当前位置:文档之家› 静止补偿器

静止补偿器

静止补偿器
静止补偿器

1 概述

静止同步补偿器(Static Synchronous Compensator,STATCOM)是柔性交流输电

系统(Flexible AC Transmission System,FACTS)的核心装置和核心技术之一。在此之前,又称ASVG、SVG、STATCON、ASVC,直至1995 年国际高压大电网会议与电力、电子工程师学会建议采用静止同步补偿器(STATCOM)。

静止同步补偿器采用新一代的电力电子器件,如:门极可关断晶闸管(GTO),绝

缘栅双极型晶体管(IGBT),集成门极换向晶闸管(IGCT),并且采用现代控制技术,其在电力系统中的作用是补偿无功,提高系统电压稳定性,改善系统性能。与传统的无功补偿装置相比,STATCOM 具有调节连续,谐波小,损耗低,运行范围宽,可靠性高,调节速度快等优点,自问世以来,便得到了广泛关注和飞速发展。

我国电力工业发展迅速,其需求将保持持续、快速的增长态势而且需求规模在增大,当前我国电力事业可靠性要求高、实用性强;经济效益突出;节能,环保、高效成为主要趋势。STATCOM的广泛应用使得电力系统更加稳定高效,符合当今社会电力工程发展

趋势。

2 STATCOM 的工作原理

2.1 基本工作原理

STATCOM大体上分为电压源型和电流源型,在实际应用中大多使用电压源型(采用

电压型变换器Voltage-sourced inverter,VSI)。图1 用以简单说明基于VSI的STATCOM的工作原理。

如图1 所示,STATCOM的主电路结构由直流侧大电容和基于电力电子器件的VSI

组成,通过连接电抗接入电力系统。图中,U1 是在理想情况下(即忽略线路及STATCOM 的损耗)将STATCOM的输出等效为一个可控电压源,US 是系统侧等效成的理

想电压源,且两者相位一致。当U1跃US时,从系统流向STATCOM 的电流相位超前系

统电压90°,输出容性无功;同样当U1约US 时,从系统流向STATCOM 的电流滞后系

统电压90°,输出感性无功。当U1 =US 时,系统与STATCOM 之间的电流为零,两者

之间没有无功的交换。这是在理想情况下的工作状态,事实上,US 和U1 一般具有一

个角度差,通过控制US和UI就可以调节STATCOM发出或吸收无功的大小。

2.2 STATCOM的分类

从理论上可以将STATCOM 分为电压源型和电流源型。就其电路结构来说,电压源

型STATCOM 直流侧并联有大电容,保证在持续充放电或器件换向过程电压不会发生很

大的变化,桥侧串联电感,而电流源型STATCOM 则是直流侧串联大电感,保证在器件

换向或充放电器件电流不会有大的波动,桥侧并联电感。如图2所示。

在实际应用中,常用的大容量STATCOM 采用的基本都是电压源型结构。但是可以

将SVG控制为电流源来进行无功补偿[2-3]。文献[4]提出了一种新的STATCOM 控制策

略即采用电压控制电流源(VCCS)的策略和改进的电压控制电压源(VCVS)的策略来补偿电力系统公共连接点(Pointof Common Coupling,PCC)电压不平衡,特别是在较小容量时采用VCCS 方式将能达到最好的补偿效果。

按构成基本单元逆变器模块,可以将STATCOM 分为单相桥二电平,三相桥二电平,三相桥多电平。在大容量高电压等级的应用场合中,往往需要将多个低压小容量变换器通过变压器耦合(即多重化)[5] 或采用变压器在交流输入输出侧进行升压或降压,这样会产生耗能、谐波含量大、系统效率低等缺点。而多电平变换器开关器件所承受的电压应力小(如三电平变换器每个开关器件所承受的电压应力是二电平的一半[6]),谐

波含量少,损耗降低,因此在大容量场合得到广泛应用和发展。

按构成元器件,可以将STATCOM 分为GTO型,IGBT 型,IGCT 型,SCR 型,GTR 型,MOSFET型。基于功率变换的FACTS 设备一般都采用全控型器件,主要是在GTO、

改进型GTO(IGBT、MTO、ETO 等)和(HV)IGBT等器件中选择。国际上第一个采用

GTO 作为逆变器功率器件的STATCOM,是由美国EPRI 与西屋电气公司研制的,容量依

1Mvar。我国依20Mvar STATCOM和日本关西电力系统Inuyama 开关站依80Mvar STATCOM 均是采用GTO 作为功率器件的。IGBT 适用于小容量场合,由ABB公司研制的

配电STATCOM(Distribution STATCOM,D-STATCOM),开关器件采用多个IGBT串联[7]。

按电压等级,可以将STATCOM 分为高压输电网补偿和低压配电网补偿。在高压输电网中STATCOM需要通过变压器连接到电网中。在低压配电网中,通过电抗器并联或直接并联电网,即D-STATCOM。D-STATCOM的基本工作原理就是将桥式电路通过电抗器或直接并联在电网上,适当调节电路交流侧输出电压的幅值或相位,或者直接控制其交流侧电流就可以使该电路系统收获发出满足要求的无功电流,从而实现动态补偿无功的目的。另外可以通过脉宽调制采用特定谐波消除的方法来消除特定谐波[8]。

3 控制方式

根据控制物理量,可以分为直接电流控制和间接电流控制。直接电流控制技术就是采用跟踪性PWM 控制技术对电流波形的瞬时值进行反馈控制,直接指令电流的发生,结构简单,电流调节响应快,对扰动的鲁棒性好,但是只适用于中小容量场合,对于大容量场合具有很大的局限性。间接电流控制,是通过STATCOM 逆变器交流电压极薄的幅值和相位,来间接控制交流侧电流,简单易实现,但动态性能欠佳,适用于大容量STATCOM。

为了减少谐波,在间接电流控制中可以采用多重化、多电平或者PWM技术来改善波形。

STATCOM 装置主电路设计的多重化和链式结构是提高容量的常用技术。多重化结构就是用几个单相或三相逆变器产生相位相差若干度的方波电压,用变压器将不同相位的方波电压串联在一起,可以有效的提高容量与电压,减少谐波[5,9],但同时也会带来很多问题,诸如价格昂贵,增加了装置损耗和占地面积,并且变压器的铁磁非线性特性也给设计带来了困难。由ALSTOM公司为英国国家电网公司研制的依75Mvar STATCOM 采用了新型链式结构,摒弃了笨重的多重化变压器。链式STATCOM 各逆变桥直流电容器是相互独立的,存在电容电压不平衡问题,混合型损耗差异、并联型损耗差异以及输入脉冲延时的不同是造成电容电压不平衡的主要原因[10]。通过调节逆变桥与系统间的相位差,通过调节各逆变桥调制比都可以实现电容电压平衡[11]。图3 和图4 分别是链式和多重化结构的原理图。

