吸收剂,氨气为吸收质。水廉价易得,物理化学性能稳定,选择性好,符合吸收过程对吸收剂的基本要求。且氨气不作为产品,故采用纯溶剂。 四、流程选择及流程说明 逆流操作气相自塔底进入由塔顶排出,液相自塔顶进入由塔底排出,此即逆流操作。逆流操作的特点是传质平均推动力大,传质速率快,分离效率高,吸收剂利用率高。工业生产中多用逆流操作。 五、塔填料选择 阶梯环填料。阶梯环是对鲍尔环的改进,与鲍尔环相比,阶梯环高度减少了一半,并在一端增加了一个锥形翻边。由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的间隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。阶梯环的综合性能优于鲍尔环,成为目前使用的环形填料中最为优良的一种 选用聚丙烯阶梯环填料,填料规格:

六、填料塔塔径的计算 1、液相物性数 对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。由手册查得,20℃水的有关物性数据如下: 密度为:L ρ=998.2 kg/m3 粘度为:μL=0.001004 Pa·S=3.6 kg/(m·h) 表面力为σL=72.6 dyn/cm =940896 kg/h2 2、气相物性数据: 20℃下氨在水中的溶解度系数为:H=0.725kmol/(m3·kPa)。 混合气体的平均摩尔质量为: Mvm=0.05×17.03g/mol +0.95×29g/mol=28.40g/mol , 混合气体的平均密度为:ρvm =1.183 kg/m3 混合气体的粘度可近似取为空气的粘度,查手册得20℃空气的粘度为: μv=1.81×10-5 Pa·S=0.065 kg/(m·h) 3、气相平衡数据 20℃时NH3在水中的溶解度系数为H=0.725 kmol/(m3·kPa),常压下20℃时NH3在水中的亨利系数为E=76.41kPa 。 4、物料衡算: 亨利系数 S L HM E ρ= 相平衡常数 754.03 .10102.18725.02 .998=??=== P HM P E m S L ρ E ——亨利系数 H ——溶解度系数 Ms ——相对摩尔质量

板式塔发展现状

一、板式塔的发展历程与研究方向 蒸馏是一种量大而面广的工业分离混合物的方法,广泛应用于化工、炼油、食品、轻工业等许多工业部门,在国民经济中占有很大的比重。据统计,塔设备的投资费用占化工和石化过程共投资费用的25%,占总能耗的40%。此外,塔设备性能的好坏对产品质量和产量起着十分重要的作用,对降低能耗、降低生产成本和提高企业竞争实力有着重大的意义。 近年来,尽管涌现出很多新的分离技术,在实际生产过程中,蒸馏操作仍占据这很重要的地位。虽然从20世纪80年代开始,高效规整填料在工业塔中的成功应用改变了工业蒸馏设备长期以来已板式塔为主的的局面,但板式塔因其设备造价低廉、操作范围广、对各种物系适应强、易于清理和检修等优点,在蒸馏操作中仍占有不可替代的地位。特别是高压、高粘度等特殊工况条件下,板式塔仍占有优势。由于板式塔在蒸馏设备中占有重要地位,所以各国研究者对塔板性能的研究和新型塔板的开发与应用方面做了大量的工作,其中一个重要的方面就是对塔板的流体力学性能和塔板上流体流动状况的研究,另外就是开发高效、节能、结构简单和的新型塔设备。板式塔作为完成蒸馏操作的过程的一个主要设备,得到了广泛深入的研究。 二、板式塔发展历史 早在1813年Cellier就提出了泡罩塔,筛板塔也早在1832年开始用于生产。19世纪初,新的炼油工艺又推动了塔设备的发展。进入20世纪后,石油成为主要能源和石油化学工业的原料,早期的塔设备已不能满足这些不断更新的工艺过程需要,这就促进了精馏技术和塔设备有了新的发展。塔设备的发展大致可分为四个阶段:

(1)第二次世界大战结束前,塔设备主要用于炼油工业,塔型中以泡罩塔为主,而在无机酸工业中则多用于填料塔。 (2)第二次世界大战结束后,炼油和石油化学工业有了较大的发展,促使塔设备不断增加,除了对筛板、泡罩等原有塔型进行改进外,也出现了一些新型塔板。(3)进入60年代以后,炼厂生产能力不断增大,使设备向大型化方向发展,与此同时,石油化工凶猛发展,提出了对塔型的某些特殊要求,因此出现了一些具有相应性能的塔板,适应高压、减压、高效、大液负荷、高弹性等要求。 (4)70年代后,塔板研究逐年减少。据报道,欧美等国大学中研究新塔板的课题为数不多,其原因是他们认为现有的各类塔板性能颇为接近,基本上可以满足所有蒸馏操作的要求。有人预言,除“并流”塔以外,近期内不会有彻底革新的新型踏板问世。但是由于能源愈益紧张而昂贵,使得能耗巨大的蒸馏过程与设备的研究开发工作仍在持续进行,新型塔板不断仍不断出现,尤其是那些大通量、低压降和高效率的塔板,更受人们欢迎。 三、塔板的发展概况 板式塔的种类繁多,根据其板内件的结构不同可分为泡罩型塔板、浮阀型塔板和筛孔型塔板等。 1.泡罩型塔板 泡罩塔是最早的典型的板式塔,自从1813年Cellier提出泡罩塔,并在化学工业生产上采用以来,泡罩塔在蒸馏、吸收等两相传质设备中曾占主导地位。泡罩塔在1920年被引入炼油工业,但是直到1924年在克劳斯过程中获得成功,泡罩塔才被广泛应用。近二三十年来,出现了许多新型塔板和高效填料。与泡罩塔相比,具有处理能力大、压降低、结构简单、制造方便和费用低廉的优点,因此,泡罩塔已

