纳米二氧化钛的光催化特性
- 格式:pdf
- 大小:182.75 KB
- 文档页数:3
纳米TiO2材料的制备及其光催化性能研究随着经济的发展,人们生活水平的提高,人们逐渐意识到可持续发展的重要。
环境问题已严重影响现代文明的发展,有机污染物具有持久性的特点而长期威胁人类健康,开发和设计仅利用太阳能即可完成对有机污染物降解的新材料将会是解决环境问题的有效方法之一。
纳米TiO2作为一种光催化材料,具有优异的物理和化学性质,因而被广泛应用和重点研究。
本文就纳米TiO2材料的制备及其光催化性能展开探讨。
标签:纳米TiO2;光催化;制备方法;光催化效能引言半导体光催化技术是解决环境污染与能源短缺等问题的有效途径之一。
以二氧化钛为代表的光催化剂在染料敏化太阳能电池、锂离子电池、光伏器件以及光催化领域表现出明显的使用优势.但是TiO2本身的弱可见光吸收、低电导率、高载流子复合速率限制了其在工业生产中的进一步使用。
科技工作者一般通过掺杂、半导体复合、燃料敏化、表界面性质改性等方法提高TiO2的光电化学性能,使其能在生产实践中广泛应用。
1、TiO2材料简介TiO2在自然界中的主要存在形态为金红石、锐钛矿和板钛矿三种晶型,其中金红石是TiO2的高温相,锐钛矿和板钛矿两种形态是TiO2的低温相。
在三种晶型中光催化活性最好的为锐钛矿型TiO2。
锐钛矿型TiO2的禁带宽度为3.2eV 与之对应的激发波长为387nm。
所以,TiO2作为光催化剂在紫外光条件下具有催化活性,在可见光下一般没有活性。
只有对它的结构进行改性,使它的禁带宽度得以缩小,才可以实现材料在可见光条件下的催化降解反应。
改性的方式目前主要有以下几种方法:通过改变晶体内部结构来改变催化剂禁带宽度的离子掺杂方法,通过形成异质结改变能带结构的半导体复合法,提高催化剂对光的吸收能力的表面光敏化法,增大催化剂比表面积使晶粒细化的负载载体法等。
光催化材料中电子e一和空穴h十的浓度会影响有机物的降解速度。
粒径的减小能够使表面原子增加,使光催化剂吸收光的效率显著提高,使其表面e一和h十的浓度增大,从而提高光催化剂的催化活性。
光催化纳米二氧化钛与光照的关系光催化纳米二氧化钛与光照的关系光催化纳米二氧化钛是一种应用广泛的光催化材料,其性质与光照密切相关。
光照可以提供能量激发纳米二氧化钛中的电子和空穴,从而促进催化反应的进行。
本文将从纳米二氧化钛的结构和性质入手,探讨光照对其催化效果的影响。
我们来了解一下纳米二氧化钛的基本特性。
纳米二氧化钛是一种具有高度结晶性的半导体材料,具有优良的光催化性能。
其晶体结构为四方晶系,晶格中的氧原子围绕着钛原子排列形成三维网状结构。
而纳米二氧化钛的晶粒尺寸通常在1-100纳米之间,具有较大的比表面积和较高的光吸收率。
这使得纳米二氧化钛能够有效地吸收光能并产生电子空穴对。
在光照条件下,纳米二氧化钛表面被吸收的光子能量可以激发其原子或分子中的电子从价带跃迁到导带,形成电子空穴对。
这些电子和空穴对具有高度的活性,可以参与催化反应。
光照可以提供足够的能量,使得纳米二氧化钛中的电子和空穴得以激发,从而促进光催化反应的进行。
光照还可以改变纳米二氧化钛的表面状态,进一步影响其催化性能。
光照下,纳米二氧化钛表面的电荷状态和氧含量会发生变化,从而改变其表面活性位点的密度和分布。
这些表面活性位点可以吸附反应物分子,提供催化反应所需的活化能。
因此,光照可以调控纳米二氧化钛的表面性质,从而影响其催化效果。
光照条件下的纳米二氧化钛还可以发生光生电化学反应。
在光照条件下,纳米二氧化钛表面吸附的水分子可以被光激发产生电子和空穴。
这些电子和空穴可以在纳米二氧化钛表面发生氧化还原反应,从而促进水的分解或有机物的降解。
光生电化学反应是光催化过程中的一个重要环节,光照的强度和波长对其效果有着重要影响。
需要注意的是,光照强度和波长对光催化纳米二氧化钛的影响是复杂的。
过强的光照会导致电子和空穴的复合速率增加,从而降低光催化反应的效率。
而不同波长的光照对纳米二氧化钛的激发效果也有差异,不同催化反应所需的光照条件也不尽相同。
因此,合理选择光照条件对于光催化纳米二氧化钛的催化效果至关重要。
纳米二氧化钛光催化原理
纳米二氧化钛光催化是一种通过利用纳米二氧化钛作为催化剂,利用光照下光生电荷的特性来促进光化学反应的过程。
纳米二氧化钛催化的原理主要涉及到两个关键步骤:光吸收和电子传输。
首先是光吸收过程。
纳米二氧化钛具有广阔的能带结构,光能可以在其表面被吸收。
