当前位置:文档之家› CO VI 风速风向检测器

CO VI 风速风向检测器

CO VI  风速风向检测器
CO VI  风速风向检测器

2.4.5 CO/VI风速风向检测器

1 —般施工要求

1)CO/VI检测器

CO/VI检测器为隧道一氧化碳和能见度检测专用装置,安装于隧道边墙,用于采集隧道内一氧化碳和能见度基本数据,作为隧道通风和照明的控制依据。

(1)设备安装应选择具有数据代表性的区域和位置。

(2)设备安装于隧道边墙上,支架基础应坚实、平整,附着良好。

(3)安装高度应综合考虑安全、方便,防止人为及车辆损坏,便于施工、调试和维护。安装高度距离地面约3m。

(4)发射端与反射端镜面等位支架安装距离为3m,并应保持同一高度,同轴度良好。

2)风速风向检测器

风速风向检测器设备为燧道内风速风向检测专用设备,检测探头安装在燧道边墙上,采集隧道内风速、风向基础数据,作为风机控制的依据。

(1)设备安装应选择具有数据代表性的区域和位置。

(2)设备安装于隧道边墙上,支架基础应坚实、平整,附着良好。

(3)安装高度应综合考虑安全、方便,防止人为和车辆挂损,便于施工、调试和维护。安装高度距离路面约3m。

(4)应避开风机对设备的干扰,为便于布线与施工,可与CO/VI检测器共用预埋管道。

2设备材料和人员准备

设备材料主要包括CO/VI检测器、风速风向检测器、控制箱以及施工所需的相关辅材。

根据施工计划合理安排施工班组,施工人员应在现场负责人和技术人员的指导下依据规范及图纸进行施工。

3施工安装界面条件

(1)隧道土建施工基本完成,管道和洞室的预留预埋满足系统安装的相关界面要求。

(2)要求调试开通前设备的供电电源已到位,以满足设备的上电测试和参数设置的需求。

(3)要求调试开通前通信缆线敷设到位,通信链路已开通,以满足设备调试及与分中心联调的需求。

4施工安装程序

1)CO/VI检测器安装程序

CO/VI 检测器施工工艺流程图

CO/VI 检测器施工工艺流程图

(1)安装施工前应进行必要的交通管制或部分管制,并充分做好安全防护工作。

(2)按照施工安装图中所示的位置确定设备安装的位置。

(3)按照施工安装图要求确定电源线和数据线的走向及电源箱的安装位置。

(4)设备支架在安装前应对安装位置进行充分定位,要求安装高度距离路面3m,两个支架之间的距离为3m,且在同一个水平面上。用冲击钻和钢膨胀螺栓对支架进行固定。根据安装支架上4个φ10.5mm,孔位置的实际尺寸,在安装墙壁上配打M10不锈钢膨胀螺栓的位置孔(φ12mm),选用长度为100mm的不锈钢膨胀螺栓,留出有效长度16mm。

(5)用冲击钻和钢膨胀螺栓将电源控制箱与隧道预留洞进行固定安装。

(6)根据电源控制箱上4个耳板小φ9mm孔位置的实际尺寸,在安装壁上配打电源箱上4个耳板M8不锈钢膨胀螺栓的位置孔(φ12mm),选用长度为100mm的不锈钢膨胀螺栓,留出有效长度160mm。

(7)将支架及电源控制箱定位紧固,分别对电源线和数据线进行敷设。

(8)安装检测器发射端和反射镜,要求保证发射端和反射镜的同轴性。

(9)分别将电源线和数据线与发射端连接。将发射端上的电源线、数据线与电源控制箱连接;将电源控制箱中端子上的电源线与外电源连接;将电源控制箱中端子上的数据线与本地控制器连接,数据线缆应为1.0~1.5mm2的屏蔽线缆。

(10)有接地要求的必须接地,并适当紧固,防止虚接。

(11)设备安装与接线完成后,做好各种线缆的标签、标识及进线孔洞的封堵,设备接线图应放置于电源控制箱内,便于后期维护。

2)风速风向检测器安装程序

风速风向检测器施工工艺流程图

风速风向检测器安装工艺流程图

(1)安装施工前应进行必要的交通管制或部分管制,并充分做好安全防护工作。

(2)按照施工安装图确定设备安装的位置,接收端应与地面平行。

(3)按照施工安装图确定电源线和数据线的走向及电源箱的安装位置。

(4)分别根据安装板(支架)上4个φ8.5mm孔位置的实际尺寸,在安装墙壁上配M8不锈钢膨胀螺栓的位置孔(φ12mm),选用长度为120mm的不锈钢膨胀螺栓,留出有效长度30mm。

(5)根据电源控制箱上4个耳板φ12mm孔位置的实际尺寸,在安装壁上配打电源箱上4个耳板M8不锈钢膨胀螺栓的位置孔(φ12mm),选用长度为100mm的不锈钢膨胀螺栓,留出有效长度16mm。

(6)将风速风向测量仪及电源箱定位紧固,分别对电源线和数据线进行敷设。

(7)分别将电源线和数据线与风速风向测量仪连接。将风速风向测量仪上的电源线、数据线与电源控制箱连接;将电源控制箱中端子上的电源线与外电源连接;将电源控制箱中端子上的数据线与本地控制器连接,数据线缆应为1~1.5mm2的屏蔽线缆。

