当前位置:文档之家› 第二节·微积分基本定理

第二节·微积分基本定理

Fundamentals of Advanced Mathematics (I)
Xueli Wang School of Science, BUPT Tel: 6228-2117 E-Mail: wangxlpku@https://www.doczj.com/doc/7015468307.html,
1

Section 5.2
The Fundamental Theorems of Calculus
2

Newton-Leibniz Formula
Definition. (Primitive function) If F ′( x ) = f ( x ) , x ∈ I , then F ( x ) is called an antiderivative of the function f ( x ) on I .
For instance, sin x is an antiderivative of cos x and ln x 1 . is an antiderivative of x The evaluation of a definite integral is closely related to the antiderivative of the integrand function.
3

Newton-Leibniz Formula
Example: Suppose that a particle moves along a straight line from t = a to t = b . If the velocity v = v ( t ) is known, then by the definition of definite integral we know that
s = ∫ v ( t )dt
a b
if the displacement function, s = s( t ) , is known, then
s = s( b ) ? s( a )
Hence, we have

b a
v ( t )dt = s(b ) ? s(a )
It is well known that s′( t ) = v ( t ) or s( t ) is an antiderivative of v ( t ) , then, by the last equation, we can establish the following theorem.
4

Newton-Leibniz Formula
Theorem: (Newton-Leibniz formula) If antiderivative of f ( x ) on [a , b], then
f ∈ R[a , b] , and F ( x ) is an
b

b a
f ( x )dx = F (b ) ? F (a ) = F ( x ) a = [ F ( x )]a
b
d
(
)
Newton, Isaac (1642-1727) English physicist and mathematician
Leibniz, Gottfried (1646-1716) German philosopher, physicist, and mathematician
5

Newton-Leibniz Formula
Proof: Arbitrarily insert n ? 1 points of partition between a and b such that Then,
a = x0 < x1 < " < xn?1 < xn = b
F (b ) ? F (a ) = [ F ( xn ) ? F ( xn?1 )] + [ F ( xn?1 ) ? F ( xn? 2 )] + " + [ F ( x2 ) ? F ( x1 )] + [ F ( x1 ) ? F ( x0 )] = ∑ [ F ( xk ) ? F ( xk ?1 )]
k =1 n
Since F ′( x ) = f ( x ) , so F ( x ) is continuous. By the mean value theorem of differential calculus gives
F ( xk ) ? F ( xk ?1 ) = F ′(ξ k )( xk ? xk ?1 ) = f ( ξ k ) Δxk
where xk ?1 ≤ ξ k ≤ xk and k = 1, 2,", n .
6

Newton-Leibniz Formula
Proof (continued) Since the antiderivative F ( x ) of f ( x ) exists and F ′( x ) = f ( x ) , then
F ( x ) is continuous, hence we may choose the
ξ k ∈ [ x k ?1 , x k ]
in the Riemann sum as the one obtained by the mean value theorem. Then
F ( b ) ? F (a ) = ∑ f (ξ k )Δxk
Taking limit on both sides we have
n d →0 k =1 k =1
n
F (b ) ? F (a ) = lim ∑ f (ξ k )Δxk = ∫ f ( x )dx
b a
Finish.
7

Newton-Leibniz Formula
Example Find the following definite integrals:
(1) (2)

1 0
x 2 dx

π
2 0
sin xdx
Solution:
1 1 3 2 = x dx = x (1) ∫0 3 0 3
1
1
(2)

π
2 0
sin xdx = ? cos x 02 = 0 ? ( ?1) = 1
π
8

Newton-Leibniz Formula
Example: Find the value of

?1 ?2
1 dx . x
1 , x < 0 , is ln | x | x
Solution: Since one of the antiderivative of
, then by Newton-Leibniz Formula, we have

?1 ?2
?1 1 dx = [ ln | x |] ?2 x
= ln1 ? ln 2 = ? ln 2.
9

Fundamental theorems of Calculus
Definition: If f ∈ R[a , b], for any given x ∈ [a , b] , we get a definite value for the integral Hence, the definite integral

x a
f ( t )dt .

