当前位置:文档之家› 双直角108830

双直角108830

直角三角形的综合运用

一、 解直角三角形在中考的要求:

1、计算特殊角三角函数值及求有关三角函数的代数式的值。

2、解斜三角形。

3、建立数学模型解决实际问题。

4、与方程、函数和圆等知识结合在一起,考察学生综合运用知识的能力。 二、 梳理知识点: 1、四个三角函数的定义。

2、特殊角三角函数值0°、30°、45°、60°、90°。

3、互为余角三角函数之间的关系: (1) sinA = cos(90°- A) (2) cosA = sin(90°- A) (3) tanA = cot(90°- A) (4) cotA = tan(90°- A)

4、锐角与三角函数的变化规律

5、锐角三角函数的取值范围。

6、重要公式:

(1)平方关系: sinA + cosA = 1 (2)倒数关系:tanA . cotA = 1 (3)商的关系:sinA

cosA

= tanA

三、考察的数学思想:

数形结合思想、转化思想、方程思想、分类讨论思想等。

参考习题

一、解直角三角形问题的两个数学模型:

模型1 如图1 在Rt △ABC 中,∠C=90°, ∠ADC=60°,∠B=45°求:AC 的长 。

(图1 ) (图2)

例1 如图2 小山上有一电视塔CD,由地面上一点A ,测得塔顶C 的仰角为30°,由A 向小山前进100米

到B 点,又测得塔顶C 的仰角为60°,已知CD=20米,求小山高度DE.

例2 如图3 船自西向东航行,在A 处测得小岛S 在北偏东60°,船航行10海里到B 处,又测得小岛

S 在北偏东45° ,在小岛S 周围有半径为12海里的暗礁区,若船不改变航向继续前进时有无危险,

为什么?

例3 河旁有一座小山,从山顶A 测得河对岸点 C的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50米,现需从山顶A 到河对岸C 拉一条笔直的缆绳AC ,求缆绳的AC长。(答案可带根号)

(图3)(图4)

模型2如图5在△ABC 中,∠B =30°,∠C =45°,AC =2, 求AB 和BC

例1 如图6 在平地上有两幢楼 AB、CD 相距60米,在A 处测得 CD 底部的俯角为

例2 30°,又测得 CD 顶部的仰角为45°,求:CD

例2 厂房屋架为等腰三角形,倾角为30°,跨度AB = 15米,求:中柱CD 和屋面AC的长。

(图5) (图6)(图7)

二、直角三角形与方程、函数、和圆的综合题:

例1 如图8 已知:在 Rt△ABC中,∠ACB = 90°,sinB =

3

5

,D是 BC边上一点,DE ⊥ AB 于E ,CD = DE, AC + CD = 9 ,求:BC和CE

A (图8)(图9)

例2 如图9 已知 :△ABC 中,AC 、BC 的长分别是关于x 的方程x 2

–(AB+2)x+2(AB+1)=0的两个根,D

为AB 上一点,以BD 为直径的⊙O 和AC 切于点E ,且交BC 于点F,5BF=3BD, 求:△ABC 的面积和⊙O 直径.

例3 已知: AB 是⊙O 直径,点P 在BA 的延长线上,弦CD ⊥AB 于E, 且PC 2

= PE.PO

(1) 求证:PC 是⊙O 切线

(2) 若OE:EA=1:2,PA=6 ,求⊙O 半径 (3)求:sin ∠PCA (在(2)的条件下)。

(图10)

例 4 在Rt △ABC 中,∠C=90°,a,b,c 是∠A,∠B,∠C 的对边,tanA,tanB 是关于x 的方程x 2-kx+12k 2

-37k+26=0的两个实根 (1)求k 的值

(2)若c=10且a >b ,求a,b 例5 已知:关于x 的方程x 2

-(a+b)x+ac+bc 2

=0,a,b,c 分别为锐角△ABC 中∠A,∠B,∠C 的对边

(1) 若x 1,x 2是方程的两个实根且(x 1-x 2)2

=a 2

,b=2 , c=3

2 求a

(2) 若a=2c-b 且原方程与方程4x 2

-6cx-4c 2(sinA-1)=0有一个相同的根, 求: sinC sinB

例6 这是某防空部队进行射击训练时的平面直角坐标系的示意图,在地面O,A 两个观测点测得空中固

定目标C 的仰角分别为α,β,OA=1千米 ,tan α=928 ,tan β=38 位于O 点正上方5

3 千米的D 处的直

升飞机向目标C 发射防空导弹,该导弹运行达到距地面最大高度3千米时,相应的水平距离为4千

米(图中 E 点)

(1) 若导弹运行轨道为抛物线,求其解析式。

(2) 说明按(1)中轨道运行的导弹能否击中目标C 的理由?

(图11) (图12)

例7 已知:平面直角坐标系中,过点 P (0,2)任作一条与抛物线y=ax

2

(a >0)

交于两点的直线,设交

点分别为A,B ,若∠AOB=90°

(1) 判断A,B 两点纵坐标的乘积是否为一确定的值,说明理由。

(2) 确定抛物线y=ax 2

的解析式。

(3) 当△ABC 的面积是4 2 时,求直线AB 解析式.

