当前位置:文档之家› 交流伺服系统的控制理论与实现方法

交流伺服系统的控制理论与实现方法

交流伺服系统的控制理论与实现方法
交流伺服系统的控制理论与实现方法

新视点lNEWVIEWPOINT

交流伺服系统的控制理论与实现方法

刘春芳郭庆鼎,沈阳工业大学电气工程学院

摘要扼要地回顾了伺服技术的发展简史,并以执行电动机为主线索追述了近代伺服技术发展的几个主要历程,以及所形成的当前以永磁交流伺服系统为代表的主流技

术。阐述了伺服系统的数学模型及其不确定性问题,指出以PID控制为基础,形成以强

健鲁棒性与快速跟踪性为特点的二自由度鲁棒控制结构,这成为目前实用的主要控制形

式。最后提出了今后发展中应该关注的几个问题。

关键溯交流伺服理论实现方法

1伺服系统与伺服机问题

一般来说,伺服系统是以被驱动机械

物体位置(位姿)、速度和加速度等变量

为被控制量,使之能随指令值的任意变化

进行跟踪的控制系统。伺服系统可以认为

是随动控制系统,即可以认为是速度随动

控制,也可以认为是位置随动控制。从广

义的角度来看,电动机驱动机械负载的调

速系统也可以认为是伺服控制的一种。只

不过在所谓的调速系统中,尤其是功率较6I嘭三量‘钉?2008年第27卷第12期大的装置,所强调的被调量是电动机的转速,特别看重的性能是更加高效率地实现功率变换。在通常情况下,速度给定量恒定、起动速度平稳及静态误差小等是其追求的主要目标,属于恒值调节问题。而伺服系统一般功率较小(但也有数百千瓦的大中型装置),要求输出忠实地跟踪控制器所发出的命令,产生足够的力或力矩,使被驱动的运动机械获得所希望的加速度、速度与位置(位姿)。当然,在伺服控

制中,也存在对系统功率进行放大、变换 万方数据

 万方数据

 万方数据

 万方数据

交流伺服控制系统的三种控制方式

交流伺服控制系统的三种控制方式 交流伺服控制器主要由速度控制器、电流控制器和PWM生成电路组成。控制方式上交流伺服控制用脉冲串和方向信号实现。交流伺服控制系统有三种控制方式:速度控制、转矩控制和位置控制。 1.速度控制 速度控制方式主要以模拟量来控制。如果对位置和速度有一定的精度要求,用速度或位置模式较好;如果上位控制器有比较好的闭环控制功能,则可选用速度控制。根据电动机的类型,调速控制系统也分不同类型,如异步电动机的变频调速和同步电动机的变频调速’异步电动机的变频调速分为笼型异步电动机的变频调速和PWM型变频调速。下面以PWM型变频调速为例来详细说明交流伺服控制原理。 图4-27给出了PWM调速系统示意图,主电路由不可控整流器UR、平波电容器C 和逆变器UI构成。逆变器输入为固定不变的直流电压%’通过调节逆变器输出电压的脉冲宽度和频率来实现调压和调频’同时减小三相电流波形畸变的输出。这种形式主电路特点如下。 ①由于主要电路只有一个功率控制级UI,因而结构简单。 ②由于使用了不可控整流桥,因而电网功率因数跟逆变器的输出大小无关。 ③逆变器在调频时实现调压,与中间直流环节的元件参数无关,从而加快了系统的动态响应。实际的变频调速系统一般都需要加上完善的保护以确保系统安全运行。 2.位置控制

在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电动机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,电动机轴端的编码器只检测电动机转速。由于位置模式对速度和位置都有很严格的控制,因而其主要应用于定位装置,如数控机床、印刷机械等。 3.转矩控制 转矩控制方式实际上就是通过外部模拟量的输入或直接的地址賦值来设定电动机轴输出转矩。例如10V对应5N ? m的话,当外部模拟量设定为5V时,电动机轴输出为2.5N ? m.如果电动机轴负载低于2.5N.m时电动机正转,外部负载等于2.5N ? m时电动机不转,大于2.5N*m时电动机反转(通常在有重力负载情况下产生)。可以通过即时改变模拟量的设定来改变设定力矩大小,也可通过通信方式改变对应的地址的数值来实现。转矩控制主要应用在对材质的受力有严格要求的缠绕和放卷的装置中,例如绕线装置或拉光纤设备。

