当前位置:文档之家› 电磁学内容

电磁学内容

电磁学内容
电磁学内容

电磁学内容

第一章:静电场的基本规律

1、库仑定律、场叠加原理、电场强度的定义与理解

2、场强的计算:

1)点电荷的场强公式;电偶极子的场强(延长线、中垂线上一点)

2)利用积分方法求解:

a)均匀带电直线的场强(延长线、中垂线):作业:P39 1.3.7);趋于无限长均匀带电直线的场强;

b)均匀带电圆环轴线上一点的场强;均匀带电半圆环中心的场强;(作业:1.3.6)

c)均匀带电圆盘轴线上一点的场强,由此退出半径趋于无限大时,可看成无限大带电平面的场强分布,注意方向(书上19页例题1);进一步:一组平行放置的无限大带电平面空间的场强分布(作业:1.4.7)

3)利用高斯定理求场强分布

a) 电场线的性质;电场强度通量(电通量)的计算;

b) 高斯定理的内容与理解

c)高斯定理的应用(做高斯面:同心球面或同轴闭合圆柱面)

球形:均匀带电球面的场强分布(21页例2);

两个同心的均匀带电球面的场强分布;(作业1.6.5)

均匀带电球壳的场强分布;

均匀带电球体的场强分布(23页例3)自己推导。

圆柱形:无限长均匀带电圆柱面的场强分布;

两个同轴的无限长均匀带电圆柱面的场强分布(作业1.4.10);

无限长均匀带电圆柱体的场强分布(作业1.4.9)。

3、电势

1) 静电场力做功特点;静电场的环路定理;电势的定义;电势叠加原理; 电势差;移动点电荷所做的功(作业1.6.3)

2) 电势的计算

a) 点电荷的电势公式(31页1-41式);电偶极子的电势(中点、延长线上)

b) 均匀带电球面的电势分布(书32页例2);作业1.6.5

c) 上面能利用高斯定理求得场强分布的带电体的电势分布。

3)等势面的性质,以及电势与场强的关系。

第二章:有导体时的静电场

1、导体静电平衡条件;导体在静电平衡时的性质

2、导体静电平衡问题的讨论

1)50页例2;52页例5;53页例1,并会证明:相向的两个表面上,电荷面密度大小相等而符号相反,相背的两个表面上,电荷面密度大小相等且符号相同。54页例2.

2)作业:2.2.1;2.2.2;2.2.4

3、电容器及其电容

a) 孤立导体的电容(作业2.3.1);

b)几种电容器(平行板电容器、球形电容器、圆柱形电容器)

c) 电容器串、并联的特点;电容器所储存的静电能(作业:2.3.5;2.5.1)

第三章:静电场中的电介质

1、概念:电介质的极化(位移极化、取向极化)、电介质的分类、束缚电荷(极化电荷)、电偶极子(电偶极矩、偶极子在外场中所受的力矩,作业3.2.3)、极化强度(与场强的关系);均匀极化时极化强度与极化电荷面密度的关系。

2、有介质时的高斯定理

1)内容及其理解、各物理量之间的关系;

2)应用:103页例1、104页例2

3)作业:3.4.4;3.4.5

4)静电场方程(书107),由此说明静电场的性质(有源无旋场)。

第五章:恒定电流的磁场

1、毕奥萨法尔定律

1) 内容、公式

2) 应用:

a)长直载流导线的磁场:178页5.2.2——推广到无限长载流导线结果,以及空间有多个无限长载流导线时的磁场(要叠加,但要搞清楚每个方向)作业:5.2.5 b)圆形载流导线的磁场:179页5.2.3——由此推出圆心处的场强,任意圆弧中心

处的场强(作业:5.2.1;5.2.3;5.2.10);

c)载流螺线管内部的磁场;

2、磁场的高斯定理

1)磁场线性质、磁通量的计算(作业:5.3.1;5.3.2;5.3.3;5.4.4)

2)磁场高斯定理的内容与理解

3、磁场安培环路定理

1)内容与理解

2)应用:

a) 无限长载流圆柱导线的磁场分布(书187页5.4.2)

b) 同轴电缆的磁场分布(作业:5.4.1)

c)无限长载流螺线管的磁场;

d)载流螺绕环的磁场

4、带电粒子在磁场中的运动

1)分三种情况:平行进入磁场、垂直进入磁场、任意角度进入磁场的运动情况;2)概念:霍尔效应(用洛伦兹力解释)、霍尔电压、霍尔电场、霍尔系数

5、磁场对载流导线的作用

1)安培力公式:载流导线在非匀强磁场中的受力;作业5.6.1

2)载流线圈在磁场中的运动(作业:5.6.5;5.6.11)

线圈的磁矩;磁力矩;受磁力矩最大、最小的情况,此时通过线圈平面的磁通量是最大还是最小?

第六章:电磁感应

1、电磁感应现象、法拉第电磁感应定律内容、公式及其应用(作业:6.2.1;楞次定律;会判断有无感应电流产生及其方向。

2、动生电动势

1)动生电动势的非静电力是:洛伦兹力

2)计算:

a) 用动生电动势的公式计算(书229页例1、作业6.3.1)

b) 用法拉第电磁感应定律计算;

3、a) 概念感生电场、感生电场的电力线形状;感生电场的性质,与静电场(库

仑场)的区别。(书234-235页)

b) 考虑感生电场,可得到电场服从的方程组为:书236页6—17和6-18式。

4、a) 概念:自感现象、自感电动势、自感系数(影响因素);互感现象、互感系数(影响因素)

b)简单线圈的自感系数与互感系数的计算(作业:6.5.1, 6.6.2);

c)自感线圈的磁能公式(书271页6-78式)。

第七章:磁介质

1、概念:磁介质、磁介质的分类(分为顺磁质、抗磁质、铁磁质)、磁介质的磁化、磁化电流、传导电流、磁化强度;

2、有磁介质时的环路定理:

内容、公式及其理解、各物理量之间的关系(书287——288)

3、静磁场的方程组(书289-290)

公式,及由此其说明静磁场的性质(无源有旋场)

4、了解铁磁质的特性(磁化曲线、剩磁、磁滞现象、居里温度)、磁畴、铁磁质分类等。

第九章:电磁场和电磁波

1、概念:位移电流的实质、与传导电流比较;