x a
f ( t )dt defines a
new function with respect to the upper limit x on the interval [a , b]. In general, if
f ∈ R[a , b] , then the integral

x
a
f ( t )dt is called a integral with variable upper
limit x , and it is a function of x , where x ∈ [a , b] .
10

Fundamental theorems of Calculus
Note: If f ∈ R[a , b] and F ( x ) exists, by Newton-Leibniz theorem,

x a
f ( t )dt = F ( x ) ? F (a )
where F ′( t ) = f ( t ) and hence
F ′( x ) = f ( x ).
By the differentiation with respect to x , we have
d x f ( t )dt = F ′( x ) = f ( x ). ∫ a dx
11

Fundamental theorems of Calculus
Theorem (The first fundamental theorem of calculus) If f ∈ C [a , b], then
x
Φ( x ) = ∫ f ( t )dt is differentiable on [a , b] and
a
Φ ′( x ) =
Proof Φ ( x + Δx ) = ∫
x +Δx a
d x f ( t )dt = f ( x ) . ∫ a dx
y
f ( t )dt
ΔΦ = Φ( x + Δx ) ? Φ( x )
=∫
x +Δx a
f ( t )dt ? ∫ f ( t )dt
a
x
Φ( x )
O
a
x
x + Δx
b
x
12

Fundamental theorems of Calculus
= ∫ f ( t )dt + ∫
a x x +Δx x
f ( t )dt ? ∫ f ( t )dt
a
x
=∫
x +Δx x
f ( t )dt ,
y
By the mean value theorem of integral calculus
ΔΦ = f (ξ )Δx ΔΦ = f (ξ ), Δx
ξ ∈ [ x , x + Δx ],
Φ(x)
ΔΦ lim = lim f (ξ ) Δx → 0 Δ x Δx → 0
o
a
x ξ x + Δx b
x
Δx → 0, ξ → x ∴ Φ′( x ) = f ( x ).
13

Fundamental theorems of Calculus
Theorem (The first fundamental theorem of calculus) If f ∈ C [a , b], then
Φ( x ) = ∫ f ( t )dt is differentiable on [a , b] and
a x
d x Φ ′( x ) = f ( t )dt = f ( x ) . ∫ a dx
Note: This theorem shows that for every continuous function f ( x ) there must exist the antiderivatives of f ( x ) , and the integral

x a
f ( t )dt is just an
antiderivative of f ( x ) . This formula gives a connection between integral calculus and differential calculus. Hence, it is called the fundamental theorem of calculus.
14

Fundamental theorems of Calculus
Note: The formula means that the derivative of the integral with varying upper limit

x
a
f ( t )dt with respect to the upper limit x is equal to the value
of the integrand at the upper limit x .
y M f ( x)
O
a
x
b
x
15

Fundamental theorems of Calculus
Note: Since a function is independent of the symbol used for its variable, f ( t )( t ∈ [a , b]) and f ( x )( x ∈ [a , b]) are exactly the same function. Hence, the formula in the last theorem sometimes may also be written as
d x f ( x )dx = f ( x ) ∫ a dx
But in this case, there may have some confusions. To avoid this, we usually change f ( x ) into f ( t ) , where a ≤ t ≤ x .
Note: We have seen that a new function any continuous function f ( x ) .

x a
f ( t )dt has been well defined for
16

Fundamental theorems of Calculus
Example (P222) : Find the derivatives of the following functions ( x ≥ 1) : x sin t 1 sin t (1) Φ( x ) = ∫ dt ; (2) Φ( x ) = ∫ dt ; 1 x t t . x 2 sin t e2 x (3) Φ( x ) = ∫ dt ; (4) Φ( x ) = ∫ 2 ln tdt ; 1 x t
Solution.
d x sin t sin x (1) Φ ( x ) = dt = . ∫ 1 dx t x
'
d 1 sin t d ? x sin t ? sin x (2) Φ ( x ) = dt = ? dt = ? . ∫ ∫ ? ? x 1 dx t dx ? t x ? x 2 sin t (3) ∫ dt may be regarded as a com[osite function.Hence 1 t 2 2 x 2 sin t d d sin x sin x 2 Φ' ( x ) = dt ? x = ? 2x = 2 . ( ) 2 2 ∫1 t dx x x d(x )
'
17

