当前位置:文档之家› 数学建模会议分组问题.

数学建模会议分组问题.

数学建模会议分组问题.
数学建模会议分组问题.

会议分组问题

摘要

本文解决会议分组问题,即在会议次数以及参会人数确定的情况下求取不同地区之间最大的见面概率的会议安排方式,通过设置相应参数,逐步建立数学模型,并采用Lingo编程进行计算,并最终确定会议人员参加会议的分组方案。下面将分别对三个问题进行阐述:

问题1是已知有名代表参加会议,要分个场次,每场会议中有个小组,先对数据进行了矩阵化处理,其中引入常值元素来区分不同地区的代表,以L×N的矩阵表示每个人在某一场的出席情况,以此建立非线性整数变量规划模型。为了达到尽可能使来自不同地区的代表能有见面交流机会的目的,本文以每组代表人数基本均衡、每个会议每个代表有且只能在一个小组内为约束条件,根据M个矩阵的加和等一系列运算的结果,得到M场会议之后与会人员的见面情况,从而进行优化,最终确立出最优的分组方案。

针对问题2,本文通过建立分组矩阵、开会矩阵,制定约束条件,构造相遇矩阵以及构造异地代表是否见面函数,逐步建立最终的数学模型。但是用lingo 计算大量数据的非线性模型运行时间太长,无法获得运算结果(超过5个小时),因此采用分部计算的形式来求解此模型,也就是一共有次会议,须经过多次迭代,每次迭代只计算一次会议的会面情况,每次迭代时更新目标函数的系数,上一次已经会面的代表假设为同一地区,则这次计算常值系数,只计算未见面的代表会见面次数的最大值,迭代完毕之后将次结果综合考虑,并最后得到模型的最优方案。

针对问题3,将问题1中的N、M、L分别取做8、5、5,采用问题(1)所建立的模型以及问题2设计的算法,运行程序,得到的分配结果如下:

表2 会议的分组方案

关键词:会议分组;矩阵分析;迭代运算;整数规划;约束条件

一、问题的重述

会议分组是一个很实际的问题,目前国内外许多重要会议都是以分组形式进行研讨,以便充分交流、沟通。本文是将相应的参数进行了设置,参会代表N 名,M个场次,每场会议L个小组,并且要求每个小组的人数基本均衡。本文要以使得尽可能让任意两个来自不同地区的代表之间都有见面交流的机会为目的,建立数学模型,并设计求解上述分组模型的有效算法。

同时,设置一些具体数值对已经建立的模型以及算法进行验算,即、、分别取做37、5、5,根据问题1所建立的模型以及问题2设计的算法,给出5场会议的每一场各个组中具体有哪些代表参加的安排方案。

二、问题假设

1、每场次,每个专家都会参加,没有人缺席。

2、每次会议对于专家的吸引力相同。

3、每个会议每个代表有且只能在一个小组内。

三、符号说明

表一符号说明

四、模型

建立及求

模型建立

第错误!未找到引用源。次会议的分组矩阵为

其中的错误!未找到引用源。取值为0或1,错误!未找到引用源。表示错误!未找到引用源。代表在第错误!未找到引用源。次会议中的第错误!未找到引用源。组中,错误!未找到引用源。表示表示错误!未找到引用源。代表不在第错误!未找到引用源。次会议中的第错误!未找到引用源。组中,由于在每次会议中每个人只能被分到一个组内,则满足如下关系:

又由于要求每组代表的人数尽量均匀,满足如下关系:

构造第错误!未找到引用源。次会议开会矩阵错误!未找到引用源。

在第错误!未找到引用源。次会议中,代表错误!未找到引用源。和代表错误!未找到引用源。分在同一组时,错误!未找到引用源。,否则错误!未找到引用源。,错误!未找到引用源。为错误!未找到引用源。的单位阵。