从控制策略上讲可以分为开环控制,闭环控制,以及这两种的混合控制。通常从控制上讲是电压环以及电流环。文献[12]中STATCOM的控制是基于SVPWM 的电压电流双

环控制,利用锁相环(PLL)和低通滤波器(LPF)检测负载电流中无功电流的大小,通过dq 变换实现STATCOM 无功电流和有功电流在dq 平面的解耦控制。同时,直流电压

外环控制器输出耦合到有功电流控制环路实现直流电压稳压控制。

从控制技术角度来说有PI 控制方法,PI 逆控制方法,鲁棒自适应控制,递归神

经网络自适应,滑模变结构,模糊控制方法[13]。其中鲁棒自适应控制方法,模糊控制系数选择困难;神经网络自适应方法不依赖于系统模型的建立,但实时性不好;滑模变结构线性化困难。在实际应用中还是以传统的PI 控制居多。文献[14]提出了一种无源

性控制(PBC)方法,建立了STATCOM 的欧拉—拉格朗日系统模型,引入非线性规划的

变尺度法进行优化。

为了达到更好的补偿效果,可以将传统的无功补偿装置与STATCOM 联合运行控制,从而避免STATCOM 为了获得理想的输出电流波形,致使开关器件随着补偿电流增大,

开关损耗增加,效率降低的问题。混合静止同步无功补偿器(HSTATCOM),基于无差拍控制(根据其状态方程和输出无功电流的预期值计算出下一个开关周期的脉冲宽度),

利用有源与无源补偿相结合的方法,无源部分使用TSC 作为主要补偿手段,不产生谐波,损耗小;利用有源补偿实现了补偿电流的连续调节,可以双向连续调节无功[15]。文献[16]提出了一种新型SVC 与STATCOM构成的混杂装置以及基于模糊预测的联合运

行方案,即利用小容量STATCOM 抑制闪变配合大容量SVC 补偿无功,避免了STATCOM

采用不对称控制时出现的算法复杂等问题。联合控制运行方式算法简便,控制目的明确,但其结构可能复杂,所以在特定领域将会得到发展。

4 应用及现状

STATCOM 概念于20 世纪80 年代提出,实际应用主要集中在90 年代,主要应用

的有日本的依80 Mvar(1991 年),美国的100 Mvar(1995年),丹麦基于4 500/3 000A GTO的依8 Mvar(1997年)的STATCOM。由于STATCOM技术含量较高,掌握并应

用这一技术的主要有日本、美国、德国、英国、中国等国家。我国首台依20 Mvar 的STATCOM 是由清华大学与河南省电力局在1994—1999 年共同研制,已于1999年3 月

在河南省洛阳市朝阳变电站投入运行[7]。对于这一技术,在2007年由湖南大学的罗安等人就基于STATCOM 与SVC 的电能质量调节器协调控制方法、由郭育华等人就STATCOM 的控制方法申请了国家专利。

STATCOM的应用工程通常具有:在电力半导体器件选用上,绝大多数是基于GTO 和IGBT 的;在主电路上,大容量高压STATCOM 主要采用变压器耦合多重化技术,中低容

量和电压的DSATCOM较多采用三电平和/或PWM 变换器;基本采用VSC;系统控制目标

多样化;大容量STATCOM多采用水冷方式等特点。

据不完全统计,自第一台大容量STATCOM装置问世以来,全世界已经投入运营的大容量(10 MVar 及以上)STATCOM 工程超过20 个,总的可控容量超过3 000 Mvar。它们有的安装在输电网络中用于潮流控制、无功补偿和提高系统稳定性等,属于FACTS

范畴;有的安装在配电和用电网络,用于改善电能质量和提高供电可靠性,属于用户电力范畴,即用户电力控制器的D-STATCOM。表1给出了部分工程应用的基本情况,说明

了自STATCOM 问世以来的发展情况,这只是一少部分,可以看到,STATCOM 主电路从

最初的开关器件耦合,逐步发展为多个开关器件串联使用,结合VSI,采用NPC 结构,并且用PWM 进行控制,从而使STATCOM 装置具有更加稳定与优良的性能。

5 结语

静止同步补偿器(STATCOM)技术自问世以来得到了飞速的发展,多重化和链式结

构应用于大容量STATCOM 是国际上广泛关注的技术,但是要解决好器件的均压和不平

衡控制等问题。大容量高电压的静止同步补偿器仍是今后研究的重点,另外新的功率模块如IPM 的研究开发将会为STATCOM技术带来新的生机。STATCOM是柔性交流输电系统的核心,有效的无功补偿对电力系统乃至国民经济有着重要的意义。

静止同步补偿器D-STATCOM

QN400A型  静止同步补偿器D-STATCOM

目 录  1.概述-------------------------------------------------1 2.D-STATCOM的定义--------------------------------------2 3.电能质量对用电设备的影响------------------------------2 4.D-STATCOM 的特点--------------------------------------3 5.D-STATCOM的优势--------------------------------------3 6.使用D-STATCOM实现的经济效益--------------------------5 7.QN400A型D-STATCOM装置--------------------------------5 8.技术数据----------------------------------------------6 9.机械结构----------------------------------------------6 附录1:产品系列型号表------------------------------------6

1.概述  本产品是北京宾德森系统工程有限责任公司和清华大学电机系联合开发的高科技产品,目前在国内外都处于领先地位。  本产品是应用柔性交流输电技术(Flexible AC Transmission System,简称FACTS)解决传统的无功补偿和常规的滤波装置不能有效地解决动态电能质量问题。  本产品适用于400V以下配电系统,替代常规的无功补偿和滤除高次谐波装置,现在已被广泛的应用在石油、化工、电力、冶金、造纸、饮料等行业,也被广泛应用在楼宇、建筑、 民宅、商场、餐饮等服务设施。    主要特点:  l可替代原来的电力补偿设备;  l保护了现有的电力设备;  l延长了电机、变频器等电力设备的寿命;  l与原来的补偿设备相比,降低了电能的消耗。    各种电力补偿装置性能比较表:  SVC STATCOM 电容器组 调谐电抗电容器组 谐波滤波器   电容器单体 加装限流电抗器 一般 TSC 无源滤波器 有源滤波器 补偿无功 可以 可以 可以 可以 可以 可以 可以 可以 补偿无功响应时间 20 ̄40ms 1ms 稳定电压 可以 可以 可以 可以 可以 可以 可以 可以 避免涌流 不可以 可以 可以 可以 可以 可以 可以 可以 避免谐振 不可以 不可以 可以 可以 可以 可以 可以 可以 滤除谐波 不可以 不可以 滤除一小部分 滤除一小部分 可以 可以 可以 可以 抑制电压闪变 不可以 不可以 不可以 效果不明显 不可以 可以 可以 能力强 改善三相不平衡 不可以 不可以 不可以 可以 不可以 可以 可以 可以 补偿快速变化无功 不可以 不可以 不可以 可以 不可以 可以 可以 可以 提供一定有功功率 不可以 不可以 不可以 不可以 不可以 不可以 不可以 可以     2.D-STATCOM的定义

无功功率补偿器设计.