2、知道麦克斯韦方程组的积分形式及其物理意义;

3、电磁波的实质及其性质。

除此,还有上课提到过的例题以及类型

大学物理力学电磁学公式总结

大学物理力学电磁学公式 总结 Newly compiled on November 23, 2020

力学 复习 质点力学 刚体力学 模型: 质点 刚体 运动方程 )(t r r = )(t θθ= 轨迹方程:消去运动方程中的参数t 速度:k v j v i v v dt r d v z y x ++===τ? 角速度:dt d θω= 加速度:k a j a i a n a a dt v d a z y x n ++=+== ??ττ 角加速度:22dt d dt d θωα== 匀加速直线运动 as v v at t v s at v v 2212 02200=-+ =+= 匀角加速转动 ) (221 02022000θθαωωαωθθαωω-=-+=-+=t t t 质点的惯性——质量m 刚体的惯性——转动惯量量J 平行轴定理 2md J J c += 垂直轴定理 y x z J J J += 几个常用的J 改变质点运动的原因:F 改变刚体转动的原因:F r M ?= 牛顿第二定律 a m dt p d F == 转动定理 αJ dt dL M == 质点动量 v m p = 角动量 ωJ L = 质点系统动量 c i i v m P )(∑= 动量定理 122 1 p p dt F p d dt F t t -==? 角动量定理 1221 L L Mdt t t -=? 动量守恒条件:所受合外力<<内力 角动量守恒条件:所受合外力矩<<内力矩 功:? ?= ?=2 1 r d F A r d F dA 功:? = =2 1 θθ Md A Md dA

(完整版)面对高考高中电磁学公式总结

高中电磁学公式总结 (一)直流电路 1、电流的定义: I = Q t (微观表示: I=nesv ,n 为单位体积内的电荷数) 2、电阻定律: R=ρ S L (电阻率ρ只与导体材料性质和温度有关,与导体横截面积和长度无关) 3、电阻串联、并联: 串联:R=R 1+R 2+R 3 +……+R n 并联: 11112R R R =+ 两个电阻并联: R=2121R R R R + 4、欧姆定律:(1)部分电路欧姆定律:I U R = U=IR R U I = (2)闭合电路欧姆定律:I =ε R r + 路端电压: U = ε -I r= IR 电源输出功率: P 出 = I ε-I 2r = I R 2 电源热功率: P I r r =2 电源效率: η=P P 出 总=U ε =R R+r (3)电功和电功率: 电功:W=IUt 电热:Q=I Rt 2 电功率 :P=IU 对于纯电阻电路: W=IUt=I Rt U R t 2 2 = P=IU =R I 2 对于非纯电阻电路: W=Iut >I Rt 2 P=IU >R I 2 (4)电池组的串联:每节电池电动势为ε0`内阻为r 0,n 节电池串联时:

电动势:ε=n ε0 内阻:r=n r o (二)电场 1、电场的力的性质: 电场强度:(定义式) E = q F (q 为试探电荷,场强的大小与q 无关) 点电荷电场的场强: E = 2 r kQ (注意场强的矢量性) 2、电场的能的性质: 电势差: U = q W (或 W = U q ) U AB = φA - φB 电场力做功与电势能变化的关系: U = - W 3、匀强电场中场强跟电势差的关系: E = d U (d 为沿场强方向的距离) 4、带电粒子在电场中的运动: ① 加速: Uq =2 1mv 2 ②偏转:运动分解: x= v o t ; v x = v o ; y =2 1a t 2 ; v y = a t a = m Eq (三)磁场 1、几种典型的磁场:通电直导线、通电螺线管、环形电流、地磁场的磁场分布。 2、 磁场对通电导线的作用(安培力):F = BIL (要求 B ⊥I , 力的方向由左手定则判定;若B ∥I ,则力的大小为零) 3、磁场对运动电荷的作用(洛仑兹力): F = qvB (要求v ⊥B, 力的方向也是由左手定则判定,但四指必须指向正电荷的运动方向;若B ∥v,则力的大小为零) 4、带电粒子在磁场中运动:当带电粒子垂直射入匀强磁场时,洛仑兹力提供 向心力,带电粒子做匀速圆周运动。即: qvB = R v m 2

大学物理”力学和电磁学“练习题(附答案)

部分力学和电磁学练习题(供参考) 一、选择题 1. 一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间, 圆盘的角速度ω (A) 增大. (B) 不变. (C) 减小. (D) 不能确定. [ C ] 2. 将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则 (A) F / q 0比P 点处原先的场强数值大. (B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值. (D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ A ] 3. 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于: (A) 06εq . (B) 0 12εq . (C) 024εq . (D) 0 48εq . [ C ] 4. 两块面积均为S 的金属平板A 和B 彼此平行放置,板间距离为d (d 远小于板 的线度),设A 板带有电荷q 1,B 板带有电荷q 2,则AB 两板间的电势差U AB 为 (A) d S q q 0212ε+. (B) d S q q 02 14ε+. (C) d S q q 021 2ε-. (D) d S q q 02 14ε-. [ C ] 5. 图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出: (A) E A >E B >E C ,U A >U B >U C . (B) E A <E B <E C ,U A <U B <U C . (C) E A >E B >E C ,U A <U B <U C . (D) E A <E B <E C ,U A >U B >U C . [ D ] 6. 均匀磁场的磁感强度B ? 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 (A) 2πr 2B . (B) πr 2B . (C) 0. (D) 无法确定的量. [ B ] 7. 如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上, 稳恒电流I 从a 端流入而从d 端流出,则磁感强度B ? 沿图中闭合路径L 的积 分??L l B ? ?d 等于 (A) I 0μ. (B) I 03 1 μ. (C) 4/0I μ. (D) 3/20I μ. [ D ] O M m m - P 0 A b c q d A S q 1q 2 C B A I I a b c d 120°