各类型填料介绍

什么是填料? 填料泛指被填充于其他物体中的物料。 在化学工程中,填料指装于填充塔内的惰性固体物料,例如鲍尔环和拉西环等,其作用是增大气-液的接触面,使其相互强烈混合。 在化工产品中,填料又称填充剂,是指用以改善加工性能、制品力学性能并(或)降低成本的固体物料。 在污水处理领域,主要用于接触氧化工艺,微生物会在填料的表面进行累积,以增大与污水的表面接触,对污水进行降解处理。 优点:结构简单、压力降小、易于用耐腐蚀非金属材料制造等。对于气体吸收、真空蒸馏以及处理腐蚀性流体的操作,颇为适用。 缺点:当塔颈增大时,引起气液分布不均、接触不良等,造成效率下降,即称为放大效应。同时填料塔还有重量大、造价高、清理检修麻烦、填料损耗大等缺点。 填料有哪些种类? 1、拉西环填料 拉西环填料于1914年由拉西(F. Rashching)发明,为外径与高度相等的圆环。拉西环填料的气液分布较差,传质效率低,阻力大,通量小,工业上已较少应用。 2、鲍尔环填料

鲍尔环填料是对拉西环的改进,在拉西环的侧壁上开出两排长方形的窗孔,被切开的环壁的一侧仍与壁面相连,另一侧向环内弯曲,形成内伸的舌叶,诸舌叶的侧边在环中心相搭。 鲍尔环由于环壁开孔,大大提高了环内空间及环内表面的利用率,气流阻力小,液体分布均匀。与拉西环相比,鲍尔环的气体通量可增加50%以上,传质效率提高30%左右。鲍尔环是一种应用较广的填料。 3、阶梯环填料 阶梯环填料是对鲍尔环的改进,与鲍尔环相比,阶梯环高度减少了一半并在一端增加了一个锥形翻边。 由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的空隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。 阶梯环的综合性能优于鲍尔环,成为所使用的环形填料中最为优良的一种。 4、弧鞍填料 弧鞍填料属鞍形填料的一种,其形状如同马鞍,一般采用瓷质材料制成。 弧鞍填料的特点是表面全部敞开,不分内外,液体在表面两侧均匀流动,表面利用率高,流道呈弧形,流动阻力小。

填料塔计算部分

填料吸收塔设计任务书 一、设计题目 填料吸收塔设计 二、设计任务及操作条件 1、原料气处理量:5000m3/h。 2、原料气组成:98%空气+%的氨气。 3、操作温度:20℃。 4、氢氟酸回收率:98%。 5、操作压强:常压。 6、吸收剂:清水。 7、填料选择:拉西环。 三、设计内容 1.设计方案的确定及流程说明。 2.填料吸收塔的塔径,填料层的高度,填料层的压降的计算。 3.填料吸收塔的附属机构及辅助设备的选型与设计计算。 4.吸收塔的工艺流程图。 5.填料吸收塔的工艺条件图。

目录 第一章设计方案的简介 (4) 第一节塔设备的选型 (4) 第二节填料吸收塔方案的确定 (6) 第三节吸收剂的选择 (6) 第四节操作温度与压力的确定 (7) 第二章填料的类型与选择 (7) 第一节填料的类型 (7) 第二节填料的选择 (9) 第三章填料塔工艺尺寸 (10) 第一节基础物性数据 (10) 第二节物料衡算 (11) 第三节填料塔的工艺尺寸的计算 (12) 第四节填料层压降的计算 (16) 第四章辅助设备的设计与计算 (16) 第一节液体分布器的简要设计 (16) 第二节支承板的选用 (17) 第三节管子、泵及风机的选用 (18) 第五章塔体附件设计 (20) 第一节塔的支座 (20) 第二节其他附件 (20)

第一章设计方案的简介 第一节塔设备的选型 塔设备是化工、石油化工、生物化工制药等生产过程中广泛采用的气液传质设备。根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。 1、板式塔 板式塔为逐级接触式气液传质设备,是最常用的气液传质设备之一。传质机理如下所述:塔内液体依靠重力作用,由上层塔板的降液管流到下层塔板的受液盘,然后横向流过塔板,从另一侧的降液管流至下一层塔板。溢流堰的作用是使塔板上保持一定厚度的液层。气体则在压力差的推动下,自下而上穿过各层塔板的气体通道(泡罩、筛孔或浮阀等),分散成小股气流,鼓泡通过各层塔板的液层。在塔板上,气液两相密切接触,进行热量和质量的交换。在板式塔中,气液两相逐级接触,两相的组成沿塔高呈阶梯式变化,在正常操作下,液相为连续相,气相为分散相。 一般而论,板式塔的空塔速度较高,因而生产能力较大,塔板效率稳定,操作弹性大,且造价低,检修、清洗方便,故工业上应用较为广泛。 2、填料塔 填料塔是最常用的气液传质设备之一,它广泛应用于蒸馏、吸收、解吸、汽提、萃取、化学交换、洗涤和热交换等过程。几年来,由于填料塔研究工作已日益深入,填料结构的形式不断更新,填料性能也得到了迅速的提高。金属鞍环,改型鲍尔环及波纹填料等大通量、低压力降、高效率填料的开发,使大型填料塔不断地出现,并已推广到大型汽—液系统操作中,尤其是孔板波纹填料,由于具有较好的综合性能,使其不仅在大规模生产中被采用,且由于其在许多方面优于各种塔盘而越来越得到人们的重视,在某些领域中,有取代板式塔的趋势。近年来,在蒸馏和吸收领域中,最突出的变化是新型填料,特别是规整填料在大直径