当光能与纳米二氧化钛相互作用时,电子将被激发至较高的能级,并产生电荷分离。
其次是电子传输过程。
激发后的电荷(电子空穴对)会被分离并迁移到纳米二氧化钛的表面。
电子通常会迁移到导电带上,而空穴则会迁移到价带上。
这种电子与空穴分离产生的电荷极化会使纳米二氧化钛具有催化活性。
纳米二氧化钛表面的催化活性可用于促进光化学反应。
光照下,纳米二氧化钛表面的电荷分离状态会引发一系列反应,例如光解水、光催化氧化有机物等。
电子和空穴分别参与氧化还原反应,从而促进了催化反应的进行。
总的来说,纳米二氧化钛光催化利用了纳米二氧化钛催化剂的特殊性质,通过光生电荷的产生和传输,促进了光化学反应的发生。
这种技术在环境净化、能源转换和有机合成等领域有着广泛的应用前景。
改性纳米二氧化钛的光催化性能研究一、本文概述随着全球环境问题的日益严峻,光催化技术以其独特的优势在环境保护和能源转换领域受到了广泛关注。
作为光催化领域的重要研究对象,纳米二氧化钛(TiO₂)因其优良的光催化性能、稳定性以及低廉的成本,被广泛应用于太阳能光解水制氢、空气净化、污水处理等领域。
然而,传统的纳米二氧化钛存在光生电子-空穴对复合速率快、可见光响应范围窄等问题,限制了其在实际应用中的性能。
因此,对纳米二氧化钛进行改性,提高其光催化性能,具有重要的研究意义和应用价值。
本文旨在研究改性纳米二氧化钛的光催化性能,通过对其改性方法的探索,以期提高其在可见光下的光催化活性,拓宽其应用范围。
文章将介绍纳米二氧化钛的基本性质、光催化原理以及改性方法的研究进展。
将详细阐述本文所采用的改性方法,包括掺杂、负载贵金属、构建异质结等,以及改性后的纳米二氧化钛的表征手段。
通过对比实验,分析改性前后纳米二氧化钛在光催化性能上的差异,探讨改性方法对光催化性能的影响机制。
通过本文的研究,期望能为纳米二氧化钛的光催化性能改性提供新的思路和方法,推动其在环境保护和能源转换领域的应用发展。
也希望为相关领域的研究人员提供有益的参考和借鉴。
二、改性纳米二氧化钛的制备方法改性纳米二氧化钛的制备方法众多,各有其独特的优势和应用场景。
以下是几种常见的改性纳米二氧化钛制备方法:溶胶-凝胶法:溶胶-凝胶法是一种通过无机物或金属醇盐的水解和缩聚反应制备纳米材料的方法。
在这种方法中,通过控制水解和缩聚的条件,可以得到均匀稳定的溶胶,进一步通过热处理,溶胶转化为凝胶,最终得到改性纳米二氧化钛。
水热法:水热法是一种在高温高压下进行化学反应的方法。
通过将反应物置于特制的高压反应釜中,加热至一定温度,使反应物在水热条件下进行反应,从而制备出改性纳米二氧化钛。
微乳液法:微乳液法是利用两种互不相溶的溶剂在表面活性剂的作用下形成微乳液,然后在微乳液中进行化学反应的方法。
毕业设计(论文)纳米二氧化钛的制备与光催化性能研究1 绪论二氧化钛,化学式为TiO2,俗称钛白粉,多用于光触媒、化妆品,能靠紫外线消毒及杀菌,现正广泛开发,将来有机会成为新工业。
二氧化钛可由金红石用酸分解提取,或由四氯化钛分解得到。
二氧化钛性质稳定,大量用作油漆中的白色颜料,它具有良好的遮盖能力,和铅白相似,但不像铅白会变黑[1];它又具有锌白一样的持久性。
二氧化钛还用作搪瓷的消光剂,可以产生一种很光亮的、硬而耐酸的搪瓷釉罩面。
在过去的研究中,用半导体粉末对水、油和空气中的有毒有机化合物进行光催化降解和完全矿化引起了人们的大量关注。
由于抗光腐蚀性,化学稳定性,成本低,无毒和强氧化性,二氧化钛被作为应用最广泛的光催化剂来光降解水和空气中的有毒化合物。
但是二氧化钛具有较大的带隙(锐钛矿相二氧化钛为3.20ev)因此,只有较小一段太阳光区域,大约为2%~3%紫外光区可被应用[2]。
人们尝试用各种制备方法,如贵金属掺杂、氧化物复合、表面修饰等等方法,防止和减少电子与空穴的复合,提高催化剂的光催化活性。
众所周知,吸附和催化的效率与固体的孔径及表面积有关,因此,对二氧化钛进行修饰、改性及增大比表面积是提高光量子效率和增大反应速率的一个有效的方法与途径。
1.1 TiO2的结构与基本性质1.1.1物理常数及结构特征表1 TiO的物理常数1.1.2 TiO2的结构特征在自然界中,TiO2存在三种晶型结构,即金红石、锐钛矿和板钛矿。
这些结构的区别取决于TiO68-八面体的连接方式,图1-1是TiO68-八面体的两种连接方式,锐钛矿结构是由TiO68-八面体共边组成,而金红石和板钛矿结构则是由TiO68-八面体共顶点且共边组成。
锐钛矿TiO2中的每个八面体与周围8个八面体相连,金红石TiO2中每个八面体与周围10个八面体相连。