大学物理力学电磁学公式总结

力学复习 质点力学 刚体力学 模型: 质点 刚体 运动方程 )(t r r = )(t θθ= ?? ? ??===)()()(t z z t y y t x x 轨迹方程:消去运动方程中的参数t 速度:k v j v i v v dt r d v z y x ++===τ? 角速度:dt d θω= dt ds v v v v dt dz v dt dy v dt dx v z y x z y x =++==== 2 22,, 加速度:k a j a i a n a a dt v d a z y x n ++=+== ??ττ 角加速度:22dt d dt d θωα== 2 222222 ,,,n z y x n z z y y x x a a a a a a r r v a r dt dv a dt dv a dt dv a dt dv a += ++======== ττωα 匀加速直线运动 as v v at t v s at v v 2212 02200=-+ =+= 匀角加速转动 ) (221 02022000θθαωωαωθθαωω-=-+=-+=t t t 质点的惯性——质量m 刚体的惯性——转动惯量量J dm r J ?= 2 平行轴定理 2 md J J c += 垂直轴定理 y x z J J J += 几个常用的J 改变质点运动的原因:F 改变刚体转动的原因:F r M ?=

牛顿第二定律 a m dt p d F == 转动定理 αJ dt dL M == 质点动量 v m p = 角动量 ωJ L = 质点系统动量 c i i v m P )(∑= 动量定理 122 1 p p dt F p d dt F t t -==? 角动量定理 122 1 L L Mdt t t -=? 动量守恒条件:所受合外力<<内力 角动量守恒条件:所受合外力矩<<内力矩 功:? ?= ?=2 1 r d F A r d F dA 功:? = =2 1 θθ Md A Md dA 功率:v F N ?= 功率:ω ?=M N 动能定理:看课合力E E A -== 动能定理:看课合力矩E E A -== 动能: 221mv E k = 动能: 22 1 ωJ E k = 保守力的功 21p p p E E E A -=?-= 重力势能:mgh E p = 重力势能:c p mgh E = 弹性势能:22 1kx E p = 万有引力势能:r m m G E p 2 1-= 机械能守恒条件:只有保守内力做功 碰撞:动量守恒 碰撞:角动量守恒 碰撞定理:0 20112n n n n v v v v e --= (0≤e ≤1)

(完整版)高中电磁学公式

三、电磁学 (一)、直流电路 1、电流强度的定义: I = Q t (I=nesv ) 2、电阻定律:( 只与导体材料性质和温度有关,与导体横截面积和长度无关) 3、电阻串联、并联: 串联:R=R 1+R 2+R 3 +……+R n 并联: 111 12 R R R =+ 两个电阻并联: R= R R R R 1212 + 4、欧姆定律:(1)、部分电路欧姆定律:I U R = U=IR R U I = (2)、闭合电路欧姆定律:I = εR r + ε r 路端电压: U = ε -I r= IR R 输出功率: P 出 = I ε-I 2r = I R 2 电源热功率: P I r r =2 电源效率: η= P P 出总 = U ε =R R+r (5).电功和电功率: 电功:W=IUt 电热:Q=I Rt 2 电功率 :P=IU 对于纯电阻电路: W=IUt=I Rt U R t 2 2 = P=IU =( ) 对于非纯电阻电路: W=IUt >I Rt 2 P=IU >I r 2 (6) 电池组的串联每节电池电动势为ε0`内阻为r 0,n 节电池串联时 电动势:ε=n ε0 内阻:r=n r o (7)、伏安法测电阻: R U I =

(二)电场和磁场 1、库仑定律:2 21r Q Q k F =,其中,Q 1、Q 2表示两个点电荷的电量,r 表示它们间的距离,k 叫做 静电力常量,k=9.0×109Nm 2/C 2。 (适用条件:真空中两个静止点电荷) 2、电场强度: (1)定义是:q F E = F 为检验电荷在电场中某点所受电场力,q 为检验电荷。单位牛/库伦(N/C ),方向,与正电荷所受电场力方向相同。描述电场具有力的性质。 注意:E 与q 和F 均无关,只决定于电场本身的性质。 (适用条件:普遍适用) (2)点电荷场强公式:2 r Q k E = k 为静电力常量,k=9.0×109Nm 2/C 2,Q 为场源电荷(该电场就是由Q 激发的),r 为场点到Q 距离。 (适用条件:真空中静止点电荷) (1) 匀强电场中场强和电势差的关系式:d U E = (2) 其中,U 为匀强电场中两点间的电势差,d 为这两点在平行电场线方向上的距离。 3、电势差:q W U AB AB = AB W 为电荷q 在电场中从A 点移到B 点电场力所做的功。单位:伏特(V ),标量。数值与电势零点 的选取无关,与q 及AB W 均无关,描述电场具有能的性质。 4、电场力的功:AB AB qU W =

电磁学发展史简述

绪论 一、电磁学发展史简述 1概述 早期,由于磁现象曾被认为是与电现象独立无关的,同时也由于磁学本身的发展和应用,如近代磁性材料和磁学技术的发展,新的磁效应和磁现象的发现和应用等等,使得磁学的内容不断扩大,所以磁学在实际上也就作为一门和电学相平行的学科来研究了。 电磁学从原来互相独立的两门科学(电学、磁学)发展成为物理学中一个完整的分支学科,主要是基于两个重要的实验发现,即电流的磁效应和变化的磁场的电效应。这两个实验现象,加上麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术。 麦克斯韦电磁理论的重大意义,不仅在于这个理论支配着一切宏观电磁现象(包括静电、稳恒磁场、电磁感应、电路、电磁波等等),而且在于它将光学现象统一在这个理论框架之内,深刻地影响着人们认识物质世界的思想。

电子的发现,使电磁学和原子与物质结构的理论结合了起来,洛伦兹的电子论把物质的宏观电磁性质归结为原子中电子的效应,统一地解释了电、磁、光现象。 和电磁学密切相关的是经典电动力学,两者在内容上并没有原则的区别。一般说来,电磁学偏重于电磁现象的实验研究,从广泛的电磁现象研究中归纳出电磁学的基本规律;经典电动力学则偏重于理论方面,它以麦克斯韦方程组和洛伦兹力为基础,研究电磁场分布,电磁波的激发、辐射和传播,以及带电粒子与电磁场的相互作用等电磁问题,也可以说,广义的电磁学包含了经典电动力学。 2电学发展简史 “电”一词在西方是从希腊文琥珀一词转意而来的,在中国则是从雷闪现象中引出来的。自从18世纪中叶以来,对电的研究逐渐蓬勃开展。它的每项重大发现都引起广泛的实用研究,从而促进科学技术的飞速发展。 现今,无论人类生活、科学技术活动以及物质生产活动都已离不开电。随着科学技术的发展,某些带有专门知识的研究内容逐渐独立,形成专门的学科,如电子学、电工学等。电学又可称为电磁学,是物理学中颇具重要意义的基础学科。

