当前位置:文档之家› 植物分子系统学课件

植物分子系统学课件

植物生态学

植物生态学 第一章绪论 生态学:生态学是研究生物及环境间相互关系的科学(德国,HAECKEL,1866);生态学是研究生态系统结构和功能的科学(美国Odum,1983);生态学是研究影响有机体分布与多度的科学(加拿大Krebs,1985)。 根据研究对象的组织水平划分 分子生态学个体生态学 种群生态学群落生态学 生态系统生态学景观生态学 区域生态学全球生态学 生态学前沿科学领域与热点问题: (1)生物多样性的起源、维持和生态系统的稳定性机制 (2)生态系统服务 (3)生态健康与生态修复 (4)全球变化 (5)生态环境变迁与重大疫病和人群健康效应 (6)转基因生物释放的生态效应 (7)生态入侵 生态学发展经历了哪几个阶段 分为4个时期:生态学的萌芽时期(公元16世纪以前),生态学的建立时期(公元17世纪至19世纪末),生态学的巩固时期(20世纪初至20世纪50年代),现代生态学时期(20世纪60年代至现在)。

简述生态学研究的方法 生态学研究方法包括野外调查研究,实验室研究以及系统分析和模型三种类型. 野外调查研究是指在自然界原生境对生物与环境关系的考察研究,包括野外考察,定位观测和原地实验等方法.实验室研究是在模拟自然生态系统的受控生态实验系统中研窆单项或多项因子相互作用,及其对种群或群落影响的方法技术.系统分析和模型是指对野外调查研究或受控生态实验的大量资料和数据进行综合归纳分析,表达各种变量之间存在的种种相互关系,反映客观生态规律性,模拟自然生 态系统的方法技术. 生态学是研究生物与生物以及生物与环境的相互关系的科学。从生物大分子、基因、细胞、个体、种群、群落、生态系统、景观直到生物圈都是生态学研究的对象和范围。 植物生态学:研究植物之间、植物与环境之间相互关系的科学。它研究的内容主要包括植物个体对不同环境的适应性,及环境对植物个体的影响;植物种群和群落在不同环境中的形成及发展过程;以及在生态系统的能量流动、物质循环中植物的作用。 第二章植物的生存环境 生态系统中,连接生命物资和非生命物质的枢纽正是由绿色植物所组成的植被。环境:是指某一特定生物体或生物群体以外的空间,以及直接或间接影响该生物体或生物群体生存的一切事物的总和。 生物圈:生物圈是指地球表面的生物及其周围的物理环境所组成的总体,是生活物质及其生命活动的产物所集中的圈层。 生态环境:研究的生物体或生物群体以外的空间中,直接或间接影响该生物体或生物群体生存和发展的一切因素的总和。 区域环境:由于地球环境的非均一性而形成的区域环境,各个区域都是气候和地

植物系统学

植物系统学综述 发展、动态: 经典的植物分类学始自林奈时期,称为古典植物分类学时期,时间大致从 18世纪中叶到19世纪末。这一时期,主要是采集标本,根据植物形态的差别对植物进行命名,编写世界各地的植物志以及利用当时所知的全部形态学知识,作为建立自然学说的依据,努力建立一个能反映自然实际的分类系统。工作场所主要是自然界、图书馆和标本室,故工具简单,手段原始,方法只限于绘图和描述等。 古典的植物分类学为植物系统学的形成奠定了基础。达尔文进化论提出以后,植物进化的观点日益深入人心,分类学的概念和工作方法也有所改变。分类学在鉴别种类的同时,也注意研究植物间的相互关系和分布规律,进而形成了植物系统学。 随着植物学各分支学科的不断发展,使系统学与其他学科如解剖学、胚胎学、细胞学、古植物学、遗传学、生态学等保持密切的联系。植物系统分类从这些学科中取得旁证,进而分化出系统解剖学和细胞分类学。 细胞分类学(Cytotaxonomy)以细胞学资料(包括染色体数目、染色体形态结构、染色体组型分析和多倍体等)作为系统关系的依据,结合形态学、解剖学和遗传学等方面的证据,确定分类单位和研究系统演

化。但自然界植物种类繁多,生长环境差别很大,系统演化错综复杂,染色体数目也有变化,所以在植物系统研究中,细胞学资料只是其中的一个参考。 20世纪近代科学技术的发展,特别是生物化学、分子生物学的发展,生命的基本物质核酸、蛋白质等被深入研究,以这些学科的成就应用于植物系统分类中,使古典分类学不在满足于停留在描述阶段,而要求有所突破,向着实验科学发展,便产生了实验分类学和化学分类学。 化学分类学在20世纪60年代左右建立起来,利用化学的特征来研究植物各类群之间的亲缘关系,探讨植物界的演化规律,是在分子水平上来研究植物分类和系统演化的一门学科。它的主要研究任务是:研究各分类阶元所含化学成分的特性和合成途径。作为指标的化合物包括小分子化合物、萜类化合物、蛋白质和核酸等。植物中大分子化合物的研究是以后化学分类学的重点。 20世纪60年代后,在生物学各分支学科对各种生物研究大量积累了新证据以及化石证据不断发现的同时,研究系统的方法也多样化,其中最具代表性的就是莎个系统学派,即表相分类李派Pheriotic(亦称数值分类学Numeric classification )、分支分类学派Cladistics(亦称系统发育分类Phylogenetic)和进化分类学派Evolutionary(亦称综合系统学派Synthetic Systematic)。