目录 摘要............................................................... 错误!未定义书签。 1 绪论............................................................. 错误!未定义书签。 1.1 课题背景与意义............................................. 错误!未定义书签。 1.1.1 无功功率的产生....................................... 错误!未定义书签。 1.1.2 无功功率的影响....................................... 错误!未定义书签。 1.1.3 无功补偿的作用....................................... 错误!未定义书签。 1.2 国内外研究现状............................................. 错误!未定义书签。 1.3 论文的主要研究内容......................................... 错误!未定义书签。 2 SVG的基础理论 (4) 2.1 无功功率和功率因数的定义 (4) 2.1.1正弦电路无功功率和功率因数 (4) 2.1.2 非正弦电路无功功率和功率因数 (4) 2.2 无功功率动态补偿原理 (5) 2.3阻抗补偿方案 (6) 2.3.1 晶闸管投切电容器TSC (6) 2.3.2 晶闸管控制电抗器TCR (7) 2.3.3晶闸管控制串联电容器TSC (8) 2.4 电压源变流器型补偿方案 (8) 2.4.1 无功功率发生器 (9) 2.4.2 开关型串联基波电压补偿器 (10) 3静止无功发生器(SVG)的设计 (11) 3.1 静止无功发生器(SVG)主电路 (11) 3.2 无功电流检测电路 (14) 3.3 无功控制电路 (15) 4系统仿真及分析 (17) 4.1 系统仿真模型 (17) 4.2 仿真结果与分析 (19) 小结与体会 (23) 参考文献 (24)

SVG静止无功补偿器

无功功率补偿 编辑词条分享 ?新知社新浪微博人人网腾讯微博移动说客网易微博开心001天涯MSN ? 1 定义 ? 2 产生和影响 ? 3 作用 ? 4 装置 无功功率指的是交流电路中,电压U与电流I存在一相角差时,电流流过容性电抗(X C)或感性电抗(X L)时所形成的功率分量(分别为)。这种功率在电网中会造成电压降落(感性电抗时)或电压升高(容性电抗时)和焦耳(电阻发热)损失,却不能做出有效的功。因而需要对无功功率进行补偿。合理配置无功补偿(包括在什么地点、用多大容量和采用何种型式)是电力系统规划和设计工作中一项重要内容。在运行中,合理使用无功补偿容量,控制无功功率的流动是电力系统调度的主要工作之一。 在交流电力系统中,发电机在发有功功率的同时也发无功功率,它是主要的无功功率电源;运行中的输电线路,由于线间和线对地间的电容效应也产生部分无功功率,称为线路的充电功率,它和电压的高低、线路的长短以及线路的结构等因素有关。电能的用户(负荷)在需要有功功率 (P)的同时还需要无功功率(Q),其大小和负荷的功率因数有关;有功功率和无功功率在电力系统的输电线路和变压器中流动会产生有功功率损耗(ΔP)和无功功率损耗(ΔQ),也会产生电压降落(ΔU)。 一般情况下,电力系统中发电机所发的无功功率和输电线的充电功率不足以满足负荷的无功需求和系统中无功的损耗,并且为了减少有功损失和电压降落,不希望大量的无功功率在网络中流动,所以在负荷中心需要加装无功功率电源,以实现无功功率的就地供应、分区平衡的原则。 无功补偿可以收到下列的效益:①提高用户的功率因数,从而提高电工设备的利用率;②减少电力网络的有功损耗;③合理地控制电力系统的无功功率流动,从而提高电力系统的电压水平,改善电能质量,提高了电力系统的抗干扰能力;④在动态的无功补偿装置上,配置适当的调节器,可以改善电力系统的动态性能,提高输电线的输送能力和稳定性;⑤装设静止无功补偿器(SV

静止同步补偿器(STATCOM)仿真和研究设计

摘要 电能质量的问题,尤其是无功功率和谐波的问题,严重威胁着电网的安全运行。静止同步补偿器(STATCOM),作为新一代无功功率补偿装置,它与现有的静止无功补偿装置(SVC)相比,具有调节速度更快、运行范围更宽、吸收无功连续、谐波电流小、损耗低、所用电抗器和电容器容量及安装面积大为降低等优点,引起了国内外科研与工程领域的广泛关注。 论文通过对STATCOM的现状和发展趋势,无功的产生和影响,无功补偿的意义的分析,进行了STATCOM工作原理的研究,并建立了STATCOM的数学模型,采用基于瞬时无功功率理论的检测方法,选择合适的控制策略,在PSCAD/EMTDC环境下进行了仿真分析,得出仿真后的波形。仿真结果表明STATCOM能够对负荷进行快速地无功补偿,证实本模型算法的合理性、正确性,具有一定的参考价值。 关键词:无功补偿;静止同步补偿器;瞬时无功; PSCAD/EMTDC;

ABSTRACT The problem of electric energy quality menaces seriously the safe operation of power network, especially reactive power and harmonics. The static synchronous compensator (STATCOM), takes the new generation reactive power compensation system, it compares with existing static idle work compensation system (SVC), has the adjustable speed to be quicker, the movement scope to be wider, the absorption idle work, the harmonic current small, to lose continuously low, uses the reactor and the capacity of condenser and the erection space to reduce and so on merits greatly, has caused the domestic and foreign scientific research and the project domain widespread attention. The paper through to the STATCOM present situation and the trend of development, the idle work production and the influence, the idle work compensation's significance's analysis, has conducted the STATCOM principle of work research, and has established the STATCOM mathematical model, uses based on the instant reactive power theory examination method, chooses the appropriate control policy, has carried on the simulation analysis under the EMTDC/PSCAD environment, after obtaining the simulation profile. The simulation result indicated that STATCOM can shoulder carries on fast the idle work compensation, confirmed that this model algorithm's rationality, the accuracy, have certain reference value. Keywords: Reactive power compensation; STATCOM; Instantaneous reactive; PSCAD/EMTDC;