例8 已知:抛物线y=-49 x 2+29 mx+59 m+4

3 与x 轴交于A,B 两点,点A 在x 轴负半轴上,点B 在x 轴正半轴

上,且OB=2AO ,点C 是抛物线顶点。

(1) 求:抛物线和直线BC 的解析式。

(2) 点P 在此抛物线的对称轴上,且⊙P 与x 轴,直线AC 都相切,求:点P 的坐标。

(图13)

(图2)(图1)

B

巧构一线三直角解题

巧构一线三直角解题 发表时间:2017-02-14T14:06:18.193Z 来源:《中小学教育》2017年2月第269期作者:鲍玉秀张刚 [导读] 教师在教学时要注意给学生创造机会,让学生学会找基本图形。 山东省淄博市周村区北郊中学255000;山东省淄博市修文外国语学校255000 教师在教学时要注意给学生创造机会,让学生学会找基本图形。通过基本图形的积累,学生在分析题目时,就能唤醒利用这些基本图形,并能直接解题。几何命题的证明方法很多,只要找到规律、找到模型,我们就可以“以不变应万变”,任何问题就能迎刃而解。所以说,模型建立是学好数学的秘密武器。 基本图形:如图1,B、D、C在一条直线上,∠B=∠ADE=∠C=90°。我们称这一图形为“一线三直角”模型,则△ABD∽△DCE(或 △ABD≌△DCE)。 点评:我们在教学中经常遇到此图形,只要见到一直角在一条直线上,我们可以构造两侧的直角三角形,利用相似三角形可以解决一类相关问题。当出现了有相等边的条件之后,相似就转化为全等了。综合性题目往往就会把相似和全等的转化作为出题的一种形式。本文将重点对这一基本图形进行探讨。 一、在旋转中出现一线三直角基本图形(全等) 如图,将AO绕点O按逆时针方向旋转90°,得到A’O。若点A的坐标为(a,b),则点A’的坐标为( )。 解析:过A点作AB⊥x轴,垂足为E,过A’作A’E’⊥x轴,则△A’OE≌△OAE,所以A’E’=OE=a,AE=OE’=b,所以A’的坐标为(-b,a)。 点评:教师在平时教学中就要注意基本图形的构造,为以后学习打下良好的基础。 变式:直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为2。把一块含有45°角的直角三角形如图放置,顶点A、B、C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为()。 分析:∠AEC=90°,并在直线l3,此时我们可以构造一线三直角数学模型,△ADE与△BEC全等,所以DB=CE=3。 二、在折叠中构造一线三直角 如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连结OB,将纸片OABC沿OB折叠,使点A落在A’的位置。若OB= 5,tan∠BOC= ,则点A’的坐标是多少? 解析:因为OB= 5,tan∠BOC= ,OA=1,AB=2,△A’OD∽△A’BE。设OD=a,则A’E=2a, A’D= (a+1), DE=AB,2a+ (a+1)=2,解得a= ,所以A’的坐标(- ,)。 点评:此题是以矩形折叠为载体,如果利用常规方法勾股定理及全等计算很麻烦。如果构造一线三直角是非常简单的,过A’做AB的平行线,与BC、AO的延长线交于E、D, △A’OD∽△A’BE。设OD=a,则A’E=2a, A’D= (a+1),DE=AB,2a+ (a+1)=2,计算量相当简单。 三、画斜为直,找直线构造一线三直角 如图,在平面直角坐标系xoy中,点A的坐标是(-7,1),∠AOB=135°,OB=5。(1)求△AOB的面积。(2)求点B的坐标。 解析:设B(x,y),过B点作BF⊥x轴,过D点作x轴的平行线,与y轴交于G点,过A点作AC⊥CD。因为∠AOB=135°,AO=5 2,所以∠AOD=45°,AD=OD=5,所以△BOF≌△DOG≌△DCA,所以AD=OD=BO,AC=DG=OF,CD=OG=BF,所以△AOB的面积= ×5×5= ,所以x+y=7,1+y=x,所以x=4,y=3。 点评:这是一道一题多解的题,将∠AOB=135°转化为∠AOD=45°,构造等腰直角三角形,再构造模型一线三直角(全等)。 四、在圆中构造一线三直角 如图,在平面直角坐标系中,⊙P与x轴相切于点C,与y轴分别交于A、B两点,连接AP并延长分别交⊙P、x轴于点D、E,连接DC并延长交y轴于点F。若点F的坐标为(0,1),点D的坐标为(6,-1)。(1)求证:DC=FC。(2)求直线AD的解析式。 解析:(1)由△OFC≌△GDC得到OC=CG,过点作DG⊥x轴,连接AC,因为AD为直径,所以∠AGD=90°,△OAG∽△CGD,所以DG∶GC=OG∶OA,所以1∶3=3∶OA,所以OA=9。 点评:从圆中找直角,利用直径得圆周角等于90°,问题便可迎刃而解。 基本图形的教学是初中几何教学的重点,也是难点,教师在平时教学中要注重基本图形的研究,要有足够的耐心等学生慢慢积累。学生的学习达到一定程度就会从复杂的图形中提炼出基本图形,才会出现解决问题时的灵感。

九年级下第一章解直角三角形专项练习3

第1章 解直角三角形 专项练习 一、锐角三角函数: 1、各三角函数之间的关系: ⑴sin =cos ; ⑵sin 2+cos 2= ; ⑶tan = . 2、在Rt △ABC 中,∠C =900 ,AC =12,BC =15。 (1)求AB 的长; (2)求sinA 、cosA 的值; (3)求A A 2 2 cos sin +的值; (4)比较sinA 、cosB 的大小。 2、(1)在Rt △ABC 中,∠C =900 ,5=a ,2=b ,则sinA = 。 (2)在Rt △ABC 中,∠A =900 ,如果BC =10,sinB =0.6,那么AC = 。 (3)在ABC Rt ?中,C ∠=90,c = 8 , sinA = 4 1 ,则b = . 3、选择:(1)在Rt △ABC 中,∠C =900 ,3 1 tan = A ,AC =6,则BC 的长为( ) A 、6 B 、5 C 、4 D 、2 (2)Rt ABC ?中,C ∠=90,43AC BC ==,,cos B 的值为 ( ) 15A 、 35B、 43C、 34 D、 (3)ABC ?中,C ∠=90,tan 1A =,则sin B 的值是 ( ) 3A 、 2B、1C、 2 D、4、计算: (1)sin 30o+cos 45o; (2) s in260o+cos260o-tan 45o. (3)???-??+?60tan 60sin 45cos 230sin (42453(sin 602cos30)tan30?-?+? 二、解直角三角形 1、如图,身高1.5m 的小丽用一个两锐角分别是30o和60o 的三角尺测量一棵树的高度.已知她与树之间的距离为5m,那么这棵树大约有多高?