植物学分类哈钦松系统

G1 铁科Cycadaceae 1:207 4:3 7 3: 1 1:285 1:338 上:83 G2 银杏科Ginkgoaceae 4:6 7 3:11 1:286 1:339 上:84 G3 南洋杉科Araucariaceae 1:214 4:8 7 3:12 1:316 1:340 上:85 G4 松科Pinaceae 1:208 4:11 7 3:13 1:286 1:342 上:86 G5 杉科Taxodiaceae 4:19 7 3:68 1:313 1:359 上:100 G6 柏科Cupressaceae 1:212 4:25 7 3:73 1:316 1:369 上:106 G7 罗汉松科Podocarpaceae 1:215 4:32 7 3:95 1:327 1:380 上:116 G8 三尖杉科Cephalotaxaceae 1:219 4:38 7 3:101 1:330 1:383 上:117 G9 红豆杉科Taxaceae 4:41 7 3:105 1:331 1:385 上:119 G10 麻黄科Ephedraceae 7 1:336 G11 买麻藤科Gnetaceae 1:220 4:44 7 3:118 1:338 1 木兰科Magnoliaceae 1:22 2 1:1 30(1)3:12 3 1:785 2:327 下:193 2A 八角科Illiciaceae 1:230 2:1 3:360 3 五味子科Schisandraceae 1:232 1:22 3:367 6 昆栏树科Trochodendroaceae 2 7 3:697 1:649 6B 水青树科Tetracentraceae 7 连香树科Cercidiphyllaceae 27 3:697 1:650 2:253 8 番荔枝科Annonaceae 1:234 2:7 30(2)3:158 1:805 2:346 10 檬立米科Monimiaceae 11 樟科Lauraceae 1:259 31 3:206 1:816 2:347 下:204 13 莲叶桐科Hernandiaceae 1:301 3:1 31 3:304 1:864 14 肉豆蔻科Myristicaceae 1:303 2:41 30(2)3:196 1:814 15 毛茛科Ranumculaceae 1:304 5:1 27,28 3:388 1:651 2:254 下:158 16 莼菜科Cabombaceae 3:385 17 金鱼藻科Ceratophyllaceae 3:5 27 3:386 1:649 2:250 下:157 18 睡莲科Nymphaeaceae 1:309 3:6 27 3:379 1:646 2:245 下:154 19 小檗科Berberidaceae 3:11 26 1:758 2:307 下:186 20 星叶草科Circaeasteraceae 3:581 21 木通科Lardizabalaceae 1:311 4:49 29 3:583 1:753 2:299 下:183 22 大血藤科Sargentoboxaceae 1:312 4:56 3:582 下:185 23 防己科Menispermaceae 1:313 1:27 30(1)3:596 1:778 2:320 下:190 24 马兜铃科Aristolochiaceae 1:326 1:47 24 3:336 1:541 2:134 下:90 25 大花草科Cytinaceae 2:44 24 7:773 27 猪笼草科Nepenthaceae 1:329 2:46 34(1)5:104 2:72 28 胡椒科Piperaceae 1:330 1:63 20(1)3:318 1:341 2:5 29 三白草科Saururaceae 1:338 1:78 20(1)3:316 1:339 2:3 下:13

狭义五福花科的分子系统学和物种分化

狭义五福花科的分子系统学和物种分化* 毛康珊1,姚醒蕾2,黄朝晖1** (1兰州大学干旱与草地生态学重点实验室,甘肃兰州 730000;2大坂大学生物制药学系 药物学研究所,日本大坂 565-0871) 摘要:狭义五福花科(Adoxaceae 1s 1s)仅含3属4种,但该科的物种分化、系统发育和分类 一直存在争议。本文通过测定东方五福花和血满草的ITS (核糖体DNA 内转录间隔区)序 列,构建了包括狭义五福花科(4种)、广义忍冬科接骨木属、荚属以及其 余4属植物在 内的系统发育树。研究结果不支持狭义五福花科内根据形态学证据做出的系统发育假设:四 福花不是该科中最早分化出来的种;该物种与五福花属的两个物种形成一个单系群,与另一 分支华福花属相对应。该科中3个物种,四福花、五福花和华福花之间的分化主要是在二倍 体水平上的异域分化,而东方五福花则是通过多倍化形成的。粗略的时间估算表明这些物种 之间的分化较晚,可能在第三纪末至第四纪早中期,与青池高原近期强烈隆升以及冰期气候 反复变化形成的环境变迁密切相关。 关键词:五福花科;分子系统学;物种分化;高原隆升 中图分类号:Q 949,Q 943 文献标识码:A 文章编号:0253-2700(2005)06-0620-09 Molecu lar Phylogeny and Species Speciation of Adoxaceae 1s 1s MAO Kang -Shan 1,YAO Xing -Lei 2,HUANG Zhao -Hui 1** (1Key Labo ratory o f Arid and Grassland Ecology ,Lanzhou U ni versity ,Lanz hou 730000,Chi na; 2De part ment o f Bio pharmaceutics ,Graduate School o f Pharmace utical Sc ienc es ,Osaka U nive rsity , 1-6Y amadaoka ,Suita,Osaka 565-0871,J apan) Abstract :It remains unclear about the speciation and phylogeny of Adoxaceae s 1s.,a small family with 3genera and 4species.In this paper,ITS (nuclear DNA internal transcribed spacer)regions of Adoxa orientalis and Sa mbucus adnata were firstly sequenced.Phylogenetic trees were cons tructed for all species of Adoxaceae (four species),Sambucus ,Viburnum and four genera of Caprifoliaceae.The divergences among four species of this family were further calculated based on the calibration of the fossil records of the Caprifoliaceae and the general evolutionary rate of herbs for ITS.The phylogenetic analyses did not support the previous assumptions on the phylogeny and species divergence of Adoxaceae s 1s.based on the morpho - logical evidence:Tetradox a is not the firstly diverged and i t clustered wi th two species of Adox a as a 云南植物研究 2005,27(6):620~628Acta Botanica Yunnanica ***现工作单位:湖北省天门市环保局 收稿日期:2005-04-18,2005-09-05接受发表 作者简介:毛康珊(1983-)男,甘肃人,在读硕士研究生,主要从事分子生态学及生物地理学研究。E-mail:maokangshan@yahoo 1c om 1cn 基金项目:教育部优秀博士论文基金(FA N2003027)