控制理论与控制工程专业解析

控制理论与控制工程专业解析 一、专业介绍 控制理论与控制工程隶属于控制科学与工程一级学科 1、研究方向 目前,各大院校与控制理论与控制工程专业相关的研究方向都略有不同的侧重点。以哈尔滨工程大学为例,该学科当前的主要研究方向: 01先进控制理论及应用 02船舶运动控制 03船海工程动力定位 04机器人与智能控制 05自主水下航行器控制 06核动力工程与控制 2、培养目标 控制理论与控制工程专业的硕士学位获得者必须掌握控制科学与工程学科的坚实的基础理论和系统的专业知识,了解自动控制领域的最新发展动向,能创造性地研究和解决与本学科有关的理论和实际问题,具有一定的独立从事科学研究和管理工作的能力,至少掌握一门外国语,能熟练地阅读专业文献资料,并具有一定的外语写作能力和进行国际学术交流的能力。 3、专业特色 本专业最突出的特点是控制理论与工程实际的紧密结合,培养的研究生既具有较高的控制理论水平,又具有很强的工程综合和计算机应用能力。学科以工程领域内的控制系统为主要研究对象,采用现代数学方法和计算机技术、电子与通讯技术、测量技术等,研究系统的建模、分析、控制、设计和实现的理论、方法和技术。 4、考试科目 ①101思想政治理论 ②201英语一、202俄语、203日语任选其一 ③301数学一 ④809自动控制原理 (注:以上以哈尔滨工程大学为例,各院校在考试科目中有所不同) 二、推荐院校 控制理论与控制工程硕士全国招生较强的单位有清华大学、浙江大学、上海交通大学、东北大学、东南大学、北京理工大学、西北工业大学、南京理工大学、哈尔滨工业大学、北京航空航天大学、华南理工大学、华东理工大学、哈尔滨工程大学、中南大学、西安交通大学、燕山大学、大连理工大学、上海大学、广东工业大学、山东大学、中国科学技术大学、吉林大学、大连海事大学、同济大学、北京科技大学、湖南大学、郑州大学、天津大学、重庆大学、浙江工业大学、南开大学、北京大学 三、就业方向 本专业培养的研究生可胜任本专业或相邻专业的教学、科研以及相关的技术、管理及研究工作。有些方向的毕业生在西门子、霍尼韦尔、和利时等自动化企业工作。控制理论与控制工程是个典型的工科专业,对动手能力的要求很高,毕业后从事科研技术工作的人员很多。

现代控制理论1-8三习题库

信息工程学院现代控制理论课程习题清单

正确理解线性系统的数学描述,状态空间的基本概念,熟练掌握状态空间的表达式,线性变换,线性定常系统状态方程的求解方法。 重点内容:状态空间表达式的建立,状态转移矩阵和状态方程的求解,线性变换的基本性质,传递函数矩阵的定义。要求熟练掌握通过传递函数、微分方程和结构图建立电路、机电系统的状态空间表达式,并画出状态变量图,以及能控、能观、对角和约当标准型。难点:状态变量选取的非唯一性,多输入多输出状态空间表达式的建立。 预习题 1.现代控制理论中的状态空间模型与经典控制理论中的传递函数有何区别? 2.状态、状态空间的概念? 3.状态方程规范形式有何特点? 4.状态变量和状态矢量的定义? 5.怎样建立状态空间模型? 6.怎样从状态空间表达式求传递函数? 复习题 1.怎样写出SISO系统状态空间表达式对应的传递函数阵表达式 2.若已知系统的模拟结构图,如何建立其状态空间表达式? 3.求下列矩阵的特征矢量 ? ? ? ? ? ? ? ? ? ? - - = 2 5 10 2 2 1- 1 A 4.(判断)状态变量的选取具有非惟一性。 5.(判断)系统状态变量的个数不是惟一的,可任意选取。 6.(判断)通过适当选择状态变量,可将线性定常微分方程描述其输入输 出关系的系统,表达为状态空间描述。 7.(判断)传递函数仅适用于线性定常系统;而状态空间表达式可以在定 常系统中应用,也可以在时变系统中应用. 8.如果矩阵A 有重特征值,并且独立特征向量的个数小于n ,则只能化为 模态阵。 9.动态系统的状态是一个可以确定该系统______(结构,行为)的信息集 合。这些信息对于确定系统______(过去,未来)的行为是充分且必要 的。 10.如果系统状态空间表达式中矩阵A, B, C, D中所有元素均为实常数时, 则称这样的系统为______(线性定常,线性时变)系统。如果这些元素 中有些是时间t 的函数,则称系统为______(线性定常,线性时变)系 统。 11.线性变换不改变系统的______特征值,状态变量)。 12.线性变换不改变系统的______(状态空间,传递函数矩阵)。 13.若矩阵A 的n 个特征值互异,则可通过线性变换将其化为______(对 角阵,雅可比阵)。 14.状态变量是确定系统状态的______(最小,最大)一组变量。 15.以所选择的一组状态变量为坐标轴而构成的正交______(线性,非线性) 空间,称之为______(传递函数,状态空间)。