最新JKW5C无功功率自动补偿器使用说明

JKW5C无功功率自动补偿控制器是低压电容器的配套产品。本公司根据不同用户的需求,成功地开发了JKL5C、JKL8C、JKG2B、JKGF、 JKW5C等五种型号的智能化系列控制器,控制路数有4,6,8,10,12不等。产品采用微型计算机控制,技术先进、功能完美、抗干扰力强,运行稳定可靠,补偿精度高,外形美观,是电容器厂家首选的产品。 JKW5C无功功率自动补偿控制器使用条件 1、海拔高度:不超过2500米 2、环境温度:-5℃~+40℃ 3、相对湿度:40℃时,≤50%;20℃时≤90% 4、周围环境无腐蚀气体,无导电性尘埃,无易燃易爆介质。 5、安装处无剧烈振动。 JKW5C无功功率自动补偿控制器项目 Items JK5C/JKL8C JKG2B JKGF JKW5C 额定工作电压 Rated working voltage 380V±20%,50Hz 220V±10%,50Hz 220V±10%,50Hz 380V±20%,50Hz

电流取样输入 Sampled input current 交流Iin≤5A,(AC,Iin≤5A) 交流Iin≤5A,(AC,Iin≤5A) 交流Iin≤5A,(AC,Iin≤5A) 交流Iin≤5A,(AC,Iin≤5A) 输出触点容量Output contact capacity 220V×5A,380V×3A 220V×5A,380V×3A 220V×5A,380V×3A 220V×5A,380V×3A 介电强度 Dielectric strength 交流3000V(AC3000V) 交流3000V(AC3000V) 交流4000V(AC4000V) 交流3000V(AC3000V) 工作方式 Working method 连续 Continuous 连续 Continuous 连续 Continuous 连续 Continuous

新能源知识多项选择题

多项选择题多项选择题,在下列每题的四个选项中,有两个或两个以上答案是正确的。 1、20世纪90年代初,我国确立的新能源发展政策包括( A B D E )。(答案在3页) A. 因地制宜 B. 多能互补 C. 节约能源 D. 综合利用 E. 讲求效益 2、关于风的形成,以下说法正确的是( B C D E )。(答案在84页) A. 地面各处上空空气稀薄程度存在差异 B. 地面各处受太阳辐照后气温变化不同 C. 空气中水蒸气的含量不同 D. 各地气压存在差异 E. 高压空气在水平方向向低压地区流动 3 、以下( A B C D )文件与减少碳排放相关。*(答案在21页)(此题答案不确定是否正确) A. 《里约宣言》 B. 《21世纪议程》 C. 《联合国气候变化框架公约》 D. 《京都议定书》 4、目前,在我国取得成功的生物农业技术大多具有(A B C E )的特点。(答案在237页) A. 高技术含量 B. 高资源利用效率 C. 减少污染排放 D. 低经济附加值 E. 劳动密集型 5、并网光伏供电系统作为一种分散式发电系统,对传统的集中供电系统的电网会产生(C D )等不良影响。(答案在48页) A. 电流不稳 B. 热能流失 C. 谐波污染 D. 孤岛效应 E. 维护成本高 6、海洋能的主要形式有(A B C)。(答案在34页) A. 潮汐 B. 波浪 C. 盐度梯度 D. 洋流 E. 辐射 7、发展新能源技术装备和产业体系建设措施有(A B C D )。答案在(27——29页) A. 完善新能源产业链建设 B. 建立技术创新体系 C. 制定和健全新能源发电设备、并网等产品和技术标准 D. 建立完善的新能源产业监测体系 8、生物质发电主要包括(A B C D )等。(答案在130页) A. 农林废弃物直接燃烧发电 B. 农林废弃物气化发电 C. 垃圾焚烧发电 D. 沼气发电 E. 页岩气发电 9、以下与可持续发展有关的文件是(A B C D )*(答案在21页)(此题答案不确定是否正确) A. 《我们的未来》 B. 《里约宣言》 C. 《二十一世纪议程》 D. 《京都议定书》 E. 《赫尔辛基宣言》 10、杰里米·里夫金在其著作中总结了人类经济发展的历史,发现(A B C )的出现与结合,预示着重大经济转型时代的来临。(答案早200页) A. 新型能源系统 B. 新型交通 C. 新型通信技术 D. 新型工业技术 E. 新型农业技术 11、生物质直接燃烧技术包括(A B C D )。(答案在127页) A. 炉灶燃烧 B. 锅炉燃烧 C. 垃圾焚烧 D. 固体燃料燃烧 E. 气体燃烧 12、以下属于战略性新兴产业有( A C )。(答案在8页) A. 新能源 B. 计算机 C. 新能源汽车 D. 高铁 13、生物制氢过程可分为(B D )。(答案在130页) A. 有氧光合制氢 B. 厌氧光合制氢 C. 有氧发酵制氢 D. 厌氧发酵制氢 E. 光合发酵制氢 14、太阳能热利用技术包括(A B C D )。(答案在40页) A. 太阳能建筑 B. 太阳能热水器 C. 太阳灶 D. 阳光温室大棚 E. 光伏发电 15、采用实时电价的优缺点包括(B D )。(答案在189页) A、. 形成市民可随意投资的电力市场B. 能够根据供电和用电的状况实时调整供需关系 C. 强制民众进行电能存储 D. 提高电力系统的防灾抗灾能力 E. 不能利用新能源 16、我国电网调度实现了基于“三华”电网统一模型的实时数据采集和展示,这里的三华是指(A B D )。 (答案在183页) A. 华北 B. 华中 C. 华南 D. 华东 E. 华西 17、专业技术人员和企事业单位管理人员学习新能源知识重要性体现在( A B C D )。(答案在6页) A. 了解世界格局的新变化 B. 明确我国转变经济发展方式与调整产业结构的方向 C. 增加新能源领域的知识储备 D. 找到自身工作与新能源的结合点 18、我国新能源政策还存在问题包括(A B D E )。(答案在23——24页) A. 统计报告及考核评价制度不健全 B. 具有核心竞争力的技术创新激励体系尚未形成 C. 国际能源合作日趋成熟 D. 新能源产业财税及投融资政策还没有体系化 E. 管理体系和市场机制不适应新能源规模化发展需要 19、我国光伏产业发展特点是( A B C D )。(答案在76——77页) A. 充分利用国内外市场要素,产业发展国际化程度高 B. 自主创新与引进吸收相结合,形成自主特色产业体系 C. 产业链上下游协同发展,推动光伏发电成本下降 D. 产业呈现集群化发展,有效提高区域竞争力