被子植物4大分类系统复习过程

被子植物4大分类系 统

被子植物4大分类系统 1、克朗奎斯特分类法 是由美国学者阿瑟·克朗奎斯特(1919年—1992年)最早于1958年发表的一种对有花植物进行分类的体系,1981年在他的著作《有花植物的综合分类系统》中最终完善。包括64个目和383个科,现在还有许多植物学家仍然使用这种分类体系,但大部分科学家都倾向于最新的APG II 分类法。 目录 木兰纲 Magnoliopsida 1. 木兰亚纲 Magnoliidae 2. 金缕梅亚纲 Hamamelidae Hamamelididae 3. 石竹亚纲 Caryophyllidae 4. 五桠果亚纲 Dilleniidae 5. 蔷薇亚纲 Rosidae 6. 菊亚纲 Asteridae 百合纲 Liliopsida 1. 泽泻亚纲 Alismatidae 2. 槟榔亚纲 Arecidae 3. 鸭跖草亚纲 Commelinidae 4. 姜亚纲 Zingiberidae 5. 百合亚纲 Liliidae 克朗奎斯特分类法将被子植物分为两大纲: 2、哈钦松系统 这是英国植物学家哈钦松(J.Hutchinson)于1926 年和1934年在其《有花植物科志》I、 II中所建立的系统。在1973年修订的第三版中,共有111目,411科,其中双子叶植物82目,342科,单子叶植物29 目,69科。 目录 主要特点 实际应用

哈钦松系统认为多心皮的木兰目、毛茛目是被子植物的原始类群,但过分强调了木本和草本两个来源,认为木本植物均由木兰目演化而来,草本植物均由毛茛目演化而来,结果使得亲缘关系很近的一些科在系统位置上都相隔很远,如草本的伞形科和木本的山茱萸科、五加科;草本的唇形科和木本的马鞭草科等,这种观点亦受到现代多数分类学家所反对。 主要特点 a.两性花比单性花原始,花部分离,多数,螺旋状排列的比花各部合生、定数、轮生的进化,虫媒比风媒原始。在现代被子植物中,多心皮类包括木兰目和毛茛目是最原始的。 b.单被花和无被花是次生的,来源于双被花类;柔荑花序类群较进化,起源于金缕梅目。 c.单子叶植物和双子叶植物有共同的起源,木本植物起源于木兰目,草本植物起源于毛茛目。 哈钦松系统分科比较小,较易运用和掌握,被子植物在最后修正的系统里有411科。目前在我国,建立较晚的标本室,如中科院昆明植物所、华南植物所、广西植物所、福建、贵州的经济植物标本室,多用哈钦松系统。南方的高等院校植物标本室也多采用哈钦松系统排列标本。 有人认为1973年版比原版更不好用,比如有些双子叶植物科本来关系较接近,如唇形目与马鞭草目用草本支、木本支为标准在系统树很早被分开,但实际上关系很近,五加科与伞形科亦是如此。人们宁可用旧版而不用它的新版系统,认为新版加重二元思想的色彩。 a.两性花比单性花原始,花部分离,多数,螺旋状排列的比花各部合生、定数、轮生的进化,虫媒比风媒原始。在现代被子植物中,多心皮类包括木兰目和毛茛目是最原始的。 b.单被花和无被花是次生的,来源于双被花类;柔荑花序类群较进化,起源于金缕梅目。 c.单子叶植物和双子叶植物有共同的起源,木本植物起源于木兰目,草本植物起源于毛茛目。 实际应用