事实上锐钛矿可以看做是一种四面体结构,而金红石和板钛矿则是晶格稍有畸变的八面体结构[3]。
简单地认为锐钛矿比金红石活性高是不严谨的,它们的活性受其晶化过程的一些因素影响。
催化剂纳米二氧化钛(TiO2)具有多种作用,主要集中在以下几个方面:
1. 光催化作用:
纳米二氧化钛在紫外线照射下具有很强的光催化活性。
当其吸收紫外光后,能产生电子-空穴对,这些载流子参与氧化还原反应,能够分解空气中的有害气体如甲醛、苯、氨气以及某些有机污染物,将其转化为无害的二氧化碳和水。
因此,纳米二氧化钛被广泛应用于空气净化、水质净化等领域。
2. 抗菌性能:
光催化作用也能有效杀灭细菌和病毒,通过生成的羟基自由基等强氧化性物质破坏微生物细胞膜和DNA结构,从而实现高效抗菌和抗病毒功能。
这种特性使得纳米二氧化钛常用于制备具有自清洁、抗菌效果的涂层材料,比如应用于建材表面、医疗设备表面处理等。
3. 紫外线屏蔽:
由于二氧化钛对紫外线有较高的反射率和吸收率,所以它是一种高效的紫外线屏蔽剂,可以添加到化妆品、涂料、塑料等材料中,保护人体皮肤或产品免受紫外线伤害,延长产品的使用寿命和提高其耐候性。
4. 新能源应用:
在能源领域,纳米二氧化钛也被研究作为光电化学电池的光阳极材料,利用其光生电荷分离的能力来转化太阳能为电能。
5. 其他功能:
还可作为催化剂载体,支持负载其他活性成分进行催化反应;同时,在某些特定条件下,纳米二氧化钛还可以表现出优异的导电性和良好的化学稳定性,进一步拓宽了其在传感器制造、环保材料、药物传递系统等方面的应用潜力。
学号:1003021022合肥学院化学与材料工程系《专题研究训练》选课实验报告《二氧化钛纳米光催化性能的研究》刘克峰化学工程与工艺张慧2012年6月19日项目名称 实验者 所属专业 指导教师 提交日期专题研究训练实验课程组、《专题研究训练》实验报告二、实验报告正文《氧化钛纳米光催化性能的研究》实验目的:让化学本科生尽早了解和掌握光催化原理,熟悉光催化剂的制备和光催化反应,在大量研究工作的基础上,设计涉及纳米光催化剂的制备、催化剂的简单表征和催化活性评价的综合性实验。
让学生能够对光催化具有较好的了解。
实验原理:光催化基本原理是指光催化剂受到大于禁带宽度能量的光子照射后,发生电子跃迁,生成光生电子(e )和空穴对(h ),光生电子具有很强的还原能力,可以还原去除水中的金属离子,而空穴具有极强的氧化性,可对吸附于其表面的污染物进行直接或间接的氧化降解,此外,空穴还可以氧化"O和01一生成反应性极高的羟基自由基(・0H),・0H!—种强氧化剂(氧化还原电位为+2. 8V),它可以将大多数有机染料氧化为可矿化的最终产物。
以本实验中的Ti02为例。
Ti02的带隙能火3.2 eV,相当于波长为387.5nm光子能量,抵达地面太阳能最小波长为300.0nm, 300.0〜387.5nm之间的紫外光能约占太阳能的1%左右[i]。
当TiO?受到太阳能辐射后,处于价带的电子就被激发到导带,价带便生成空穴(h+)。
光催化反应机理可用以下各式表示:TiO? +hv(UV)—TiO2(e-+ h +)TiO2(h+)+ H 2—TiO 2+ 出0+・ OHTiO2(h+) + OH 一—TiO2 + • OH有机染料+ • 0H-降解产物有机染料+h+—氧化产物有机染料+e一—还原产物式中hv是将TiO2的电子从价带激发到导带的光子能量。
HCOHjOJtH HO; K图半导体Ti6光催比氧化反应机理示意图本次试验采用溶胶-凝胶法。
光触媒纳米二氧化钛光触媒纳米二氧化钛是一种具有广泛应用前景的新型材料。
它以其优异的光催化性能和环境友好性而备受关注。
本文将从纳米二氧化钛的特性、制备方法、应用领域等方面进行介绍,旨在帮助读者对光触媒纳米二氧化钛有更深入的了解。
我们来了解一下光触媒纳米二氧化钛的特性。
纳米二氧化钛是一种具有纳米级尺寸的二氧化钛颗粒,其特点是具有高度的比表面积和丰富的表面活性位点。
这使得纳米二氧化钛在光催化反应中具有优异的效果。
此外,纳米二氧化钛还具有稳定性高、耐腐蚀性好、生物相容性佳等特点,这使得它在环境净化、抗菌消毒、光催化水分解、有机废水处理等领域有着广泛的应用前景。
纳米二氧化钛的制备方法多种多样,其中最常用的方法是溶胶-凝胶法、水热法、气相沉积法等。
溶胶-凝胶法是通过控制溶胶的成分、浓度和pH值等参数来调节纳米二氧化钛的粒径和形貌。
水热法则是利用高温高压条件下的化学反应来合成纳米二氧化钛。