无功功率补偿常见问题

无功功率补偿常见问题 1.考虑电网电压时,是按400V考虑还是按380V考虑? 采用就地补偿时,电容器是比较靠近负载,这时候按照380V电压选取电容器 当电容器安装在配电间时,在母线上进行集中补偿时,按照400V选取电容器。 2.电容器存放条件 不要在腐蚀性的空气中,特别是氯化物气体、硫化物气体、酸性、碱性、盐质或含有类似的同类物质的空气中使用或存放电容器。 在有尘埃的环境中,为了防止发生相间或相对地/外壳发生短路事故,特别需要定期对接线端子进行常规的维护和清洁。 3.电容器在现场初次投入运行时,为什么有时候会发出"嗞嗞"声? 这是正常情况,不是质量问题,一般电容器在出厂前均按工艺要求进行通电测试,而在通电测试当中也同时进行杂质电气清除。在这个电气清除的过程中,大多数杂质会被清除干净。但是也有可能在某些情况下,当电容器在现场刚开始通电时,会发生某种杂质再生的过程,这时候,就会听到一种“嗞嗞”声,这是电容器在刚开始运行中的一种自愈合过程,持续几个小时后,这种声音就会自行消失。 4.影响电容器使用寿命的主要因素是什么 实际工作电压、环境温度、谐波电流、投切次数都会影响到电容器的使用寿命。假定电容器的标称使用寿命为Len,电容器的实际使用寿命为Le那么, 电容器的使用寿命同系统电压的关系如下: Le=Xv×Len U=1.10Un,Xv=0.5; U=1.05Un,Xv=0.7; U=1.00Un,Xv=1; U=0.95Un,Xv=1.25; U=0.90Un,Xv=1.5; 电容器的使用寿命同环境温度的关系如下: Le=Xt×Len Tav=42℃,Xt=0.5; Tav=35℃,Xt=1; Tav=28℃,Xt=2; 而℃的温度差,会导致一个很严重的后果! 电容器的使用寿命同投切次数关系如下: Le=Xs×Len 5000次每年,并采用限流电阻,Xs=1.00; 10000次每年,并采用限流电阻,Xs=0.7; 5000次每年,无限流电阻,Xs=0.40; 10000次每年,无限流电阻,Xs=0.20; 采用晶闸管投切,Xs=1.00; 如果投切次数每年超过5000次,必须要考虑动态投切方案! 所以电容器的实际使用寿命Le=Len×Xv×Xt×Xs Xv:电压系数; Xt:温度系数; Xs:投切系数。 5.为什么有时候控制器在调试好后,不能正常投入运行,而系统的功率因数又很低?

静止无功补偿器的研究课程设计

1 静止无功补偿器的总体设计 1.1 静止无功补偿器的主电路 ASVG 分为采用电压型桥式电路和电流型桥式电路两种类型。两者的区别是直流侧分别采用的是电容和电感这两者不同储能元件,对电压型桥式电路,还需要串联上电抗器才能并上电网;对电流型桥式电路,还需要并联上电容器才能并上电网。实际上,由于运行效率的原因,实际应用的ASVG 大多采用的是电压型桥式电路。因此ASVG 专指采用自换相的电压型桥式电路作为动态无功补偿的装置。ASVG 的基本结构如图1-1。它由下列几部分组成:电压支撑电容,其作用是为装置提供一个电压支撑;由大功率电力电子开关器件(IGBT 或GTO )组成的电压源逆变器(VSC ),通过脉宽调制(PWM )技术控制电力电子开关的通断,将电容器上的直流电压变换为具有一定频率和幅值的交流电压;耦合变压器或电抗器,一方面通过它将大功率变流装置与电力系统耦合在一起,另一方面还可以通过它将逆变器输出电压中的高次谐波滤除,使ASVG 的输出电压接近正弦波。 图1-1 电压型补偿器结构图 上图为电压型的补偿器,如果将直流侧的电容器用电抗器代替,交流侧的串联电感用并联电容代替,则为电流型的补偿器。交流侧所接的电感L 和电容C 的作用分别为阻止高次谐波进入电网和吸收换相时产生的过电压。无论是电压型,还是电流型的SVG 其动态补偿的机理是相同的。当送到逆变器的脉宽恒定时,调节逆变器输出电压与系统电压之间的夹角δ就可以调节无功功率和逆变器直流侧电容电压Uc ,同时调节夹角δ和逆变器脉宽,即可以在保持Uc 恒定的情况下, 发出或吸收所需的无功功率。SVG 装置的核心部分是逆变电路,它将整流后的直流电压进行逆变以产生-个频率与系统相同的交流电压,并且这个电压的幅值和相位都可调,然后通过电抗器把这个电压并到电网上去,从而产生所需的交流无功功率。利用IGBT 智能模块后,逆变器电路无论是在体积、性能、稳定性上还是控制方式上都得到了极大的简化。本文中所介绍到的静止无功发生器是电压型的SVG ,它具有主电路的拓扑结构简单,且逆变装置所用的电压型器件IGBT 易于控制,灵活方便。 1.2 静止无功补偿器的工作原理 系统线 路 整流器..系统线路 V dc 电压源逆变器耦合变压器 系统电压

低压无功补偿控制器设计开题报告

毕业设计(论文) 开题报告 课题名称低压无功补偿控制器设计 系别 专业班 姓名 评分 导师(签名) 2011年5月6日 中国石油大学胜利学院

低压无功补偿控制器设计 开题报告 1国内外研究现状 早期的无功补偿装置为同步调相机和并联电容器。同步调相机可理解为专门用来产生无功功率的同步电机,可根据需要控制同步电机的励磁,使其工作在过励磁或欠励磁的状态下,从而发出大小不同的容性或感性无功功率,因此同步调相机可对系统无功进行动态补偿。但是它属于旋转设备,运行中的损耗和噪声都比较大,运行维护复杂,成本高,且响应速度慢,难以满足快速动态补偿的要求。并联电容器简单经济,灵活方便,但其阻抗固定,不能跟踪负荷无功需求的变化即不能实现对无功功率的动态补偿。 随着电力电子技术的发展,近几年出现了多种电力系统无功补偿新技术。电力电子技术是无功补偿技术的基础,电力电子器件向快速、高电压、大功率发展,使采用电力电子器件的无功补偿从根本上改变了交流输电网过去基本只依靠机械型、慢速、间断及不精确的控制的局面,从而为交流输电网提供了空前快速、连续和精确的控制以及优化潮流功率的能力。随着电力电子器件的发展,无功补偿控制器在其性能和功能上也出现不同的发展阶段。无功补偿控制器己由基于SCR的静止无功补偿器(Static Var Compensator-SVC)、晶闸管控制串联电容补偿器(Thyristor Controlled Series Compensator-TCSC)发展到基于GTO的静止无功发生器(Static Var Generator-SVG)、静止同步串联补偿器(StaticSynchoronous Series Compensator-SSSC)、统一潮流控制器(Unified Power FlowController-UPFC)、可转换静止补偿器(Convertible Static Compensator-CSC)等。 (1)静止无功补偿器(SVC) 早期的静止无功补偿装置是饱和电抗器(Saturated Reactor-SC)型,1967年英国GEC公司制成了全世界上第一批饱和电抗器型SVC。饱和电抗器与同步调相机相比,具有静止型的优点,响应速度快,但因其铁心需磁化到饱和状态,因而损耗和噪声都很大,而且存在非线性电路的一些特殊问题,所以未能占据静止无功补偿装置的主流。由于使用晶闸管的SVC具有优良的性能,所以十多年来占据了静止无功补偿装置的主导地位。因此,SVC一般专指使用晶闸管的静补装置。