植物生态学

植物生态学 生态学:是研究有机体与其周围环境(包括非生物环境和生物环境)相互关系的科学。目前已经发展为“研究生物与其环境之间的相互关系的科学”。有自己的研究对象、任务和方法的比较完整和独立的学科。它们的研究方法经过描述——实验——物质定量三个过程。系统论、控制论、信息论的概念和方法的引入,促进了生态学理论的发展。 环境:人类生存的空间及其中可以直接或间接影响人类生活和发展的各种自然因素称为环境。 生态因子:指对生物有影响的各种环境因子。常直接作用于个体和群体,主要影响个体生存和繁殖、种群分布和数量、群落结构和功能等。各个生态因子不仅本身起作用,而且相互发生作用,既受周围其它因子的影响,反过来又影响其它因子。 作用形式大体有3类: ①构成维持生物代谢和繁殖所必需的营养物质和理化条件。这些理化条件也都表现为能量或物质,如日照、温度、pH值、渗透压等。 ②构成种种破坏力量。例如天敌、自然灾害(超限的理化条件)及某些人类活动(滥垦滥牧、工业污染等)。 ③仅仅作为信息,诱发生物的节律性反应。例如日照和温度的昼夜或季节变化,能引起植物的萌发、生长、开花等阶段变化和动物的冬眠、迁徙等周期活动。 生态因子作用的直接对象是生物个体,但通过生物间的交互作用会影响到群体。同种动物的集群活动可以增加取食和避敌能力。群落食物中某环节的增减,常导致连锁反应,例如天气变化造成蝗群增长及其相变,继而导致迁飞,破坏迁入地的大片植被。 生态因子的作用与生物的适应性密切相关。对于温度,各物种反应不同,有些物种能适应的温度却可能使另一些物种死亡。一般说,生物在不同发育阶段的适应性也不大相同。环境在变,生物的适应性也随之改变。一个物种可能通过生理过程适应一个新环境,当新旧环境差别太显著时,可能需要较长时期的适应过程,引种驯化便属此类。在生物发展史中,生态因子作为选择因素淘汰掉不适应的物种。生态因子还可能直接诱发基因突变或重组,促进生物进化的进程。 (1)李比希最小因子定律 1840年农业化学家J. Liebig在研究营养元素与植物生长的关系时发现,植物生长并非经常受到大量需要的自然界中丰富的营养物质如水和CO2的限制,而是受到一些需要量小的微量元素如硼的影响。因此他提出“植物的生长取决于那些处于最少量因素的营养元素”, (2)耐受定理 生态学家V. E. Shelford于1913年研究指出,生物的生存需要依赖环境中的多种条件,而且生物有机体对环境因子的耐受性有一个上限和下限,任何因子不足或过多,接近或超过了某种生物的耐受限度,该种生物的生存就会受到影响,甚至灭绝。这就是耐受定律。后来

植物学分类哈钦松系统

植物学分类哈钦松系统集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

海南志广东志中国志高等植物图鉴浙江志江苏志科号 科名 1:207 4:3 7 3: 1 1:285 1:338 上:83 G1 苏铁科Cycadaceae 4:6 7 3: 11 1:286 1:339 上:84 G2 银杏科Ginkgoaceae 1:214 4:8 7 3: 12 1:316 1:340 上:85 G3 南洋杉科Araucariaceae 1:208 4:11 7 3: 13 1:286 1:342 上:86 G4 松科Pinaceae 4:19 7 3: 68 1:313 1:359 上:100 G5 杉科Taxodiaceae 1:212 4:25 7 3: 73 1:316 1:369 上:106 G6 柏科Cupressaceae 1:215 4:32 7 3: 95 1:327 1:380 上:116 G7 罗汉松科Podocarpaceae 1:219 4:38 7 3:101 1:330 1:383 上:117 G8 三尖杉科Cephalotaxaceae 4:41 7 3:105 1:331 1:385 上:119 G9 红豆杉科Taxaceae 7 1:336 G10 麻黄科Ephedraceae 1:220 4:44 7 3:118 1:338 G11 买麻藤科Gnetaceae 1:222 1:1 30(1)3:123 1:785 2:327 下:193 1木兰科Magnoliaceae 1:230 2:1 3:360 2A 八角科Illiciaceae 1:232 1: 22 3:367 3五味子科Schisandraceae 27 3:697 1:649 6昆栏树科Trochodendroaceae 6B水青树科Tetracentraceae 27 3:697 1:650 2:253 7连香树科Cercidiphyllaceae 1:234 2:7 30(2)3:158 1:805 2:346 8番荔枝科Annonaceae 10檬立米科Monimiaceae 1:259 31 3:206 1:816 2:347 下:204 11樟科Lauraceae 1:301 3:1 31 3:304 1:864 13莲叶桐科Hernandiaceae 1:303 2:41 30(2)3:196 1:814 14肉豆蔻科Myristicaceae 1:304 5:1 27,28 3:388 1:651 2:254 下:158 15毛茛科Ranumculaceae 3:385 16莼菜科Cabombaceae 3:5 27 3:386 1:649 2:250 下:157 17金鱼藻科Ceratophyllaceae 1:309 3:6 27 3:379 1:646 2:245 下:154 18睡莲科Nymphaeaceae 3:11 26 1:758 2:307 下:186 19小檗科Berberidaceae 3:581 20星叶草科Circaeasteraceae 1:311 4:49 29 3:583 1:753 2:299 下:183 21木通科Lardizabalaceae 1:312 4:56 3:582 下:185 22大血藤科Sargentoboxaceae 1:313 1:27 30(1)3:596 1:778 2:320 下:190 23防己科Menispermaceae 1:326 1:47 24 3:336 1:541 2:134 下:90 24马兜铃科Aristolochiaceae 2:44 24 7:773 25大花草科Cytinaceae 1:329 2:46 34(1)5:104 2: 72 27猪笼草科Nepenthaceae 1:330 1:63 20(1)3:318 1:341 2:5 28胡椒科Piperaceae