交流伺服电机的工作原理

交流伺服电机的工作原理 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 4. 什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降, 请问交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。 永磁交流伺服电动机 20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。永磁交流伺服电动机同直流伺服电动机比较,主要优点有: ⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。 ⑵定子绕组散热比较方便。 ⑶惯量小,易于提高系统的快速性。 ⑷适应于高速大力矩工作状态。 ⑸同功率下有较小的体积和重量。 自从德国MANNESMANN的Rexroth公司的Indramat分部在1978年汉诺威贸易博览会上正式推出MAC永磁交流伺服电动机和驱动系统,这标志着此种新一代交流伺服技术已进入实用化阶段。到20世纪80年代中后期,各公司都已有完整的系列产品。整个伺服装置市场都转向了交流系统。早期的模拟系统在诸如零漂、抗干扰、可靠性、精度和柔性等方面存在不足,尚不能完全满足运动控制的要求,近年来随着微处理器、新型数字信号处理器(DSP)的应用,出现了数字控制系统,控制部分可完全由软件进行,分别称为摪胧 只瘮或摶旌鲜綌、撊只瘮的永磁交流伺服系统。 到目前为止,高性能的电伺服系统大多采用永磁同步型交流伺服电动机,控制驱动器多采用快速、准确定位的全数字位置伺服系统。典型生产厂家如德国西门子、美国科尔摩根和日本松下及安川等公司。 日本安川电机制作所推出的小型交流伺服电动机和驱动器,其中D系列适用于数控机床(最高转速为1000 r/min,力矩为0.25~2.8N.m),R系列适用于机器人(最高转速为3000r/min,力矩为0.016~0.16N.m)。之后又推出M、F、S、H、C、G 六个系列。20世纪90年代先后推出了新的D系列和R系列。由旧系列矩形波驱动、8051单片机控制改为正弦波驱动、80C、154CPU和门阵列芯片控制,力矩波动由24%降低到7%,并提高了可靠性。这样,只用了几年时间形成了八个系列(功率范围为0.05~6kW)较完整的体系,满足

液压伺服系统工作原理

液压伺服系统工作原理 1.1 液压伺服系统工作原理 液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。 电液伺服系统通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。 液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。液压伺服系统的工作原理可由图1来说明。 图1所示为一个对管道流量进行连续控制的电液伺服系统。在大口径流体管道1中,阀板2的转角θ变化会产生节流作用而起到调节流量qT的作用。阀板转动由液压缸带动齿轮、齿条来实现。这个系统的输入量是电位器5的给定值x i。对应给定值x i,有一定的电压输给放大器7,放大器将电压信号转换为电流信号加到伺服阀的电磁线圈上,使阀芯相应地产生一定的开口量x v。阀开口x v使液压油进入液压缸上腔,推动液压缸向下移动。液压缸下腔的油液则经伺服阀流回油箱。液压缸的向下移动,使齿轮、齿条带动阀板产生偏转。同时,液压缸活塞杆也带动电位器6的触点下移x p。当x p所对应的电压与x i所对应的电压相等时,两电压之差为零。这时,放大器的输出电流亦为零,伺服阀关闭,液压缸带动的阀板停在相应的qT位置。 图1 管道流量(或静压力)的电液伺服系统 1—流体管道;2—阀板;3—齿轮、齿条;4—液压缸;5—给定电位器;6—流量传感电位器;7—放大器;8—电液伺服 阀 在控制系统中,将被控制对象的输出信号回输到系统的输入端,并与给定值进行比较而形成偏差信号以产生对被控对象的控制作用,这种控制形式称之为反馈控制。反馈信号与给定信号符号相反,即总是形成差值,这种反馈称之为负反馈。用负反馈产生的偏差信号进行调节,是反馈控制的基本特征。而对图1所示的实例中,电位器6就是反馈装置,偏差信号就是给定信号电压与反馈信号电压在放大器输入端产生的△u。 图2 给出对应图1实例的方框图。控制系统常用方框图表示系统各元件之间的联系。上图方框中用文字表示了各元件,后面将介绍方框图采用数学公式的表达形式。 液压伺服系统的组成 液压伺服系统的组成 由上面举例可见,液压伺服系统是由以下一些基本元件组成;