静止同步补偿器(STATCOM)技术的应用及发展现状

浅谈STATCOM技术的应用及发展现状 戚莹莹,吴江峰 西安理工大学自动化学院,陕西西安710048 摘要静止同步补偿器(STATCOM)是柔性交流输电系统的核心。详细分析了静止同步补偿器的基本工作原理、分类、元器件选择等,对静止同 步补偿器的控制方式进行了综合与比较,综述了静止同步补偿器的应用及 发展现状,并提出今后静止同步补偿器的发展趋势。 关键字静止同步补偿器;逆变器;控制方式 Abstract Keywords 1 概述 静止同步补偿器(Static Synchronous Compensator,STATCOM )是柔性交流输电系统(Flexible AC Transmission System,FACTS)的核心装置和核心技术之一。在此之前,又称ASVG、SVG、STATCON、ASVC,直至1995 年国际高压大电网会议与电力、电子工程师学会建议采用静止同步补偿器(STATCOM)[1]。 静止同步补偿器采用新一代的电力电子器件,如:门极可关断晶闸管(GTO),绝缘栅双极型晶体管(IGBT),集成门极换向晶闸管(IGCT),并且采用现代控制技术,其在电力系统中的作用是补偿无功,提高系统电压稳定性,改善系统性能。与传统的无功补偿装置相比,STATCOM 具有调节连续,谐波小,损耗低,运行范围宽,可靠性高,调节速度快等优点,自问世以来,便得到了广泛关注和飞速发展。 我国电力工业发展迅速,其需求将保持持续、快速的增长态势而且需求规模在增大,当前我国电力事业可靠性要求高、实用性强;经济效益突出;节能,环保、高效成为主要趋势。STATCOM 的广泛应用使得电力系统更加稳定高效,符合当今社会电力工程发展趋势。 2 STATCOM 的工作原理 2.1 基本工作原理 STATCOM大体上分为电压源型和电流源型,在实际应用中大多使用电压源型(采用电压型变

静止补偿器

1 概述 静止同步补偿器(Static Synchronous Compensator,STATCOM)是柔性交流输电 系统(Flexible AC Transmission System,FACTS)的核心装置和核心技术之一。在此之前,又称ASVG、SVG、STATCON、ASVC,直至1995 年国际高压大电网会议与电力、电子工程师学会建议采用静止同步补偿器(STATCOM)。 静止同步补偿器采用新一代的电力电子器件,如:门极可关断晶闸管(GTO),绝 缘栅双极型晶体管(IGBT),集成门极换向晶闸管(IGCT),并且采用现代控制技术,其在电力系统中的作用是补偿无功,提高系统电压稳定性,改善系统性能。与传统的无功补偿装置相比,STATCOM 具有调节连续,谐波小,损耗低,运行范围宽,可靠性高,调节速度快等优点,自问世以来,便得到了广泛关注和飞速发展。 我国电力工业发展迅速,其需求将保持持续、快速的增长态势而且需求规模在增大,当前我国电力事业可靠性要求高、实用性强;经济效益突出;节能,环保、高效成为主要趋势。STATCOM的广泛应用使得电力系统更加稳定高效,符合当今社会电力工程发展 趋势。 2 STATCOM 的工作原理 2.1 基本工作原理 STATCOM大体上分为电压源型和电流源型,在实际应用中大多使用电压源型(采用 电压型变换器Voltage-sourced inverter,VSI)。图1 用以简单说明基于VSI的STATCOM的工作原理。 如图1 所示,STATCOM的主电路结构由直流侧大电容和基于电力电子器件的VSI 组成,通过连接电抗接入电力系统。图中,U1 是在理想情况下(即忽略线路及STATCOM 的损耗)将STATCOM的输出等效为一个可控电压源,US 是系统侧等效成的理 想电压源,且两者相位一致。当U1跃US时,从系统流向STATCOM 的电流相位超前系

补偿控制器使用说明书

接线须知 1.信号取样原则:任取两相电压和余下一相电流,即取样电流信号的互感器所在相不要与电压信号相同。 2.取样电流必须自总负荷电流线,即电流信号互感器必须套于总进线柜母线段,不得取自电容屏。 3.10路补偿器的Uk在机器内部已经与工作电压Ub相接。 4.当交流接触器线圈工作电压为380V时,P点接A相;当交流接触器线圈工作电压为220V 时,P点接N线(零线)。 操作与运行 1.870补偿有两种运行状态:自动状态和手动状态,用户可通过按MODE键来进行自动/手动转换。当接通电源时,870I补偿器默认运行状态为自动运行状态,当有一定的用电负荷,COSΦ显示超前,这是反相,可不用调换电流信号两根线,按870I面板上的反相按钮即可。 1.自动运行状态 自动模式下,870I补偿器内部微处理器实时监测电网参数,并根据功率因数作相应的自动投切动作。 2.手动运行状态 手动模式下,电容器的投切由用户操作控制,在此模式下,用户可以通过按+键做投入动作,按-键做投入动作,按-键做切除动作。 注:(1)不管是自动模式还是手动模式,当电网电压超过用户设置的过压值时,过压指示灯亮,补偿器逐级切除已投入的电容器,同时数码显示窗显示当前的电压值直到“过压”撤消。 (2)如果取样电流输入量小于是乎200mA,本机视为低电流,自动进入休眠状态,切除所有投入的电容器,数码窗不显示。 参数设置 在运行界面状态下连续按住mode键2秒即可进入用户设置状态,通过按mode键可依次各种设置值状态,按+键对所选设置增大调整,按—键对所选设置做减小调整,具体各参数的设置范围见表1。 注:在参数设置界面连续按住mode3秒返回运行界面的自动模式,此时参数存储到掉电保护存储中,如果补偿器处于参数设置界面,30S内用户没有按键盘操作,870I补偿器自动回复到运行界面的自动模式,但此时所作的参数修改被认为无效,不予存储。 常见故障及处理