第25章解直角三角形检测试题

第25章解直角三角形检测试题 时间:60分钟 等级 将所选选项的字母写在题后的括号中 1.在△ABC 中, AB =5,AC =4,BC=3则sinA 的值是( )。 A .53 B .54 C .35 D .4 3 2.已知α为锐角,且3tan(α+100 )=1,则α的度数为( )。 A .30° B .45° C .20° D .35° 3.在正方形网格中,△ABC 的位置如图所示,则 tan B ∠的值为( )。 A .1 B .3 C . 3 2 D . 33 4.已知Rt △ABC 中,∠C =90?,tanA=3 1 ,且AC=33,则BC 的值 为( ). A .43 B .83 C .4 D .3 5一辆汽车沿倾斜角是α的斜坡行驶500米,则它上升的高度是() A.500sin α米 B.500sin α米 C.500cos α米 D.500 cos α 米 6.下列说法中,正确的是( ) A.sin600+cos300=1. B.若α为锐角,则2)1(sin -α﹦1﹣sin α. C.对于锐角β,必有sin cos ββ<. D.在Rt △ABC 中,∠C =90?,则有tan cot A 7.如图,是一个中心对称图形,A 为对称中心,若∠C=90°, ∠B=30°,BC=1,则 BB ′的长为( ). A .4 B .33 C .3 32 第3题图 第7题图 30° A C B ′ B C ′

D . 3 3 4 8.下列各式中正确的是( ) A sin300+cos600=1 B sinA= 2 1 =300 C cos600=cos(2×300 )=2cos300 D tan600+cot450=23 9.当锐角A >300时,cosA 的值是( ) A 小于21 B 大于2 1 C 小于23 D 大于23 10.等腰三角形一腰上的高线为1,且高线与底边的夹角的正切值为 1,则这个等腰三角形的面积为( )。 A 2 1 B 1 C 23 D 3 11.如图,在某海岛的观察所A 测得船只B 的俯角是300 ,若观察 所的标高(当水位是0米时的高度)是53米,当时的水位是+3米,则观察所A 和船只B 的水平距离是( )米。 A 50 B 503 C 53 D 533 12.如图,Rt △ABC 中, ∠C =90?, AC BC =, 点D 在AC 上,30CBD ∠=?,则AD DC 的值为( ) A .3 B .2 2 C .31- D .不能确定 第12题图

直角三角形的存在性问题解题策略

中考数学压轴题解题策略(3) 直角三角形的存在性问题解题策略 《挑战压轴题·中考数学》的作者上海马学斌 专题攻略 解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根. 一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程. 有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便. 解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起. 如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便. 在平面直角坐标系中,两点间的距离公式常常用到. 怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点). 例题解析 例?如图1-1,在△ABC中,AB=AC=10,cos∠B=4 5 .D、E为线段BC上的两个 动点,且DE=3(E在D右边),运动初始时D和B重合,当E和C重合时运动停止.过E 作EF//AC交AB于F,连结DF.设BD=x,如果△BDF为直角三角形,求x的值. 图1-1 【解析】△BDF中,∠B是确定的锐角,那么按照直角顶点分类,直角三角形BDF存在两种情况.如果把夹∠B的两条边用含有x的式子表示出来,分两种情况列方程就可以了.如图1-2,作AH⊥BC,垂足为H,那么H是BC的中点. 在Rt△ABH中,AB=10,cos∠B=4 5 ,所以BH=8.所以BC=16. 由EF//AC,得BF BE BA BC =,即 3 1016 BF x+ =.所以BF= 5 (3) 8 x+. 图1-2 图1-3 图1-4

九下第一章解直角三角形电子教案

九年级下册第一章 解直角三角形 1.1从梯子的倾斜程度谈起 2课时 1.2 30°、45°、60°角的三角函数值 1课时 1.3三角函数的有关计算1课时 1.4测量物体的高度2课时 1.5船有触礁的危险吗1课时 第一教时 【教学内容】从梯子的倾斜程度谈起(一) 【教学目标】1.经历探索直角三角形中边角关系的过程. 理解正切的意义和与现实生活的联 系. 2.能够用 tanA 表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算. 【教学重点】1.从现实情境中探索直角三角形的边角关系. 2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系. 【教学难点】理解正切的意义,并用它来表示两边的比. 【教学用具】三角板 【教学方法】引导—探索法. 【教学过程】 一、生活中的数学问题: 1、你能比较两个梯子哪个更陡吗?你有哪些办法? 2、生活问题数学化: ⑴如图:梯子AB 和EF 哪个更陡?你是怎样判断的? ⑵以下三组中,梯子AB 和EF 哪个更陡?你是怎样判断的? 二、直角三角形的边与角的关系(如图,回答下列问题) ⑴Rt △AB 1C 1和Rt△A B 2C 2有什么关系? ⑵ 2 22111B AC C B A C C 和有什么关系? ⑶如果改变B 2在梯子上的位置(如B 3C 3)呢? ⑷由此你得出什么结论? 三、例题: 例1、如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡? 例2、在△ABC 中,∠C=90°,BC=12cm ,AB=20cm ,求tanA 和tanB 的值. 四、随堂练习: 1.在Rt △ABC 中,∠C=90°,AB=3,BC=1,则tanA= _______. 修改与批注