(8)用电器上有接地要求的必须接地,并适当紧固,防止虚接。

(9)设备安装与接线完成后,做好各种线缆的标签、标识及进线孔洞的封堵,设备接线图应放置于电源控制箱内,便于后期维护。

5设备参数配置

1)CO/VI参数配置

测量范围:CO为0 ~400ppm,VI为K=0 ~ 35x10-3/m。

平均时间:30s。

模拟量输出:4~20mA。

2)风速仪参数配置

测量范围:-30~+30m/s。

平均时间:30s。

模拟量输出:4~20mA电流隔离输出。

开关量输出:正反风向输出。

6设备调试

1)CO/VI检测器调试

安装工作完成后,必须对设备进行全面调试,确保系统的正常工作以及数据采集的准确性。

(1)接通电源,检查设备运行指示灯及主板部件工作指示灯是否正常。

(2)通过调试接口将设备与便携计算机连接,运行调试软件,查看运行状态。 (3

)通过数值显示调节发射端与接收端的平正关系,调节数字化增益,调节电容增益。

(4)调整部分工作参数配置,检查工作状态,测量电流输出,记录调试日志。

(5)本地设备调试完成后,设备通过本地控制器将测量数据传人分中心上位机软件,为隧道通行提供可靠数据。

2)风速风向检测器调试

安装工作完成后,必须对设备进行全面调试,确保系统的正常工作以及数据采集的准确性。

(1)接通电源,检查设备运行指示灯及主板部件工作指示灯是否正常。

(2)通过调试接口将设备与便携计算机连接,运行调试软件,查看运行状态。

(3)调整部分工作参数配置,检查工作状态,测量电流输出,记录调试日志。

(4)本地设备调试完成后,设备通过本地控制器将测量数据传入分中心上位机软件,为隧道通行提供可靠数据。

(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

测量风速的方法

测量风速的方法 20091343107 陈茜茜 环境工程09级1班

高空风观测 测量近地面直至30公里高空的风向风速。通常将飞升气球作为随气流移动的质点,用地面设备(经纬仪或雷达)跟踪气球的飞升轨迹,读取其时间间隔的仰角、方位角、斜距,确定其空间位置的坐标值,可求出气球所经过高度上的平均风向风速。 高空风的测量一般指从地面到空中30km各高度上的风向、风速的测定。其测量方法有:一.利用示踪物随气球漂浮,观测示踪物位移来确定空中的风向和风速; 常用测风气球作为气流示踪物,使用地点跟踪设备观测其运动轨迹,测定其在空间各个时刻的位置,再用图解法、解析法或矢量法确定相应大气层中的平均风向、风速。 气球空间位置的确定需要测定三个参数:仰角δ、方位角α和球高H。测风经纬仪是一种跟踪观测和测定空中测风气球仰角、方位角的光学仪器。 在实际测量中,可以采用单经纬仪测风,也可采用双经纬仪测风(基线测风法)。其中后者准确度较高,可用来鉴定其它测风方法的准确性,但这种方法的观测和计算较复杂。用双经纬仪测风计算高度时,可采用投影法(包括水平面投影法、铅直面投影法和矢量投影法)。 二.利用大气中的质点或湍流团块与无线电波、声波、光波的相互作用,由多普勒效应引起的频率变化推算空中的风向、风速; 在我国,目前主要采用59型探空仪和701型二次测风雷达组成59—701高空探测系统,进行高空温、压、湿、风的综合测量。 三.利用系留气球、风筝、飞机、气象塔等观测平台,使测风仪器安置在不同高度上,根据气流对测风仪器的动力作用来测量空中的风向、风速。

导航测风就是借助导航台信号,由气球携带的探空仪自身确定其位置,并将位置信号、气 象资料信号一起发回基站,然后在基站进行处理,计算高空风的方法。 近地面层以上大气风场的探测。通常用气球法测风。高空风探测也是气象飞机探测、气象火箭探测、大气遥感的内容之一。气球法测风是把气球看作随气流移动的质点,用仪器测量气球相对于观测点的角坐标、斜距或高度,确定它的空间位置和轨迹;根据 气球在某时段内位置的变化,就可以简易地算出它的水平位移,从而求出相应大气层中的平均水平风向、风速。在气球的上升过程中,可测得它所经各高度上的风向、风速。1809年英国J.沃利斯和T.福雷斯特首创测风气球观测高空风。气球法测风常用光学经 纬仪、无线电经纬仪、一次雷达和二次雷达,以及导航系统等。 光学经纬仪测风 有单经纬仪测风和双经纬仪测风两种。单经纬仪只能测定气球的角坐标(方位、仰角)。气球高度一是根据气球升速(决定于气球净举力、气球大圆周长和地面空气密度)和升空历经的时间来确定。但由于大气湍流、铅直气流速度和空气密度随高度变化等因 素对气球升速的影响,这种方法确定的高度误差大,测风精度低,一般只在数千米高度 以下使用。二是根据无线电探空仪测得的气压、温度和湿度资料,通过计算推得高度。 这种方法测风精度较高。用双经纬仪测风,是根据位于选定基线两端的两个经纬仪同步 观测获得的角坐标值,通过几何图解或计算,得出各高度上的平均风向、风速。 光学经纬仪测风一般只适用于能见度好的少云晴天,夜间必须在气球上挂灯笼或其 他可见光源,阴雨天气则只能在可见气球的高度内测风。 无线电经纬仪测风 它是利用无线电定向原理,跟踪气球携带的探空发射机信号,测得角坐标数据。气球所在的高度则由无线电探空仪测量的温、压、湿值算出。因此无线电经纬仪测风适用 于全天候,但当气球低于无线电经纬仪最低工作仰角时,测风精度迅速降低。 雷达测风 一次雷达测风是雷达跟踪气球携带的无源反射靶,接收反射靶的反射信号来实现定位并计算风向、风速。二次雷达测风是跟踪气球携带的工作于应答状态的探空发射机信 号来实现定位的。此法可以获取角坐标和斜距数据,从而计算出高空风,无需依赖无线 电探空仪探测的温、压、湿数据计算气球高度。二次雷达测风当气球低于雷达最低工作 仰角时,要放弃仰角数据。此外,气象多普勒雷达更可测量云中流场的细微结构。 导航测风 利用导航系统来测定风。气球携带微型导航接收机,检出导航信号,并调制探空发射机将信号转发到地面而被接收,根据这些信号,可确定气球的轨迹,并计算出各相应

风速风向测量实验指导书与实验报告

风向风速测量实验 (一)实验目的 掌握风向风速测量方法及测量原理,学会使用数字风向风速表等测量仪器测定风向及风速。 (二)实验仪器设备及实验原理 1、实验仪器设备: 实验设备有HG-1低速风洞及测控系统、数字压力风速仪、数字风向风速表。图1为低速风洞,用于产生低速气流,图2为XDE I型数字风向风速表。 图1 HG-1低速风洞图2 数字风向风速表 HG-1低速风洞是一座回流式低速风洞(见图1),气流速度最高60m/s,试验段大小:700mm(宽)×700mm(高)。数字压力风速仪是用于测量气流总压、静压及压差和风速的多功能测试仪,该仪器必须和皮托管探头配套使用。数字风向风速表是手持式风向风速测试仪,由风向风速感应器和数据处理、显示仪表2部分组成。其技术指标如下: 风向: 测量范围: 0~360° 准确度: ±5° 分辨力: 3°. 起动风速: ≤0.5 m/s 风速: 测量范围: 0~60 m/s 准确度: ±(0.5+0.03V) m/s V─实际风速 分辨力: 0.1 m/s 起动风速: ≤0.5 m/s 2、实验原理: 风向、风速传感器所感应的不同物理量,经过相应的电路,转换成标准的电压模拟量和数字量,然后由数据采集器CPU 按时序采集、计算,得出风向、风速的实时值,并实时显示。 2.1风向传感器 选用单叶式风向标(见图3)作为风向测定传感器,采用七位格雷码的编码方式进行光电转换,将轴角位移转换为数字信号,经采集器的CPU根据相应公式解算处理,得到相应的风向值。