Fundamental theorems of Calculus
Solution (continue): (4) taking many number c > 0,say,1,divide the integral into two parts. Then
e2 x d e2 x d ? 1 ? Φ ( x) = tdt = tdt + tdt ln ln ln ? ? ∫1 dx ∫ x 2 dx ? ∫ x 2 ? = ? ln x 2 ? 2 x + ln e 2 x ? 2e 2 x = 4 x (e 2 x ? ln x ). Finish. '
18

Fundamental theorems of Calculus
Example: Suppose that f ( x ) = ∫
Solution
1 dt , find f ′( x ) . sin x 1 + t 2
2
f ( x) = ? ∫
sin x
2
u 1 u = sin x 1 ?∫ 2 dt 2 dt 2 1+ t 1+ t
u d 1 ? ? du ′ f ( x) = d t ? ?? ? ∫2 2 du ? 1+ t ? dx
=?
? cos x 1 = ? cos x 1 + sin 2 x 1 + u2
19

Fundamental theorems of Calculus
Example: Find
∫ lim
x →0
1
cos x
e dt
?t2
x2
.
? 0? ? 0? ? ?
Solution
d 1 ?t2 d cos x ? t 2 e dt = ? ∫ e dt dx ∫cos x dx 1
= ?e
? cos 2 x
? (cos x )′
? cos 2 x
= sin x ? e
lim
x →0

1
cos x
e ? t dt
2
x2
= lim
sin x ? e x →0 2x
? cos 2 x
=
1 . 2e
20

1-定积分与微积分基本定理(理)含答案版

定积分与微积分基本定理(理) 基础巩固强化 1.求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( ) A .S =?? ?0 1(x 2-x )d x B .S =?? ?0 1 (x -x 2)d x C .S =?? ?0 1 (y 2-y )d y D .S =??? 1 (y - y )d y [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图 形的面积S =?? ?0 1 (x -x 2)d x . 2.如图,阴影部分面积等于( ) A .2 3 B .2-3 [答案] C [解析] 图中阴影部分面积为

S =??? -3 1 (3-x 2 -2x )d x =(3x -1 3x 3-x 2)|1 -3=32 3. 4-x 2d x =( ) A .4π B .2π C .π [答案] C [解析] 令y =4-x 2,则x 2+y 2=4(y ≥0),由定积分的几何意义知所求积分为图中阴影部分的面积, ∴S =1 4×π×22=π. 4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是( ) A .在t 1时刻,甲车在乙车前面 B .在t 1时刻,甲车在乙车后面 C .在t 0时刻,两车的位置相同 D .t 0时刻后,乙车在甲车前面 [答案] A [解析] 判断甲、乙两车谁在前,谁在后的问题,实际上是判断在t 0,t 1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间内行驶的路程就是该时间段内速度函数的定积

微积分基本定理的证明

理学院 School of Sciences 微积分基本定理的证明 Proof of the fundamental theorem of calculus 学生姓名:张智 学生学号:201001164 所在班级:数学101 所在专业:数学与应用数学 指导老师:杨志林

摘要 微积分学这门学科在数学发展中的地位是十分重要的,自十七世纪以来,微积分不断完善成为一门学科。而微积分基本定理的则是微积分中最重要的定理,它的建立标志着微积分的完成,成为数学发展史的一个里程碑。因此就有了研究微积分基本定理的必要性。本文从十七世纪到二十世纪以来的科学家如巴罗、牛顿、莱布尼兹、柯西、黎曼、勒贝格等人对微积分基本定理的发展所作出的贡献展开论述。并论述了定理在微积分学理论发展中的应用。如换元公式、分部积分公式、Taylor中值定理的积分证明、连续函数的零点定理的证明,建立了微分中值定理与积分中值定理的联系,在一元函数和多元函数上的推广等等。最后给出定理的几个证明方法。 关键词:微积分基本定理,发展史,定理的应用,定理的证明