第25章 解直角三角形(第1-2节)

第25章 解直角三角形 §25.1 测量 【学习目标】 1.了解测量物体高度和物体之间距离的方法. 2.学会运用相似三角形对应边成比例或勾股定理解决相关测量问题. 【课前导习】 1.在△ABC 中,若∠C=90° , ∠A 、∠B 、∠C 的对边分别是a 、b 、c,则a 2+b 2= . 2.若△ABC ∽DEF,AB=6,DE=8,则 )(AB = ) (BC = )(DF = . 3. 地图上A 、B 两地的图上距离是1.6m ,比例尺为1:20000,则实际距离是 km . 4.一个直角三角形的两边长分别是3和4,则第三边长是 . 【主动探究】 问题一: 当你走进学校,仰头望着操场旗杆上高高飘扬的五星红旗时,你也许很想知道,操场旗杆有多高? 你可能会想到利用相似三角形的知识来解决这个问题. 图25.1.1 如图25.1.1,站在操场上,请你的同学量出你在太阳光下的影子长度、旗杆的影子长度,再根据你的身高,便可以利用相似三角形的知识计算出旗杆的高度. 问题二:如果就你一个人,又遇上阴天,那怎么办呢?人们想到了一种可行的方法,还是利用相似三角形的知识,你知道吗?. 试一试:如图25.1.2所示,站在离旗杆BE 底部10米处的D 点,目测旗杆的顶部,视线AB 与水平线的夹角∠BAC 为34°,并已知目高AD 为1.5米.现在若按1∶500的比例将△ABC 画在纸上,并记为△A ′B ′C ′,用刻度直尺量出纸上B ′C ′的长度,便可以算出旗杆的实际高度.你知道计算的方法吗? 图25.1.2 实际上,我们利用图25.1.2(1)中已知的数据就可以直接计算旗杆的高度,而这一问题的解决将涉及直角三角形中的边角关系.我们已经知道直角三角形的三条边所满足的关系(即勾股定理),那么它的边与角又有什么关系?这就是本章要探究的内容.

华师大九年级(上)教案 第25章 解直角三角形(全)

25.1 测量 教学目标 1、在探索基础上掌握测量。 2、掌握利用相似三角形的知识 教学重难点 重点:利用相似三角形的知识在直角三角形中,知道两边可以求第三边。 难点:应用勾股定理时斜边的平方等于两直角边的平方和。 教学过程 当你走进学校,仰头望着操场旗杆上高高飘扬的五星红旗时,你也许很想知道,操场旗杆有多高? 你可能会想到利用相似三角形的知识来解决这个问题. 图25.1.1 如图25.1.1,站在操场上,请你的同学量出你在太阳光下的影子长度、旗杆的影子长度,再根据你的身高,便可以利用相似三角形的知识计算出旗杆的高度. 如果就你一个人,又遇上阴天,那怎么办呢?人们想到了一种可行的方法,还是利用相似三角形的知识. 试一试 如图25.1.2所示,站在离旗杆BE底部10米处的D点,目测旗杆的顶部,视线AB与水平线的夹角∠BAC为34°,并已知目高AD为1.5米.现在若按1∶500的比例将△ABC画在纸上,并记为△A′B′C′,用刻度直尺量出纸上B′C′的长度,便可以算出旗杆的实际高度. 你知道计算的方法吗?

图25.1.2 实际上,我们利用图25.1.2(1)中已知的数据就可以直接计算旗杆的高度,而这一问题的解决将涉及直角三角形中的边角关系.我们已经知道直角三角形的三条边所满足的关系(即勾股定理),那么它的边与角又有什么关系?这就是本章要探究的内容.练习 1.小明想知道学校旗杆的高度,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度. 2.请你与你的同学一起设计切实可行的方案,测量你们学校楼房的高度. 习题25.1 1.如图,为测量某建筑的高度,在离该建筑底部30.0米处,目测其顶,视线与水平线的夹角为40°,目高1.5米.试利用相似三角形的知识,求出该建筑的高度.(精确到0.1米) (第1题) (第3题) 2.在平静的湖面上,有一枝红莲,高出水面1米,阵风吹来,红莲被风吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深多少? 3.如图,在一棵树的10米高B处有两只猴子,一只猴子爬下树走到离树20米处的池塘A处.另一只爬到树顶D后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,求这棵树的高度. 小结与作业:

直角三角形典型例题总结

勾股定理与勾股定理逆定理典型例题 类型一、勾股定理的构造应用 例1、如图,已知:在中,,,. 求:BC 的长. 思路点拨:由条件,想到构造含角的直角三角形 总结反思: 举一反三【变式1】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 【变式2】

类型二:方程的思想方法 例1、如图所示,已知△ABC 中,∠C=90°,∠A=60°, ,求、、的值。 思路点拨:由,再找出、的关系即可求出和的值 总结升华: 举一反三: 【变式1】如图,四边形ABCD 中,∠ACB=90O ,CD ⊥AB 于点D ,若AD=8,BD=2, 求CD 的长度。 【变式2 】C A

类型三:转化的思想方法 我们在求三角形的边或角,或进行推理论证时,常常作垂线,构造直角三角形,将问题转化为直角三角形问题来解决. 例1.如图所示,△ABC 是等腰直角三角形,AB=AC ,D 是斜边BC 的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BE=12,CF=5.求线段EF 的长。 思路点拨:现已知BE 、CF ,要求EF ,但这三条线段不在同一三角形中,所以关键是线段的转化,根据直角三角形的特征,三角形的中线有特殊的性质,不妨先连接AD . 总结升华: 【变式1】如图,已知:,,于P . 求证:. 【变式2】如图,ADC ?和BCE ?都是等边三角形, 30=∠ABC , 求证:2 22BC AB BD +=