填料塔的设计指导

二氧化硫填料塔设计 一.填料吸收塔简介 在化学工业中,吸收操作广泛应用于石油炼制,石油化工中分离气体混合物,原料气的精制及从废气回收有用组分或去除有害组分等。吸收操作中以填料吸收塔生产能力大,分离效率高,压力降小,操作弹性大和持液量小等优点而被广泛应用。目前国内对填料吸收塔设计大部分是经验设计方法,该方法是在给定生产任务的条件下,由经验确定出一个液气比的值,然后手算出吸收塔的有关设计参数。该设计手段落后,没有考虑经济技术指标,不符合工厂实际生产中成本最低要求,故提出了填料吸收塔的优化设计方法。 下面简要介绍一下填料塔的有关内容。 填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。填料塔以塔内的填料作为气液两相间接触构件的传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。 与板式塔相比,在填料塔中进行的传质过程,其特点是气液连续接触,而传质的好坏与填料密切相关。填料提供了塔内的气液两相接触面积。填料塔的流体力学性能,传质速率等与填料的材质,几何形状密切相关,所以长期以来人们十分注中填料的性能和新型填料的开发,使得填料塔在化工生产中应用更加广泛。 填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。填料塔还有以下特点: 1.当塔径不是很大时,填料塔因为结构简单而造价便宜。 2.对于易起泡物系,填料塔更适合,因填料对气泡有限制和破碎作用。 3.对于腐蚀性物系,填料塔更适合,因为可以采用瓷质填料。 4.对于热敏性物系宜采用填料塔,因为填料塔的持液量比板式塔少,物料在塔内的停留时间短。填料塔的压强降比板式塔小,因而对真空操作更有利。 填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。 二.设计方案简介 2.1 方案的确定 填料精馏吸收塔的确定包括装置流程的确定,操作压力的确定,进料热状况的选择,加热方式的选择以及回流比的选择等 2.1.1 装置流程的确定 吸收装置的流程主要有以下几种 (1) 逆流操作: 定义:气相自塔底进入由塔顶排出,液相自塔顶进入由塔底排出的操作。 特点:传质平均推动力大,传质速率快,分离效率高,吸收剂利用率高。 适用情况:工业生产中多采用逆流操作。 (2) 并流操作: 定义:气液两相均从塔顶流向塔底的操作。 特点:系统不受液流限制,可提高操作气速,以提高生产能力。 适用情况:当吸收过程的平衡曲线较平坦时,流向对推动力影响不大; 易溶气体的吸收或处

大气污染与防治论文

中国大气污染现状与防治技术综合分析 一、大气污染的综合防治 大气的污染物,无论是颗粒状污染物或是气体状污染物,都有能够在大气中扩散、污染面广的特点,这就是说,大气污染带有区域性和整体性的特征。正因为如此,大气污染的程度要受到该地区的自然条件、能源构成、工业结构和布局、交通状况以及人口密度等多种因素的影响。在本文以后所论述的各种治理技术只是对点污染源排放的污染物进行治理,不能解决区域性的大气污染问题。对于区域性大气污染问题,必须通过采取综合防治的措施加以解决。 所谓大气污染的综合防治,就是从区域环境的整体出发,充分考虑该地区的环境特征,对所有能够影响大气质量的各项因素作全面、系统的分析,充分利用环境的自净能力,综合运用各种防治大气污染的技术措施,并在这些措施的基础上制定最佳的防治措施,以达到控制区域性大气环境质量、消除或减轻大气污染的目的。 大气污染综合防治涉及面比较广,影响因素比较复杂,一般来说,可以从下列几个方面加以考虑。 (1)全面规划,合理布局 大气污染综合防治,必须从协调地区经济发展和保护环境之间的关系出发,对该地区各污染源所排放的各类污染物质的种类、数量、时空分布作全面的调查研究,并在此基础上,制定控制污染的最佳方案。 工业生产区应设在城市主导风向的下风向。在工厂区与城市生活区之间,要有一定间隔距离,并植树造林、绿化、减轻污染危害。对已有污染重,资源浪费,治理无望的企业要实行关、停、并、转、迁等措施。 (2)改善能源结构,提高能源有效利用率 我国当前的能源结构中以煤炭为主,煤炭占商品能源消费总量的73%,在煤炭燃烧过程中放出大量的二氧化硫(SO2)、氮氧化物(NOX)、一氧化碳(CO)以及悬浮颗粒等污染物。因此,如从根本上解决大气污染问题,首先必须从改善能源结构入手,例如使用天然气及二次能源,如煤气、液化石油气、电等,还应重视太阳能、风能、地热等所谓清洁能源的利用。我国以煤炭为主的能源结构在短时间内不会有根本性的改变。对此,当前应首先推广型煤及洗选煤的生产和使用,以降低烟尘和二氧化硫的排放量。 我国能源的平均利用率仅30%,提高能源利用率的潜力很大。我国有20余万台锅炉,年耗煤2亿多吨,因此,合理选择锅炉,对低效锅炉的改造、更新、提高锅炉的热效率,能够有效地降低燃煤对大气的污染。 (3)区域集中供热 分散于千家万户的燃煤炉灶,市内密集的矮小烟囱是烟尘的主要污染源。发展区域性集中供暧供热,设立规模较大的热电厂和供热站,用以代替千家万户的炉灶,是消除烟尘的有效措施。这样还具有以下各项效益:①提高热能利用率;②便于采用高效率的除尘器;③采用高烟囱排放;④减少燃料的运输量。 (4)植树选林、绿化环境