植物生态学含植物学

《植物生态学》(含植物学)考试大纲 注:请考生以考试大纲为复习依据。(硕士研究生招生目录中所列“852植物生态学”,包含“植物学”。) 一、考试大纲的性质 植物学(含植物生态学)是自然保护区学的专业基础课,也是报考自然保护区学科硕士研究生的考试科目之一。为帮助考生明确考试复习范围和有关要求,特制定出本考试大纲。 本考试大纲主要参考北京林业大学本科生《植物学》课程教学大纲和《森林生态学》课程教学大纲编制而成,适用于报考北京林业大学自然保护区学专业硕士学位研究生的考生。 二、考试内容 第一部分植物学部分 第一章绪论 植物在自然界的作用;植物学的研究内容及分科;植物的多样性。 第二章植物细胞 各种细胞器的结构和功能特点;细胞壁的组成和变化;细胞周期的概念;有丝分裂和减数分裂的过程和主要的变化。 第三章植物组织 组织的概念;组织的类型及特点;维管组织、维管束、维管系统的概念。 第四章种子植物营养器官的形态、构造和功能

种子的构造和类型及种子萌发过程和种子休眠类型及机理。根、芽、茎、叶的类型,构造与生长发育;植物营养器官的变态(变态的概念和变态的种类)。种子植物的营养繁殖及应用。 第五章种子植物繁殖器官的形态构造及生殖过程 被子植物的繁殖器官及生殖过程:花的结构和发育;开花传粉、种子和果实的形成。裸子植物的繁殖器官及生殖过程:大、小孢子叶球的产生和发育;雌、雄配子体的发生、发育过程;传粉与受精;胚、胚乳的发育及种子的形成。(注意与被子植物的区别) 第六章植物界的基本类群 植物的分类单位、命名和生物界的划分,植物各基本类群的特点、相互之间的联系及进化历程中的地位。 第七章被子植物分类基础 1被子植物分类的主要形态术语、基础知识:茎的生长习性;单、复叶的区别及复叶类型;雌、雄蕊类型、子房位置、胎座类型;花序类型、果实类型;植物检索表的编制和使用。 2被子植物主要分类系统及重要区别点:恩格勒系统、哈钦松系统、塔赫他间系统、克朗奎斯特系统。 3被子植物分科概述:常见的科的识别要点;蔷薇科、豆科、菊科、禾本科等大科的亚科之间的区别;特点相近科的区别。 第二部分植物生态学部分 第一章环境与生态因子 植物的环境及相关概念,生态因子的分类和作用规律

高级植物生理学课件-ppt-word

第一章:植物的水分代谢 一、植物对水分的需要 For every gram of organic matter made by the plant, approximately 500 g of water is absorbed by the roots, 水分在生命活动中的作用 细胞内水分呈束缚水和自由水两种状态 水分是细胞质的主要成分 水分是代谢过程的反应物质 水分是植物对物质吸收和运输的溶剂 水分能保持植物的固有姿态 二、植物对水分变化的反应及生态类型即水生植物和陆生植物 (一)水生植物 水生植物(hydrophite)指植株全部或至少根系可一直生长在水中的植物。根据它们在水中的生长状态,可以把它们划分为 沉水植物(submerged plant) 浮水植物(floating—leaf plant) 挺水植物(emerged plant) 沉水植物(submerged plant) 是指整个植物体都浸没在水中的植物其中一种类型是扎根于水底的土壤 另一种类型则是悬浮于水中而根系退化的 由于水中氧少光弱,因而植物的通气组织发达,构成连续的通气网络。整个植株都可直接吸收水、矿质营养和水中的气体 浮水植物(floating—leaf plant) 指那些植物体完全漂浮在水面上或植物扎根于水底而叶子漂浮在水面上的植物 浮水植物水下部分结构与沉水植物相似,但水面上部分由于直接与空气接触,表皮细胞常具薄的角质层,气孔一般只生于叶的上表皮,并有通气结构贯通整个植物 挺水植物(emerged plant) 指那些根、下部茎,有的还包括部分下部叶浸没于水中,而上部的茎叶挺伸出水面以上的植物挺水植物的维管组织、机械组织和保护组织在水生植物中是最发达的,并具有良好的通气组织,常能忍受一定时间限度的土壤干燥 (二)陆生植物 湿生植物(hygrophyte) 中生植物(mesophyte) 旱生植物(xerophytic plant) 短命植物(short—1ife plant) 避旱植物(drought—evading plant) 耐旱植物(drought—enduring plant) 抗旱植物(drought—resisting Plant) 三、水分经植物从土壤到大气,水势 T r e e s c a n g r o w m u c h t a l l e r t h a n10m ?Suction tension(吸水压) in the xylem must be greater than that of a vacuum ?Water potential (or pressure) in the xylem must be negative ?How do we account for a negative water potential (pressure)? W a t e r m o v e m e n t b e t w e e n c o m p a r t m e n t s yp = -RTc R: gas constant T: temperature (K) c: solute concentration G e n e r a t i o n o f r o o t p r e s s u r e i n a n e x c i s e d p l a n t 四、根系对水分的吸收water-channel proteins (aquaporins) E x o d e r m i s a n d e n d o d e r m i s