3. 类型五:利用勾理作长为 的线段 例1. 作长为、、的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于 ,直角边为和1的直角三角形斜边长就是,类似地可作D C B A

25.3解直角三角形(1)

25.3(1)解直角三角形 一、教学内容分析 本课时的内容是解直角三角形,首先是了解直角三角形中的边角的关系和什么是解直角三角形,以及在解直角三角形时,选择合适的工具解,即优选关系式.从而能提高学生分析问题和解决问题的能力. 二、教学目标设计 1.理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形. 2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步形成分析问题、解决问题的能力. 3.渗透数形结合的数学思想,养成良好的学习习惯. 三、教学重点及难点 教学重点:直角三角形的解法. 教学难点:锐角三角比在解直角三角形中的灵活运用. 四、教学过程设计 一、 情景引入 1.观察 引入新课:如图所示,一棵大树在一次强烈的台风中于地面10米处折断倒下,树顶落在离数根24米处.问大树在折断之前高多少米? 显然,我们可以利用勾股定理求出折断倒下的部分的长度为222410 =26 , 26+10=36所以, 大树在折断之前的高为36米. 2.思考 1.在三角形中共有几个元素? 2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这 五个元素间有哪些等量关系呢? 3.讨论复习 师白:Rt △ABC 的边角关系、三边关系、角角关系分别是什 么? 总结:直角三角形的边与角之间的关系 (1)两锐角互余∠A +∠B =90°; (2)三边满足勾股定理a 2+b 2=c 2; (3)边与角关系sinA =cosB =a c ,cosA =sinB =b c , tanA =cotB =a b ,cotA =tanB =b a . 二、学习新课 1.概念辨析 师白:我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素. 定义:我们把由已知元素求出所有末知元素的过程,叫做解直角三角形. 2.例题分析

解直角三角形及其应用--知识讲解

解直角三角形及其应用—知识讲解 【学习目标】 1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形; 2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题. 【要点梳理】 要点一、解直角三角形 在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形. 在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角. 设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有: ①三边之间的关系:a2+b2=c2(勾股定理). ②锐角之间的关系:∠A+∠B=90°. ③边角之间的关系: ,,, ,,. ④,h为斜边上的高. 要点诠释: (1)直角三角形中有一个元素为定值(直角为90°),是已知值. (2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系). (3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解. 要点二、解直角三角形的常见类型及解法 已知条件解法步骤 Rt△ABC 两 边两直角边(a,b) 由求∠A, ∠B=90°-∠A, 斜边,一直角边(如c,a) 由求∠A, ∠B=90°-∠A, 一边一直角边 和一锐角 锐角、邻边 (如∠A,b) ∠B=90°-∠A, ,

一 角 锐角、对边 (如∠A ,a) ∠B=90°-∠A , , 斜边、锐角(如c ,∠A) ∠B=90°-∠A , , 要点诠释: 1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算. 2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边. 要点三、解直角三角形的应用 解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键. 解这类问题的一般过程是: (1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型. (2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题. (3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形. (4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解. 拓展: 在用直角三角形知识解决实际问题时,经常会用到以下概念: (1)坡角:坡面与水平面的夹角叫做坡角,用字母表示. 坡度(坡比):坡面的铅直高度h 和水平距离的比叫做坡度,用字母表示,则,如图, 坡度通常写成=∶的形式. (2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.

(完整word版)解直角三角形思想方法中考题型

思想方法中考题型 一、方程思想 根据题意设适当的未知数,从已知和未知中寻求等量关系,构造出方程或方程组,从而使问题获解. 例1如图1,河旁有一座小山,从山顶A处测得河对岸点C的俯角为30°,测得岸边点D的俯角为45°,又知河宽CD为50米.现需从山顶A到河对岸点C拉一条笔直的缆绳AC,求缆绳AC的长(答案可带根号). 解:过A点作AB⊥CD交CD的延长线于点B,设AB=x 在Rt△ABC中,因为∠ACB=∠CAE=30°,所以AC=2ABC=2x,BC=3AB=3x 在Rt△ABD中,因为∠ADB=∠EAD=45°,所以DB=AB=x 因为CD=50,所以 解得x=25(1+3)。答:缆绳AC的长为() 5013 +米. 说明先得出边角之间的关系,再构造方程求解,这是直角三角形的边角关系应用的常见方法,应值得注意. 二、数形结合思想 将数量和图形巧妙结合来寻找解题思路 例2如图2,A、B、C表示建筑在一座比较险峻的名山上的三个缆车站的位置,AB、BC表示连接三个缆车站的钢缆。已知A、B、C所处位置的海拔高度分别为124m、400m、1100m,如图建立直角坐标系,即A(a,124)、B(b,400)、C(c, 1100),若直线AB的解析式为y=1 2x+4,直线BC与水平线BC1的交角为45°. ⑴分别求出A、B、C三个缆车站所在位置的坐标; ⑵求缆车从B站出发到达C站单向运行的距离(精确到1m). A(240,124)、B(792,400)、C(2192,1100);(2)7002≈990(米). 三、转化思想 抽象转化为具体,复杂转化为简单、未知转化为已知,通过变换迅速而合理的寻找和选择问题解决的途径和方法. 例3如图3,学校旗杆附近有一斜坡.小明准备测量学校旗杆AB的高度,他发现当斜坡正对着太阳时,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影长BC=20米,斜坡坡面上的影长CD=8米,太阳光线AD与水平地面成26°角,斜坡CD与水平地面成30°的角.求旗杆AB的高度(精确到1米).(tan26°=0.43) 解:延长AD、BC交于点E,过点D作DF⊥CE于F.则依据题意可知,∠E=°,∠DCE=°。 在Rt△CFD中,得DF=4,CF=43≈6.928, 在Rt△DFE中, 在Rt△ABE中, 答:旗杆AB的高度约为. 四、建模思想 所谓建模思想就是认真分析题意,将实际问题抽象、转化为数学问题,建立数学模型,再通过对数学模型的探索达到解决问题的目的. 例4如图4,MN表示一段高速公路的设计路线图.在点M测得点N在它的南偏东30°的方向.测得另一点A在它的南偏东60°的方向;取MN上另一点B,在点B测得点A在它的南偏东75°的方向.以点A为圆心,500m为半径的圆形区域为某居民区.已知MB=400m,通过计算回答:如果不改变方向,高速公路是否会穿过居民区? 解:过点A作AC⊥MN于点C.依题意,得∠AMC=60°-30°=30°,∠ABC=75°-30°=45°.设AC为x m, 图2 B A 图4 M 30° 60° 75° 北 北 N C 图1 F 图3 E D C B A