错误!未找到引用源。次会议中代表的会面情况可表示为

其中B 的元素为

表示代表错误!未找到引用源。和代表错误!未找到引用源。分在同一组的次数。

构造相遇矩阵错误!未找到引用源。

分组总数 异地代表会面总数

异地代表是否见面

其中,错误!未找到引用源。表示代表错误!未找到引用源。和代表错误!未找到引用源。曾被分到一个组内,否则错误!未找到引用源。

根据已知条件构造异地矩阵错误!未找到引用源。,其中错误!未找到引用源。表示代表错误!未找到引用源。和代表错误!未找到引用源。来自不同地区,否则错误!未找到引用源。。

构造异地代表是否见面函数

其中,错误!未找到引用源。表示不同地区的代表错误!未找到引用源。和错误!未找到引用源。曾被分到一个组内,否则错误!未找到引用源。。

使得尽可能让任意两个来自不同地区的代表之间都有见面交流的机会,综上

0 变量规划模型为

建立的非线性整数1

模型求解

考虑到模型中有变量相乘的形式,用错误!未找到引用源。计算运行时间比较长,因此可以采用分部计算来求解模型。即就是一共有错误!未找到引用源。次会议,可以迭代错误!未找到引用源。次来计算,每次迭代只计算一次会议的会面情况,每次迭代时更新异地矩阵错误!未找到引用源。,将已经会面的代表错误!未找到引用源。和错误!未找到引用源。设为同一地区,错误!未找到引用源。,只计算未见面的代表会面次数的最大值,迭代完毕之后将错误!未找到引用源。次结果综合考虑,便得到模型的最优方案。其计算过程如下:

步骤1:设置初值错误!未找到引用源。

步骤2:第一次迭代,计算第一次会议代表的会面情况错误!未找到引用源。,使得:

且满足如下约束:

错误!未找到引用源。错误!未找到引用源。

步骤3:

重复步骤2,计算第二次会议代表的会面情况错误!未找到引用源。,以此类推,

第错误!未找到引用源。次迭代为

由步骤3求得第M次会议代表的会面情况错误!未找到引用源。

步骤4:得出第错误!未找到引用源。个代表和第错误!未找到引用源。个代表的会面情况

模型检验

将N、M、L分别取做8、5、5,采运行Lingo程序下面以表格中前8个代表分

为5个小组5次会议来说明模型的正确性。

表2 会议的分组方案

五、结论

本文综合考虑三个问题以及其内部数学关系,逐步深入地通过建立分组矩阵、开会矩阵,制定约束条件,构造相遇矩阵以及构造异地代表是否见面函数,逐步建立最终的数学模型。但是用lingo计算大量数据的非线性模型运行时间太长,无法获得运算结果,因此采用分部计算的形式,逐步迭代来进行模型求解(程序均为自行编写,迭代的输出结果详见附录),故将问题1中的N、M、L(分别取做37、5、5)取为8、5、5,从而验证了算法的正确性,并得到最终的会议安排方案。

参考文献

[1]王沫然,《matlab与科学计算》,电子工业出版社,第三版

[2]同济大学数学系,《线性代数》,高等教育出版社,第五版

[3]https://www.doczj.com/doc/6f16362580.html,/file/r3uzzevxrac6s6ureaxopoto_1.html

附录

Lingo代码

model:

sets:

peo/r1..r8/;

meet/m1/;

group/g1..g5/;

link(peo,peo):y,s;

encount(meet,peo,group):x;

endsets

max=@sum(link(I,J):s(I,J)*y(I,J));

@for(link(I,J):@bin(y(I,J)));

@for(encount(I,J,K):@bin(x(I,J,K)));

@for(meet(I):

@for(peo(J):@sum(group(K):x(I,J,K))=1));

@for(meet(I):

@for(group(K):@sum(peo(J):x(I,J,K))>=1));

@for(meet(I):

@for(group(K):@sum(peo(J):x(I,J,K))<=2));

@for(peo(I):

@for(peo(J):y(I,J)<=@sum(meet(K):@sum(group(L):x(K,I,L)*x(K,J,L))))); data:

s=0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 1

1 1 1 1 0 0 0 1

1 1 1 1 0 0 0 1

1 1 1 1 1 1 1 1;

enddata

End

model:

sets:

peo/r1..r8/;

meet/m2/;

group/g1..g5/;

link(peo,peo):y,s;

encount(meet,peo,group):x;

endsets

max=@sum(link(I,J):s(I,J)*y(I,J));