填料塔计算部分

二 基础物性参数的确定 1 液相物性数据 对于低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。由手册查得,2 气相物性参数 设计压力:101.3kPa ,温度:20C ? 氨气在水中的扩散系数:92621.7610/ 6.33610/L D cm s m h --=?=? 氨气在空气中的扩散系数: 查表得,氨气在0°C ,101.3kPa 在空气中的扩散系数为0.17 2/cm s , 根据关系式换算出20C ?时的空气中的扩散系数: 33 2 2 0002 2 293.150.171273.150.189/0.06804/V P T D D P T cm s m h ??????==?? ? ? ??????? == 混合气体的平均摩尔质量为 m i 0.05170.982929.27V i M y M ==?+?=∑ 混合气体的平均密度为 3 m 101.329.27 1.2178.314293.15 V V m P M kg m R T ρ?= = =? 混合气体的粘度可近似取空气的粘度,查手册得20C ?空气粘度为

51.81100.065()V Pa s kg m h μ-=??=? 3 气液相平衡数据 由手册查得,常压下20C ?时,氨气在水中的亨利系数 76.3a E kP = 相平衡常数 76.30.7532 101.3 E m P = == 溶解度系数 3 s 998.20.726076.318.02 L H km ol kPa m EM ρ= = =?? 4 物料衡算 进塔气相摩尔比 1= 11 0.050.05263110.05 y Y y = =-- 出塔气相摩尔比 3 21(1)0.05263(10.98) 1.05310 A Y Y ?-=-=-=? 混合气体流量 33 0.1013(273.1520) 16.10100.1013273.15V N Q Q m h ? ?+==?? 惰性气体摩尔流量 273.15(10.05)636.1622.4 273.1520 V Q V km ol h = ? -=+ 该吸收过程属低浓度吸收,平衡关系为直线,最小液气比可按下式计算: 1212 L Y Y V Y m X -??= ? -?? 对于纯溶剂吸收过程,进塔液相组成 20X = m in 0.052630.0010530.73810.052630.7532L V -?? == ? ?? 取操作液气比为 m in 1.4L L V V ?? = ??? 1.40.7381 1.0333L V =?= 1.0333636.16657.34L kmol h =?=

填料塔设计

xxxxx 大学 化工原理课程设计任务书 专业: 班级: 组长: 成员: 设计日期: 设计题目: 空气丙酮填料塔的吸收 设计条件: 空气-丙酮体系 ●混合气:丙酮蒸气和空气 ●吸收剂:清水(25℃) ●处理量:1500m3/h(标准状态) ●相对湿度:70% ●温度:20O℃ ●含量:进塔混合气中含丙酮:1.82%(V%)

●要求:丙酮回收率:90% ●操作条件:常压操作 ●厂址地区:任选 ●设备型式:自选 设计内容:相关说明 1.设计方案的选择及流程说明 2.工艺计算 3.主要设备工艺尺寸设计 (1)塔径的确定 (2)填料层高度计算 (3)总塔高、总压降及接管尺寸的确定 4.辅助设备选型与计算 5.设计结果汇总 6.工艺流程图及换热器工艺条件 指导教师: xxxx 目录 第一节概述------------------------------------------4

1.1吸收技术概况------------------------------------------4 1.2吸收设备的发展------------------------------------------4 1.3吸收过程在工业生产中的应用------------------------------------------5 1.4丙酮的相关资料------------------------------------------6 第二节设计方案的确定-----------------------------------------7 2.1吸收剂的选择--------------------------------------------7 2.2吸收流程的选择----------------------------------------8 2.3吸收塔设备及填料的选择-------------------------------------------------9 2.4操作参数的选择------------------------------------------9 2.5设计模型图------------------------------------------10 第三节吸收塔的工艺计算----------------------------------------11 3.1基础性数据--------------------------------------------11 3.2物料计算-------------------------------11 3.3填料塔工艺尺寸的计算--------------------------------------------12 第四节设计后的感想-------------------------------------------------18 4.1对设计过程的评述和有关问题的讨论-------------------------------------------------18 4.2设计感想-------------------------------------------------------------------------------------------18 附录:参考文献-----------------------------------------------------------------------------------20

填料塔计算部分 (2)

二基础物性参数的确定 由手册查得,常压下20C ?时,氨气在水中的亨利系数 相平衡常数 溶解度系数 4物料衡算 进塔气相摩尔比 出塔气相摩尔比 混合气体流量 惰性气体摩尔流量 该吸收过程属低浓度吸收,平衡关系为直线,最小液气比可按下式计算: 对于纯溶剂吸收过程,进塔液相组成