控制科学与工程专业介绍

控制科学与工程专业介绍 控制科学与工程是一门研究控制的理论、方法、技术及其工程应用的学科。它是20世纪最重要的科学理论和成就之一,它的各阶段的理论发展及技术进步都与生产和社会实践需求密切相关。11世纪我国北宋时代发明的水运仪象台就体现了闭环控制的思想。到18世纪,近代工业采用了蒸汽机调速器。但直到20世纪20年代逐步建立了以频域法为主的经典控制理论并在工业中获得成功应用,才开始形成一门新兴的学科——控制科学与工程。此后,经典控制理论继续发展并在工业中获得了广泛的应用。在空间技术发展的推动下,50年代又出现了以状态空间法为主的现代控制理论,并相继发展了若干相对独立的学科分支,使本学科的理论和研究方法更加丰富。60年代以来,随着计算机技术的发展,许多新方法和技术进入工程化、产品化阶段,显著加快了工业技术更新的步伐。在控制科学发展的过程中,模式识别和人工智能与控制相结合的研究变得更加活跃;由于对大系统的研究和控制学科向社会、经济系统的渗透,形成了系统工程学科。特别是近20年来,非线性及具有不确定性的复杂系统向“控制科学与工程”提出了新的挑战,进一步促进了本学科的迅速发展。目前,本学科的应用已经遍及工业、农业。交通、环境、军事、生物、医学、经济、金融、人口和社会各个领域,从日常生活到社会经济无不体现本学科的作用。 控制科学以控制论、信息论、系统论为基础,研究各领域内独立

于具体对象的共性问题,即为了实现某些目标,应该如何描述与分析对象与环境信息,采取何种控制与决策行为。它对于各具体应用领域具有一般方法论的意义,而与各领域具体问题的结合,又形成了控制工程丰富多样的内容。本学科的这一特点,使它对相关学科的发展起到了有力的推动作用,并在学科交叉与渗透中表现出突出的活力。例如:它与信息科学和计算机科学的结合开拓了知识工程和智能机器人领域。与社会学、经济学的结合使研究的对象进入到社会系统和经济系统的范畴中。与生物学、医学的结合更有力地推动了生物控制论的发展。同时,相邻学科如计算机、通信、微电子学和认知科学的发展也促进了控制科学与工程的新发展,使本学科所涉及的研究领域不断扩大。 本学科下设五个二级学科:控制理论与控制工程,检测技术与自动化装置,系统工程,模式识别与智能系统,导航、制导与控制。各二级学科的主要研究范畴及相互联系如下。 “控制理论与控制工程”学科以工程领域内的控制系统为主要对象,以数学方法和计算机技术为主要工具,研究各种控制策略及控制系统的建模、分析、综合、设计和实现的理论、技术和方法。 “检测技术与自动化装置”是研究被控对象的信息提取、转换、传递与处理的理论、方法和技术的一门学科。它的理论基础涉及现代物理、控制理论、电子学、计算机科学和计量科学等,主要研究领域包括新的检测理论和方法,新型传感器,自动化仪表和自动检测系统,以及它们的集成化、智能化和可靠性技术。

《现代控制理论》复习资料

《现代控制理论》复习资料 题型一:已知系统传函,求①能控标准型、能观标准型 ②约旦标准型 例题:P155 3-4、3-9 解题步骤: 1)根据传函→能控能观标准型 传函:01221110 12211)(a s a s a s a s s s s s W n n n n n n n n n +++++++++=--------- ββββ ① 根据传函有无零极点对消判断是否能观能控 ② 写出能控标准Ⅰ型(以三阶为例) ??????????---=210100 010 a a a A ???? ??????=100b ][210βββ=c ③ 写出能观标准Ⅱ型(以三阶为例) ???????? ??---=210100100a a a A ??????????=210βββb ]100[=c 2)根据能控标准型→约旦标准型 ① 求λi ,Pi 0||=-A I λ,求得λi λi 互异时,λiPi=APi λi 有重根时, λ1P 1-AP 1=0 λ2P 2-AP 2=-P 1 λ3P 3-AP 3=-P 2 ② 求T,T -1 T=(P 1,P 2...P n ) ③ 求T -1AT,T -1B,CT Bu T ATz T Z 11--?+= Du CTz y +=

题型二:已知状态空间表达式,求①画模拟结构图 ②判断能控性、能观性 ③系统传函 例题:P56 1-7 解题步骤: 1)状态空间表达式→模拟结构图 P15 2)状态空间表达式→判断能控、能观性 见 题型四 3)状态空间表达式→传函 方法一: 根据 模拟结构图 直接写出传函 (见P23 图) 方法二: ① 先求1)()(---A sI A sI 、 ② D b A sI C s W +-=-1)()( 题型三:已知状态空间表达式,①求At e t =)(φ ②u(t),求x(t) 例题:P69 例2-8 P87 例2-6,2-4 解题步骤: 1)求)(t φ 方法一:化为约旦标准型1-=T Te e At At ① 求λi ,Pi ② 求T,T -1 ③ 1-=T Te e At At 方法二:拉氏反变换])[(11---=A sI L e At ① 求1)()(---A sI A sI 、 ② ])[(11---=A sI L e At 方法三:用凯莱-哈密顿定理 ① 求λi ② 求αi (t) ③ 两个特征值:I t A t e At )()(01αα+= 三个特征值:I t A t A t e At )()()(012ααα++= 2)求x(t) τττφφd Bu t x t t x t )()()0()()(0?-+=