大学物理-力学电磁学公式总结

大学物理-力学电磁学公式总结

力学复习 质 点力学 刚体力学 模型: 质点 刚体 运 动 方 程 ) (t r r )(t )()()(t z z t y y t x x 轨迹方程:消去运动方程中的参数t 速度: k v j v i v v dt r d v z y x ? 角 速度:dt d dt ds v v v v dt dz v dt dy v dt dx v z y x z y x 2 22,, 加速度: k a j a i a n a a dt v d a z y x n ?? 角加速度: 2 2dt d dt d

2 22222 2 ,,,n z y x n z z y y x x a a a a a a r r v a r dt dv a dt dv a dt dv a dt dv a 匀加速直线运动 as v v at t v s at v v 2212 022 00 匀 角加速转动 ) (22 102022 00 t t t 质 点 的 惯性— — 质 量 m 刚体的惯性——转动惯量量J dm r J 2 平行轴定理 2 md J J c 垂直轴定理 y x z J J J 几个常用的J 改变质点运 动的原因 : F 改变刚体转动的原因:F r M 牛 顿 第二定 律 a m dt p d F

转动定理 J dt dL M 质 点 动量 v m p 角动量 J L 质点系统动量 c i i v m P )( 动量定理 1 22 1 p p dt F p d dt F t t 角动量定理 1 2 21 L L Mdt t t 动量守恒条件:所受合外力<<内力 角动量守恒条件:所受合外力矩<<内力矩 功: 21 r d F A r d F dA 功: 21 Md A Md dA 功 率:v F N 功率: M N 动能定 理: 看 课合力E E A 动能定理:看 课合力矩 E E A 动 能 : 22 1mv E k 动能: 22 1 J E k 保守力的功 2 1p p p E E E A 重 力 势 能 :mgh E p 重力势能:c p mgh E 弹性势能:22 1kx E p

计算电磁学入门基础介绍

计算电磁学入门基础介绍 一. 计算电磁学的重要性 在现代科学研究中,“科学试验,理论分析,高性能计算”已经成为三种重要的研究手段。在电磁学领域中,经典电磁理论只能在11 种可分离变量坐标系中求解麦克斯韦方程组或者其退化形式,最后得到解析解。解析解的优点在于: ①可将解答表示为己知函数的显式,从而可计算出精确的数值结果; ②可以作为近似解和数值解的检验标准; ③在解析过程中和在解的显式中可以观察到问题的内在联系和各个参数对数值结果所起的作用。 这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。当遇到不规则形状或者任意形状边界问题时,则需要比较复杂的数学技巧,甚至无法求得解析解。20 世纪60 年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法也迅速发展起来,并在实际工程问题中得到了广泛地应用,形成了计算电磁学研究领域,已经成为现代电磁理论研究的主流。简而言之,计算电磁学是在电磁场与微波技术学科中发展起来的,建立在电磁场理论基础上,以高性能计算机技术为工具,运用计算数学方法,专门解决复杂电磁场与微波工程问题的应用科学。相对于经典电磁理论分析而言,应用计算电磁学来解决电磁学问题时受边界约束大为减少,可以解决各种类型的复杂问题。原则上来讲,从直流到光的宽广频率范围都属于该学科的研究范围。近几年来,电磁场工程在以电磁能量或信息的传输、转换过程为核心的强电与弱电领域中显示了重要作用。 二. 电磁问题的分析过程 电磁工程问题分析时所经历的一般过程为: 三. 计算电磁学的分类 (1) 时域方法与谱域方法 电磁学的数值计算方法可以分为时域方法(Time Domain或TD)和频域方法(Frequeney Domain或FD)两大类。 时域方法对Maxwell方程按时间步进后求解有关场量。最著名的时域方法是时域有限差分法(Finite Difference Time Domain或FDTD)。这种方法通常适用于求解在外界激励下场

大学物理 力学电磁学公式总结

质点力学 模型: 质点 运动方程 F = F(t) x = x(t) * y = y(t) z =z(t) 轨迹方程:消去运动方程中的参数 t ;2丄2丄2 dS v = v x v y v z ' dt dv x dv y dv z a x ,a y _ ,a z dt dt dt dv 2 v 2 a 二 --- ,a n 二 r I dt r a = a ; a : a ; pa ; +a ; --o ' .s t 1 2 匀角加速转动 - = o t t 2 J 二 r 2dm 2 平行轴定理 J c md 垂直轴定理 J z = J x J y 几个常用的J 改变刚体转动的原因: M 二r F 力学复习 刚体力学 刚体 v -珂t) 速度: dr dt =v ? = v x i v y j v z k 角速度:,=— dt dx dt ,V _dy dt' dz dt 加速度: —v = a ? a n i? dt = a x i a y j a z k 角加速度:-牛 d 2 二 dt 2 匀加速直线运动 v 二 v ° at s = v 0t - at 2 2 2 2 v -v 0 =2as 质点的惯性一一质量 m 刚体的惯性一一转动惯量量 J 改变质点运动的原因: F

n0 n0 牛顿第二定律 F =业=ma dt 质点动量 P 二mv 质点系统动量 P = (a m i )v c i 一 _ t ? 一 - - 动量定理 Fdt = dp [ Fdt = $ - P J 吃1 动量守恒条件:所受合外力 << 内力 转动定理 M = — = J-; dt 角动量 = J t 2 角动量定理 J Mdt = L 2 - L , t 1 角动量守恒条件:所受合外力矩 << 内力矩 机械能守恒条件: 只有保守内力做功 碰撞:角动量守恒 功率:N =F v 功率:N =M 动能定理: A 合力==E 课一E 看 动能定理: A 合力矩==E 课 动能: 1 2 E k mv 动能: E k 二丄 J 2 2 2 保守力的功 「?井厶/ A = - E p = E pi _ E p2 E p =mgh : 重力势能: E p =mgh 重力势能: -E 看 2 Md ,A=i Md 「 弹性势能: E p 万有引力势能: E p m 1m 2 - - 2 - - 功:dA = F dr A= pF dr 功:dA = 碰撞:动量守恒