叶绿体DNA(cpDNA)研究与植物系统学

一.叶绿体DNA(cpDNA)研究与植物系统学 1. 分子系统学研究中常用的标记 分子生物学技术的发展为植物育种提供了一种基于DNA变异的新型遗传标记——DNA分子标记,或简称分子标记。与传统应用的常规遗传标记相比,分子标记具有许多明显的优点,因而已被广泛应用于现代作物遗传育种研究的各个方面,大量以前无法进行的研究目前利用分子标记手段正蓬勃开展,并取得丰硕的成果。尤其是当分子标记技术走出实验室与常规育种紧密结合后,正在为植物的系统学研究带来一场新的变革。 目前用于植物系统进化、遗传多样性以及植物地理学研究的分子标记和方法有多种。总体来看可以分为4类,即:(1)蛋白质标记;(2)DNA序列分析;(3)DNA指纹分析;(4)DNA构象变化与SSCP 分析[1]。 DNA序列可以直接反映物种的基因型,并记录进化过程中发生的每一个变化,含有极为丰富的进化信息。依据DNA序列上的差异来比较植物的亲缘和演化关系,可以为植物系统与进化研究提供最直接的证据。当前用于研究的DNA序列主要分为两大类:叶绿体基因组(Chloroplast DNA,cpDNA)和核基因组(nuclear DNA,nDNA)本文采用的是叶绿体DNA(cpDNA)序列分析,故在此主要接介绍cpDNA序列分析。 2.cpDNA 叶绿体基因组(cpDNA)占植物总基因组DNA的10-20%,为

双链闭环结构,一般为120-220kb(多在120-160kb之间),被2个长约22-25kb的反向重复序列(IR)分成大拷贝区(LSc)和小两个单拷贝区(SSC)。 在过去二十年里,.植物系统学家们依据叶绿体DNA序列进行了大量的系统发育分析[2]。因为cpDNA具有一下优势:第一,叶绿体基因组在植物细胞中虽为多拷贝,但其序列都是一样的,便于操作[3];第二,叶绿体基因组是单亲遗传的,不存在核基因中出现的基因重组等问题;第三,由于叶绿体基因组序列的保守性,扩增叶绿体片段的引物是通用的;第四,非编码区的叶绿体DNA具有更多的信息位点,且测序的工作量不大,更适合于低等级类群的系统发育研究。尽管叶绿体基因在系统发育研究中有众多优点,但仍然存在不少缺点限制其使用[4]首先,相对缓慢的进化速率使得叶绿体基因序列在系统发育研究应用中局限于较高等级的类群;其次,由于是单亲遗传(在被子植物中是母系遗传),叶绿体DNA序列只能够推断杂交物种形成中的母系来源,比较适合于低等级类群的系统发育研究。如Araujol 等(2003)利用2个叶绿体片段研究柑橘亚科12个属的系统进化关系[5]。Makarevitch等〔2003)使用cpDNA(trnL和trnL-trnF基因间隔区)和RAPDs对22种俄罗斯莺尾进行研究,认为其中16个种来自亚属Subgen.Limniris下亚组sect.Limniri[6]。 目前常用的片段有两种类型,即叶绿体基因的编码区和非编码区。由于进化速率不同,两种片段分别用于解决不同的系统学问题。

中国青藓科(Brachytheciaceae)植物分子系统学研究

中国青藓科(Brachytheciaceae)植物分子系统学研究 【摘要】:青藓科(Brachytheciaceae)是侧蒴藓类中最大的科之一,其形态特征变化较大,在很大程度上表现出平行演化的特征,而且易受环境的影响,因此,青藓科的属间、属内种间在分类上一直存在很多争议。本研究共收集2000余份青藓科新鲜标本,根据向国外主要标本馆借阅的近百份模式标本,确定中国青藓科植物59种,其中《中国苔藓志》未报道的有3种(Rhynchostegiumpatulifolium,R.celebicum,Eurhynchiumpulchellum),中国特有种15种。在收集标本的基础上,通过分子系统学的研究,运用叶绿体基因片段trnL-F和psbT-H以及核基因片段ITS2序列,按照NJ、MP、ML、BI法则分别构建中国青藓科植物的系统发育树,并结合形态学特征对青藓科在分类中存在的问题进行深入的讨论,在此基础上提出中国青藓科新的分类系统,研究的主要结论如下:1.分子数据所构建的系统树显示,大多数Brachythecium种类分成2个分支,因此根据系统树的结构可以把青藓属分成两个属:Sciurohypnum和Brachythecium,前者包括Sciurohypnumplumosum,S.reflexum,S.populeum,S.moriense,S.amnicolum,S.viridefactum等;后者主要包括其他Brachythecium 种类。同时提出新组合:Sciurohypnummoriense(Besch.)LiuetY.F.Wang、S.amnicolum(C.Muell.)LiuetY.F.Wang、S.viridefactum(C.Muell.)LiuetY.F.Wang。2.分子证据证明了