基于静止同步补偿器的不平衡负荷补偿

基于静止同步补偿器的不平衡负荷补偿 发表时间:2019-03-13T11:39:33.407Z 来源:《电力设备》2018年第27期作者:张郝[导读] 摘要:分析了系统不平衡的产生和影响,建立了链式STATCOM的数学模型,设计了应用于不平衡工况下运行的STATCOM控制器,仿真验证了不平衡补偿的有效性。 (广州电力设计院有限公司广州 510610) 摘要:分析了系统不平衡的产生和影响,建立了链式STATCOM的数学模型,设计了应用于不平衡工况下运行的STATCOM控制器,仿真验证了不平衡补偿的有效性。 关键词:静止同步补偿器;数学模型;不平衡补偿;PSCAD/EMTDC 前言 随着电力工业技术的发展,电弧炉、整流器、变频调速装置、电气化铁路等非线性负荷的应用越来越广泛,影响电网电能质量。静止同步补偿器(STATCOM)技术是目前国内外研究的热点[1]-[5],与传统无功补偿装置比较在运行范围、谐波、响应速度、占地面积等方面具有显著优势。本文首先介绍了不平衡负荷的特点,建立了链式STATCOM的数学模型,提出了一种应用于不平衡工况下的STATCOM控制方法,仿真验证了该控制方法的有效性。 1 系统不平衡的特点 1.1不平衡的产生 如果电网电压不满足三相电网电压幅值相同,A、B、C三相顺序相角相差120°且波形为正弦波述要求则为三相不平衡系统,其主要原因有不对称故障、三线系统参数不对称等因素[4]。 不平衡系统通常有三种情况,即系统电压不对称、负载不对称和运行不对称。当系统不对称时,负载电流就不对称,可以分解为正序分量和负序分量,负序电流会在发电机转子中感应出二倍频交流电流,引起机械振动、转子发热;负载不平衡主要是由于带单相负载或者系统三相带负载不同等;而当系统由于故障而处于非全相运行时,三相负荷严重不平衡,会产生大量的负序和零序分量。 1.2不平衡的影响 当三相系统不平衡运行时,其电压、电流中会产生大量负序分量,会对系统和电器设备产生不良影响,主要包括[5]:(1)负序电压会产生制动转矩,使感应电机的最大转矩和输出功率下降,并增加铜耗。(2)当变压器带不平衡负荷运行时,变压器得不到充分利用; (3)三相不平衡系统中的负序分量会导致当动作于负序电流的保护装置误动作,还会使一些负序启动元件对系统故障的灵敏度下降;(4)不平衡系统中的负序电流和零序电流还会产生附加功率损耗,加大线路损耗。由以上可知,不平衡工况将会对电力系统中各电器设备造成较大影响,必须采取有效措施对其进行抑制。 2 链式STATCOM数学模型的建立 2.1 链式STATCOM系统简介 链式STATCOM主要由三相链式逆变器构成。每一相逆变器由两个或多个单相全桥电路级联而成,总的输出为级联单元输出的迭加,三相逆变器经连接电抗器并入变电站母线。链式逆变器易于实现冗余和模块化生产,这可以大大提高装置可靠性。 2.2 链式STATCOM数学模型 以三相星形连接链式STATCOM为例,建立链式STATCOM数学模型。STATCOM通过连接电抗器接入系统,由于STATCOM三相各自独立,故只对其一相运行进行建模。其微分方程可以表示为: (1) 其中,N为级联H桥的单元数;为第个H桥上的直压;为逆变器电流;为电网相电压,V为其有效值;为 电网电压与系统电压的夹角;为第j个H桥逆变器的开关函数,如图1所示,当开关器件1,3导通时,;当开关器件2,4导通 时,。 图1 H桥单元结构示意图 通过傅里叶分析可以将直流电容电压分解为直流分量和交流分量之和,即 (2) 式中,为电容电压的直流分量,为电容电压交流分量。

statcom原理及控制方法要点

1、前言 静止同步补偿器(Static Synchronous Compensator, STATCOM),是目前最先进的无功补偿技术,近年来随着电力电子开关技术的进步而逐渐兴起。STATCOM 的原理是利用全控型大功率电力电子器件构成可控的电压源或电流源,使其输出电流超前或滞后系统电压90 ,从而对系统所需的无功进行动态补偿。早期有文献称之为静止无功发生器(Static Var Generator, SVG) 。利用电力电子变流器进行无功补偿的可能性虽然早在20 年前就已经为人们所认识,但限于当时电力电子器件的耐压和功率水平,无法制造出输电系统中具有实用价值的装置。直到近年来,尤其是高压大功率的门极可关断晶闸管GTO 的出现,才极大的推动了STATCOM 的开发和应用。STATCOM 是并联型FACTS 设备,它同基于可控电抗器和投切电容器的传统静止无功补偿器SVC 相比,性能上具有极大的优越性,越来越得到广泛的重视,必将取代SVC 成为新一代的无功电压控制设备。目前,世界上已有多台投入运行的大容量STATCOM 装置,如表1-1 所示。由此可见,目前为止国际上只有美、日、德、中、英等少数几个国家掌握了STATCOM 的应用开发技术。2006 年 2 月28 日,由上海电力公司、清华大学、许继集团公司等单位共同研制的±50Mvar STATCOM 在上海黄渡分区西郊变电站并网试运行。 表1-1 国内外已在输电系统投运的STATCOM 装置(UPFC 并联部分为STA TCOM) 表1-1 中除最后一项外,全部采用了变压器多重化的主电路方案,主电路拓扑为图1-1。变压器多重化方式可成倍增加装置容量并降低输出谐波。然而,多重化变压器的引入带来了很多问题:首先,它的价格非常昂贵,约为成本的1/3~1/4;其次,它使装置增加了50%左右的损耗和40%左右的占地面积;第三,变压器的铁磁非线性特性给控制器设计带来了很大的困难,同时也是引发装置故障的重要原因。如果能研究一种新的电路拓扑克服由多重化变压器带来的诸多不便,那么将引起大容量STATCOM 技术的一次大的飞跃。多电平变换器技术的引入正是这个关键技术的不二选择

JK系列无功功率自动补偿器调试概要

JK 系列无功功率自动补偿控制器,适用于电容器补偿装置的自动调节(以下简称控制器),使功率因数达到用户预定状态,提高电力变压器的利用效率,减少线损,改善供电的电压质量,从而提高经济效益。 二、工作条件 1. 海拔高度不高于2500米 2. 环境温度-25℃~+50℃ 3. 空气湿度在40℃时不超过50%,20℃时不超过90%。 4. 周围环境无腐蚀性气体,无导电尘埃,无易燃易爆的介质存在。 5. 安装地点无剧烈震荡。 三、技术数据 1. 基本技术参数 额定工作电压AC220/380V/50/60Hz 额定工作电流AC0-5A 50Hz 输出触点容量AC220 7A 50Hz 显示功率因数滞后0.01-超前0.01控制方式自动寻优/循环投切灵敏度100mA 防护等级外壳IP40 2. 控制参数可调范围及出厂整定值 技术参数参数值出厂设定值 产品型号 JKL5C 、JKG2B JKW5C、JKL5C 、JKL5B 、JKL5A