电磁学公式大全

电磁学公式(集锦,不完整):注意所有物理量的单位、矢量性和物理意义! 注意所有公式使用条件!(钦波拜托你了~~最好每个物理量都说一下) 一、电场 库仑定律:■F=kQ1Q2/r2 电场强度:■E=F/q(定义式) ■E=kQ/r2 ■E=U/d 电容:■C=Q/U(定义式) ■C=εS/4πkd 电势(能)■W AB=qU AB(E=qU) ■U AB=φA-φB ■电子偏转 ■电容器 辅助工具: 1.运动学公式: s=v0t+at2/2 v t=v0+at v t2-v02=2as 2.受力分析!! 二、恒定电流 闭合电路欧姆定律:I=E/(R+r) 路端电压:U=E-Ir 电阻串联:R=R1+R2+R3+….Rn 电阻并联:1/R=1/R1+1/R2+…..1/Rn 功率:P=UI=I2R=U2/R=W/t 做功(发热)Q=W=Pt=UIt=I2Rt=U2 t /R 电流(定义)I=Q/t(Q是通过的电荷量,可理解为I=q/t) ■一般做法:计算前先用额定值计算电阻(E.g.灯泡“220V,30A”) ■电路化简 ■改装电表三、磁场 磁感应强度(定义式)B=F/IL(注意垂直性) 磁通量Φ=BSsinθ(注意θ是哪个角??) 安培力F=BIl sinθ(注意θ是哪个角??) 洛伦兹力F=qvB ■左手定则 ■安培定则(右手螺旋定则) ■质谱仪 ■回旋加速器 ■电磁流量计 辅助工具: 匀速圆周运动: F=mv2/r=mrw2 v=rw T=2π/w=1/f 四、电磁感应 法拉第电磁感应定律E=nΔφ/Δt (注意Δφ) 楞次定律:阻碍!!!!! 动生电动势:E=Blvcosθ(注意θ是哪个角??注意方向的变化) ■右手定则 ■(反电动势) 辅助工具: 恒定电流一章 闭合电路欧姆定律:I=E/(R+r)!!!! 还是受力分析!!!!! 记得分段考虑!!!! (自由落体---进入磁场----出磁场)等 五、交变电流 电压:e=NBSwsin(wt+φ)=E m sin(wt+φ) 电流:i=e/(R+r)= (NBSw/(R+r))sin(wt+φ) =I m sin(wt+φ) 有效值:I=0.707Im, E=0.707Em 变压器:U1:U2=n1:n2=I2:I1(P1=P2+P3+…)!!!!!!

《电磁学》教学大纲解析

《电磁学》教学大纲 英文名称:electromagnetics 授课专业:物理学学时:72学分:4 开课学期:二年级上学期 适用对象:物理学专业 一、课程性质与任务 电磁学是物理学专业的一门专业基础课。电磁学已渗透到物理学的各个领域,成为研究物质过程必不可少的基础。通过本门课程的教学,要求:使学生能全面地认识和理解电磁运动的基本现象和基本概念,系统地掌握电磁运动的基本规律,具有一定的分析和解决电磁学问题的能力,并为学习后继课程打下必要的基础。通过对电磁学发展史上某些重大的发现和发明的介绍,使学生了解物理学思想和实验方法,培养学生的辩证唯物主义世界观,使学生获得科学方法论上的教益。 二、课程教学的基本要求 1 、正确理解以下基本概念和术语: 基本粒子、静电场、库仑力、电场强度、电通量、电位、电位差、电功、静电平衡、静电屏蔽、电容、加速器、静电能、极化强度、电位移向量、电流密度、超导、电功率、经典金属电子论、电动势、非静电力、温差电动势、静磁场、磁感应强度、安培力、磁通量、磁矩、电磁感应、感生电场、自感、互感、涡电流、趋肤效应、磁能、磁化强度、磁化电流、磁场强度、顺磁性、抗磁性、铁磁性、磁畴、铁磁屏蔽、位移电流、电磁场、能流密度、电磁波谱。 2 、掌握以下基本规律及分析计算方法 (1)静电场基本定律和定理:库仑定律、电荷守恒定律、高斯定理、环路积分定理、叠加原理。 (2)稳恒电流和电路:欧姆定律、焦耳定律、基尔霍夫定律(节点方程、回路电压方程)

(3)稳恒磁场的基本定律和定理:毕——伐定律,安培定律、高斯定理、环路积分定理。 (4)交变电磁场的基本定律和定理:楞次定律、法拉第电磁感应定律、麦克斯韦方程组。 (5)掌握以下物理量的分析计算方法:电场强度、电位、电位差、电通量、电容、磁感应强度、磁通量、安培力、磁矩、电动势、电磁能量等。 3 、注意培养学生以下几方面能力 (1)分析电磁运动规律及物理实验构思方法,重视对实验现象的总结,培养科学分析问题的能力。 (2)积极思考并总结研究方法、实验技能,培养创新意识。 (3)灵活有效应用高等数学知识,解决物理问题,进一步提高科学知识、科学方法、科学态度和科学精神等科学素质。 三、课程教学内容 第一章静电场的基本规律(12课时) 第二章有导体时的静电场(8课时) 第三章静电场中的电介质(8课时) 第四章恒定电流和电路(8课时) 第五章恒定电流的磁场(12课时) 第六章电磁感应与暂态过程(12课时) 第七章磁介质 (8课时) 第九章时变电磁场和电磁波(4课时) 四、教学重点、难点 静电场的高斯定理,静电场的环路定理,电位,静电平衡时导体的性质,用电力线工具讨论静电平衡的若干电现象,电介质存在时场的讨论方法及场强计算,电介质存在时高斯定理的应用,电动势的物理意义及数学表示方法,基尔霍夫方程组求解电路,磁感应强度矢量的概念,毕奥—萨伐尔定律,磁场的