九年级下第一章解直角三角形专项练习3

第1章解直角三角形专项练习 一、锐角三角函数: 1、 各三角函数之间的关系: ⑴ sin = cos _____ ; ⑵ sin 2 + cos 2 = ; ⑶ tan = ________ . ____ 2、 在 Rt △ ABC 中,/ C = 900, AC = 12, BC = 15。 (1 )求 AB 的长; (2 )求 si nA 、cosA 的值; 2 2 (3)求 sin A cos A 的值; (4)比较 sinA 、cosB 的大小。 2、 (1 )在 Rt △ ABC 中,/ C = 900, a =,;5 , b =2,贝U si nA =_____________ 。 (2) 在 Rt △ ABC 中,/ A = 900,如果 BC = 10, sinB = 0.6,那么 AC = _________ 1 (3) 在 RUABC 中,一 C = 90, c = 8 , sinA = ,则 b = . 4 1 3、 选择:(1 )在 Rt △ ABC 中,/ C = 900, tanA , AC = 6,则 BC 的长为( 3 (3) sin 30 ..2 *cos45 —sin 60 *tan60 4 2sin4 5 - 3(sin60 -2cos30 ) tan30 二、解直角三角形 1、如图,身高1.5m 的小丽用一个两锐角分别是 30o 和60o 的三角尺测量一棵树的高度 .已知她与树之间的 距离为5m,那么这棵树大约有多高 ? (2) Rt ABC 中, C = 90, AC =4, BC =3, cosB 的值为 1 r 3 4 r 3 A 、- B — C - D - 5 5 3 4 A 、6 B 、5 C ( (3) ABC 中, C = 90, tan A =1,则sin B 的值是 A > . 3 B .2 c 、1 D 鱼 2 4、计算: ( (1)sin 30o+cos45o; ⑵s in260o+cos250o-tan 45o.

构造直角三角形来解题

构造直角三角形巧解题 山东省博兴县锦秋街道清河学校 张海生 256500 有些几何题,若能仔细观察、把握特征、抓住本质、恰当地构造直角三角形进行转化,就会收到化难为易、事半功倍的效果.下面举例介绍构造直角三角形解题的若干常用方法,供同学们复习时参考. 一、利用已知直角构造直角三角形 例1:如图1,在四边形ABCD 中,∠A=060,∠B=∠D=090,AB=2,CD=1.则BC 和AD 的长分别为_______和_______. 解析:考虑到图中含有090和060的角,若延长AD 、BC 相交于E ,则可以构造出Rt △AEB 和Rt △CED ,易知∠E=030,从而可求出DE=3,AE=4,BE=23,故AD=4-3,BC=23-2. 二、利用勾股定理构造直角三角形 例2:如图2,在四边形ABCD 中,AB=AD=8,∠A=060,∠ADC=0150,已知四边形ABCD 的周长为32,求四边形ABCD 的面积. 解析:四边形ABCD 是一个不规则的四边形,要求其面积,可设法变成特殊的三角形求解.连接BD ,则△ABD 是等边三角形, △BDC 是直角三角形,由于AB=AD=BD=8,,求△ABD 的面积不难解决,关键是求△BDC 的面积.可运用周长和勾股定理联合求出DC ,从而求出△BDC 的面积. 解答:连接BD.∵AB=AD ,∠A=060,∴△ABD 是等边三角形. ∴∠ADB=060,BD=AD=AB=8. 因为∠ADC=0150,∴∠BDC=090, 故△BDC 是直角三角形, 因为四边形ABCD 的周长为32, AB=AD=8, ∴BC+DC=32-16=16,BC=16-DC. 在Rt △BDC 中,222BC DC BD =+, 即()222168DC DC -=+.解得DC=6. ∴248621=??=?B DC S .用勾股定理求出等边△ABD 的高为3482 3=?. 3163482 1=??=?A B D S .∴24316+=+=??B DC A B D A B CD S S S 四. 说明:⑴求不规则的图形面积应用割补法把图形分解为特殊的图形;⑴四边形中通过添加辅助线构造直角三角形;⑶边长为a 的等边三角形的高为a 23,面积为24 3a . 三、利用高构造直角三角形 例3:如图3,等腰△ABC 的底边长为8cm ,腰长为5cm ,一动点P 在底边上从B 向C 以0.25cm/s 的速度移动,请你探究:当P 运动几秒时,P 点与顶点A 的连线PA 与腰垂直. 解析:本题是一道探究性的动态问题,假设P 在某一时刻有PA ⊥AC ,此时P 点运动了几秒,这是解决问题的着手点.设BP=x ,PC=8-x ,在Rt △PAC 中,由于PA 不知道,无法建立关系式.考虑△ABC 是等腰三角形,如作底边上的高AD ,则可用x 的代数式表示AP ,用勾股定理便可求出x ,进而求出运动时间.当P 点运动到D 与C 之间时,也存在AP ⊥AB 的情况,故要分类 讨论. 解答:作底边BC 的高AD ,则AD ⊥BC ,垂足为D. 设BP=xcm ,PA ⊥AC. 图1 图2 图3