气相沉积法则是通过在气相中将气体或蒸汽转化为固体颗粒。
这些制备方法各有优劣,具体选择方法应根据实际需求来确定。
光触媒纳米二氧化钛在环境净化方面有着广泛的应用。
它可以通过光催化反应将有害气体分解为无害物质,达到净化空气的目的。
例如,将纳米二氧化钛涂覆在建筑物外墙上,可以通过阳光的照射将空气中的有害气体分解为无害物质,起到净化空气的作用。
此外,光触媒纳米二氧化钛还可以用于有机废水的处理,通过光催化反应将有机物降解为无害物质,实现废水的净化和循环利用。
光触媒纳米二氧化钛在抗菌消毒方面也有着广泛的应用。
由于其表面的光催化活性,纳米二氧化钛可以通过光催化反应将细菌的膜破坏,达到抑制和杀灭细菌的作用。
因此,将纳米二氧化钛应用于医疗器械、食品包装等领域可以起到抗菌消毒的效果,提高产品的安全性和卫生质量。
除此之外,光触媒纳米二氧化钛还可以应用于光催化水分解。
通过纳米二氧化钛的光催化作用,可以将水分解为氢气和氧气。
这种方法不仅可以制备清洁可再生的氢能源,还可以解决能源短缺和环境污染等问题,具有重要的应用前景。
混凝土中添加纳米二氧化钛的应用研究及其对光催化性能的影响一、引言纳米材料因其特有的物理、化学性质,被广泛应用于多种领域中。
其中,纳米二氧化钛由于其良好的光催化性能,被广泛应用于环境污染治理、自清洁材料制备等领域。
而混凝土作为建筑领域中常用的材料,其耐久性、强度等性能的提升一直是人们关注的热点问题。
因此,将纳米二氧化钛添加到混凝土中,以期提高混凝土的光催化性能,具有重要的研究和应用价值。
二、纳米二氧化钛的光催化性能纳米二氧化钛具有很强的光催化性能。
其主要表现在以下几个方面:1. 光催化降解有机污染物纳米二氧化钛能够吸收紫外光,产生电子和空穴对,从而引发一系列的光化学反应。
实验表明,纳米二氧化钛能够催化降解大量的有机污染物,如苯酚、甲基橙等。
2. 光催化杀菌纳米二氧化钛能够通过产生活性氧物质,抑制或杀死微生物,如细菌、病毒等。
这种光催化杀菌的效果不仅高效,而且安全、环保。
3. 光催化自清洁纳米二氧化钛在阳光的作用下能够分解吸附在其表面的污染物,从而实现自我清洁。
这种自清洁效应被广泛应用于建筑材料、汽车涂层等领域。
三、混凝土中添加纳米二氧化钛的研究现状随着对纳米材料性质的深入研究,人们开始将纳米材料应用于混凝土中,以期提高混凝土的性能。
目前,混凝土中添加纳米二氧化钛的研究已经取得了一定的成果。
1. 纳米二氧化钛的添加量添加纳米二氧化钛的量是影响混凝土光催化性能的关键因素之一。
研究表明,当纳米二氧化钛的添加量为1%时,混凝土的光催化性能最佳。
2. 纳米二氧化钛的形态纳米二氧化钛的形态也会影响混凝土的光催化性能。
研究表明,球形纳米二氧化钛的光催化性能优于棒状纳米二氧化钛。
3. 光照条件光照条件对混凝土中纳米二氧化钛的光催化性能也有很大的影响。
研究表明,越强的光照条件能够激发更多的电子和空穴对,从而提高混凝土的光催化性能。
四、混凝土中添加纳米二氧化钛的制备方法混凝土中添加纳米二氧化钛的制备方法有多种,其中比较常用的方法包括溶胶凝胶法、水热法、微乳法等。
纳米二氧化缺光催化技荷介^纳米光催化探用二氧化金太(TiO2)半^髓的效鹿启攵勤材料表面吸附氧和水分,走生活性氢氧自由基(OH.)和超氧陪雕子自由基(02-), ^而^化舄一希重具有安全化孥能的活性物筲起到碳化降解璞境污染物和抑菌杀殳菌的作用。
纳米二氧化金太(TiO2)光催化利用自然光即可催化分解^菌和污染物,具有高催化活性、良好的化孥穗定性、照二次污染、照刺激性、安全照毒等特黑占,且能畏期有益於生熊自然璞境,是最具有^畿前景的^色璞保催化蒯之一。
然毒害的纳米TiO2催化材料,充分畿撞抗菌、降解有^污染物、除臭、自浮化的功能,是^璞保型功能材料^施方便、雁用性弓鱼,能^ 用到生活空^的多重埸合,畿撞其多功能效废,成舄我仍生活璞境中起畏期浮化作用的璞保材料。
光催化原理-什麽是光催化光催化[Photocatalyst ]是光[Photo二Light] +催化蒯[catalyst]的合成羞司。
主要成分是二氧化金太(Ti02),二氧化金太本身照毒照害,已腐泛用於食品,髻桑,化片攵品等各希重令臭域。
光催化在光的照射下畲走生^似光合作用的光催化反雁(氧化-遢原反雁,走生出氧化能力桎弓鱼的自由氢氧基和活性氧,是些走物可^M^菌和分解有檄污染物。
亚且把有檄污染物分解成照污染的水(H20)和二氧化碳(C02),同畤它具有杀殳菌、除臭、防汗、^水、防紫外^泉等功能。