图3 单叶式风向标风向传感器图4 三杯回转架式风速传感器 2.2 风速传感器 采用三杯回转架式风速传感器作为风速测定传感器(见图4),利用光电脉冲原理。风杯带动码盘转动,光敏元件受光照后输出脉冲,经采集器CPU根据相应的风速计算公式解算处理,获得相应风速值。 (三)实验方法与步骤 1、风洞运行,将风速调至10m/s左右。 2、把皮托管的总压测压软管及静压测压软管和数字压力风速仪对应接口连接。 3、将数字压力风速仪电源打开,按功能键使面板切换到压力和速度显示界面。 4、将皮托管安装在支架上,使总压管开孔方向与来流方向一致。 5、用数字压力风速仪测量试验段出口气流总压和风速。 6、将手持式数字风向风速表的数据采集、处理与显示部件与风速风向感应部件连接,并把感应部件伸到来流中,测定来流速度和来流方向。要求三个风杯处于同一水平面上。 7、改变风洞来流速度,重复5和6步骤测定第二组数据。 8、实验结束,关闭风洞。 9、室外有风时手持数字风向风速表到室外测定某处风向风速。 (四)实验数据处理 将实测数据记录在下表中: (五)思考题 1、比较数字压力风速仪和数字风向风速表测定的风速是否相同?为什么?

风速传感器介绍

日常生活生产中,很多地方都需要对风速值大小进行测量,如海上作业、环保、飞行作业,各类风扇制造业、通风空调系统等领域。对于不同的测量地点,进行不同的风速测量,可选择用不同方式的测风传感器进行测量,选型正确,对于测量的方便性和准确性都有很大的帮助。 风速传感器可分为: 1、G75B叶轮式风速传感器 叶轮式风速传感器可广泛应用在管道测风、建筑节能、环保监测等领域,避免了风杯式风速传感器体积较大,安装不方便的缺点。适用于有微小颗粒粉尘的设备管道中的微风测量 技术参数: 安装直径最小40mm; 启动风速:G75B:0.5m/s 最小显示分辨率0.01m/s; 温度范围:-20~80℃; 测量范围0-50m/s; 输出接口:1、脉冲;2、电流;3、电压;4、继电器接口(1c);5、RS232/RS485;6、显示接口(用户定制或现有的标准显示仪表);7、开关量输出接口NPN/PNP。 2、FS01型风速传感器 FS01型风速传感器采用高塑合金铝经严格的氧化、喷塑工艺加工而成,用于实现对环境风速的测量,输出标准的脉冲信号或电流信号,方便使用。可广泛用于智能温室、气象站、船舶、工程机械、风力发电等环境的风速测量。 技术参数: 量程:0-30m 输出:脉冲/4-20mA信号(FS01/S) 供电电压:DC12-24v 精度:5% 功耗:<0.5W 环境温度:-20~85℃ 传输距离:>300m 响应时间:<1s 重量:0.32Kg 安装方式:法兰盘安装或螺纹安装 3、FS02摆锤式风速传感器 FS02摆锤式风风速传感器专为各种大型起重、悬臂机械设备而研制开发,具有自调节竖直角度的智能风速传感设备,风杯采用优质合金铝制成,机械强度高、抗风能力强,且采用树脂喷涂技术,室外安装不生锈。主要适用于履带式起重机、汽车吊及抖动颠簸、起伏变化较大的露天设备。用它可以实时采集外界环境的实际风速并输出相应的信号。 技术参数: 量程:0-30m 输出: 4-20mA 供电电压:DC24V 精度:<5% 环境温度:-40~120℃ 启动风速:<0.5m/s 杯体摆动角度:120°

风速传感器和风向传感器的应用及原理解析

风速传感器和风向传感器的应用及原理解析 如何测量风速和风向,其实在古代很早就已经出现,著名的诸葛亮借东风火烧壁,就是因为有效的掌握了风向和风速方面的知识,从而取得了军事的重大胜利。 作为一种对天气测量的设备,用来测量风的方向在大小的的风速传感器和风向传感器在各行各业也得到了广泛的应用,下面我们就看看这两种设备。 风向传感器风向传感器是以风向箭头的转动探测、感受外界的风向信息,并将其传递给同轴码盘,同时输出对应风向相关数值的一种物理装置。 通常风向传感器主体都采用风向标的机械结构,当风吹向风向标的尾部的尾翼的时候,风向标的箭头就会指风吹过来的方向。为了保持对于方向的敏感性,同时还采用不同的内部机构来给风速传感器辨别方向。通常有以下三类: 电磁式风向传感器:利用电磁原理设计,由于原理种类较多,所以结构与有所不同,目前部分此类传感器已经开始利用陀螺仪芯片或者电子罗盘作为基本元件,其测量精度得到了进一步的提高。 光电式风向传感器:这种风向传感器采用绝对式格雷码盘作为基本元件,并且使用了特殊定制的编码编码,以光电信号转换原理,可以准确的输出相对应的风向信息。 电阻式风向传感器:这种风向传感器采用类似滑动变阻器的结构,将产生的电阻值的最大值与最小值分别标成360°与0°,当风向标产生转动的时候,滑动变阻器的滑杆会随着顶部的风向标一起转动,而产生的不同的电压变化就可以计算出风向的角度或者方向了。风速传感器风速传感器是一种可以连续测量风速和风量(风量=风速x横截面积)大小的常见传感器。 风速传感器大体上分为机械式(主要有螺旋桨式、风杯式)风速传感器、热风式风速传感器、皮托管风速传感器和基于声学原理的超声波风速传感器。 螺旋桨式风速传感器工作原理我们知道电扇由电动机带动风扇叶片旋转,在叶片前后产生一个压力差,推动气流流动。螺旋浆式风速计的工作原理恰好与此相反,对准气流的叶片系统受到风压的作用,产生一定的扭力矩使叶片系统旋转。通常螺旋桨式速传感器通过一