九年级下第一章解直角三角形专项练习四

第1章 解直角三角形 专项练习 一、 细心选一选 1.在Rt △ABC 中,∠C=90°,cosA=5 3 ,那么tanB=( ) A. 53 B. 54 C. 34 D. 4 3 2. 在△ABC 中, tan A =1,cos B =2 1 ,则∠C 的度数是( ) A. 75° B.60° C. 45° D.105° 3. 在Rt △ABC 中,∠C=90°,AC =1,BC =3,则sinA ,cosA 的值分别为( ) A. 21,33 B. 23,21 C. 2 1,3 D. 23,33 4.在直角三角形中,如果各边都扩大1倍,则其锐角的三角函数值( ) A. 都扩大1倍 B.都缩小为原来的一半 C.都没有变化 D. 不能确定 5.已知α是锐角,且sin α+cos α= 3 3 2,则sin α·cos α值为( ) A. 32 B. 23 C. 6 1 D. 1 6.化简:140tan 240tan 2 +-? ? 的结果为( ) A.1+tan40° B. 1-tan40° C. tan40°-1 D. tan 2 40°+1 7.已知β为锐角,cos β≤ 2 1 ,则β的取值范围为( ) A.30°≤β <90° B. 0°<β≤60° C. 60°≤β<90° D. 30°≤β<60° 8.三角函数sin30°、cos16°、cos43°之间的大小关系是( ) A. cos43°>cos16°>sin30° B. cos16°>sin30°>cos43° C. cos16°>cos43°> sin30° D. cos43°>sin30°>cos16° 9.如图,在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α, 且cos α= 5 3 ,AB=4,则AD 的长为( ) A.3 B. 516 C. 320 D. 3 16 10.在平行四边形ABCD 中,已知AB=3cm ,BC=4cm ,∠B=60°,则S ABCD 等于( ) A. 63 cm 2 B. 123 cm 2 C.6 cm 2 . D.12 cm 2 二、精心填一填(共6小题;每小题5分,共30分) 11.若2sin (α+5°)=1,则α= °。 12.边长为8,一个内角为120°的菱形的面积为 。 13. 一等腰三角形的腰长为3,底长为2,则其底角的余弦值为 。 14.在△ABC 中,∠BAC=120°, AB=AC, BC=4,建立如下图的平面直角坐标系,则A 、B 、C 个点的坐标分别是;A( , )、B( , )、C( , )。 15.如右下图,把矩形纸片OA BC 放入平面直角坐标系中,使OA 、OC 分别落在x 轴、y 轴上,连结O B 将 A B

第25章 解直角三角形3-5节

第25章解直角三角形 §25.3 解直角三角形 【学习目标】 1.了解解直角三角形的概念. 2.掌握解直角三角形的方法. 【课前导习】 1.在△ABC中,若∠C=90° ,则∠A+∠B=______ 2.若∠C=90°,∠A,∠B,∠C的对边分别是a,b ,c ,则a,b,c的等量关系是________________ 3.如图, ∠C=90°,AC=6, 则sinA= , cosA= , tanA= cotA= sinB= , cosB= , tanB= cotB= 4.什么叫解直角三角形? 【主动探究】 例1.在△ABC中,∠C=90°,a=3b ,c=2,其中a ,b,c分别是∠A,∠B,∠C的对边,解此直角三角形. 例2.`在△ABC中,∠ACB=90°,斜边上的中线CD=6, ∠A=30°,解此直角三角形. `

【当堂训练】 1. 在△ABC 中,∠C=90°, ∠B=30°,求∠A=? 2. 在△ABC 中,∠C=90°, a, b, c 分别是∠A,∠B, ∠C 的对边,若a=6,c=10,求b=? 3. 在△ABC 中,∠C=90°,AB=15,SinA=3 1,求BC 的值. 4. 在△ABC 中,∠C=90°,a=b , c=2,其中a , b , c 分别是∠A,∠B, ∠C 的对边,解此直角三角形. 5. 在△ABC 中,∠ACB=90°,斜边上的中线CD=5, ∠A=60°,解此直角三角形. 【回学反馈】 1. 在△ABC 中,∠ACB=90°,a ,b ,c 分别是∠A,∠B,∠C 的对边,则下列各式中正确的是( ) A. b=atanB B. a=bcotA C. c=B b sin D. c=B a cos 2. 在△ABC 中,∠ACB=90°,BC=8, ∠B=60°,解此直角三角形. 3. 在△ABC 中,∠ C=90°,AC=2, AB=2,解此直角三角. 4. 如图,某船沿正北方向航行,在点A 处测得灯塔C 在北偏西30°方向上,当船以20海里/小时的速度航 行2小时,到达C 的正东方向点D,此时船距灯塔C 有多远? 张顺生 A