ABSTRACT Calculus the subject in the position of the development of mathematics is very important,since seventeenth Century,calculus constantly improved as a discipline.While the fundamental theorem of calculus is the most important theorems in calculus,which establishment marks the complete of the calculus, become a milepost of the development history of mathematics. So it is necessary to study the fundamental theorem of calculus. In this paper,since seventeenth Century to twentieth Century,launches the elaboration from scientists such as Barrow, Newton, Leibniz, Cauchy, Riemann, Lebesgue and others on made the contribution to the development of the fundamental theorem of calculus. And discusses the application of theorem in the development of the calculus theory.Such as the transform formula, integral formula of integration by parts, proof of the Taylor mean value theorem of continuous function, the zero point theorem proof, established the differential mean value theorem and the integral mean value theorem in contact,a unary function and multivariate function on the promotion and so on.Finally gave several proofs of the theorem. Keywords:Fundamental Theorem of Calculus,phylogeny,Application,Proof

7.微积分基本定理练习题

7、微积分基本定理 一、选择题 1.??0 1(x 2 +2x )d x 等于( ) A.13 B.23 C .1 D.43 2.∫2π π(sin x -cos x )d x 等于( ) A .-3 B .-2 C .-1 D .0 3.自由落体的速率v =gt ,则落体从t =0到t =t 0所走的路程为( ) A.13gt 20 B .gt 2 0 C.12gt 20 D.16gt 20 4.曲线y =cos x ? ????0≤x ≤3π2与坐标轴所围图形的面积是( ) A .4 B .2 C.5 2 D .3 5.如图,阴影部分的面积是( ) A .2 3 B .2- 3 C.323 D.35 3 6.??0 3|x 2-4|d x =( ) A.213 B.223 C.233 D.25 3 7.??241 x d x 等于( ) A .-2ln2 B .2ln2 C .-ln2 D .ln2 8.若??1a ? ?? ??2x +1x d x =3+ln2,则a 等于( ) A .6 B .4 C .3 D .2 9.(2010·山东理,7)由曲线y =x 2 ,y =x 3 围成的封闭图形面积为( ) A.112 B.14 C.13 D.7 12 10.设f (x )=??? ?? x 2 0≤x <12-x 1

11.从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为________. 12.一物体沿直线以v =1+t m/s 的速度运动,该物体运动开始后10s 内所经过的路程是________. 13.求曲线y =sin x 与直线x =-π2,x =5 4π,y =0所围图形的面积为________. 14.若a =??02x 2 d x ,b =??02x 3 d x ,c =??0 2sin x d x ,则a 、b 、c 大小关系是________. 三、解答题 15.求下列定积分: ①??0 2(3x 2+4x 3 )d x ; ② sin 2 x 2 d x . 17.求直线y =2x +3与抛物线y =x 2 所围成的图形的面积. 18.(1)已知f (a )=??0 1(2ax 2 -a 2 x )d x ,求f (a )的最大值; (2)已知f (x )=ax 2 +bx +c (a ≠0),且f (-1)=2,f ′(0)=0,??0 1f (x )d x =-2,求a ,b ,c 的值. DBCDCCDDAC 11. 13 12. 23(1132-1) 13.4-2 2 [解析] 所求面积为 =1+2+? ?? ?? 1-22=4-22. 14.[答案] c

微积分基本定理 教案

微积分基本定理 一:教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的内容,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二:教学重难点 重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基 本定理的含义,并能正确运用基本定理计算简单的定积分。 难点:了解微积分基本定理的含义 三:教学过程: 1、知识链接: 定积分的概念: 用定义计算的步骤: 2、合作探究: ⑴导数与积分的关系; 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。有没有计算定积分的更直接方法,也是比较一般的方法呢? 下面以变速直线运动中位置函数与速度函数之间的联系为例: 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为2 1()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1()T T v t dt ?=12()()S T S T - 而()()S t v t '=。 说出你的发现 ⑵ 微积分基本定理 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()()b a f x dx F b F a =-?? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差