大学物理电磁学公式总结

静电场小结 一、库仑定律 二、电场强度 三、场强迭加原理 点电荷场强 点电荷系场强 连续带电体场强 四、静电场高斯定理 五、几种典型电荷分布的电场强度 均匀带电球面 均匀带电球体 均匀带电长直圆柱面 均匀带电长直圆柱 体 无限大均匀带电平面 六、静电场的环流定理 七、电势 八、电势迭加原理 点电荷电势 点电荷系电势 连续带电体电势 九、几种典型电场的电势 均匀带电球面 均匀带电直线 十、导体静电平衡条件 (1) 导体内电场强度为零 ;导体表面附近场强与表面垂直 。 (2) 导体是一个等势体,表面是一个等势面。推论一电荷只分布于导体表面 推论二导体表面附近场强与表面电荷密度关系 十一、静电屏蔽 导体空腔能屏蔽空腔内、外电荷的相互影

响。即空腔外(包括外表面)的电荷在空腔内的场强为零,空腔内(包括内表面)的电荷在空腔外的场强为零。 十二、电容器的电容 平行板电容器 圆柱形电容器 球形电容器 孤立导体球 十三、电容器的联接 并联电容器 串联电容器 十四、电场的能量 电容器的能量 电场的能量密度 电场的能量 稳恒电流磁场小结 一、磁场 运动电荷的磁场 毕奥——萨伐尔定律 二、磁场高斯定理 三、安培环路定理 四、几种典型磁场 有限长载流直导线的磁场 无限长载流直导线的磁场 圆电流轴线上的磁场 圆电流中心的磁场 长直载流螺线管内的磁场 载流密绕螺绕环内的磁场 五、载流平面线圈的磁矩 m和S沿电流的右手螺旋方向六、洛伦兹力 七、安培力公式 八、载流平面线圈在均匀磁场中受到的合磁力 载流平面线圈在均匀磁场中受到的磁力矩 电磁感应小结 一、电动势 非静电性场强

电源电动势 一段电路的电动势 闭合电路的电动势 当 时,电动势沿电路(或回路)l 的正方向, 时沿反方向。 二、电磁感应的实验定律 1、楞次定律:闭合回路中感生电流的方向是使它产生的磁通量反抗引起电磁感应的磁通量变化。楞次定律是能量守恒定律在电磁感应中的表现。 2、法拉第电磁感应定律:当闭合回路l中的磁通量变化时,在回路中的 感应电动势为 若时,电动势 沿回路l 的正方向,时,沿反方向。对线图,为全磁通。 3、感应电流 感应电量 三、电动势的理论解释 1、动生电动势在磁场中运动的导线l以洛伦兹力为非电静力而成为一电源,导线上的 动生电动势 若,电动 势沿导线l 的正方向,若,沿反方向。动生电动势的大小为导线单位时间扫过的磁通量,动生电动势的方向可由正载流子受洛伦兹力的方向决定。直导线在均匀磁场的 垂面以磁场为轴转动。平面线 圈绕磁场的垂轴转动。 2、感生电动势变化磁场要在周围空间激发一个非静电性的有旋电场E,使在磁场中的导线l成为一电源,导线上的感生电动 势 有旋电场的环流 有旋电场绕磁场的变化率左旋。圆柱域匀磁场激发的有旋电 场 射光互相垂直,

力学电磁学内容总结材料

力 学 (共五章) --------------------------------------- 第一章 质点运动学 一 质点运动的描述 (在笛卡尔坐标系中) 1 位置和位移 * 位置矢量: k j i r z y x ++= * 运动方程: ()()()()k j i r r t z t y t x t ++== 分量形式: ()()()t z z t y y t x x ===,, * 位移: 12r r r -=? 分量形式: 1 21212z z z y y y x x x -=?-=?-=? 2 速度 * 平均速度: t ??=r v

* 速度: dt d r v = 分量形式: dt dz v dt dy v dt dx v z y x ===, , * 位移公式: dt t ? = -0 v r r 0 3 加速度 * 平均加速度: t ??= v a * 加速度: 2 2 dt d dt d r v a == 分量形式: 2 2 22 22 , , dt z d dt dv a dt y d dt dv a dt x d dt dv a z z y y x x = ===== * 速度公式: ?=-t dt 0a v v 4 匀加速运动公式: t a v v +=0

2 002 1t t a v r r ++= 二 切向加速度和法向加速度 (在自然坐标系中,以运动方向为正方向) 1 路程(运动方程): )(t s s = 2 速率: dt ds v = (方向沿轨道切 向并指向前进一侧) 3 加速度: * 切向加速度: dt dv a = t (方 向沿轨道切向) * 法向加速度: R v a 2 n = (方向指向轨道曲率中心) * 加速度: 大小: 2 n 2t a a a += 方向:加速度与速度的夹角满足

大学物理电磁学公式总结

静电场小结 均匀带电长直圆柱面 均匀带电球体 四、静电场高斯定理 点电荷电势 点电荷系电势 连续带电体电势 九、几种典型电场的电势 、库仑定律 、电场强度 三、场强迭加原理 点电荷场强 六、静电场的环流定理 连续带电体场强 '丄一:「 八、电势迭加原理 均匀带电球面 五、几种典型电荷分布的电场强度 1 r>R 1 均匀带电球面

均匀带电长直圆柱面 均匀带电球体 均匀带电球面 均 匀 带 电 长 直 圆 柱 体 无限大均匀带电平面 六、 静电场的环流定理 七、 电势 八、 电势迭加原理 点电荷电势 点电荷系电势 连续带电体电势 九、 几种典型电场的电势 一、 库仑定律 二、 电场强度 三、 场强迭加原理 点电荷场强 点 电 荷 系 强 连续带电体场强 四、 静电场高斯定理 五、 几种典型电荷分布的电场强度 均匀带电球面

均匀带电长直圆柱面 均匀带电球体 均匀带电球面 均 匀 带 电 长 直 圆 柱 体 无限大均匀带电平面 六、 静电场的环流定理 七、 电势 八、 电势迭加原理 点电荷电势 点电荷系电势 连续带电体电势 九、 几种典型电场的电势 一、 库仑定律 二、 电场强度 三、 场强迭加原理 点电荷场强 点 电 荷 系 强 连续带电体场强 四、 静电场高斯定理 五、 几种典型电荷分布的电场强度 均匀带电球面

均匀带电长直圆柱面 均匀带电球体 均匀带电球面 均 匀 带 电 长 直 圆 柱 体 无限大均匀带电平面 六、 静电场的环流定理 七、 电势 八、 电势迭加原理 点电荷电势 点电荷系电势 连续带电体电势 九、 几种典型电场的电势 一、 库仑定律 二、 电场强度 三、 场强迭加原理 点电荷场强 点 电 荷 系 强 连续带电体场强 四、 静电场高斯定理 五、 几种典型电荷分布的电场强度 均匀带电球面