光催化在微弱的光%泉下也能做反底若在紫外#泉的照射下光催化的活性畲加逾近来,光催化被餐舄未来走棠之一的纳米技彳桁走品。
-光催化反雁原理TiO2富吸收光能量之彳爰,僵带中的雷子就畲被激畿到^带,形成带^雷的高活性雷子e-,同畤在僵带上走生带正雷的空穴h+。
在雷埸的作用下,雷子典空穴畿生分雕,暹移到粒子表面的不同位置。
熟力孥理言禽表明,分怖在表面的h+可以将吸附在TiO2表面OH-和H2O 分子氧化成(OH.)自由基,而OH.自由基的氧化能力是水髓中存在的氧化蒯中最弓鱼的,能氧化亚分解各重有^污染物(甲醛、苯、TVOC等)和^菌及部分照檄污染物(氨、NOX 等),亚将最^降解舄CO2、H2O 等照害物鼻由於OH自由基封反废物^乎MB®性,因而在光催化中起著〉夬定性的作用。
水溶纳米二氧化钛的作用
水溶性纳米二氧化钛具有多种作用:
1.光催化性能:它可以吸收光能产生活性氧化物,从而促使有机物质的降解。
这一特性在环境清洁中具有潜在应用,例如在水处理和空气净化等方面。
2.防晒和化妆品:纳米二氧化钛因其对紫外线的高吸收性能而在防晒霜和化妆品中被广泛使用。
水溶性的纳米二氧化钛可以在化妆品中更好地分散,提供更好的防晒效果。
3.医学应用:水溶性纳米二氧化钛在医学领域也有潜在应用。
例如,通过将药物与纳米二氧化钛结合,可以实现药物的靶向输送,从而提高治疗效果。
4.杀菌功能:在光线中紫外线的作用下,纳米二氧化钛可以实现长久杀菌。
实验证明,以0.1mg/cm3浓度的锐钛型纳米二氧化钛可彻底地杀死恶性海拉细胞,而且对枯草杆菌黑色变种芽孢、绿脓杆菌、大肠杆菌、金色葡萄球菌、沙门氏菌、牙枝菌和曲要的杀灭率均达到98%以上。
总的来说,水溶性纳米二氧化钛在环保、化妆品、医学和杀菌等领域都有广泛的应用前景。
TiO2的光催化性能研究摘要:主要介绍二氧化钛的光催化原理,基本途径,以及光催化剂的结构特性和影响因素,还讲述了关于二氧化钛的光催化应用。
关键字:二氧化钛光催化光催化剂,俗称钛白粉,多用于光触媒、化妆品,能靠紫外二氧化钛,化学式为TiO2线消毒及杀菌,现正广泛开发,将来有机会成为新工业。
二氧化钛可由金红石用酸分解提取,或由四氯化钛分解得到。
二氧化钛性质稳定,大量用作油漆中的白色颜料,它具有良好的遮盖能力,和铅白相似,但不像铅白会变黑;它又具有锌白一样的持久性。
二氧化钛还用作搪瓷的消光剂,可以产生一种很光亮的、硬而耐酸的搪瓷釉罩面。
1 TiO的基本性质21.1结晶特征及物理常数物性:金红石型锐钛型结晶系:四方晶系四方晶系相对密度:3.9~4.2 3.8~4.1折射率: 2.76 2.55莫氏硬度:6-7 5.5-6电容率:114 31熔点:1858 高温时转变为金红石型晶格常数:A轴0.458,c轴0.795 A轴0.378,c轴0.949线膨胀系数:25℃/℃a轴:7.19X10-6 2.88?10-6c轴:9.94X10-6 6.44?10-6热导率: 1.809?10-3吸油度:16~48 18~30着色强度:1650~1900 1200~1300颗粒大小:0.2~0.3 0.3功函数:5.58eV2TiO的光催化作用22.1光催化作用原理二氧化钛是一种N型半导体材料,锐钛矿相TiO的禁带宽度Eg =3.2eV,由2半导体的光吸收阈值λg与禁带宽度E g的关系式:λg (nm)=1240/Eg(eV)上时,价带中的电子就会发生跃迁,可知:当波长为387nm的入射光照射到TiO2形成电子-空穴对,光生电子具有较强的还原性,光生空穴具有较强的氧化性。
在半导体悬浮水溶液中,半导体材料的费米能级会倾斜而在界面上形成一个空间电荷层即肖特基势垒,在这一势垒电场作用下,光生电子与空穴分离并迁移到粒子表面的不同位置,还原和氧化吸附在表面上的物质。
摘要二氧化钛纳米材料的制备、改性及光催化性能研究摘要随着人们生活水平的不断提高,越来越多的产品来自于石油、煤炭和天然气等不可再生的自然资源。
同时,产品在原材料的提取、运输和转化过程中都有可能给环境带来负面效应。
因此,环境污染和能源短缺现象成为人类目前应对的世界性难题。
半导体光催化技术在环境修复领域的作为不容忽视,已被证明是降解水体和大气环境中有害污染物的有效途径。
在解决能源危机方面,通过光分解水制氢、太阳能电池等方式实现了可再生能源的高效利用。
二氧化钛因其高稳定性,无毒性且低成本被认为是非常理想的光催化半导体材料。
光催化剂的表面积是决定污染物吸附量的重要因素,直接影响其光催化活性的强弱。