伺服电机原理

伺服电机原理 一、交流伺服电动机 交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似.其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。所以交流伺服电动机又称两个伺服电动机。 交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。 交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动。当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: 1、起动转矩大 由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。 2、运行范围较广 3、无自转现象

控制理论与控制

控制理论与控制工程简介

控制理论与控制工程 081101 学科专业简介 “控制理论与控制工程”专业前身为工业自动化专业,1997年按照国务院学位委员会和原国家教育委员会颁布的《授予博士、硕士 学位和培养研究生的学科、专业目录》改为现名,是“控制科学和工 程”所属的二级学科。该专业于1979年开始培养硕士研究生,1986 年获得硕士学位授予权,1995年获得博士学位授予权,1997年设 立“控制科学和工程”博士后流动站,2003年被教育部确定为“长 江学者奖励计划”特聘教授设岗学科。 本学科是上海市教委的重点建设学科。目前已组成了一支以中青年高层次科技人员为主体的科研骨干队伍。截至2003年12月,该专 业有长江学者特聘教授1名,教授19名、副教授5名。此外,本学 科还聘任了包括四名科学院院士和一批国务院学科评审专家在内的 知名学者担任顾问和兼职教授。近5年来,该专业已培养了博士27 名,硕士179名,出站博士后10名。该学科在相关研究领域承担了 大量的国家科技攻关项目、"863"计划项目、国家自然基金项目以及 其他类型的国家、部委、省市及企业科研项目,获得了一大批科研成 果和国家或省部级科技进步奖,出版了一批有影响的著作和教材,发 表了大量的高水平学术论文。其中,1995年以来,共取得了2项国 家级获奖成果,23项省部级获奖成果,已完成和正在进行的国家自 然科学基金及863项目有16项,在相关学术会议和专业学术刊物上

发表论文500余篇,出版教材、译著和专著数十部。 一、培养目标 1、较好地掌握马克思主义基本原理、毛泽东思想、邓小平理论和“三个代 表”重要思想,树立正确的世界观、人生现和价值观,坚持四项基本原 则,热爱祖国,遵纪守法,品德优良,乐于奉献,积极为社会主义现代 化建设服务。 2、在本学科领域内,较好地掌握坚实宽广的基础理论和系统深入的专门知 识,并熟悉相关学科的基础理论和知识,具有较强的独立从事科学研究 工作的能力;在科学或专门技术上能够做出有新意的成果;具有严谨求 实的学风;至少掌握一门外国语。 3、具有健康的身体素质和健康的心理素质。 二、研究方向 1.智能自动化理论与工程 2.机器人控制与智能控制 3. 过程控制与计算机控制 三、学制及学习年限 硕士生学制为2.5年,其中课程学习1~1.5年,论文工作不少于1年。 硕士生的在校学习年限最长不超过4年。特别优秀的硕士研究生提前完成培养计划,并符合提前毕业条件的,经审批同意可提前毕业并获

非线性控制理论和方法

非线性控制理论和方法 姓名:引言 人类认识客观世界和改造世界的历史进程,总是由低级到高级,由简单到复杂,由表及里的纵深发展过程。在控制领域方面也是一样,最先研究的控制系统都是线性的。例如,瓦特蒸汽机调节器、液面高度的调节等。这是由于受到人类对自然现象认识的客观水平和解决实际问题的能力的限制,因为对线性系统的物理描述和数学求解是比较容易实现的事情,而且已经形成了一套完善的线性理论和分析研究方法。但是,现实生活中,大多数的系统都是非线性的。非线性特性千差万别,目前还没一套可行的通用方法,而且每种方法只能针对某一类问题有效,不能普遍适用。所以,可以这么说,我们对非线性控制系统的认识和处理,基本上还是处于初级阶段。另外,从我们对控制系统的精度要求来看,用线性系统理论来处理目前绝大多数工程技术问题,在一定范围内都可以得到满意的结果。因此,一个真实系统的非线性因素常常被我们所忽略了,或者被用各种线性关系所代替了。这就是线性系统理论发展迅速并趋于完善,而非线性系统理论长期得不到重视和发展的主要原因。控制理论的发展目前面临着一系列严重的挑战, 其中最明显的挑战来自大范围运动的非线性复杂系统, 同时, 现代非线性科学所揭示的分叉、混沌、奇异吸引子等, 无法用线性系统理论来解释, 呼唤着非线性控制理论和应用的突破。 1.传统的非线性研究方法及其局限性 传统的非线性研究是以死区、饱和、间隙、摩擦和继电特性等基本的、特殊的非线性因素为研究对象的, 主要方法是相平面法和描述函数法。相平面法是Poincare于1885年首先提出的一种求解常微分方程的图解方法。通过在相平面上绘制相轨迹, 可以求出微分方程在任何初始条件下的解。它是时域分析法在相空间的推广应用, 但仅适用于一、二阶系统。描述函数法是 P. J.Daniel于1940