温度和风速测量方法总结

第一章风速测量 1.1风速测量 风是空气流动时产生的一种自然现象。空气流动有上下流动和左右流动,上下流动为垂直运动,也叫对流;左右流动为水平运动,也就是风。风是一个矢量,用风向和风速表示。地面风指离地平面10─12米高的风。风向指风吹来的方向,一般用16个方位或360°表示。以360°表示时,由北起按顺时针方向度量。风速指单位时间内空气的水平位移,常以米/秒、公里/小时、海里/小时表示。 1.2 风杯风速计 风杯风速计是最常见的一种风速计。转杯式风速计最早由英国鲁宾孙发明,当时是四杯,后来改用三杯。它由3个互成120°固定在支架上的抛物锥空杯组成感应部分,空杯的凹面都顺向一个方向。整个感应部分安装在一根垂直旋转轴上,在风力的作用下,风杯绕轴以正比于风速的转速旋转。转速可以用电触点、测速发电机或光电计数器等记录。 图1.1 风杯风速计

1.3 叶轮风速仪 风速计的叶轮式探头的工作原理是基于把转动转换成电信号,先经过一个临近感应开头,对叶轮的转动进行“计数” 并产生一个脉冲系列,再经检测仪转换处理,即可得到转速值。 法国KIKO叶轮风速仪工作原理如图1.2所示。叶轮的轴杆启动内含八个电磁极的原型磁铁,置于磁铁旁的双霍尔传感器感测到侧场中电磁极的转变信号。传感器的信号转换为电子频率且和风速成正比,并感测旋转方向。 图1.2 KIMO原理 1.4 热线风速计 一根被电流加热的金属丝,流动的空气使它散热,利用散热速率和风速的平方根成线性关系,再通过电子线路线性化(以便于刻度和读数),即可制成热线风速计。 金属丝通常用铂、铑、钨等熔点高、延展性好的金属制成。常用的丝直径为5μm,长为2 mm;最小的探头直径仅1μm,长为0.2 mm。根据不同的用途,热线探头还做成双丝、三丝、斜丝及V形、X形等。为了增加强度,有时用金属膜代替金属丝,通常在一热绝缘的基体上喷镀一层薄金属膜,称为热膜探头。热线探头在使用前必须进行校准。静态校准是在专门的标准风洞里进行的,测量流速与输出电压之间的关系并画成标准曲线;动态校准是在已知的脉动流场中进行的,或在风速仪加热电路中加上一脉动电信号,校验热线风速仪的频率响应,若频率响应不佳可用相应的补偿线路加以改善。 0至100m/s的流速测量范围可以分为三个区段:低速:0至5m/s;中速:

风向和风速教学设计

第四课风向和风速 【教学目标】 科学概念: 风可以通过自然界中事物的变化来感知,可以用风向和风速来描述。 过程与方法: 自制建议风向标和小风旗。用自制的风向标和小风旗测量风向和风速,并使用适当的方法纪录观察结果。 情感、态度、价值观: 感受到使用简单工具能对天气观察活动提供很大的帮助。进一步提高观察天气现象的兴趣和好奇心。 【教学重点】能描述风向和风速 【教学难点】用自制的风向标和小风旗测量风向和风速,并使用适当的方法纪录观察结果。 【教学准备】分组材料:制作风向标的材料;制作小风旗的材料。 【教学过程】 一、导入 师:你们觉得风是什么?能听到,看到风吗?能用能想到的描述风的词语来描述风吗? 二、探究内容: (一)风向和风向标 1、出示风向图,简单介绍 简单介绍,风向是指风吹来的方向,可以用八个方位来描述风向。 2、你能通过风水动旗面的情况来辨别风向吗?简单练习。 小结:风向可以用风向标来测量,风向标的箭头指向的是风吹来的方向。 3、制作风向标,并测量风向 (1)出示自制风向标。介绍制作方法 (2)小组讨论:风向标的使用方法 (3)问:我们如何将风向结果添加到当天的天气日历上呢? (4)我们还可以用哪些方法确定方位和测量风向? (二)风速和风速等级 1、问:风向可以用风向标进行测量,那么风速也可以测量吗? 2、介绍科学家利用风速仪测量风速,熟悉“蒲福风力等级”表。我们制作小风旗来测量。 3、分组制作小风旗,研究使用方法 (三)实地观察 1、测量风向和风速 2、记录到天气日历中 教学反思:“风向和风力”一课室内外结合学习。我们的实验室楼就在大操场边,实验室就在底楼,这为我们的室外观察提供了方便。我带学生到气象站,明确方位,利用风向标看风向,到气象室观察风向风速仪,像科学家那样去观察;再带学生到操场,看国旗认风向和风力;用身体、用红领巾感受风向风力。学习用简化的风力等级描述风力。感受风向和风力的观测可以因地制宜,有不同的方法,

CO VI 风速风向检测器

2。4.5 CO/VI风速风向检测器 1 —般施工要求 1)CO/VI检测器 CO/VI检测器为隧道一氧化碳和能见度检测专用装置,安装于隧道边墙,用于采集隧道内一氧化碳和能见度基本数据,作为隧道通风和照明的控制依据。 (1)设备安装应选择具有数据代表性的区域和位置。 (2)设备安装于隧道边墙上,支架基础应坚实、平整,附着良好。 (3)安装高度应综合考虑安全、方便,防止人为及车辆损坏,便于施工、调试和维护。安装高度距离地面约3m. (4)发射端与反射端镜面等位支架安装距离为3m,并应保持同一高度,同轴度良好。 2)风速风向检测器 风速风向检测器设备为燧道内风速风向检测专用设备,检测探头安装在燧道边墙上,采集隧道内风速、风向基础数据,作为风机控制的依据. (1)设备安装应选择具有数据代表性的区域和位置。 (2)设备安装于隧道边墙上,支架基础应坚实、平整,附着良好。 (3)安装高度应综合考虑安全、方便,防止人为和车辆挂损,便于施工、调试和维护。安装高度距离路面约3m。 (4)应避开风机对设备的干扰,为便于布线与施工,可与CO/VI检测器共用预埋管道。 2设备材料和人员准备 设备材料主要包括CO/VI检测器、风速风向检测器、控制箱以及施工所需的相关辅材。 根据施工计划合理安排施工班组,施工人员应在现场负责人和技术人员的指导下依据规范及图纸进行施工。 3施工安装界面条件 (1)隧道土建施工基本完成,管道和洞室的预留预埋满足系统安装的相关界面要求。 (2)要求调试开通前设备的供电电源已到位,以满足设备的上电测试和参数设置的需求。 (3)要求调试开通前通信缆线敷设到位,通信链路已开通,以满足设备调试及与分中心联调的需求。 4施工安装程序

原创-一文读懂风向风速传感器(必须收藏)

原创-一文读懂风向风速传感器(必须收藏)