电磁学课程教学大纲

电磁学课程教学大纲 一、课程说明 (一)课程名称:电磁学 所属专业:物理 课程性质:物理学 学分:4分 (二)课程简介、目标与任务 电磁学课程是一切自然科学的重要基础课之一。电磁学所涉及的现象和规律贯穿 于一切自然科学的研究领域之中,学好电磁学是学好其它自然学科的基本保证。 本课程所讲授的内容为基本电磁现象的实验定律和相关的导出定理以及它们在相 应领域和电路理论中的应用。力求通过对于它们的研究,深刻认识电磁现象的基本性质, 掌握电磁学的基本理论和应用知识,学会电磁学研究和处理问题方法。课程还适时地将 电磁学的理论与其它学科及有关自然现象相联系,以期获得对于电磁学理论较为全面的 理解。通过本课程的学习应使学生在提高科学素养,建立科学的世界观,培养严密的思 维能力,熟练应用数学工具等诸方面获得全面的进步。 本课程针对我校物理学院近年来学生的平均水平编写教材。物理学院为理科学生培 养基地,设有“基地”和“普通”教学班,教材的编写考虑了两部分学生的需求。体现 在:教学大纲中带有“*”号的内容,作为提高课题对基地班讲授。对于普通班,相应 的时间用于习题课,讲解习题中的问题和补充例题。对于大纲中未打“*”号内容的讲 解深度,教师可视两部分学生的实际情况有所区别。整个课程总学时72,基本上每小节 两学时。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接 本课程以高等数学和部分力学知识为基础,为后继的基础课程和专业课程有关的知识做准备。 (四)教材与主要参考书 教材:《电磁学》第三版,赵凯华、陈熙谋著 主要参考书: 1.《费曼物理学讲义》费曼著 2.《磁性物理学》宛德福马兴隆著

电磁学公式总结

大学物理电磁学公式总结 ?第一章(静止电荷的电场) 1.电荷的基本性质:两种电荷,量子性,电荷守恒,相对论不变性。 2.库仑定律:两个静止的点电荷之间的作用力 F =kq1q2 e r= r2 3.电力叠加原理:F=ΣF i , q0为静止电荷 4.电场强度:E=F q0 5.场强叠加原理:E=ΣE i 用叠加法求电荷系的静电场: E=(离散型) E=(连续型) 6.电通量:Φe= 7.高斯定律:=Σq int 8.典型静电场: 1)均匀带电球面:E=0 (球面内) E=(球面外) 2)均匀带电球体:E==(球体内) E=(球体外)

3) 均匀带电无限长直线: E= ,方向垂直于带电直线 4) 均匀带电无限大平面: E=,方向垂直于带电平面 9. 电偶极子在电场中受到的力矩: M=p×E ? 第三章(电势) 1. 静电场是保守场: =0 2. 电势差:φ1 –φ2= 电势:φp =∫E 鈥r (p0)(p) (P0是电势零点) 电势叠加原理:φ=Σφi 3. 点电荷的电势:φ= 电荷连续分布的带电体的电势:φ= 4. 电场强度E 与电势φ的关系的微分形式: E=-gradφ=-▽φ=-(i +j +k ) 电场线处处与等势面垂直,并指向电势降低的方向;电场线密处等势面间距小。 5. 电荷在外电场中的电势能:W=q φ 移动电荷时电场力做的功:A 12=q(φ1 –φ2)=W 1-W 2 电偶极子在外电场中的电势能:W=-p?E

?第四章(静电场中的导体) 1.导体的静电平衡条件:E int=0,表面外紧邻处Es⊥表面或导体是个等势体。 2.静电平衡的导体上电荷的分布: Q int=0,σ=ε0E 3.计算有导体存在时的静电场分布问题的基本依据: 高斯定律,电势概念,电荷守恒,导体经典平衡条件。 4.静电屏蔽:金属空壳的外表面上及壳外的电荷在壳内的合场强总为零,因而对壳内无影响。?第五章(静电场中的电介质) 1.电介质分子的电距:极性分子有固有电距,非极性分子在外电场中产生感生电距。 2.电介质的极化:在外电场中固有电距的取向或感生电距的产生使电介质的表面(或 内部)出现束缚电荷。 电极化强度:对各向同性的电介质,在电场不太强的情况下 P=ε0(εr-1)E=ε0X E 面束缚电荷密度:σ’=P?e n 3.电位移:D=ε0E+P 对各向同性电介质:D=ε0εr E=εE D的高斯定律:=q0int 4.电容器的电容:C=Q U

电磁学公式总结

大学物理电磁学公式总结 第一章(静止电荷的电场) 1.电荷的基本性质:两种电荷,量子性,电荷守恒,相对论不变性。 2.库仑定律:两个静止的点电荷之间的作用力 F == 3.电力叠加原理:F=ΣF i 4.电场强度:E=, q0为静止电荷 5.场强叠加原理:E=ΣE i 用叠加法求电荷系的静电场: E=(离散型) E=(连续型) 6.电通量:Φe= 7.高斯定律:=Σq int 8.典型静电场: 1)均匀带电球面:E=0 (球面内) E=(球面外) 2)均匀带电球体:E==(球体内) E=(球体外)

3)均匀带电无限长直线:E=,方向垂直于带电直线 4)均匀带电无限大平面:E=,方向垂直于带电平面 9.电偶极子在电场中受到的力矩:M=p×E 第三章(电势) 1.静电场是保守场:=0 2.电势差:φ1–φ2= 电势:φp=(P0是电势零点) 电势叠加原理:φ=Σφi 3.点电荷的电势:φ= 电荷连续分布的带电体的电势:φ= 4.电场强度E与电势φ的关系的微分形式: E=-gradφ=-▽φ=-(i+j+k) 电场线处处与等势面垂直,并指向电势降低的方向;电场线密处等势面间距小。 5.电荷在外电场中的电势能:W=qφ 移动电荷时电场力做的功:A12=q(φ1–φ2)=W1-W2 电偶极子在外电场中的电势能:W=-p?E