交流伺服电机内部结构图及原理

一、交流伺服电机结构图 二、原理 交流伺服电机在定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。所以交流伺服电动机又称两个伺服电动机。

交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无"自转"现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。 交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动。当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: 1、起动转矩大, 由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。 2、运行范围较广. 3、无自转现象) 正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线)交流伺服电动机的输出功率一般是0.1-100W。当电源频率为50Hz,电压有36V、110V、220、380V;当电源频率为400Hz,电压有20V、26V、36V、115V等多种。 交流伺服电动机运行平稳、噪音小。但控制特性是非线性,并且由于转子电阻大,损耗大,效率低,因此与同容量直流伺服电动机相比,体积大、重量重,所以只适用于0.5-100W 的小功率控制系统。

伺服控制系统(设计)

第一章伺服系统概述 伺服系统是以机械参数为控制对象的自动控制系统。在伺服系统中,输出量能够自动、快速、准确地跟随输入量的变化,因此又称之为随动系统或自动跟踪系统。机械参数主要包括位移、角度、力、转矩、速度和加速度。 近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及电机制造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步电机、感应电机为伺服电机的新一代交流伺服系统。 目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路制造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性制造系统以及自动化生产线等领域中的应用也迅速发展。 1.1伺服系统的基本概念 1.1.1伺服系统的定义 “伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行停止。 伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵活方便的控制。

1.1.2伺服系统的组成 伺服系统是具有反馈的闭环自动控制系统。它由检测部分、误差放大部分、部分及被控对象组成。 1.1.3伺服系统性能的基本要求 1)精度高。伺服系统的精度是指输出量能复现出输入量的精确程度。 2)稳定性好。稳定是指系统在给定输入或外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。 3)快速响应。响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。 4)调速范围宽。调速范围是指生产机械要求电机能提供的最高转速和最低转速之比。 5)低速大转矩。在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率。 6)能够频繁的启动、制动以及正反转切换。 1.1.4 伺服系统的种类 伺服系统按照伺服驱动机的不同可分为电气式、液压式和气动式三种;按照功能的不同可分为计量伺服和功率伺服系统,模拟伺服和功率伺服系统,位置

控制科学与工程的二级学科以及排名

控制科学与工程 是一门研究控制的理论、方法、技术及其工程应用的学科。它是20世纪最重要的科学理论和成就之一,它的各阶段的理论发展及技术进步都与生产和社会实践需求密切相关。11世纪我国北宋时代发明的水运仪象台就体现了闭环控制的思想。到18世纪,近代工业采用了蒸汽机调速器。但直到20世纪20年代逐步建立了以频域法为主的经典控制理论并在工业中获得成功应用,才开始形成一门新兴的学科——控制科学与工程。此后,经典控制理论继续发展并在工业中获得了广泛的应用。在空间技术发展的推动下,50年代又出现了以状态空间法为主的现代控制理论,并相继发展了若干相对独立的学科分支,使本学科的理论和研究方法更加丰富。60年代以来,随着计算机技术的发展,许多新方法和技术进入工程化、产品化阶段,显著加快了工业技术更新的步伐。在控制科学发展的过程中,模式识别和人工智能与控制相结合的研究变得更加活跃;由于对大系统的研究和控制学科向社会、经济系统的渗透,形成了系统工程学科。特别是近20年来,非线性及具有不确定性的复杂系统向“控制科学与工程”提出了新的挑战,进一步促进了本学科的迅速发展。目前,本学科的应用已经遍及工业、农业。交通、环境、军事、生物、医学、经济、金融、人口和社会各个领域,从日常生活到社会经济无不体现本学科的作用。 控制科学以控制论、信息论、系统论为基础,研究各领域内独立于具体对象的共性问题,即为了实现某些目标,应该如何描述与分析对象与环境信息,采取何种控制与决策行为。它对于各具体应用领域具有一般方法论的意义,而与各领域具体问题的结合,又形成了控制工程丰富多样的内容。本学科的这一特点,使它对相关学科的发展起到了有力的推动作用,并在学科交叉与渗透中表现出突出的活力。例如:它与信息科学和计算机科学的结合开拓了知识工程和智能机器人领域。与社会学、经济学的结合使研究的对象进入到社会系统和经济系统的范畴中。与生物学、医学的结合更有力地推动了生物控制论的发展。同时,相邻学科如计算机、通信、微电子学和认知科学的发展也促进了控制科学与工程的新发展,使本学科所涉及的研究领域不断扩大。 相关学科关系 本学科在本科阶段叫自动化,研究生阶段叫控制科学与工程,本学科下设的六个二级学科:“控制理论与控制工程”、“检测技术与自动装置”、“系统工程”、“模式识别与智能系统”、“导航、制导与控制”和“企业信息化系统与工程”。各二级学科的主要研究范畴及相互联系如下。