由于二氧化钛纳米材料的高表面能使得纳米粒子间倾向于聚集以达到体系的平衡状态,导致纳米粉体的团聚现象严重,无法获得较大的活性表面积。
因此,本文采用表面活性剂作为分散剂,并优化制备工艺进行改性,以获得均一分散的二氧化钛纳米体系是十分必要的。
主要研究内容如下:(1)综合溶胶-凝胶法和溶剂热法的制备优势,本论文采用溶胶-溶剂热改进工艺进行实验分析。
以钛酸丁酯为钛源,无水乙醇为溶剂,浓硝酸为抑制剂,按照n(Ti(OR)4):n(C2H5OH):n(H+):n(H2O)=1:15:0.35:4的反应物配比,制备纳米级二氧化钛材料。
(2)通过单因素实验与正交实验相结合的方式,以样品对甲基橙的光催化降解率为分析依据,探究溶剂热温度、溶剂热时间、煅烧温度和煅烧时间对于二氧化钛光催化活性的影响。
正交实验的结果表明,最佳工艺参数是:当溶剂热温度为150℃,溶剂热时间为24h,煅烧温度为450℃,煅烧时间为4h时,样品的光催化降解率最高,为82.88%。
同时XRD、SEM、TEM和EDS的图像表明,样品为结晶度良好的单一锐钛矿相,无任何杂质,但分散性一般。
(3)在最佳工艺参数的基础上,通过控制表面活性剂的种类和含量的不同,探究不同类型表面活性剂的最佳投料比,从而确定用于二氧化钛纳米粉体改性的最佳分散剂,并通过XRD、SEM、TEM和EDS等技术对样品进行表征。
纳米二氧化钛光催化性能的测试一、实验导读1.半导体光催化剂半导体介于导体和绝缘体之间,在未激发的具有能带结构的半导体电子结构中,大多数电子处于价带内,而导带内则因能级较高处于电子缺乏状态。
导带和价带的过渡区称为带隙或禁带,其能量之差被称为能隙或禁带宽度,用E g表示,E g的大小代表了价带电子跃迁至导带的难易程度。
纳米TiO2等半导体的主要特征——宽禁带的存在,其优异独特的电、磁、光学等性质的表现也是由于它的存在而导致的。
宽禁带半导体其价带上的电子一旦受到一个具有高于其禁带宽度能量hv 的光照射后,能使其分子轨道中的电子(e-)离开价带(VB)跃迁到导带(CB)上,并在价带上产生相应的光生空穴(h+),同时在导带上形成光生电子(e-)。
在电场的作用下,两者发生分离,纳米半导体粒子因其尺寸很小,光激发产生的电子和空穴很快到达纳米粒子表面,导致原本不带电的粒子表面的二个不同部分出现了极性相反的二个微区——光生电子和光生空穴。
价带空穴是良好的氧化剂,导带电子是良好的还原剂,在半导体光催化反应中,与吸附在催化剂表面的污染物分子发生氧化还原反应。
跃迁到导带上的电子和价带上的空穴可能重新复合,并产生热能或以辐射方式散发掉。
但是当半导体光催化剂存在表面缺陷、合适的俘获剂、或者电场作用等因素时,电子和空穴的合并就得到了拟制。
同时纳米半导体粒子所具有的量子尺寸效应使其导带和价带能级变为分立的能级,能隙变宽,使其电子-空穴对具有更正的价带电位和更负的导带电位,因而具有更高的氧化能力和还原能力。
而且粒子越小,电子和空穴达到粒子表面的速度越快,电荷分离效果越好,电子与空穴复合几率反而越小,从而提高了纳米半导体的光催化活性。
作为半导体光催化剂的材料众多,包括TiO2、ZnO、WO3、SnO2、ZrO2等多种金属氧化物,CdS、FeS、MoS2等多种硫化物半导体。
TiO2等半导体纳米微粒,由于其表面的电子结构及晶体结构,具有特殊的表面效应、体积效应、量子尺寸效应、宏观量子隧道效应以及介电限域效应以外,还拥有高效的光催化活性,热稳定性好,价格低廉,对人体无毒、无害、无二次污染等特点,使其成为新兴的环保材料。
纳米二氧化钛的光催化特性一、研究意义和目的人类正面临着环境污染的巨大压力。
污水中成分复杂,浓度亦不相同,利用光催化技术可将多种有机污染物完全矿化为二氧化碳、水及其他无机小分子或离子;将高毒性的CN-氧化为CNO-,CrO4 2-还原为Cr3+,来降低它们的毒性;还能将气相体系中的氮氧化物分解并将有机污染物氧化。
如何提高光催化反应的光量子产率,是光催化大规模应用面临的主要难题之一。
晶粒尺寸减小到一定程度后,光能隙蓝移,对应于更高的氧化-还原电位,因而有更强的氧化-还原能力;另外晶粒尺寸减小后光生载流子迁移到晶粒表面的时间大大缩短,有效地减少了光生电子和光生空穴的体相复合。
因此,制备高比表面积的超细二氧化钛纳米颗粒有望能显著地提高其光催化活性。
我们课题组的研究目标是利用价廉的含钛无机物为主要原料,制备锐钛矿相、金红石相、两相的混晶等多种结构的二氧化钛纳米晶、高比表面积的无定形二氧化钛和由介孔与二氧化钛纳米晶构筑的团聚体。