@for(link(I,J):@bin(y(I,J)));

@for(encount(I,J,K):@bin(x(I,J,K)));

@for(meet(I):

@for(peo(J):@sum(group(K):x(I,J,K))=1));

@for(meet(I):

@for(group(K):@sum(peo(J):x(I,J,K))>=1));

@for(meet(I):

@for(group(K):@sum(peo(J):x(I,J,K))<=2));

@for(peo(I):

@for(peo(J):y(I,J)<=@sum(meet(K):@sum(group(L):x(K,I,L)*x(K,J,L))))); data:

s=0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 0

0 0 0 0 1 0 1 1

0 0 0 0 0 1 1 1

1 1 1 0 0 0 0 1

1 1 0 1 0 0 0 1

1 1 1 1 0 0 0 1

1 0 1 1 1 1 1 1;

enddata

End

model:

sets:

peo/r1..r8/;

meet/m3/;

group/g1..g5/;

link(peo,peo):y,s;

encount(meet,peo,group):x;

endsets

max=@sum(link(I,J):s(I,J)*y(I,J));

@for(link(I,J):@bin(y(I,J)));

@for(encount(I,J,K):@bin(x(I,J,K)));

@for(meet(I):

@for(peo(J):@sum(group(K):x(I,J,K))=1));

@for(meet(I):

@for(group(K):@sum(peo(J):x(I,J,K))>=1));

@for(meet(I):

@for(group(K):@sum(peo(J):x(I,J,K))<=2));

@for(peo(I):

@for(peo(J):y(I,J)<=@sum(meet(K):@sum(group(L):x(K,I,L)*x(K,J,L))))); data:

s=0 0 0 0 1 1 1 1

0 0 0 0 1 1 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 0 1 1

1 1 1 0 0 0 0 1

1 1 0 0 0 0 0 1

1 0 1 1 0 0 0 1

1 0 0 1 1 1 1 1;

enddata

End

model:

sets:

peo/r1..r8/;

meet/m4/;

group/g1..g5/;

link(peo,peo):y,s;

encount(meet,peo,group):x;

endsets

max=@sum(link(I,J):s(I,J)*y(I,J));

@for(link(I,J):@bin(y(I,J)));

@for(encount(I,J,K):@bin(x(I,J,K)));

@for(meet(I):

@for(peo(J):@sum(group(K):x(I,J,K))=1));

@for(meet(I):

@for(group(K):@sum(peo(J):x(I,J,K))>=1));

@for(meet(I):

@for(group(K):@sum(peo(J):x(I,J,K))<=2));

@for(peo(I):

@for(peo(J):y(I,J)<=@sum(meet(K):@sum(group(L):x(K,I,L)*x(K,J,L))))); data:

s=0 0 0 0 1 1 1 0

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 1

1 1 1 0 0 0 0 1

1 0 0 0 0 0 0 1

1 0 0 1 0 0 0 1

0 0 0 1 1 1 1 1;

enddata

End

model:

sets:

peo/r1..r8/;

meet/m5/;

group/g1..g5/;

link(peo,peo):y,s;

encount(meet,peo,group):x;

endsets

max=@sum(link(I,J):s(I,J)*y(I,J));

@for(link(I,J):@bin(y(I,J)));

@for(encount(I,J,K):@bin(x(I,J,K)));

@for(meet(I):

@for(peo(J):@sum(group(K):x(I,J,K))=1));

@for(meet(I):

@for(group(K):@sum(peo(J):x(I,J,K))>=1));

@for(meet(I):

@for(group(K):@sum(peo(J):x(I,J,K))<=2));

@for(peo(I):

@for(peo(J):y(I,J)<=@sum(meet(K):@sum(group(L):x(K,I,L)*x(K,J,L))))); data:

s=0 0 0 0 0 1 1 0

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 1 1 0 0 0 0 1

1 0 0 0 0 0 0 1

1 0 0 1 0 0 0 1

0 0 0 0 1 1 1 1;

enddata

End

输出结果

第一次迭代

Local optimal solution found.