现代控制理论简答题

4、在经典控制理论中没有给出稳定性的一般定义,因为从经典控制理论可知,线性系统的稳定性只决定于系统的结构和参数而与系统的初始条件及外界扰动的大小无关。但非线性系统的稳定性则还与初始条件及外界扰动的大小有关。 李雅普诺夫第二法是一种普遍适用于线性系统、非线性系统及时变系统稳定性分析的方法。李雅普诺夫第二法给出了对任何系统都普遍适用的稳定性的一般定义。 44.何为系统一致能控?系统对于任意的t0Etd均是状态完全能控的。 45.何谓系统的实现问题?由系统传递函数建立状态空间模型这类问题称为系统实现问题。 46.何谓系统的最小实现?将维数最小的实现称为系统的最小实现。从工程的观点看,在无穷多个内部不同结构的系统中,其中维数最小的一类系统就是所谓的最小实现问题。 47.系统最小实现的充要条件是系统和条件能控又能观。 48. 平衡态指状态空间中状态变量的导数向量为零向量的点。 49. 平衡点:由平衡状态在状态空间中所确定的点,称为平衡点。 50. 控制理论最基本的任务是对给定的被控系统设计能满足所期望的性能指标的闭环控制系统即寻找反馈控制律, 51. 极点配置问题,①闭环极点可任意配置的条件,②如何设计反馈增益矩阵使闭环极点配置在期望极点处。 52. 系统镇定问题:受控系统通过状态反馈(或者输出反馈)使得闭环系统渐进稳定。 53. 系统解耦:就是消除系统间耦合关联作用。 状态观测器:重构或估计系统状态变量值的装置称为状态观测器。 状态变量:指能完全表征系统运动状态的最小一组变量。 状态向量:若一个系统有n个彼此独立的状态变量x1(t),x2(t)…xn(t),用它们作为分量所构成的向量x(t),就称为状态向量。 状态空间表达式:状态方程和输出方程结合起来,构成对一个系统动态行为的完整描述。 x(t)=Φ(t-t0)x(t0)的物理意义:是自由运动的解仅是初始状态的转移,状态转移矩阵包含了系统自由运动的全部信息,其唯一决定了系统中各状态变量的自由运动。状态方程解的意义:线定定常连续系统状态方程的解由两部分相加组成,一部分是由初始状态所引起的自由运动即零输入相应,第二部分是由输入所引起的系统强迫运动,与输入有关称为零状态相应。 系统能控性:控制作用对被控系统的状态和输出进行控制的可能性。 系统能观性:反应由能直接测量的输入输出的量测值来确定系统内部动态特征的状态的可能性。 经典控制理论讨论的是在有界输入下,是否产生有界输出的输入输出稳定性问题,李氏方法讨论的是动态系统各平衡态附近的局部稳定性问题 状态反馈不改变被控系统的能控性;输出反馈不改变被控系统的能控性和能观测性

控制理论与控制工程概述

学科介绍 该学科为交叉学科,不同的大学该学科均有不同的侧重点: 控制理论与控制工程学科是以工程系统为主要对象,以数学方法和计算机技术为主要工具,研究各种控制策略及控制系统的理论、方法和技术。控制理论是学科的重要基础和核心内容,控制工程是学科的背景动力和发展目标。本学科的智能控制方向主要包括模糊控制、专家系统、神经元网络、遗传算法等方面的研究,特别强调的是上述方法的交叉及其在工业过程控制方面的应用。故障诊断方向主要研究当控制系统一旦发生故障时,仍能保证闭环系统稳定,且满足规定的性能指标。利用获得的实时数据对生产过程进行在线监测及故障诊断,根据系统的运行状态制定相应的控制策略,使系统工作在最佳状态。鲁棒控制方向主要研究被控对象参数变化后,控制系统仍能稳定可靠的工作,并在某种意义下保证系统的最优性。信号处理方向主要研究控制系统中的信号处理问题,包括非线性系统的鲁棒滤波器的设计,自适应滤波器、噪声抵消器、小波分析等。 控制理论与控制工程是研究运动系统的行为、受控后的运动状态以及达到预期动静态性能的一门综合性学科。在理论方面,利用各种数学工具描述系统的动静态特性,以建模、预测、优化决策及控制为主要研究内容。在应用方面,将理论上的研究成果与计算机技术、网络技术和现代检测技术相结合,形成各种新型的控制器或控制系统。研究内容涵盖从基础理论到工程设计与实现技术的多个层次,应用遍及从工业生产过程到航空航天系统以及社会经济系统等极其广泛的领域。 研究方向 复杂系统控制理论与应用:采用结构分散化方法研究复杂系统的建模与控制问题,以结构分散化模型为基础,研究新的系统辨识理论和新的控制方法。 智能控制理论研究与应用:在对模糊控制、神经网络、专家系统和遗传算法等理论进行分析和研究的基础上,重点研究多种智能方法综合应用的集成智能控制算法。 计算机控制系统:针对不同的生产过程和控制对象,研究采用DCS、PLC、工业控制计算机等控制设备,构成低成本、高性能、多功能的计算机控制系统。 网络控制理论及其应用:通过对网络拓扑结构及网络环境下先进控制理论与方法的研究,充分利用网络资源,实现从决策到控制的全过程优化。 开设学校