取操作液气比为 Eckert 通用关联图: 气体质量流量为 液体质量流量可近似按纯水的流量计算: Eckert 通用关联图的横坐标为 根据关联图对应坐标可得 由表2-4-1可知 F φ=2601m - 取0.80.8 2.360 1.888/F u u m s ==?=

由 1.737 D===m 圆整塔径(常用的标准塔径有400mm、500mm、600mm、800mm、1000mm、1200mm、1400mm、1600mm、 2000mm、2200mm等)本设计方案取D=2000mm。 泛点率校核: 因为填料塔的适宜空塔气速一般取泛点气速的50%-80%,泛点率值在允许范围内。 填料塔规格校核: 2000 808 25 D d ==>(在允许范围之内) 液体喷淋密度校核: max D 取8 h D =,则 计算得填料层高度为4000mm,故不需分段 5.3填料层压降计算 采用Eckert通用关联图计算 横坐标为 由表2-4-1得,1 176 P m φ- = 纵坐标为 查Eckert通用关联图,P ?/Z位于40g~50gPa/m范围内,取 P ?/Z=45g=441.45Pa/m

填料层压降为 ?=441.45?4.0=1765.80Pa P 6液体分布器的简要设计 6.1液体分布器的选型 本设计的吸收塔气液相负荷相差不大,无固体悬浮物和液体粘度不大,加上设计建议是优先选用槽 盘式分布器,所以本设计选用槽盘式分布器。 6.2分布点密度计算 按Eckert建议值,1200 m,由于该塔喷淋密度较小,设计区分喷淋D≥时,喷淋点密度为42点/2 点密度为90点/2 m。 槽宽度为

板式塔发展现状资料讲解

板式塔发展现状

一、板式塔的发展历程与研究方向 蒸馏是一种量大而面广的工业分离混合物的方法,广泛应用于化工、炼油、食品、轻工业等许多工业部门,在国民经济中占有很大的比重。据统计,塔设备的投资费用占化工和石化过程共投资费用的25%,占总能耗的40%。此外,塔设备性能的好坏对产品质量和产量起着十分重要的作用,对降低能耗、降低生产成本和提高企业竞争实力有着重大的意义。 近年来,尽管涌现出很多新的分离技术,在实际生产过程中,蒸馏操作仍占据这很重要的地位。虽然从20世纪80年代开始,高效规整填料在工业塔中的成功应用改变了工业蒸馏设备长期以来已板式塔为主的的局面,但板式塔因其设备造价低廉、操作范围广、对各种物系适应强、易于清理和检修等优点,在蒸馏操作中仍占有不可替代的地位。特别是高压、高粘度等特殊工况条件下,板式塔仍占有优势。由于板式塔在蒸馏设备中占有重要地位,所以各国研究者对塔板性能的研究和新型塔板的开发与应用方面做了大量的工作,其中一个重要的方面就是对塔板的流体力学性能和塔板上流体流动状况的研究,另外就是开发高效、节能、结构简单和的新型塔设备。板式塔作为完成蒸馏操作的过程的一个主要设备,得到了广泛深入的研究。 二、板式塔发展历史 早在1813年Cellier就提出了泡罩塔,筛板塔也早在1832年开始用于生产。19世纪初,新的炼油工艺又推动了塔设备的发展。进入20世纪后,石油成为主要能源和石油化学工业的原料,早期的塔设备已不能满足这些不断更新的工艺过程需要,这就促进了精馏技术和塔设备有了新的发展。塔设备的发展大致可分为四个阶段:

(1)第二次世界大战结束前,塔设备主要用于炼油工业,塔型中以泡罩塔为主,而在无机酸工业中则多用于填料塔。 (2)第二次世界大战结束后,炼油和石油化学工业有了较大的发展,促使塔设备不断增加,除了对筛板、泡罩等原有塔型进行改进外,也出现了一些新型塔板。 (3)进入60年代以后,炼厂生产能力不断增大,使设备向大型化方向发展,与此同时,石油化工凶猛发展,提出了对塔型的某些特殊要求,因此出现了一些具有相应性能的塔板,适应高压、减压、高效、大液负荷、高弹性等要求。 (4)70年代后,塔板研究逐年减少。据报道,欧美等国大学中研究新塔板的课题为数不多,其原因是他们认为现有的各类塔板性能颇为接近,基本上可以满足所有蒸馏操作的要求。有人预言,除“并流”塔以外,近期内不会有彻底革新的新型踏板问世。但是由于能源愈益紧张而昂贵,使得能耗巨大的蒸馏过程与设备的研究开发工作仍在持续进行,新型塔板不断仍不断出现,尤其是那些大通量、低压降和高效率的塔板,更受人们欢迎。 三、塔板的发展概况 板式塔的种类繁多,根据其板内件的结构不同可分为泡罩型塔板、浮阀型塔板和筛孔型塔板等。 1.泡罩型塔板 泡罩塔是最早的典型的板式塔,自从1813年Cellier提出泡罩塔,并在化学工业生产上采用以来,泡罩塔在蒸馏、吸收等两相传质设备中曾占主导地位。泡罩塔在1920年被引入炼油工业,但是直到1924年在克劳斯过程中获得成功,泡罩塔才被广泛应用。近二三十年来,出现了许多新型塔板和高效填料。与泡罩塔相