过压预置 230~300V可调步长1V 400~500V可调步长1V 245V/440V 延时预置 1~250s可调步长1s 30s C/K比值 0.01~1.00可调步长0.01 0.10 投入门限 0.80~0.99可调步长0.01 0.95 切除门限滞后0.91超前0.90可调步长0.01 1.00 控制组数 1~12 硬件允许最大值 四、开孔尺寸及型号说明 产品型号取样电压开孔尺寸 JKW5C 线电压380V 113×113mm JKL5C 线电压380V 113×113mm JKL5C 线电压220V 113×113mm JKL5B 线电压380V 140×102mm JKL5A 线电压380V 162×102mm JKG2B 线电压220V 162×102mm 五、操作说明 1. 功能选择 数码管(LED )第一位显示功能代码,根据代码表,在自动时若按菜单键小于0.5S 则直接进入手动状态若超过1S 则可以循环选择扫有功能代码。(见代码表)

静止无功补偿器的控制方式

SVC 输出容量控制主要有电压控制和恒导纳控制两种方式,可以在运行人员的指令下互相切换。 3.1.1电压控制模式 这种控制模式下控制系统将测量所得到的母线电压Vmeas与一个设定的参考电压Vref 进行比较,然后将差值进行计算, 得到一个标么值电纳信号Bref ,该电纳值除以单组机械可投切电容(电抗) 器的电纳值可以确定需要的电容(电抗)器数目,而差值由TCR来补充。随后将该标么值电纳送往脉冲触发发生电路,控制TCR 的触发角。SVC稳态特性曲线的斜率采用电流反馈来实现,这种方法能够保证在SVC 控制范围内使端电压和端电流之间保持线性关系。实测的SVC电流ISVC与代表调差率的系数KSL相乘,构成信号VSL再输入到加法节点。当ISVC为感性时, VSL取正;当ISVC为容性时,VSL取负。其传递函数为:G( s) =K1(1+s T Q)/s(1+s Tp),其中T Q=Tp+Kp/K1 由于Tp通常设为零,因而控制器转化为简单的比例积分器,比例系数Kp 反映响应速度。电压调节器输出的电纳参考信号被送到触发计算单元,该单元计算出6 组触发角,送至脉冲发生电路,从而在SVC 母线上得到期望的电纳值,达到设定的控制目标。 3.1.2恒导纳控制模式 在该模式下,SVC 的等效导纳Bord 由运行人员设定,且该导纳可以在规定范围内连续可调。Bref来自电压调节器的输出,在恒导纳模式下被偏置。首先根据监控单元提供的开入量需要确定已投运的电容(电抗) 器组的等效电纳,然后经过电纳计算,得出仍需投切的电容(电抗) 器组以及需要的TCR 触发角连续调节的等效感性电纳。最后换算成触发角发送到触发脉冲发生电路。 3.1.3 PWM电流控制 对PWM电路的电流控制可分为间接电流控制和直接电流控制。前者通过控制整流器产生的交流电压基波分量的相位和幅值来实现PWM 交流侧的电流控制;后者采用跟踪型PWM控制技术对交流侧的电流进行直接控制。在目前的STATCOM 系统中,考虑到PWM开关频率较低以及功耗问题,因此多采用间接电流控制。但间接电流控制其网侧电流的动态响应慢,且对系统参数变化灵敏。相比之下,直接电流控制更能精确地控制PWM输出的电流,因此在DSTATCOM设计中,采用直接电流控制方法,从而可以设置较高的PWM 开关频率,减少输出电流谐波,获得较好的输出电流波形,进而降低系统设计成本,提高运行可靠性。该实验控制方法采用基于矢量变换的直接电流控制,其控制方案如下图所示。

无功功率补偿器的使用

无功功率补偿器的使用是为了提高供配电系统功率因数(COSφ )。提高功率因数(COSφ )主要有以下作用: 1、提高供电设备的利用率。在供电设备视在功率S一定的情况下,越大,该供电设备可以带更多的有功负载(P=S*COSφ )。 2、提高输电效率。当有功负载(P)一定时,因为(P=UI*COSφ ),U不变化,COSφ 越大,则I 越小,I 在线路中的损耗就越小。 3、改善供电质量。I 越小,线路中电压损耗就越小,线路末端电压就可以得到更好的保证。 4、提高输电安全性。I 小,线路发热降低,提高输电线路的安全性。 什么叫无功补偿装置 总的来说“无功补偿装置”就是个无功电源。 一般电业规定功率因数为低压0.85以上,高压0.9以上。为了克服无功损耗,就要采用无功补偿装置来解决。 电力系统中现有的无功补偿设备有无功静止式补偿装置和无功动态补偿装置两类,前者包括并联电容器和并联电抗器,后者包括同步补偿机(调相机)和静止型无功动态补偿装置(SVS)。 并联电抗器的功能是: 1)吸收容性电流,补偿容性无功,使系统达到无功平衡; 2)可削弱电容效应,限制系统的工频电压升高及操作过电压。其不足之处是容量固定的并联电抗器,当线路传输功率接近自然功率时,会使线路电压过分降低,且造成附加有功损耗,但若将其切除,则线路在某些情况下又可能因失去补偿而产生不能允许的过电压。 改进方法是采用可控电抗器,它借助控制回路直流的励磁改变铁心的饱和度(即工作点),从而达到平滑调节无功输出的目的。 工业上采用 1.同步电机和同步调相机; 2.采用移相电容器; 目前大多数采用移相电容器为主。 无功补偿对于降低线损有哪些作用? 电网的损耗分为管理线损和技术线损。管理线损通过管理和组织上的措施来降低;技术线损通过各种技术措施来降低。无功补偿是利用技术措施降低线损的重要措施之一,在有功功率合理分配的同时,做到无功功率的合理分布。按照就近的原则安排减少无功远距离输送。对各种方式进行线损计算制定合理的运行方式;合理调整和利用补偿设备提高功率因数。 1、提高负荷的功率因数 提高负荷的功率因数,可以减少发电机送出的无功功率和通过线路、变压器传输的无功功率,使线损大为降低,而且还可以改善电压质量、提高线路和变压器的输送能力。 2、装设无功补偿设备 应当根据电网中无功负荷及无功分布情况合理选择无功补偿容量和确定补偿容量的分布,以进一步降低电网损耗。 农村低压客户的用电现状以及无功补偿在低压降损中的作用有哪些?

相关主题
文本预览
相关文档 最新文档