伺服电机的工作原理

https://www.doczj.com/doc/6f18626770.html,/ebook/2007/B10036766/5.html https://www.doczj.com/doc/6f18626770.html,/ebook/2007/B10036766/5.html https://www.doczj.com/doc/6f18626770.html, 伺服电机的工作原理2008-04-10 10:42伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降.。 请问交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制滚珠丝杆,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。永磁交流伺服电动机20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。 永磁交流伺服电动机同直流伺服电动机比较,主要优点有:⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。⑵定子绕组散热比较方便。⑶惯量小,易于提高系统的快速性波纹管联轴器。⑷适应于高速大力矩工作状态。⑸同功率下有较小的体积和重量。 伺服和步进电机 伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。 步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号)弹性联轴器,但

山东科技控制理论与控制工程专业英语作业

PID控制器设计 1、the original system step response diagram, The root locus diagram and Bode diagram. The transfer function of controlled object is: G s= 15 (s+2)(s2+3s+5) Simulation with matlab: clear

s1=tf([15],[1,5,15,10]) s2=feedback(s1,1) figure(1),step(s2),grid figure(2),rlocus(s1),grid figure(3),bode(s1),grid Figure 1 Step Response Diagram We can find: ×100%=16.7% Overshoot:σ=0.7?0.6 0.6 Adjustment time:t s=4.5s

Figure 2 Root Locus Plot Diagram Figure 3 Bode diagram

2、PID parameter tuning It can be seen from Figure 2 that the root trajectory of the system has two branches that are routed through the imaginary axis. According to the characteristics of the system stability, it can be known that the system is unstable when the trajectories are distributed in the right half of the complex plane The system is stable if distributed over the left half plane. The point at which the root trajectory intersects the imaginary axis is the critical stability of the system, and the value of K is the critical ratio of the amplitude of the amplitude. From the root trajectory curve of the system, we can see that the open-loop gain of the intersection of the root locus and the imaginary axis is K =4. At this time, the integral time constant and the differential time constant are obtained. The amplitude curve is plotted by matlab. The program and result are as follows: s3=tf([20],[1,5,7,4]) s4=feedback(s3,1) figure(4),step(s4),grid

现代控制理论习题解答(第五章)

第五章 状态反馈和状态观测器 3-5-1 已知系统结构图如图题3-5-1图所示。 (1)写出系统状态空间表达式; (2)试设计一个状态反馈矩阵,将闭环极点特征值配置在j 53±-上。 ) (t y 题3-5-1图 【解】: 方法一: 根据系统结构直接设状态变量如题3-5-1图所示,写状态空间表达式: []x y u x x 10112101=??????-+??????--=& 23111=? ? ????--=c c U rank U 系统能控,可以设计状态反馈阵。 设状态反馈阵为][21k k K = 状态反馈控制规律为:Kx r u -= 求希望特征多项式: 34625)3()(*22++=++=s s s s f 求加入反馈后的系统特征多项式: )22()3()(1212k s k k s bK A sI s f ++-++=+-= 依据极点配置的定义求反馈矩阵: ]1316[1316 34)22(6 )3(2 1112=?? ?==?? ? ?=+=+-K k k k k k 方法二: [][][]1316)346(311110)(*1021 1 =++? ? ? ???--==--I A A A f U K c 方法三:(若不考虑原受控对象的结构,仅从配置极点位置的角度出发) 求系统传递函数写出能控标准型:

2 321)111()()(2 ++-=+-+=s s s s s s U s Y []x y u x x 10103210 -=??????+??????--=& 求系统希望特征多项式: 34625)3()(*22++=++=s s s s f 求状态反馈矩阵K ~ : [][][]33236234~ 21 =--==k k K [][] [][]5.05.0311110101 1 1=? ? ? ???--==--Ab b P ????? ?-=??????=105.05.011A P P P []1316~ ==P K K 【解】: 依据系统传递函数写出能控标准型 s s s s s s s U s Y 2310 )2)(1(10)()(23 ++=++= []x y u x x 0010 10032010001 0=????? ?????+??????????--=& 求系统希望特征多项式: 464]1)1)[(2()(*232+++=+++=s s s s s s f 求状态反馈矩阵: [][][]14434260432 1 =---==k k k K 。

相关主题
文本预览
相关文档 最新文档