Objective value: 7.000000

Objective bound: 7.000000

Infeasibilities: 0.000000

Extended solver steps: 12

Total solver iterations: 695

第二次迭代

Local optimal solution found.

Objective value: 6.000000

Objective bound: 6.000000

Infeasibilities: 0.000000

Extended solver steps: 11

Total solver iterations: 785

第三次迭代

Local optimal solution found.

Objective value: 5.000000

Objective bound: 5.000000

Infeasibilities: 0.000000

Extended solver steps: 7

Total solver iterations: 545

第四次迭代

Local optimal solution found.

Objective value: 4.000000

Objective bound: 4.000000

Infeasibilities: 0.000000

Extended solver steps: 8

Total solver iterations: 916

第五次迭代

Local optimal solution found.

Objective value: 5.000000

Objective bound: 5.000000

Infeasibilities: 0.000000

Extended solver steps: 13

Total solver iterations: 1049

Variable Value Y( R1, R1) 0.000000 Y( R1, R2) 0.000000 Y( R1, R3) 0.000000 Y( R1, R4) 0.000000 Y( R1, R5) 0.000000

Y( R1, R7) 0.000000 Y( R1, R8) 0.000000 Y( R2, R1) 0.000000 Y( R2, R2) 0.000000 Y( R2, R3) 0.000000 Y( R2, R4) 0.000000 Y( R2, R5) 1.000000 Y( R2, R6) 0.000000 Y( R2, R7) 0.000000 Y( R2, R8) 0.000000 Y( R3, R1) 0.000000 Y( R3, R2) 0.000000 Y( R3, R3) 0.000000 Y( R3, R4) 0.000000 Y( R3, R5) 0.000000 Y( R3, R6) 0.000000 Y( R3, R7) 0.000000 Y( R3, R8) 0.000000 Y( R4, R1) 0.000000 Y( R4, R2) 0.000000 Y( R4, R3) 0.000000 Y( R4, R4) 0.000000 Y( R4, R5) 0.000000 Y( R4, R6) 0.000000 Y( R4, R7) 0.000000 Y( R4, R8) 0.000000 Y( R5, R1) 0.000000 Y( R5, R2) 1.000000 Y( R5, R3) 0.000000 Y( R5, R4) 0.000000 Y( R5, R5) 0.000000 Y( R5, R6) 0.000000 Y( R5, R7) 0.000000 Y( R5, R8) 0.000000 Y( R6, R1) 1.000000 Y( R6, R2) 0.000000 Y( R6, R3) 0.000000 Y( R6, R4) 0.000000 Y( R6, R5) 0.000000 Y( R6, R6) 0.000000 Y( R6, R7) 0.000000 Y( R6, R8) 0.000000 Y( R7, R1) 0.000000

Y( R7, R3) 0.000000 Y( R7, R4) 0.000000 Y( R7, R5) 0.000000 Y( R7, R6) 0.000000 Y( R7, R7) 0.000000 Y( R7, R8) 0.000000 Y( R8, R1) 0.000000 Y( R8, R2) 0.000000 Y( R8, R3) 0.000000 Y( R8, R4) 0.000000 Y( R8, R5) 0.000000 Y( R8, R6) 0.000000 Y( R8, R7) 0.000000 Y( R8, R8) 1.000000 S( R1, R1) 0.000000 S( R1, R2) 0.000000 S( R1, R3) 0.000000 S( R1, R4) 0.000000 S( R1, R5) 0.000000 S( R1, R6) 1.000000 S( R1, R7) 1.000000 S( R1, R8) 0.000000 S( R2, R1) 0.000000 S( R2, R2) 0.000000 S( R2, R3) 0.000000 S( R2, R4) 0.000000 S( R2, R5) 1.000000 S( R2, R6) 0.000000 S( R2, R7) 0.000000 S( R2, R8) 0.000000 S( R3, R1) 0.000000 S( R3, R2) 0.000000 S( R3, R3) 0.000000 S( R3, R4) 0.000000 S( R3, R5) 1.000000 S( R3, R6) 0.000000 S( R3, R7) 0.000000 S( R3, R8) 0.000000 S( R4, R1) 0.000000 S( R4, R2) 0.000000 S( R4, R3) 0.000000 S( R4, R4) 0.000000 S( R4, R5) 0.000000