被子植物的分类系统类型及其特点

被子植物的分类系统类型及其特点 对被子植物进行分类,是在植物亲缘关系的基础上对其进行分类,进而对分类系统进行监理,以阐述被子植物之间的演化关系[1]。自19世纪50年代以后,许多植物分类工作者根据各自对被子植物系统发育相关理论,对被子植物系统提出了不同的见解,但是由于被子植物起源、演化等方面知识和证据的不足[2],截至目前,被子植物的分类尚无完美的分类系统,当前应用较为普遍的主要有以下几种[3-5]。 1被子植物的主要分类系统类型 1.1恩格勒分类系统 恩格勒系统是1897年德国植物学家恩格勒(Engler)和柏兰特(Prantl)提出的,其在《植物自然分科志》一书中有所描述,是被子植物分类史上第1个较为完整的自然分类系统。该系统的提出是在假说的基础上,认为被子植物的原始特征是单性、无花瓣、风媒传粉、木本等,而其进化特征有两性、花瓣、虫媒传粉等,为此,恩格勒认为最原始的被子植物类型为葇荑花序类植物,而较为进化的类型为毛茛、木兰等科。上述假说是在艾希勒理论的基础上提出的,很多植物学家认为该理论不合理。因此,经过对恩格勒系统的多次修订,在1964年出版的第12版《植物分科志要》上,认为单子叶植物比双子叶植物要原始的理论是错误的,并进行了修改,仍将双子叶植物分为合瓣花亚纲和古生花被亚纲,基本系统大纲内仍将植物界划为17门,并未作多大改变,其中被子植物独立成被子植物门,共包括2纲,62目,344科。 1.2哈钦松分类系统 该系统是1926年英国植物学家哈钦松提出的,其在《有花植物科志》一书中对该系统进行了初步描述,1973年相应地做了修订,将被子植物的分类科数增加了,由原来的332科增加到411科。哈钦松系统认为与单性花相比,两性花更为原始;多数、各部分分离的花,比定数、连合的花更为原始;与轮状排列的花相比,各部分螺旋状排列的花更为原始;与草本植物相比,木本更为原始。该系统还认为被子植物为单元起源,双子叶植物的起点是毛茛目与木兰目,该系统认为毛茛目与木兰目这2支是平行发展的:一支木本植物从木兰目中演化出,一支草本植物从毛茛目种演化出;在被子植物的后来演化过程中,单花被、无被花逐渐蜕化而成;从金缕梅目中逐渐分出葇荑花序类各科。从双子叶植物的毛茛目中逐渐演化出单子叶植物,并在演进的早期就分化为3个进化线,即瓣花群、萼花群及颖花群。 1.3塔赫他间分类系统 塔赫他间系统于1954年公布。该系统认为被子植物从种子蕨中演化而来;从木本植物中演化出草本植物;从原始的水生双子叶植物(具单沟舟形粉的睡莲

被子植物4大分类系统

被子植物4大分类系统 1、克朗奎斯特分类法 是由美国学者阿瑟·克朗奎斯特(1919年—1992年)最早于1958年发表的一种对有花植物进行分类的体系,1981年在他的著作《有花植物的综合分类系统》中最终完善。包括64个目和383个科,现在还有许多植物学家仍然使用这种分类体系,但大部分科学家都倾向于最新的APG II 分类法。 目录 木兰纲Magnoliopsida 1. 木兰亚纲Magnoliidae 2. 金缕梅亚纲Hamamelidae Hamamelididae 3. 石竹亚纲Caryophyllidae 4. 五桠果亚纲Dilleniidae 5. 蔷薇亚纲Rosidae 6. 菊亚纲Asteridae 百合纲Liliopsida 1. 泽泻亚纲Alismatidae 2. 槟榔亚纲Arecidae 3. 鸭跖草亚纲Commelinidae 4. 姜亚纲Zingiberidae 5. 百合亚纲Liliidae 克朗奎斯特分类法将被子植物分为两大纲: 2、哈钦松系统 这是英国植物学家哈钦松(J.Hutchinson)于1926 年和1934年在其《有花植物科志》I、II中所建立的系统。在1973年修订的第三版中,共有111目,411科,其中双子叶植物82目,342科,单子叶植物29 目,69科。 目录 主要特点 实际应用 哈钦松系统认为多心皮的木兰目、毛茛目是被子植物的原始类群,但过分强调

了木本和草本两个来源,认为木本植物均由木兰目演化而来,草本植物均由毛茛目演化而来,结果使得亲缘关系很近的一些科在系统位置上都相隔很远,如草本的伞形科和木本的山茱萸科、五加科;草本的唇形科和木本的马鞭草科等,这种观点亦受到现代多数分类学家所反对。 主要特点 a.两性花比单性花原始,花部分离,多数,螺旋状排列的比花各部合生、定数、轮生的进化,虫媒比风媒原始。在现代被子植物中,多心皮类包括木兰目和毛茛目是最原始的。 b.单被花和无被花是次生的,来源于双被花类;柔荑花序类群较进化,起源于金缕梅目。 c.单子叶植物和双子叶植物有共同的起源,木本植物起源于木兰目,草本植物起源于毛茛目。 哈钦松系统分科比较小,较易运用和掌握,被子植物在最后修正的系统里有411科。目前在我国,建立较晚的标本室,如中科院昆明植物所、华南植物所、广西植物所、福建、贵州的经济植物标本室,多用哈钦松系统。南方的高等院校植物标本室也多采用哈钦松系统排列标本。 有人认为1973年版比原版更不好用,比如有些双子叶植物科本来关系较接近,如唇形目与马鞭草目用草本支、木本支为标准在系统树很早被分开,但实际上关系很近,五加科与伞形科亦是如此。人们宁可用旧版而不用它的新版系统,认为新版加重二元思想的色彩。 a.两性花比单性花原始,花部分离,多数,螺旋状排列的比花各部合生、定数、轮生的进化,虫媒比风媒原始。在现代被子植物中,多心皮类包括木兰目和毛茛目是最原始的。 b.单被花和无被花是次生的,来源于双被花类;柔荑花序类群较进化,起源于金缕梅目。 c.单子叶植物和双子叶植物有共同的起源,木本植物起源于木兰目,草本植物起源于毛茛目。 实际应用 哈钦松系统分科比较小,较易运用和掌握,被子植物在最后修正的系统里有