初二数学培优之直角三角形

初二数学培优之直角三角形 阅读与思考 直角三角形是一类特殊三角形,有以下丰富的性质: 角的关系:两锐角互余; 边的关系:斜边的平方等于两直角边的平方和; 边角关系:30o 所对的直角边等于斜边的一半. 这些性质广泛应用于线段计算、证明线段倍分关系、证明线段平方关系等方面. 在现阶段,勾股定理是求线段的长度的主要方法,若图形缺少条件直角条件,则可通过作辅助垂线的方法,构造直角三角形为勾股定理的应用创造必要条件;运用勾股定理的逆定理,通过代数方法计算,也是证明两直线垂直的一种方法. 熟悉以下基本图形基本结论: 例题与求解 【例l 】(1)直角△ABC 三边的长分别是x ,1x 和5,则△ABC 的周长=_____________.△ABC 的面积=_____________. (2)如图,已知Rt △ABC 的两直角边AC =5,BC =12,D 是BC 上一点,当AD 是∠A 的平分线时,则CD =_____________. D C (太原市竞赛试题) 解题思路:对于(1),应分类讨论;对于(2),能在Rt △ACD 中求出CD 吗?从角平分线性质入手. 【例2】如图所示的方格纸中,点A ,B ,C ,都在方格线的交点,则∠ACB =( ) A.120° B.135° C.150° D.165°

(“希望杯”邀请赛试题)解题思路:方格纸有许多隐含条件,这是解本例的基础. 【例3】如图,P为△ABC边BC上的一点,且PC=2PB,已知∠ABC=45°,∠APC =60°,求∠ACB的度数. B C (“祖冲之杯”邀请赛试题)解题思路:不能简单地由角的关系推出∠ACB的度数,综合运用条件PC=2PB及∠APC =60°,构造出含30°的直角三角形是解本例的关键. 【例4】如图,在△ABC中,∠C=90°,∠A=30°,分别以AB,AC为边在△ABC的外侧作等边△ABE和等边△ACD,DE与AB交于F,求证:EF=FD. B A C (上海市竞赛试题)解题思路:已知FD为Rt△FAD的斜边,因此需作辅助线,构造以EF为斜边的直角三角形,通过全等三角形证明. 【例5】如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=CD,求证:222 += BD AB BC B (北京市竞赛试题)解题思路:由待证结论易联想到勾股定理,因此,三条线段可构成直角三角形,应设法将这三条线段集中在同一三角形中. 【例6】斯特瓦尔特定理:

2018年最新浙教版九年级数学下册第1章解直角三角形试题及答案

2017-2018学年九年级数学下册第1章解直角三角形测试卷 (时间:120分钟 满分:120分) 一、选择题(每小题3分,共30分) 1.如图,在Rt △ABC 中,∠C =90°,AB =6,cos B =23 ,则BC 的长为( ) A .4 B .2 5 C.181313 D.121313 ,第1题图) ,第2题图) ,第3 题图) ,第4题图) 2.如图①是一张Rt △ABC 纸片,如果用两张相同的这种纸片恰好能拼成一个正三角形,如图②,那么在Rt △ABC 中,sin B 的值是( ) A.12 B.32 C .1 D.32 3.如图,点A ,B ,C 在⊙O 上,∠ACB =30°,则sin ∠AOB 的值是( ) A.12 B.22 C.32 D.33 4.如图,在坡度为1∶2的山坡上种树,要求相邻两棵树的水平距离是6 m ,则斜坡上相邻两棵树的坡面距离是( ) A .3 m B .3 5 m C .12 m D .6 m 5.下列式子:①sin60°>cos30°;②0

A .3 B.13 C.83 D .3或13 7.如图,在?ABCD 中,对角线AC ,BD 相交成的锐角为α,若AC =a ,BD =b ,则?ABCD 的面积是( ) A.12ab sin α B .ab sin α C .ab cos α D.12 ab cos α ,第7题图) ,第8题图) ,第9题图) 8.如图,AC ⊥BC ,AD =a ,BD =b ,∠A =α,∠B =β,则AC 等于( ) A .a sin α+b cos β B .a cos α+b sin β C .a sin α+b sin β D .a cos α+b cos β 9.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,已知AC =5,BC =2,那么sin ∠ACD =( ) A.53 B.23 C.255 D.52 10.如图,在菱形纸片ABCD 中,∠A =60°.将纸片折叠,点A ,D 分别 落在点A ′,D ′处,且A ′D ′经过点B ,EF 为折痕.当D ′F ⊥CD 时,CF FD 的值为 ( ) A.3-12 B.36 C.23-16 D.3+18

华师大九年级数学上第25章解直角三角形整章试卷及答案

第25章《解直角三角形》整章测试 一、选择题(每小题3分,共24分) 1.在Rt △ABC 中, ∠C=90?,AB=4,AC=1,则cos A 的值是( ) (A (B)1 4 (D)4 2.计算:2 )130(tan -?=( ) (A)331- (B)13- (C)13 3- (D )1-3 3.在ABC ?中,,A B ∠∠都是锐角,且sinA =2 1 , cosB =2 3 ,则ABC ?的形状( ) (A )直角三角形 (B )钝角三角形 (C )锐角三角形 (D )不能确定 4.如图,在Rt ABC △ 中,tan B = ,BC =则AC 等于( ) (A )3 (B )4 (C ) (D )6 5.如图,小颖利用有一个锐角是30°的三角板测量一棵树 的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m (即小颖的 眼睛距地面的距离),那么这棵树高是( ) (A) 32+)m (B) (32) m (D)4m 6.因为1sin 302= ,1sin 2102 =- , 所以sin 210sin(18030)sin 30=+=- ;因为sin 452= ,sin 2252 =- ,所以sin 225sin(18045)sin 45 =+=- ,由此猜想,推理知:一般地当α为锐角时有sin(180)sin αα+=- ,由此可知:sin 240= ( ) (A )1 2 - (B)2 - (C)- (D)7.如图,客轮在海上以30km/h 的速度由B 向C 航行,在B 处测得 灯塔A 的方位角为北偏东80 ,测得C 处的方位角为南偏东25 ,航 行1小时后到达C 处,在C 处测得A 的方位角为北偏东20 ,则C 到 A 的距离是( ) (A) (B) 北

相关主题
文本预览
相关文档 最新文档