原创一文读懂风向风速传感器(必须收藏) 如何测量风速和风向,其实在古代很早就已经出现,著名的诸葛亮借东风火烧壁,就是因为有效的掌握了风向和风速方面的知识,从而取得了军事的重大胜利。 作为一种对天气测量的设备,用来测量风的方向在大小的的风速传感器和风向传感器在各行各业也得到了广泛的应用,下面我们就看看这两种设备。风向传感器风向传感器是以风向箭头的转动探测、感受外界的风向信息,并将其传递给同轴码盘,同时输出对应风向相关数值的一种物理装置。通常风向传感器主体都采用风向标的机械结构,当风吹向风向标的尾部的尾翼的时候,风向标的箭头就会指风吹过来的方向。为了保持对于方向的敏感性,同时还采用不同的内部机构来给风速传感器辨别方向。通常有以下三类:电磁式风向传感器:利用电磁原理设计,由于原理种类较多,所以结构与有所不同,目前部分此类传感器已经开始利用陀螺仪芯片或者电子罗盘作为基本元件,其测量精度得到了进一步的提高。光电式风向传感器:这种风向传感器采用绝对式格雷码盘作为基本元件,并且使用了特殊定制的编码编码,以光电信号转换原理,可以准确的输出相对应的风向信息。 电阻式风向传感器:这种风向传感器采用类似滑动变阻器的

结构,将产生的电阻值的最大值与最小值分别标成360°与0°,当风向标产生转动的时候,滑动变阻器的滑杆会随着顶部的风向标一起转动,而产生的不同的电压变化就可以计算出风向的角度或者方向了。风速传感器风速传感器是一种可以连续测量风速和风量(风量=风速x横截面积)大小的常见传感器。风速传感器大体上分为机械式(主要有螺旋桨式、风杯式)风速传感器、热风式风速传感器、皮托管风速传感器和基于声学原理的超声波风速传感器。螺旋桨式风速传感器工作原理我们知道电扇由电动机带动 风扇叶片旋转,在叶片前后产生一个压力差,推动气流流动。螺旋浆式风速计的工作原理恰好与此相反,对准气流的叶片系统受到风压的作用,产生一定的扭力矩使叶片系统旋转。通常螺旋桨式速传感器通过一组三叶或四叶螺旋桨绕水平 轴旋转来测量风速,螺旋桨一般装在一个风标的前部,使其旋转平面始终正对风的来向,它的转速正比于风速。风杯式风速传感器工作原理风杯式风速传感器,是一种十分常见的风速传感器,最早由英国鲁宾孙发明。感应部分是由三个或四个圆锥形或半球形的空杯组成。空心杯壳固定在互成120°的三叉星形支架上或互成90°的十字形支架上,杯的凹面顺着一个方向排列,整个横臂架则固定在一根垂直的旋转轴上。当风从左方吹来时,风杯1与风向平行,风对风杯1的压力在最直于风杯轴方向上的分力近似为零。风杯

风速风向检测

基于单片机的风速风向检测系统设计 时间:2011-03-01 16:46:08 来源:电源技术应用作者: 摘要:介绍了一种风速风向传感器原理,选用LPC921单片机设计了数据采集和数据传输的检测系统,给出了系统硬件电路图和软件流程图,分析了硬件设计和软件编程中的一些问题。 1 引言 风速风向测量是气象监测的重要组成部分, 测量风速风向对人类更好地研究及利用风能和改善生活生产有积极的影响。 本系统针对传感器的特点选用了LPC921 单片机,通过I/O 口输出高低电平,通过放大电路驱动继电器,控制传感器电源的开关。利用单片机的两个通用定时计数器, 对风速脉冲进行定时和计数, 通过计算单位时间内的脉冲数计算出风速。风向则是检测输入的风向格雷码, 将格雷码转换成二进制码, 通过查表的方式求出风向角度, 最终确定风向。最后设计RS485 通信协议,保证通信可靠性, 将风速风向数据送往上位机进行显示和发布。 2 传感器工作原理 本系统采用长春气象仪器研究所的EC9 -1 系列高收稿日期:2010-03-05动态性能测风传感器。EC9 - 1 系列传感器具有动态性能好、线性精度高、灵敏度高、测量范围宽、互换性好、抗风强度大等特点。 风速传感器的感应组件为三杯式风杯组件, 当风速大于0.4m/s 时就产生旋转, 信号变换电路为霍尔集成电路。在水平风力驱动下风杯组旋转, 通过主轴带动磁棒盘旋转, 其上的数十只小磁体形成若干个旋转的磁场, 通过霍尔磁敏元件感应出脉冲信号, 其频率随风速的增大而线性增加。 计算公式:V=0.1F。 V:风速,单位:m/s; F:脉冲频率,单位:Hz风向传感器的感应组件为前端装有辅助标板的单板式风向标。角度变换采用的是七位格雷码光电码盘。 当风向标随风旋转时, 通过主轴带动码盘旋转, 每转动2.8125°,位于码盘上下两侧的七组发光与接收光电器件就会产生一组新的七位并行格雷码,经过整形、倒相后输出。方位- 角度- 格雷码- 二进制码对照表是风向测量单片机编程的重要依据。传感器结构组成如图1 所示。

FM多点风速风向监测系统

https://www.doczj.com/doc/6f6425150.html,/ FM-D多点风速风向监测系统 FM-D多点风速风向监测系统简述: 多通道风速风向监测系统,由多通道风速风向监测记录仪、高性能的风速风向传感器、信息化的软件等组成,与计算机配合使用,外接多路风速风向传感器,用于观测记录不同位置的风速量,具有测试精度高、人机界面友好、人工干预少、交直流电共有等特点,使用方便,广泛适用于气象监测、风能资源考察、环保、生态、农林研究、高层建筑等诸多领域。 FM-D多点风速风向监测系统技术参数: .风速测量范围:0-30m 0-60m(可选) .测量精度:±3% .分辨率: 0.1m/s .启动风速:0.4-0.7m/s .测量通道:(1-32可选) .风向测量范围:0-360°全方位 16方位 .测量精度:±3% .分辨率: 0.1m/s .启动风速:0.4-0.7m/s .测量通道:(1-16路) .工作环境温度:-20~85℃(常用) .存储容量:30万 .有线通讯方式:RS232/RS485(可选) .无线通讯方式:GPRS(可选)