第四章(静电场中的导体) 1.导体的静电平衡条件:E int=0,表面外紧邻处Es⊥表面或导体是个等势体。 2.静电平衡的导体上电荷的分布: Q int=0,σ=ε0E 3.计算有导体存在时的静电场分布问题的基本依据: 高斯定律,电势概念,电荷守恒,导体经典平衡条件。 4.静电屏蔽:金属空壳的外表面上及壳外的电荷在壳内的合场强总为零,因而对壳内无影响。第五章(静电场中的电介质) 1.电介质分子的电距:极性分子有固有电距,非极性分子在外电场中产生感生电距。 2.电介质的极化:在外电场中固有电距的取向或感生电距的产生使电介质的表面(或 内部)出现束缚电荷。 电极化强度:对各向同性的电介质,在电场不太强的情况下 P=ε0(εr-1)E=ε0X E 面束缚电荷密度:σ’=P?e n 3.电位移:D=ε0E+P 对各向同性电介质:D=ε0εr E=εE D的高斯定律:=q0int 4.电容器的电容:C=

电磁学课程培训总结和心得

电磁学课程培训总结和心得 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 通过这一段时间网络课程的培训,使我受益匪浅,收获颇丰。真切的感受到自己对电磁学教学认识上的还存在一些盲点和误区,有待于在今后的教学过程中进一步的改进和加强,使自己的教学内容更加完整化和体系化,进而提高自己的教学水平,使自己不仅能成为受学生爱戴的老师,而且让自己成为一名博学的老师。本次培训课分为三部分内容必修内容、选修内容和参与活动,现把我这几天网络培训的心得和体会以培训内容为基础总结如下: 第一,赵凯华老师从九个方面对电磁学的课程内容和知识结构作了讲解,通过赵老师的讲解使我对电磁学的知识结构和内容有了一个重新的认识。以前在我的认识当中,电磁学内容就包括真

空中的电场和磁场,介质中的静电场和磁场以及电磁感应和电磁波这三方面的内容,而对于电路部分属于电动力学的内容,通过这次听赵老师的课让我明白了电磁学应该包括场和路两部分内容,在讲课时针对于不同专业的学生所讲述内容的侧重点不同,这对我今后教学起到了很重要的指导作用。另外赵老师在从九个方面去阐述电磁学课程内容的时候,还讲述了如何去把握每部分内容的侧重点的,如何去把握我们教学内容的基本要求,如何做才使学生在认识问题上得到更深的理解,如何使学生在学习过程中提高自己的素质等等问题,在听赵老师细致入微、深入浅出的讲解,使我看到了自己的缺点和不足,自己在教学过程中没有给学生一个关于电磁学的整体认识,使得学生在学习电磁学的过程中感觉比较困难,知识点比较零碎。有些问题的讲解也引起了我的一些共鸣,解决了我这几年教学过程中一直困惑的问题。总之通过本次培训,不仅让

电磁学原理及其应用

电磁学原理及其应用 摘要:本文简介了电磁学的发展史,通过阐述磁悬浮技术,微波炉,磁卡技术中的电磁学原理,进一步探讨其中的科学方法及给我们带来的启示,揭示电磁学在生产生活中的重要性。关键字:电磁波微波排斥吸引 电磁现象是一种极为普遍的自然现象,人类对电磁现象的认识、研究以至利用,经历了 相当长的时期。在春秋战国时期,我国人民已对天然磁石(Fe 3O 4 )有了认识,战国时期《韩 非子》中有“司南”和《吕氏春秋》中有“慈石召铁”的记载。对电磁的近代研究应该从18 世纪的库伦(C.A.de Coulomb)开始,建立了库仑定量定律,标志着电 磁学进入了严密科学的阶段。1820年,奥斯特发现的电流磁效应,揭示 了电现象和磁现象之间的联系。安培则根据当时的一系列实验,提出磁 现象的本质是电流,物质的磁性来源于分子电流的看法,得出了电流元 之间相互作用力的规律——安培定律。1831年,法拉第发现了电磁感应 现象,是第一次明确提出了场的概念,进一步揭示了电与磁的联系。19 世纪60年代麦克斯韦(J.C.Maxwell)总结了前人的研究结果,提出感 生电场和位移电流的假设,建立了以麦克斯韦方程组为基础的麦克斯韦像完整的、宏观的电磁场理论,以及1887年赫兹(H.R.Hertz)做了一系列电磁波实验,最终使电磁学成为一门统一的学科。 电磁学主要研究电荷产生电场和电流产生磁场的规律;电场、磁场对电荷、电流作用的 规律;电场和磁场的相互联系及其运动变化的规律;电路的导电规律;以及电磁场的各种效 应等等。由于电磁现象的普遍存在和广泛应用,电磁学已经成为科学技术的重要基础,电工学、电子学以及其他与电有关的科学往往都是以电磁学为基础建立和发展起来的。 下面将阐述电磁学几大重要基本原理及其应用。 一.同级相吸异极相斥——磁悬浮列车 磁悬浮列车利用“同名磁极相斥,异名磁极相吸”的原理,使磁铁具有抗拒地心引力的能力,即“磁性悬浮”。科学家将“磁性悬浮”这种原理运用在铁路运输系统上,使列车完全 脱离轨道而悬浮行驶,成为“无轮”列车,时速可达几百公里以上。这就是所谓的“磁悬浮 列车”,亦称之为“磁垫车”。 由于磁铁有同性相斥和异性相吸两种形式,故磁悬浮列车也有两种相应的形式:一种是利用磁铁同性相斥原理而设计的电磁运行系统的磁悬浮列车,它利用车上超导体电磁铁形成的磁场与轨道上线圈形成的磁场之间所产生的相斥力,使车体悬浮运行的铁路;另一种则是利用磁铁异性相吸原理而设计的电动力运行系统的磁悬浮列车,它是在车体底部及两侧倒转向上的顶部安装磁铁,在T形导轨的上方和伸臂部分下方分别设反作用板和感应钢板,控制电磁铁的电流,使电磁铁和导轨间保持10—15毫米的间隙,并使导轨钢板的排斥力与车辆的重力平衡,从而使车体悬浮于车道的导轨面上运行。 通俗的讲就是,在位于轨道两侧的线圈里流动的交流电,能将线圈变为电磁体。由于它

相关主题
文本预览
相关文档 最新文档