数学建模路线优化问题

选路的优化模型 摘要: 本题是一个有深刻背景的NPC问题,文章分析了分组回路的拓扑结构,并构造了多个模型,从多个侧面对具体问题进行求解。最短树结构模型给出了局部寻优的准则算法模型体现了由简到繁,确保较优的思想而三个层次分明的表述模型证明了这一类问题共有的性质。在此基础上我们的结果也是比较令人满意的。如对第一题给出了总长为599.9,单项长为216的分组,第二题给出了至少分四组的证明。最后,我们还谈到了模型的优缺点及推广思想。 一、问题描述 “水大无情,人命关天”为考察灾情,县领导决定派人及早将各乡(镇),村巡视一遍。巡视路线为从县政府所在地出发,走遍各乡(镇),村又回到县政府所在地的路线。 1.若分三组巡视,试设计总路程最短且各组尽可能均衡的巡视路线。 2.假定巡视人员在各乡(镇)停留时间为T=2小时,在各村停留时间为t =1 小时, 汽车行驶速度为V=35公里/时,要在24小时内巡视完,至少分成几组;给出这 种分组下你认为最佳的巡视路线。 3.上述关于T,t和V的假定下,如果巡视人员足够多,完成巡视的最短时间是多 少?给出在这种最短时间完成巡视的要求下,你认为最佳的巡视路线。 4.巡视组数已定(如三组)要求尽快完成巡视,讨论T,t和V改变时最佳路线的 影响(图见附录)。 二、问题假设 1、乡(镇)村只考察一次,多次经过时只计算一次停留时间。 2、非本县村不限制通过。 3、汽车的行驶速度始终一致。 三、符号说明 第i 人走的回路Ti=vv i(i) v2(i)v n(i) Ti=00表示第i人在0点没移动 四、模型建立

在这一节里,我们将提出若干个模型及其特点分析,不涉及对题目的求解。 最简树结构模型 在这个模型中我们依靠利用最短树的特殊结构所给出的准则,进行局部寻优,在一个不大的图里,我们较易得到较优解。 (a)分片 准则1利用最短树的长度可大致的估算出路程长,在具体操作中,各片中 的最短路程长度不宜相差太大。 准则 2 尽可能将最短树连成一个回路,这可保证局部上路程是较短的。 (b)片内调整 a2 a3 a4 a5 a6假设a3 a4有路相连 细准1对于右图的最短树结构,最好的走法是a 若a3 a4 进去重复走的话,它与上述的走法路程差w(a3, a2)+w(a2 ,a5)+w(a4, a5)—w(a3, a4)。由两点间最小原则上式是大于0的优劣可见 细准2若有如图所示结构,一般思想是:将中间树枝上的点串到两旁树枝,以便连成回路。 五、模型求解 问题一该问题完全可以用均衡模型表述 用算法模型 1 经过局部优化手工多次比较我们能够给出的最佳结果为第一组路径为 0—P—28—27—26—N—24—23—22-17—16—1—15—1—18—K—21—20—25— M--0 长191.1 经5 镇6 村 第二组路径为 0—2—5—6—L—19—J—11--G—13—14—H—12—F—10—F—9—E—8—E—7—6—5—2—0 长216.5 经6 镇11 村第三组路径为O—2—3—D—4—D—3—C—B—1—A—34—35—33—31—32—30—Q—29 —R 长192.3 经6 镇11 村总长S=599.9 公里 由算法2 给出的为 1组0—P—29—R—31—33—A—34—35—32—30—Q—28—27—26—N—24—33—22—23—N—2 6—P—0 5 乡13 村长215.2 公里 2组0—M—25—21—K—17—16—I—15—I—18—K—21—25—20—L—19—J—11—G—13—14 —O 5 乡11 村长256.2 公里 3组 O—2—5—6—7—E—9--F—12--H--—12—F—10—F—9—E-8—4—0—7—6—M—5-2—3—L —13—1—0 8 乡11 村长256.3 公里 总长727.7 公里