https://www.doczj.com/doc/6f6425150.html,/ .采集间隔:1分-24小时任意设定 .数据更新时间:10秒 .供电方式:220V 太阳能蓄电池(可选) FM-D多通道风速、风向记录仪监测系统可选传感器: 环境温度传感器、环境湿度传感器、降雨量传感器、大气压力传感器等。 FM-D多点风速风向监测系统突出性能: 多通通道风速、风向监测系统,具有实时显示各路风速风向数据功能,每隔10秒数据 自动更新一次,监测系统具有数据自动存储(存储时间可以设定),具有数据分析功能,连接 计算机随时可以把数据导出到电脑上,存储为EXCEL表格形式,与打印机相连自动打印存储数据,可供其它软件调用。 .采用汉字液晶数据显示,人机界面友好界面,具有设定参数掉电保护和风速风向历史数据掉电保护功能,性能稳定、可靠性高。通讯方式多样化,数据采集仪与计算机之间的通讯 方式有有线和GPRS无线通讯两种方式可供客户选择。该风速风向仪技术先进,测量精度高,数据存储容量大,传输距离远,可靠性高。 .系统采市电、太阳能、蓄电池双供电方式,在没有交流电现场由充电电池供电,同时可配接太阳能电池板对蓄电池充电,保证系统在无电地区常年稳定工作。 FM-D多点风速风向监测系统适用范围: 多通道风速、风向监测系统广泛应用在气象监测、建筑机械、铁路、港口、码头、电厂、索道、环境、温室、养殖、风能资源考察、环保、生态、农林研究、高层建筑等诸多领域。

风向风速仪传感器的故障原因分析

风向风速仪传感器的故障原因分析 风向风速记录仪是使用风向风速传感器而研发的,在运用过程中传感器可能会出现一些故障,以下是对风向风速仪传感器的故障原因分析: (1)风速传感器:转动不灵活、有卡滞;风速示值为0m/s;风速示值与电接风风速指示值比较有明显的偏差;起动风速明显偏高;低风速时正常,风速大时不正常或明显偏低。遇到以上情况的时候可以进行如此分析,带电测量风速传感器,若有故障,更换传感器;发现有卡滞现象,拆卸传感器进行维护清洗或更换传感器;风速示值为0m/s,检查电缆线和电源供电系统有无问题,用备份设备联机,转动风速轴,假如轴转灵活,无明显噪声,则说明风速传感器转动部分工作正常,检查示值有无数据,有数据则检查其它部分工作是否正常、无数据,则风速传感有故障,更换传感器;用万用表检测室外信号转接盒中FS与地之间有无频率变化,没有则传感器有故障;用风向风速校验仪检验风向传感器工作是否正常。 (2)风向传感器:风向标转动不灵活、有卡滞;风向示值为239°不变;风向示值为0°;风向示值与电接风风向指示值比较有明显的偏差;风向个别方位值不正确;风向标转动但风向示值不变等等。带电测量风向传感器,若有故障,更换传感器;发现有卡滞现象,更换传感器或拆卸传感器进行维护清洗;假如为239°不变,信号开路,检查接插件和电缆;风向示值为0°检查电缆线和电源供电系统;用备份设备联机,转动风向标,假如能转动使风向示值为239°,则说

明风向传感器工作正常,则检查其它部分工作是否正常;用备份设备联机,转动风向标,始终风向示值不出现239°,其它方位也常出现跳变显示,则说明风向传感器中有个别红外发光二级管有坏的,检查维修;用风向风速校验仪检验风向传感器工作是否正常。 通过以上方法对风向风速记录仪进行风向风速传感器的故障分析,通过故障剖析,采取最佳的方法来解除问题,保证风向风速仪在监测过程中能够做到时时准确的监测风向风速的变化。

温度和风速测量方法总结

第一章风速测量1.1风速测量 风是空气流动时产生的一种自然现象。空气流动有上下流动和左右流动,上下流动为垂直运动,也叫对流;左右流动为水平运动,也就是风。风是一个矢量,用风向和风速表示。地面风指离地平面10─12米高的风。风向指风吹来的方向,一般用16个方位或360°表示。以360°表示时,由北起按顺时针方向度量。风速指单位时间内空气的水平位移,常以米/秒、公里/小时、海里/小时表示。 1.2 风杯风速计 风杯风速计是最常见的一种风速计。转杯式风速计最早由英国鲁宾孙发明,当时是四杯,后来改用三杯。它由3个互成120°固定在支架上的抛物锥空杯组成感应部分,空杯的凹面都顺向一个方向。整个感应部分安装在一根垂直旋转轴上,在风力的作用下,风杯绕轴以正比于风速的转速旋转。转速可以用电触点、测速发电机或光电计数器等记录。 图1.1 风杯风速计 1.3 叶轮风速仪 风速计的叶轮式探头的工作原理是基于把转动转换成电信号,先经过一个临近感应开头,对叶轮的转动进行“计数” 并产生一个脉冲系列,再经检测仪转换处理,即可得到转速值。 法国KIKO叶轮风速仪工作原理如图1.2所示。叶轮的轴杆启动内含八个电磁极的原型磁铁,置于磁铁旁的双霍尔传感器感测到侧场中电磁极的转变信号。传感器的信号转换为电子频率且和风速成正比,并感测旋转方向。 图1.2 KIMO原理 1.4 热线风速计 一根被电流加热的金属丝,流动的空气使它散热,利用散热速率和风速的平方根成线性关系,再通过电子线路线性化(以便于刻度和读数),即可制成热线风速计。

金属丝通常用铂、铑、钨等熔点高、延展性好的金属制成。常用的丝直径为5μm,长为2 mm;最小的探头直径仅1μm,长为0.2 mm。根据不同的用途,热线探头还做成双丝、三丝、斜丝及V形、X形等。为了增加强度,有时用金属膜代替金属丝,通常在一热绝缘的基体上喷镀一层薄金属膜,称为热膜探头。热线探头在使用前必须进行校准。静态校准是在专门的标准风洞里进行的,测量流速与输出电压之间的关系并画成标准曲线;动态校准是在已知的脉动流场中进行的,或在风速仪加热电路中加上一脉动电信号,校验热线风速仪的频率响应,若频率响应不佳可用相应的补偿线路加以改善。 0至100m/s的流速测量范围可以分为三个区段:低速:0至5m/s;中速:5至40m/s;高速:40至100m/s。热线风速计用于0至5m/s的精确测量,使用温度约为±70℃。 当在湍流中使用热线风速计时,来自各个方向的气流同时冲击热元件,从而会影响到测量结果的准确性。在湍流中测量时,热敏式风速仪流速传感器的示值往往高于转轮式风速计。因此,风速仪测量过程应尽量在通道的直线部分进行。直线部分的起点应至少在测量点前10×D(D=管道直径,单位为CM)外;终点至少在测量点后4×D处。流体截面应不得有遮挡(棱角,重悬,物等)。 图1.3 热线风速计 1.4.1 恒流式热线风速计 通过热线的电流保持不变,温度变化时,热线电阻改变,因而两端电压变化,由此测量流速。利用风速探头进行测量。风速探头为一敏感部件。当有一恒定电流通过其加热线圈时,探头内的温度升高并于静止空气中达到一定值。此时,其内测量元件热电偶产生相应的热电势,并被传送到测量指示系统,此热电势与电路中产生的基准反电势相互抵消,使输出信号为零,风速仪指针也能相应指于零点或显示零值。若风速探头端部的热敏感部件暴露于外部空气流中时,由于进行热交换,此时将引起热电偶热电势变化,并与基准反电势比较后产生微弱差值信号,此信号被测量仪表系统放大并推动电表指针 变化从而指示当前风速或经过单片机处理后通过显示屏显示当前风速数值。 1.4.2 恒温式热线风速计 风速仪热线的温度保持不变,给风速敏感元件电流可调,在不同风速下使处于不同热平衡状态的风速敏感元件的工作温度基本维持不便,即阻值基本恒定,该敏感元件所消耗的功率为风速的函数。 恒温风速仪则是利用反馈电路使风速敏感元件的温度和电阻保持恒定。当风速变化时热敏感元件温度发生变化,电阻也随之变化,从而造成热敏感元件两端电压发生变化,此时反馈电路发挥作用,使流过热敏感元件的电流发生相应的变化,而使系统恢复平衡。