填料品种和分类

填充剂的分类和品种 1.无机填料 ⑴碳酸钙 碳酸钙系由天然的矿物,如石灰石、大理石等研磨而成。是无臭、无毒的白色粉末,分子式为CaCO3,细度一般为5~40μm,在酸性溶液中或加热至825℃时就分解为氧化钙和二氧化碳。从填料角度可划分为轻质碳酸钙、重质碳酸钙、胶质碳酸钙,是塑料生产中使用最广泛的填充剂之一。价廉,来源广泛,相对密度较小,除具有增量作用外,还有改善加工性和制品性能的功效,还可提高制品的冲击韧度,一般常用的是轻质碳酸钙。从天然矿物角度划分,可分为方解石型、霞石型等结晶形态。 碳酸钙按粒度分级,一般为:粒径为1~5μm时,称之为微粒碳酸钙;粒径为0.1~1μ m时,称之为微细碳酸钙;粒径为0.02~0.1μm时,称之为超细碳酸钙;粒径小于0.02μm 时,称之为超微细碳酸钙;当粒径为0.005~0.02μm时,其增强作用与白炭黑相当。 目前生产超细级碳酸钙多采用连续喷雾炭化和喷雾干燥工艺(即双喷工艺),这样可使碳酸钙表观团粒(平均粒径为12μm)微细化,且粒子表面活化均匀。 轻质碳酸钙:这是用化学方法制造的碳酸钙,学名叫为沉降性碳酸钙。相对密度为2.4~2.7g/cm3,难溶于水;莫氏硬度2.5,吸油性63,一般粒径在10μm以下,粒子呈纺纱锭子状或结晶。 重质碳酸钙:无臭无味白色粉末,也叫三飞粉,几乎不溶于水。相对密度为2.7~2.95g/cm3,莫氏硬度3.0,吸油性32.是由石灰石经选矿、粉碎、分级、表面处理而成的碳酸钙。因含有杂质,其白度比不上轻质碳酸钙。 胶质碳酸钙:是一种由人工合成出来的白色细腻、软质粉末。相对密度小于轻质碳酸钙,为1.99~2.01g/cm3,其粒子表面吸附一层脂肪酸皂,使碳酸钙具有胶体活化性能。 ⑵滑石粉 滑石粉主要成分为水合硅酸镁,分子式为3MgO.4SiO2.H2O,由天然滑石粉碎精制而得,外观纯白色、灰白或浅黄色结晶细粉。相对密度 2.7~3.0g/cm3,莫氏硬度1~2,折光指数1.54~1.57.化学性质不活泼,不溶于水,性柔软有滑腻感,它能与油、脂肪、蜡及聚合物具有很好的相容性。同时,由于其晶格是由易分开的薄层重叠成的,故能产生润滑作用,减少对加工设备的磨损。其晶体属单斜晶系,呈六方形、鳞片状集合体。 滑石粉作为塑料填料,可提高制品的硬度、耐热性、耐蠕变性、抗酸碱性、点绝缘性

填料塔计算部分

二 基础物性参数的确定 本设计方案信息如下表所示: 1 液相物性数据 对于低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。由手册查得, 20C ?时水的有关物性数据如下: 2 气相物性参数 设计压力:101.3kPa ,温度:20C ? 氨气在水中的扩散系数:92621.7610/ 6.33610/L D cm s m h --=?=? 氨气在空气中的扩散系数: 查表得,氨气在0°C ,101.3kPa 在空气中的扩散系数为0.17 2/cm s ,

根据关系式换算出20C ?时的空气中的扩散系数: 332 2 00022293.150.171273.150.189/0.06804/V P T D D P T cm s m h ?????? ==?? ? ? ??????? == 混合气体的平均摩尔质量为 m i 0.05170.982929.27V i M y M ==?+?=∑ 混合气体的平均密度为 3m 101.329.27 1.2178.314293.15 V Vm PM kg m RT ρ?= ==? 混合气体的粘度可近似取空气的粘度,查手册得20C ?空气粘度为 5 1.81 100.065() V P a s k g m h μ-=??=? 3 气液相平衡数据 由手册查得,常压下20C ?时,氨气在水中的亨利系数 76.3a E kP = 相平衡常数 76.30.7532101.3 E m P = == 溶解度系数 3s 998.2 0.726076.318.02 L H kmol kPa m EM ρ= = =?? 4 物料衡算 进塔气相摩尔比 1= 110.05 0.05263110.05 y Y y ==-- 出塔气相摩尔比 321(1)0.05263(10.98) 1.05310A Y Y ?-=-=-=?