数学建模会议筹备模型

数学建模会议筹备模型

会议筹备模型设计 摘要:本文给出了会议筹备策略的数学模型。对于客房安排我们对数据利用进行MATLAB 进行拟合,得到了实到人数与发回执人数的线性关系,大体估算出实际到的代表数量为639人。先对发来回执且会到的代表进行客房安排,考虑到经济且令代表满意,我们建立了一个非线性规划模型,再考虑方便管理以及距离远近的因素,对得出的结果进行调整,最后对未发来回执但与会的代表,进行分配。得到如文表4的住房安排。对会议室安排,文中先用表格对各宾馆会议室进行排列归类,再用一个简单的规划模型,求解出了最经济的会议选择,即会议室全部选宾馆7的六个会议室。且花费7000元。对客车的安排我们同样先用表格对数据进行排列归类,用一个规划模型,利用LINGO 软件进行求解,得客车最优安排, 即宾馆①安排33座车3辆;宾馆②安排36座车6辆;宾馆⑤安排45座车3辆,33座车3辆;宾馆⑥安排45座车3辆,33座车3辆,所花钱14800元。最后得到安排会议室与租赁客车总花费W==+21w w 7000+14800=21800元。本模型对于此类问题,能够较好的解决,且可解决诸如比赛安排,人员安排等问题。 关键词:拟合,排列归类,数学建模,非线性规划

问题的提出 某市的一家会议服务公司负责承办某专业领域的一届全国性会议,会议筹备组要为与会代表预订宾馆客房,租借会议室,并租用客车接送代表。由于预计会议规模庞大,而适于接待这次会议的几家宾馆的客房和会议室数量均有限,所以只能让与会代表分散到若干家宾馆住宿。为了便于管理,除了尽量满足代表在价位等方面的需求之外,所选择的宾馆数量应该尽可能少,并且距离上比较靠近。 筹备组经过实地考察,筛选出10家宾馆作为备选,它们的名称用代号①至⑩表示,相对位置见附图,有关客房及会议室的规格、间数、价格等数据见附表1。 根据这届会议代表回执整理出来的有关住房的信息见附表2。从以往几届会议情况看,有一些发来回执的代表不来开会,同时也有一些与会的代表事先不提交回执,相关数据见附表3。附表2,3都可以作为预订宾馆客房的参考。 需要说明的是,虽然客房房费由与会代表自付,但是如果预订客房的数量大于实际用房数量,筹备组需要支付一天的空房费,而若出现预订客房数量不足,则将造成非常被动的局面,引起代表的不满。 会议期间有一天的上下午各安排6个分组会议,筹备组需要在代表下榻的某几个宾馆租借会议室。由于事先无法知道哪些代表准备参加哪个分组会,筹备组还要向汽车租赁公司租用客车接送代表。现有45座、36座和33座三种类型的客车,租金分别是半天800元、700元和600元。 请你们通过数学建模方法,从经济、方便、代表满意等方面,为会议筹备组制定一个预订宾馆客房、租借会议室、租用客车的合理方案。 附表1 10家备选宾馆的有关数据 宾馆代号 客房会议室 规格间 数 价格 (天 规模间 数 价格 (半

数学建模的基本步骤

数学建模的基本步骤 一、数学建模题目 1)以社会,经济,管理,环境,自然现象等现代科学中出现的新问题为背景,一般都有一个比较确切的现实问题。 2)给出若干假设条件: 1. 只有过程、规则等定性假设; 2. 给出若干实测或统计数据; 3. 给出若干参数或图形等。 根据问题要求给出问题的优化解决方案或预测结果等。根据问题要求题目一般可分为优化问题、统计问题或者二者结合的统计优化问题,优化问题一般需要对问题进行优化求解找出最优或近似最优方案,统计问题一般具有大量的数据需要处理,寻找一个好的处理方法非常重要。 二、建模思路方法 1、机理分析根据问题的要求、限制条件、规则假设建立规划模型,寻找合适的寻优算法进行求解或利用比例分析、代数方法、微分方程等分析方法从基本物理规律以及给出的资料数据来推导出变量之间函数关系。 2、数据分析法对大量的观测数据进行统计分析,寻求规律建立数学模型,采用的分析方法一般有: 1). 回归分析法(数理统计方法)-用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式。 2). 时序分析法--处理的是动态的时间序列相关数据,又称为过程统计方法。 3)、多元统计分析(聚类分析、判别分析、因子分析、主成分分析、生存数据分析)。 3、计算机仿真(又称统计估计方法):根据实际问题的要求由计算机产生随机变量对动态行为进行比较逼真的模仿,观察在某种规则限制下的仿真结果(如蒙特卡罗模拟)。 三、模型求解: 模型建好了,模型的求解也是一个重要的方面,一个好的求解算法与一个合