超声波风速风向仪设计

超声波风速风向仪设计 1.研究背景及意义 风速测量在工业生产和科学实验中都有广泛的应用,尤其在气象领域,风速测量更有着重要的价值。风速测量,常用的仪表有杯状风速计、翼状风速计、热敏风速计和超声波风速计。杯状风速计和翼状风速计使用方便,但其惰性和机械摩擦阻力较大,只适合于测定较大的风速。热敏风速计利用热敏探头,其工作原理是基于冷冲击气体带走热元件上的热量,借助一个调节开元器件保持温度恒定,此时调节电流和流速成正比。这种测量方法需要人为的干预,而且此仪表在湍流中使用时,来自各个方向的气流同时冲击热元件,会影响到测量结果的准确性。现阶段常采用基于超声波传播速度受风速影响因而增减原理制成的超声波风速仪表,与其它各类仪表相比较,其优势在于:安装简单,维护方便;不需要考虑机械磨损,精度较高;不需要人为的参与,可完全智能化。 2.国内外研究历史及发展状况 超声波可用于测量,是因为在超声波在传播过程中,会加载流体的流速信息,这些信息经过分离处理,便可以得到流体的流速。70年代中后期,大规模集成电路技术的飞速发展,高精度的时间测量成为一件轻而易举的事情,再加上高性能的、动作非常稳定的PLL(锁相环路)技术的应用,使得超声波流量计的稳定可靠性得到了初步的保证。同时为了消除声速变化对测量精度的影响,出现了频差法、锁相频差法等。该类方法测量周期短,响应速度快,而且几乎完全消除了声速对测量精度的影响。80年代,超声波测量出现了新的方法,比如射束位移法、多普勒法和相关噪声法等等。90年代才真正实现了高精度超声波气体流量计。 从国内、外超声波气体测量发展来看,国外机构开展这项工作的时间较早,到现在为止已经形成较为成熟的产品。当今世界,超声波流量计用于气体流量计的研究与开发方面,荷兰的工nstromet公司、英国的Dnaiel公司以及美国的Cnotrolotmo公司均做出了大量的工作并取得了较好的应用效果,其销售份额也排在前几位。日本在超声波气体流量计的设计方面也具有很大的优势,在消除管外传播时间、提高仪器精度和缩短响应时间方面有独到之处。我国的超声波流量

Walker2050 风速风向仪

EST . 1838 Proven Accuracy and Reliability Wind Speed and Direction System The Walker 2050 uses a Combined Anemometer Cup & Vane Direction Sensor, the P296. This gives high accuracy in a robust compact package! The Sensor connects directly to a standard Walker DIN 144 wind speed & direction indicator, the P249, which gives digital displays of relative wind speed & direction. Wind direction is also displayed on a simulated analogue display by 72 LEDs. True wind systems are available by using this sensor with the Walker P1066 True Wind Interface Unit.

Walker 2050 Mk2 Wind Speed & Direction System, using P296Combined Sensor Unit System Parameters Input voltage: 24v DC 40mA Wind Speed Measurement Range 0–100 knots Accuracy +/- 0.5 knots Resolution 0.1 knots Wind Direction measurement Range 0°– 359° Accuracy +/- 3°Resolution 0.1°Environmental Operating Temperature Sensor -35 °C to +70 °C Indicator 0 °C to +55 °C Storage Temperature Sensor -40 °C to +90 °C Humidity <5% to 100%Option: 2050 Mk2 Wind Speed & Direction True System, P1066 True Wind Specification System The sensor converts wind speed and direction into serial digital data. Data is displayed by the P249 Indicator in digital format and also in analogue for wind direction. The instrument interfaces in NMEA 0183/RS422 to other ship systems. Sentence – MWV Sensor Mounting by base flange. Sealed to IP65 (when correctly mounted)Weight: 0.92 Kg plus 3kg for 40 metre cable and connector assembly. Indicator Standard DIN 43700 case; 144 x 144 mm – depth 110mm Weight: 1.2 Kg Mounted by panel clips or drilled frame supplied. Connection by three cable glands to rear connection box.Cables: 4.5 to 7 mm dia.Controls:Illumination Lamp Test Select Units, Knots, Metres/Sec and Kilometres/Hour. Front panel splash proof when installed correctly. Indicator Type Approved to EMC European Directive IEC 60945 L I L L E Y &G I L L I E Directing International Shipping since 1812 Tel: +44(0)191 257 2217Fax: +44(0)191 257 1521 E-Mail: sales@https://www.doczj.com/doc/6f6425150.html, Web: https://www.doczj.com/doc/6f6425150.html,