化工原理课程设计(规整填料塔)

填料精馏塔设计任务书 一、设计题目:填料塔设计 二、设计任务:苯-甲苯精馏塔设计 三、设计条件: 1、年处理含苯41%(质量分数,下同)的苯-甲苯混合液3万吨; 2、产品苯含量不低于96%; 3、残液中苯含量不高于1%; 4、操作条件: 填料塔的塔顶压力:4kPa(表压) 进料状态:自选 回流比:自选 加热蒸汽压力:101.33kPa(表压) 5、设备型式:规整填料塔 6、设备工作日:300天/年,24h连续运行 四、设计内容和要求 序号设计内容要求 1 工艺计算物料衡算、热量衡算、理论塔板数等 2 结构设计塔高、塔径、分布器、接口管的尺寸等 3 流体力学验算塔板负荷性能图 4 冷凝器的传热面积和冷却介质的 用量计算 5 再沸器的传热面积和加热介质的 用量计算 6 计算机辅助计算将数据输入计算机,绘制负荷性能图 7 编写设计说明书目录、设计任务书、设计计算及结果、流程图、参考资料等

目录 第1章流程的确定和说明 (3) 1.1加料方式 (3) 1.2进料状态 (3) 1.3冷凝方式 (3) 1.4回流方式 (3) 1.5加热方式 (3) 1.6加热器 (4) 第2章精馏塔设计计算 (5) 2.1操作条件和基础数据 (5) 2.1.1操作压力 (5) 2.1.2基础数据 (5) 2.2精馏塔工艺计算 (7) 2.2.1物料衡算 (7) 2.2.2热量衡算 (9) 2.2.3理论塔板数计算 (11) 2.3精馏塔的主要尺寸 (12) 2.3.1精馏塔设计的主要依据 (12) 2.3.2塔径设计计算 (15) 2.3.3填料层高度的计算 (16) 第3章附属设备及主要附件的选型计算 (17) 3.1冷凝器 (17) 3.1.1计算冷却水流量 (18) 3.1.2冷凝器的计算与选型 (18) 3.2再沸器 (18) 3.2.1间接加热蒸汽 (18) 3.2.2再沸器加热面积 (18) 3.3塔内其他结构 (19) 3.3.1接管的计算与选择 (19) 3.3.2液体分布器 (20) 3.3.3除沫器 (21) 3.3.4液体再分布器 (22) 3.3.5填料支撑板的选择 (22) 3.3.6塔底设计 (23) 3.3.7塔的顶部空间高度 (23) 第4章结束语 (24) 参考文献 (25)

填料塔设计

化工原理课程设计 -填料塔的设计说明书 院(系)别:化学与化工学院 专业:应用化学 年级班: 09级3班 姓名: 学号: 指导老师:

前言: 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。同时,通过课程设计,还可以使学生树立正确的设计思想,培养实事求是、严肃认真、高度责任感的工作作风。课程设计是增强工程观念,培养提高学生独立工作能力的有益实践。 在设计过程中应考虑到设计的业精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。节省能源,综合利用余热。经济合理,冷却水进出口温度的高低,一方面影响到冷却水用量。另一方面影响到所需传热面积的大小。即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题。 经过学习,我知道,填料塔吸收净化工艺不单应用在化工领域 ,在低浓度工业废气净化方面也能很好地发挥作用。工程实践表明 ,合理的系统工艺和塔体设计 ,是保证净化效果的前提。这次课程设计我把聚丙烯阶梯填料应用于水吸收氨过程的工艺设计以及工程问题。

目录 一、设计任务 (5) 二、设计条件 (5) 三、设计方案 (5) 1、吸收剂的选择 (5) 2、吸收过程的选择 (5) 3、流程图及流程说明 (5) 4、塔填料选择 (6) 四、工艺计算 (6) 1、物料衡算,确定塔顶、塔底的气液流量和组成 (7) 2、塔径计算 (8) 3、填料层高度计算 (9) 4.填料层压降计算 (11) 五、液体分布装置 (12) 1、液体分布器的选型 (12) 2、分布点密度计算 (12) 六、吸收塔塔体材料的选择 (13) 1、吸收塔塔体材料:Q235-B (13) 2、吸收塔的内径 (13) 3、壁厚的计算 (13) 4、强度校核 (14) 七、封头的选型依据,材料及尺寸规格 (14) 1、封头的选型:标准的椭圆封头 (14) 2、封头材料的选择 (14) 3、封头的高 (14) 4、封头的壁厚 (15) 八、液体再分布装置 (15) 九、气体分布装置 (16) 十、填料支撑装置 (16) 十一、液体分布装置 (16) 十二、除沫装置 (17) 1、设计气速的计算 (17) 2、丝网盘的直径 (17) 3、丝网层厚度H的确定 (18) 十三、管结构 (18) 1、气体和液体的进出的装置 (18) 2、填料卸出口 (19) 3、塔体各开孔补强设计 (19) 十四、填料塔高度的确定(除去支座) (20) 1吸收高度 (20) 2、支持圈高度 (20) 3、栅板高度 (20) 4、支持板高度 (20)

填料塔的计算.doc

一、设计方案的确定 (一) 操作条件的确定 1.1吸收剂的选择 1.2装置流程的确定 1.3填料的类型与选择 1.4操作温度与压力的确定 45℃常压 (二)填料吸收塔的工艺尺寸的计算 2.1基础物性数据 ①液相物性数据 对于低浓度吸收过程,溶液的物性数据可近似取质量分数为30%MEA 的物性数据

7.熔 根据上式计算如下: 混合密度是:1013.865KG/M3 混合粘度0.001288 Pa ·s 暂取CO2在水中的扩散系数 表面张力б=72.6dyn/cm=940896kg/h 3 ②气相物性数据 混合气体的平均摩尔质量为 M vm = y i M i =0.133*44+0.0381*64+0.7162*14+0.00005*96+0.1125*18 =20.347 混合气体的平均密度ρvm = =??=301 314.805 .333.101RT PMvm 101.6*20.347/(8.314*323)=0.769kg/m 3 混合气体粘度近似取空气粘度,手册28℃空气粘度为