利用苯酚的光催化氧化反应和铬酸根的光催化还原反应为模型,来考察不同结构的纳米二氧化钛的光催化活性。
这些研究成果对光催化的基础研究、金红石相二氧化钛纳米晶的应用和高性能的光催化制备有重要的指导意义和借鉴作用。
1.不同结构纳米二氧化钛的制备与性能以钛醇盐为前驱体,用沉淀法或溶胶-凝胶法都能制备出无定形或结晶度较差的锐钛矿相(anatase)二氧化钛。
要获得金红石相(rutile)需经高温煅烧,大约在500t开始锐钛矿相?金红石相转变(具体温度与制备条件有关),要获得纯金红石相需在8000C左右煅烧2h。
实际上,金红石相是常温下的稳定相,但在通常条件下难以合成。
国内生产的钛醇盐主要是钛酸丁酯,含钛量不高且价格贵,文献中的数据表明,用钛醇盐为原料难以获得高比表面积(大于200m2/g)和超细尺寸的二氧化钛纳米晶(小于10nm)。
而且,这种方法得到的粉体往往含有较多的有机物,这些有机物会降低二氧化钛的催化活性。
因此,用醇盐得到的二氧化钛需用煅烧的方法来改善结晶度和除掉有机物。
我们课题组找到了用廉价原料制备不同晶相的高性能二氧化钛纳米粉体的方法。
高温条件下金红石相二氧化钛纳米晶的生长速度快,高温气相反应(如氯化法)也难以获得金红石相二氧化钛纳米晶。
二氧化钛纳米晶在液相介质中,很难分离和回收。
文献曾报道用模板剂来合成介孔二氧化钛,但墙体二氧化钛是无定形的,且3500C煅烧介孔开始坍塌,尚不能完全烧掉模板剂。
因此,这种介孔并不适合作光催化剂。
我们用四氯化钛为主要原料,通过控制水解条件可以得到锐钛矿相、金红石相以及混晶等多种结构的二氧化钛纳米晶、高比表面积的无定形二氧化钛和三维无序结构的介孔二氧化钛。
图1和图2分别为它们的x射线衍射图(XRD)和透射电镜照片(TEM)。
纳米粉体有着更高的光催化活性,但在应用中面临的主要问题是它们难以分离和回收。
为了解决这一难题,可将二氧化钛负载在分子筛或介孔材料上,Ying曾制备了二氧化钛介孔材料,但350℃煅烧后孔开始坍塌。
这样低的煅烧温度尚不能烧掉孔内的模板剂剂,作为墙体的二氧化钛是非晶的,并不适合于用作光催化剂。
我们通过溶胶-凝胶法制备了含少量二氧化硅的钛硅复合氧化物,利用二氧化硅网络阻止煅烧过程中二氧化钛的传质过程从而抑制品粒长大和相变。
钛硅复合粉体中二氧化钛晶化后,用化学法洗去二氧化硅,可以得到高比表面积的介孔二氧化钛。
与现有文献相比,这种介孔材料的突出特点是:①墙体为锐钛矿相,适合作光催化剂;留颗粒尺寸为10mm级,是一次粒径为1nm的锐钛矿相和介孔构筑的团聚体,既保留了纳米晶高比表面积的特点又可用过滤的方法来分离和回收;③可用光还原的方法在孔壁沉积出贵金属岛,来实现电子和空穴的分离和氧化过程和还原过程的分隔。
我们知道铂的密度是锐钛矿相二氧化钛的5.6倍,使用过程中铂原子簇会从颗粒表面脱落。
沉积在孔壁上的铂位于孔构筑的笼中,能延长负载珀的光催化剂的使用寿命。
2.发现了不同结构纳米二氧化钛的光催化活性中的一些新现象苯酚是常见的有机污染物,汽提法不过是将有机污染物由一种介质转移到另一种介质,没有真正降总机:+86 535 7185 655 传真:+86 535 7292 456解;利用光催化技术可将苯酚等污染物降解(为二氧化碳和水,实现完全矿化。
铬(VI)有致癌作用,并且不易被吸附剂吸附,因而难以固定。
利用光催化技术,可以把铬(VI) 还原为毒性较低的铬(Ⅲ),在中性或弱碱性介质中,铬(Ⅲ)可以转化为Cr(OH)3沉淀,能够从溶液中分离出来。
选择这两种最常见的污染物来考察二氧化钛纳米晶的光催化活性,发现了一些新现象并得到了有重要意义的结果。
我们首次在国际上报道了超细锐钛矿相二氧化钛纳米晶在苯酚的光催化降解反应中对其深度矿化有更高的选择性。
不往反应体系中通人氧气,利用搅拌时空气中的溶解氧来促进苯酚的光催化氧化,发现粒径为3.8nm的锐钛矿相二氧化钛对苯酚的深度矿化的选择性最高,而混晶和金红石相的超细纳米晶的选择性较低。
这一发现表明用超细锐钛矿相二氧化钛纳米晶作为光催化剂时,生成的有机中间产物少,不会造成降解产物对水体的二次污染。
图3为不通氧条件下,主要的几种二氧化钛纳米晶使苯酚深度矿化的选择性差异3.8nm(A) 6.8nm(A) 14.1nm(A) mixed-1 rdxexl-2 7.2nm(R)Photo0Zcatalysts不同晶相的纳米二氧化钛对苯酚深度矿化的选择性mixed-l=混晶,4.4nm(R)+5.9nm(A);mixed-2=混晶,14.2nm(R)+10.7mm(A).不论是否往反应体系中通人氧气,合成的混晶均表现出最高的催化活性。