风速风向仪操作说明书

风速风向仪操作说明书 风速风向仪是专为各种大型机械设备研制开发的大型智能风速传感报警设备,其内部采用了先进的微处理器作为控制,外围采用 了先进的数字通讯技术。系统稳定性高、抗干扰能力强,检测 高,风杯采用特殊材料制成,机械强度高、抗风能力强,显示器机 箱设计新颖独特,坚固耐用,安装使用方便。所有的电接口均符合 国际标准。 风速风向仪由风速风向监控仪表、风速传感器、风向传感器、连接 线缆组成,安装便捷且免调试。风速风向仪具有技术先进,测量精 度高,数据容量大,遥测距离远,人机界面友好,可靠性高的优点 ,广泛用于气象、海洋、环境、机场、港口、工农业及交通等领域 工作原理: 风速传感器的感应元件是三杯风组件,由三个碳纤维风杯和杯架组成。换器为多齿转杯和狭缝光耦。当风杯受水平风力作用而旋转 时,过轴转杯在狭缝光耦中的转动,输出频率的信号。 风向传感器的变换器为码盘和光电组件。当风标随风向变化而转动时,通过轴带动码盘在光电组件缝隙中的转动,产生的光电信号对 应当时风向的格雷码输出。传感器的变换器可采用精密导电塑料电 位器,从而在电位器活动端产生变化的电压信号输出。风速风向 仪 风速风向仪的组成: 风速风向仪风速测量部分采用了微机技术,可以同时测量瞬时风速 、瞬时风级平均风速、平均风级和对应浪高等参数。它带有数据锁 存功能,便于读数。风向部分采用了自动指北装置,测量时无需人 工对北,简化测量操作。本仪器为精密仪器,配备铝合金手提 仪器箱(外形:300*200*160),为仪器提供良好保护,同时便于携带。本仪器体积小,重量轻,功能全,可广泛用于农林、环保、海洋、科学考察等领域测量大气的风参数. 1、风向部分:由风向标、 风向度盘(磁罗盘)等组成,风向示值由风向指针在风向度盘上的

原创 一文读懂风向风速传感器(必须收藏)

原创一文读懂风向风速传感器(必须收藏) 如何测量风速和风向,其实在古代很早就已经出现,著名的诸葛亮借东风火烧壁,就是因为有效的掌握了风向和风速方面的知识,从而取得了军事的重大胜利。 作为一种对天气测量的设备,用来测量风的方向在大小的的风速传感器和风向传感器在各行各业也得到了广泛的应用,下面我们就看看这两种设备。风向传感器风向传感器是以风向箭头的转动探测、感受外界的风向信息,并将其传递给同轴码盘,同时输出对应风向相关数值的一种物理装置。通常风向传感器主体都采用风向标的机械结构,当风吹向风向标的尾部的尾翼的时候,风向标的箭头就会指风吹过来的方向。为了保持对于方向的敏感性,同时还采用不同的内部机构来给风速传感器辨别方向。通常有以下三类:电磁式风向传感器:利用电磁原理设计,由于原理种类较多,所以结构与有所不同,目前部分此类传感器已经开始利用陀螺仪芯片或者电子罗盘作为基本元件,其测量精度得到了进一步的提高。光电式风向传感器:这种风向传感器采用绝对式格雷码盘作为基本元件,并且使用了特殊定制的编码编码,以光电信号转换原理,可以准确的输出相对应的风向信息。 电阻式风向传感器:这种风向传感器采用类似滑动变阻器的

结构,将产生的电阻值的最大值与最小值分别标成360°与0°,当风向标产生转动的时候,滑动变阻器的滑杆会随着顶部的风向标一起转动,而产生的不同的电压变化就可以计算出风向的角度或者方向了。风速传感器风速传感器是一种可以连续测量风速和风量(风量=风速x横截面积)大小的常见传感器。风速传感器大体上分为机械式(主要有螺旋桨式、风杯式)风速传感器、热风式风速传感器、皮托管风速传感器和基于声学原理的超声波风速传感器。螺旋桨式风速传感器工作原理我们知道电扇由电动机带动 风扇叶片旋转,在叶片前后产生一个压力差,推动气流流动。螺旋浆式风速计的工作原理恰好与此相反,对准气流的叶片系统受到风压的作用,产生一定的扭力矩使叶片系统旋转。通常螺旋桨式速传感器通过一组三叶或四叶螺旋桨绕水平 轴旋转来测量风速,螺旋桨一般装在一个风标的前部,使其旋转平面始终正对风的来向,它的转速正比于风速。风杯式风速传感器工作原理风杯式风速传感器,是一种十分常见的风速传感器,最早由英国鲁宾孙发明。感应部分是由三个或四个圆锥形或半球形的空杯组成。空心杯壳固定在互成120°的三叉星形支架上或互成90°的十字形支架上,杯的凹面顺着一个方向排列,整个横臂架则固定在一根垂直的旋转轴上。当风从左方吹来时,风杯1与风向平行,风对风杯1的压力在最直于风杯轴方向上的分力近似为零。风杯

测量风速风向

仪器科学与电气工程学院 本科生科技学术实践“六个一”工程 调研报告 风速风向测量 ——“车载微型气象站”大创项目 学生姓名*** 班级** 学号**** 指导教师*** 学院********* 专业******

光电编码器测量风速风向 摘要: 由于气象事业已经和人们的民用和工业活动密不可分,在国防建设、社会进步、经济发展中,气象采集技术扮演着重要的角色,同时随着国家可持续发展战略的实施,气象采集技术对我们越来越重要;随着人们对气象信息需求的不断变化,传统的气象观测模式已经无法满足人们的需要,因此,自动气象数据采集技术在我国有了很好的发展;气象数据采集系统的物联性直接影响着数据实用性,从而,如何实现广泛地从全国各地以致世界各地采集数据信息并汇总,今后必然是极其有意义的一个研究方向。 本项目设计目的是研究物联网式、低成本、大范围地对各地风速风向数据进行采集。使用51单片机和光电编码器可以实现要求,故计划设计一套基于51单片机的光电编码器风速风向测量系统,以stc52芯片为核心,采用了模块化的设计思想,根据电路功能是的测量数据数字化,实现单片机对风速风向数据的接收、处理、校准等工作。同时在软件设计中采用了外部中断对接收信号进行计数和通过计时器进行定时数据处理的数据处理方法来精确定位计数脉冲经历的时间,对程序进行了整体优化。保证系统可实现风参数的精确测量、实时显示及与sd卡存储等功能。 关键词:风速风向;光电编码;单片机 一.调查方案与背景分析 1.调研主要内容、目标与方案(途径)简介 调研内容:(1)背景现状与发展前景,(2)测量方式,(3)工作原理(4)技术方案与技术指标,(5)优点和缺陷。 调研目标:(1)了解风速风向系统测量方法的设计原理和技术方案; (2)了解光电编码器的工作原理; (3)分析发现现有系统的优点以及存在的问题和缺陷。 调研方案:(1)网上搜寻关于风速风向的测量的研究现状; (2)咨询老师学长学姐; (3)与队友探讨原理和技术方案。 2. 研究背景与前景 转速是工程应用中非常广泛的一个参数,其测量方法较多。传统的转速测量方法主要采用直流测速机,其原理是由被测电机拖动测速发电机,再对测

相关主题
文本预览
相关文档 最新文档