牛顿-莱布尼茨公式的详细证明

牛顿—莱布尼茨公式 前言 此证明主要是献给那些无论如何,竭斯底里都想知道自已手上这条无与伦比公式背后的秘密的高中生。 公式的证明首先是从定积分的基本性质和相关定理的证明开始,然后给出积分上限函数的定义,最后总揽全局,得出结论。证明过程会尽可能地保持严密,也许你会不太习惯,会觉得多佘,不过在一些条件上如函数f(x),我们是默认可积的。 所有证明过程都是为后续的证明做铺掂的,都是从最低层最简单开始的,所以你绝对,注意,请注意,你是绝对能看懂的,对于寻求真理的人,你值得看懂! (Ps :如果你不太有耐心,我建议你别看了,因为这只会让你吐出垃圾两个字) 定积分性质的证明 首先给出定积分的定义: 设函数f(x)在区间[a,b]上连续,我们在区间[a,b]上插入n-1个点分成n 个区间[a,x 1],[x 1,x 2]…[x n ,x n-1],其中x 0=a ,x n =b ,第i 个小区间?x i = x i -x i-1(i=1,2…n)。 由它的几何意义,我们是用无数个小矩形的面积相加去模拟它的面积,因此任一个小矩形的面积可表示为?S i =f(εi ) ?x i ,为此定积分可以归结为一个和式的极 限 即: 性质1:证明?b a c dx = C(b-a),其中C 为常数. 几何上这就是矩形的面积 性质2:F(x)和G(x)为函数z(x)的两个原函数,证明F(x)=G(x)+C,C 为常数. 设K(x)=F(x)-G(x) 定义域为K 1021110()lim ()lim (...)lim ()()n b i i n n a n n i n n f x dx f x c x x x x x x c x x c b a ε-→∞→∞=→∞=?=-+-++-=-=-∑?0()()() ()()()()()0()()()lim 0x F x G x z x K x F x G x z x z x K x x K x K x x ?→''=='''∴=-=-=+?-'∴==?Q 1()lim ()n b a n i i i f x dx f x ε→∞==?∑ ?

定积分及微积分基本定理练习题及答案

定积分与微积分基本定理练习题及答案 1.(2011·宁夏银川一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·山东日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系 是( ) A .a2,c =??0 2sinxdx =-cosx|02 =1-cos2∈(1,2), ∴c

微分学的基本定理

微分学的基本定理 【费马(Fermat)定理】 若(i)函数)(x f 在0x 点得某一邻域),(0δx O 内有定义,并且在此邻域内恒有 )(x f )(0x f ≤, 或者)(x f )(0x f ≥; (ii)函数)(x f 在0x 点可导, 则有 0)(0='x f 证明我们对)(x f 的情形给出假设证明.由于假设)(0x f '存在,按定义,也就是 +'f (0x )=-'f (0x )=f '(0x ), 另一方面,由于)(x f )(0x f ≤,所以对(δ+00,x x )内的各点x ,有 ≤--0 0)()(x f x f 0;而对(00,x x δ-)内的各点x ,有 0)()(0 0≥--x f x f .再由极限性质得 )(0x f '=+'f (0x )=lim 0+→o x x ≤--00)()(x x x f x f 0,)(0x f '=-'f (0x )=lim 0 -→o x x 0)()(00≥--x x x f x f .而)(0x f '是一个定数,因此它必须等于零,即)(0x f '=0. 对于)(x f )(0x f ≥的情形,也可相仿证明. 这个定理的几何意义是:如果曲线)(x f y =在0x 点具有极大值(也就是函数)(x f 在0x 点的值不小于)(x f 在0x 点近旁的其他点上的值)或者曲线)(x f y =在0x 点具有极小值(也就是函数)(x f 在0x 点的值不大于)(x f 在0x 点近旁的其他点上的值),并且曲线