总有机碳(TOC)含量的结果表明,不通人氧气,用合成的混晶、6.8nm的锐钛矿和7.2nm的金红石相二氧化钛纳米晶作为光催化剂,反应4h后反应体系中TOC分别下降61.2%、50.5%和47.1%。
通入氧气后,反应速率迅速提高,反应1.5h后,使用这三种催化剂后,反应体系中的TOC分别下降97.6%、84.5%、91.5%;作为对比,我们选择商品二氧化钛(锐钛矿相,比表面积等于9m2/g)进行光催化实验,同样条件下其TOC含量仅下降21.2%。
由此可见纳米晶的高催化活性。
紫外-可见光谱表明混晶的漫反射吸收谱不同于两相的机械混合物:它们在可见光区有一较弱的吸收带,高分辨电镜照片表明混晶中不同形貌的纳米颗粒在晶面尺度上形成毗连结构,这种晶面毗连形成了过渡能态,有利于提高其光催化活性。
优化混晶中两相的比例、并设计和制备出更多不同相的毗连晶面的高活性光催化剂的工作正在进行之中。
铬酸根的降解反应中,锐钛矿相超细纳米品表现出很高的光催化活性,催化活性随着粒径的减小而大幅度提高。
在酸性条件下,纳米晶显示更高的光催化活性,半小时铬酸根的除去率超过90%。
从不同晶粒尺寸的锐钛矿相二氧化钛的UV-vis吸收谱来看,其尺寸效应不如金红石相二氧化钛明显。
也就是说,锐钛矿相晶粒细化后,光能隙的蔬移并不明显。
二氧化钛纳米晶中光生电子由晶粒内部迁移到晶粒表面所需的时间(t)可由下列公式来估算:t=r2/p2D (1)r为二氧化钛纳米晶的半径,D为载流子的扩散系数。
电子的扩散系数(De)为2×10-2cm2/s,由此算得粒径为6.8nm、lOnm和lOOnm的二氧化钛中电子由晶粒内部迁移到晶粒表面所需的时间约为0.58ps(皮秒)、1.25ps和125ps。
可见粒径细化后,光生电子迁移到晶粒表面所需的时间大大减少。
这样可有效地减少了光生电子和光生空穴在体相内的复合,有更多的光生电子参加氧化-还原反应,因而有更高的光催化活性。
因此,在铬酸根的光催化还原反应中,晶粒细化后,光生电子迁移到纳米晶表面的时间大大缩短,减少了光生载流子的体相复合是其光催化活性有显著尺寸效应的主要原因。
需要强调指出的是无论在苯酚的光氧化反应还是铬酸根的光还原反应中,介孔二氧化钛的光催化活性大大高于钛硅复合粉体,负载0.22 wt%的Pt后,光催化活性大幅度提高。
三、已取得的成果和科技水平1998年实施知识创新工程以来,我们在Applied Catalysis B:Environ.等国际核心期刊上发表了5篇学术论文,国内核心期刊上发表7篇学术论文,并申请了两项中国发明专利。
我们首先发现了超细锐钛矿相二氧化钛纳米晶在苯酚深度矿化的高选择性,这一结果投到Applied Catalysis B:Enviro总机:+86 535 7185 655 传真:+86 535 7292 456n.(SCI影响因子3.133)后,两位审稿人都在文章的科学影响力栏目打了最高分(5分),并认为:与现有的文献结果相比,我们的工作是属于前20%之列。
室温下制备金红石相二氧化钛纳米晶(中国发明专利)和不用模板剂制备的墙体为锐钛矿相的介孔二氧化钛(中国发明专利)填补了国内空白。
四、结束语以廉价的四氯化钛为原料通过控制反应条件,可以得到锐钛矿相、金红石相、混晶等多种结构的二氧化钛纳米晶。
这些纳米晶的比表面积比钛醇盐水解法制备的二氧化钛更高,粒径更小,结晶度更高;光催化的实验结果表面超细锐钛矿相纳米晶对苯酚的深度矿化有更高的选择性,而混晶(含金红石相58%)的光催化活性比纯锐钛矿相和金红石相二氧化钛纳米晶更高。
混晶的高催化活性与其中的锐钛矿相和金红石相的晶面毗连有关,吸收光谱表明混晶并非两种晶相的简单机械混和。
优化工艺条件,调制混晶中锐钛矿相和金红石相的比例,可望得到光催化活性更高的混晶。
现有的制备方法通过将锐钛矿相二氧化钛在8000C以上的高温煅烧获得金红石相二氧化钛,但难以获得金红石相纳米晶。
本工作首次在室温条件下制备出7.2nm金红石相二氧化钛纳米晶。
超细金红石相纳米晶的吸收边蓝移11nm,显示出量子尺寸效应和高催化活性。
为了解决纳米晶的分离和回收等难题,设计、制备出新颖的介孔和:氧化钛纳米品构筑的二氧化钛多孔材料。
这种光催化材料既有较高的光催化活性,又易于从液相中分离和回收,在液相体系中有很好的应用前景。
总机:+86 535 7185 655 传真:+86 535 7292 456。