μV =1.78×10-5Pa ·s=0.064kg/(m ?h) 查手册得CO2在空气中的扩散系数为 D V =1.8×10-5m 2/s=0.065m 2/h 由文献时CO 2在MEA 中的亨利常数: 在水中亨利系数E=2.6?105kPa 相平衡常数为m=1.25596 .101106.25 =?= P E 溶解度系数为H=)/(1013.218 106.22.9973 45 kPa m kmol E M s ??=??= -ρ 2.2物料衡算 进塔气相摩尔比为Y1=0.133/(1-0.133)= 0.153403 出塔气相摩尔比为Y2= 0.153403×0.05=0.00767 进塔惰性气相流量为V=992.1mol/s=275.58kmol/h 该吸收过程为低浓度吸收,平衡关系为直线,最小液气比按下式 计算,即 2 121min /X m Y Y Y )V L ( --= 对于纯溶剂吸收过程,进塔液组成为X2=0 2 121min /X m Y Y Y )V L ( --==(0.153403-0.00767)/(0.1534/1.78)=1.78 取操作液气比(?)为L/V=1.5L/V=1.5×1.78=2.67 L=2.67×275.58=735.7986kmol/h ∵V(Y1-Y2)=L(X1-X2) ∴X1=0.054581

填料塔课程设计

目录 1.前言 (4) 2.设计任务 (6) 3.设计方案说明 (6) 4.基础物性数据 (6) 5.物料衡算 (6) 6.填料塔的工艺尺寸计算 (8) 7.附属设备的选型及设备 (14) 8.参考文献 (19) 9.后记及其他 (20)

1.前言 填料塔是以塔内的填料作为气液两相间接触构件的传质设备,它是化工类企业中最常用的气液传质设备之一。而塔填料塔内件及工艺流程又是填料塔技术发展的关键。聚丙烯材质填料作为塔填料的重要一类,在化工上应用较为广泛,与其他材质的填料相比,聚丙烯填料具有质轻、价廉、耐蚀、不易破碎及加工方便等优点,但其明显的缺点是表面润湿性能。 1.1填料塔技术 填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。因此,当填料层较高时,需要进行分段,中间设置再分布装置。液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。 填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。 1.2 填料的类型 填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料。 散装填料是一个个具有一定几何形状和尺寸的颗粒体,一般以随机的方式堆积在塔内,又称为乱堆填料或颗粒填料。散装填料根据结构特点不同,又可分为环形填料、鞍形填料、环鞍形填料及球形填料等。

溶液除湿再生性能实验的研究发展

溶液除湿再生性能实验的研究发展 溶液再生过程是溶液除湿系统重要的传热传质过程。本文对一些学者关于溶液除湿系统再生性能的实验研究进行了简单的介绍和总结。 标签:溶液除湿;溶液再生;再生性能 引言 传统空调通常采用冷却除湿的方式将空气的温度处理到露点温度以下,实现空气的除湿和降温。但这种方式不仅使压缩制冷系统由于蒸发温度的降低而导致性能系数降低,而且会在表冷器表面生成凝结水使霉菌滋生,从而影响空气品质[1]。然而,溶液除湿方法可将除湿与降温过程分开,解决了上述问题。 再生过程是溶液除湿系统重要的传热传质过程,再生性能的高低直接影响了除湿过程中除湿性能的强弱。为了充分利用低品位能源,可以使用太阳能、工业废热、冷凝热等作为除湿溶液的再生热源,这样既可以使运行成本降低,又可减少废热的排放,同时达到了节能和环保的双重目的[2]。 1 再生机理 除湿过程是浓溶液从被处理空气中吸收水分,并放出潜热的过程;而溶液的再生过程正好与其相反即除湿后的稀溶液从外界获取热量使水分从溶液蒸发到空气中的过程。溶液表面的蒸气压和空气的蒸气压的差值是水分传递的驱动势,但是这个差值大于零时溶液的再生过程才能够发生。影响除湿溶液表面蒸气压的两个重要因素是浓度和温度。在除湿器中浓溶液由于吸收水分而浓度降低,此时它的蒸气压逐渐变大,当它的蒸气压高于被处理空气蒸气压时,除湿过程停止,而将吸湿后的稀溶液通过低品位热源的加热升温到一定值后,通入再生器与空气接触,只要保持它的蒸气压与接触的空气的蒸气压的差值为正,再生过程就会发生。 2 国外某些再生过程的实验研究 Martin和Goswami实验测试了三甘醇溶液在聚丙烯Rauschert Hilflow环散装填料的逆流填料塔再生装置中的热质交换过程。Fumo和Goswami分析了以LiCl溶液为吸湿溶液在上述逆流填料塔中溶液与湿空气的再生热质交换过程[2]。Longo G A[3]等实验测试了分别采用LiBr溶液、LiCl溶液和KCOOH溶液,使用塑料环散装填料的逆流填料塔的除湿再生过程,对于3种溶液的再生性能也进行了比较。国内许多学者也对再生过程进行了不同程度的研究,文章意在主要对他们的研究进行介绍和总结。 3 国内有关再生过程的研究

相关主题
文本预览
相关文档 最新文档