)(x f y =在0x 点具有切线l ,那么,费马定理就表明了切线l 必为水平线. 【拉格朗日(Lagrange)中值定理】 这个定理也称为微分学的中值定理,它是微分学中的一个很重要的定理. 若函数)(x f 满足 (i) 在[]b a ,连续;(ii)在(b a ,)可导, 则在(b a ,)内至少存在一点ξ,使 )(ξf '=a b a f b f --)()(.这个定理从几何图形上看是很明显的.画出[]b a ,上的一条曲线)(x f y =,连接A,B 两点,作弦AB,它的斜率是 = ?tan a b a f b f --)()(.下面对此定理给以证明. 证明不妨假设)(x f 在[]b a ,上不恒为常数.因为如果)(x f 恒为常数,则0)(='x f 在(b a ,)上处处成立,这时定理的结论是明显的. 由于)(x f 在[]b a ,连续,由闭区间连续函数的性质,)(x f 必在[]b a ,上达到其最大值M 和最小值m,我们分两种情形来证明. (1)考虑特殊情形,)()(b f a f =.由于)(x f 不恒为常数,所以此时必有M >m,且M 和m 中至少有一个不等式.这时根据闭区间上连续函数的性质,在(b a ,)内至少有一点ξ,使得))(()(m f M f ==ξξ或者,于是对(b a ,)内任一点x ,必有 )) ()()(()(ξξf x f f x f ≥≤或于是由费马定理,即得 0)(='ξf . 而此时0)()(=-a f b f ,这就证明了定理成立. 对于这样特殊情况的中值定理,也叫【罗尔(Rolle)定理】. (2)考虑一般情形,)()(b f a f ≠.此时,作辅助函数[] 1

微积分基本定理说课稿

《微积分基本定理》(说课稿) 一、教材分析 1、教材的地位及作用 我所选用的教材是科学出版社出版的高等教育“十一五”规划教材《经济数学基础》,由宋劲松老师主编。微积分基本定理是第四章第二节内容,本节内容共设计两个课时,这节课的主要内容是微积分基本公式的导出以及用它求定积分。 本节课是学生学习了不定积分和定积分这两个概念后的继续,它不仅揭示了不定积分和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。 二、教学目标及重点、难点 1、教学目标 根据学生的认知结构特征以及教材内容的特点,依据新课程标准要求,确定本节课的教学目标如下: (1)知识与技能目标:通过本节的学习,使学生了解变上限的定积分的定义及相关定理,掌握牛顿—莱布尼兹公式,通过例题及练习,使学生在增加对牛顿—莱布尼兹公式感性认识的基础上,熟练掌握求定积分的方法,从而能够熟练计算定积分. (2)能力目标:本节所讲数学知识主要是为学生学习专业课做准备。要逐步培养学生具有比较熟练的基本运算能力、提高综合运用所学知识分析和解决实际问题的能力。 (3)德育目标:通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 2、教学重点、难点 根据教材内容特点及教学目标的要求确定本节重点为通过探究变上限定积分与原函数的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分. 根据学生的年龄结构特征和心理认知特点确定本节难点:了解微积分基本定理的含义. ——以学生现有的知识水平对于微积分基本定理的严密证明是存在着一定难度的,而突破难点的关键在于让学生主动去探索,体会微积分基本公式的导出以及利用它来计算简单的定积分,这样才能从真正意义上把握该定理的含义,提高学生的能力,体现学生的主体地位. 三、教法和学法 1、教法: 素质教育理论明确要求:教师是主导,学生是主体,只有教师在教学过程中注重引导,才能充分发挥学生的主观能动性,有利于学生创造性思维的培养和能力的提高,根据本节的教学内容及教学目标和学生的认识规律,我采用类比、启发、引导、探索式相结合的方法,启发、引导学生积极思考本节课所遇到的问题,引导学生联想旧知识来解决和探索新知识,从而使学生产生浓厚的学习兴趣和求知欲,体现了学生的主体地位。 2、学法:

(完整版)2-14第十四节定积分与微积分基本定理(理)练习题(2015年高考总复习)

第十四节 定积分与微积分基本定理(理) 时间:45分钟分值:75分 一、选择题(本大题共6小题,每小题5分,共30分) 1 2x 2dx , S 2= ;dx , S 3 = 2e x dX ,贝U S i , 1 1 1 B . S 2

文本预览
相关文档 最新文档