植物学分类哈钦松系统

科号科名海 南 志 广 东 志 中国志高等植物图鉴浙 江 志 江苏志 G1苏 铁 科Cycadaceae 1: 207 4: 3 7 3: 1 1:285 1: 338 上:83 G2银 杏 科Ginkgoaceae 4: 6 7 3: 11 1:286 1: 339 上:84 G3南 洋 杉 科Araucariaceae 1: 214 4: 8 7 3: 12 1:316 1: 340 上:85 G4松 科Pinaceae 1: 208 4: 11 7 3: 13 1:286 1: 342 上:86 G5杉 科Taxodiaceae 4: 19 7 3: 68 1:313 1: 359 上:100 G6柏 科Cupressaceae 1: 212 4: 25 7 3: 73 1:316 1: 369 上:106 G7罗 汉 松 科Podocarpaceae 1: 215 4: 32 7 3: 95 1:327 1: 380 上:116 G8三 尖 杉 科Cephalotaxaceae 1: 219 4: 38 7 3:101 1:330 1: 383 上:117 G9红 豆 杉 科Taxaceae 4: 41 7 3:105 1:331 1: 385 上:119 G10麻 黄 科Ephedraceae 7 1:336 G11买 麻 藤 科Gnetaceae 1: 220 4: 44 7 3:118 1:338 1木 兰 科Magnoliaceae 1: 222 1: 1 30(1)3:123 1:785 2: 327 下:193

2A 八 角 科Illiciaceae 1: 230 2: 1 3:360 3五 味 子 科Schisandraceae 1: 232 1: 22 3:367 6昆 栏 树 科Trochodendroaceae 27 3:697 1:649 6B 水 青 树 科Tetracentraceae 7连 香 树 科Cercidiphyllaceae 27 3:697 1:650 2: 253 8番 荔 枝 科Annonaceae 1: 234 2: 7 30(2)3:158 1:805 2: 346 10檬 立 米 科Monimiaceae 11樟 科Lauraceae 1: 259 31 3:206 1:816 2: 347 下:204 13莲 叶 桐 科Hernandiaceae 1: 301 3: 1 31 3:304 1:864 14肉 豆 蔻 科Myristicaceae 1: 303 2: 41 30(2)3:196 1:814 15毛 茛 科Ranumculaceae 1: 304 5: 1 27,28 3:388 1:651 2: 254 下:158 16莼Cabombaceae 3:385

分子系统学

分子系统学 分子系统学是指通过对生物大分子(蛋白质、核酸等)的结构、功能等的进化研究, 来阐明生物各类群(包括已绝灭的生物类群)间的谱系发生关系. 相对于经典的形态系统分类研究,由于生物大分子本身就是遗传信息的载体,含有庞 大的信息量,且趋同效应弱,因而其结论更具可比性和客观性.尤为重要的是,一些缺乏形态性状的生物类群(如微生物和某些低等动、植物)中,它几乎成为探讨其系统演化关系的唯一手段. 由于分子系统学的上述特点,自其诞生之日起,就逐渐在各种生物类群的系统发生研 究中得到了广泛的应用.总的说来,迄今分子系统学的研究所获得的生物类群间亲缘关系的结果,大多都和经典的形态系统树相吻合.但是,在一些生物进化谱系不明或模糊关键环节上,它得出的结果却往往和形态系统学的推测大相径庭. 1研究步骤 分子系统学研究的主要方法是根据分子生物学数据构建生物类群的谱系发生树.它一 般包括以下程序: 1.首先确定所要分析的生物类群,选择该类群中相关亚类群的一些代表种类;确定所 要分析的目的生物大分子(包括DNA序列、蛋白质序列等)或它们的组合; 2.设法获得它们的序列数据或其它相关数据(如限制性内切酶(I LP)、随机扩增多态 DNA( )、DNA序列等),DNA序列的数据可以通过GenBank获得,也可以通过实验室的研究(设计特异引物进行PCR扩增和序列测定)而获得; 3.对获得的相关数据进行比对(pairwisealignment)或其它的数学处理,如转变成遗传距离数据矩阵;通过一些遗传分析软件(常用的计算机软件如:PHYLIP J、PAI J、MEGA[J 等)对这些处理后的数据,并基于一定的反映DNA序列进化规律的数学模型构建分子系统树; 4对构建的系统树做相应的数学统计分析以检验系统树的可靠性等. 值得注意的是,在分析具体的研究对象时,上述各个环节是紧密联系的一个整体,要获得一个正确的结论,必须综合考虑每一环节之间的内在联系.比如目的基因的选择、数据处理和分析的分类群之间、构树方法和分析软件的选择之间都有密切的联系. 2涉及议题 基因树和物种树

相关主题
文本预览
相关文档 最新文档