适的求解软件的选择至关重要,常用求解软件有matlab,mathematica,lingo,lindo,spss,sas等数学软件以及c/c++等编程工具。 Lingo、lindo一般用于优化问题的求解,spss,sas一般用于统计问题的求解,matlab,mathematica功能较为综合,分别擅长数值运算与符号运算。 常用算法有:数据拟合、参数估计、插值等数据处理算法,通常使用spss、sas、Matlab作为工具. 线性规划、整数规划、多元规划、二次规划、动态规划等通常使用Lindo、Lingo,Matlab软件。 图论算法,、回溯搜索、分治算法、分支定界等计算机算法, 模拟退火法、神经网络、遗传算法。 四、自学能力和查找资料文献的能力: 建模过程中资料的查找也具有相当重要的作用,在现行方案不令人满意或难以进展时,一个合适的资料往往会令人豁然开朗。常用文献资料查找中文网站:CNKI、VIP、万方。 五、论文结构: 0、摘要 1、问题的重述,背景分析 2、问题的分析 3、模型的假设,符号说明 4、模型的建立(局部问题分析,公式推导,基本模型,最终模型等) 5、模型的求解 6、模型检验:模型的结果分析与检验,误差分析 7、模型评价:优缺点,模型的推广与改进 8、参考文献 9、附录 六、需要重视的问题 数学建模的所有工作最终都要通过论文来体现,因此论文的写法至关重要:

数学建模习题及答案

第一部分课后习题 1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。学 生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。 (2)2.1节中的Q值方法。 (3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。你能解释这种方法的道理吗。 如果委员会从10人增至15人,用以上3种方法再分配名额。将3种方法两次分配的结果列表比较。 (4)你能提出其他的方法吗。用你的方法分配上面的名额。 2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g 装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。 (1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。 (2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w的增加c减少的程度变小。解释实际意义是什么。 3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部 只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 先用机理分析建立模型,再用数据确定参数 4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应 多大(如图)。若知道管道长度,需用多长布条(可考虑两端的影响)。如果管道是其他形状呢。

数学建模活动策划书

数学建模活动策划方案(初稿) 一、活动背景 数学建模协会面向全校招新活动圆满完成。为了促进协会会员对数学建模的了解,增强对数学建模的认识,数学建模协会对近期一年时间策划此次活动,希望通过活动,增强新会员对数学建模协会的兴趣和认识度,是新会员对数学建模的活动、工作有一定了解和一个全新的认识。 二、活动目的及意义 为了让同学们对数学建模及竞赛有一个初步的了解,激发广大学子学习数学建模的热情,促进我校大学生课外科技活动的蓬勃开展,提高大学生的创新意识及运用数学知识和计算机技术解决实际问题的能力,推广数学建模精神,让同学们了解数学建模,接近数学建模,喜欢数学建模。活动对培养同学们应用数学知识解决实际问题的兴趣,开拓眼界等都有着十分重要的意义。活动的开展不仅为民院学子提供了一次施展才华和挑战自我的机会,也为学子创造了一个学习实践与思想交流的平台。 三、活动主题 走进数学建模 四、主办单位 社团联合会数学建模协会 五、承办单位

社团联合会数学建模协会 六、活动内容 (一)数学建模知识讲座 (二)新老会员见面交流会 (三)团队娱乐游戏活动 (四)小型数学建模大赛 七、活动步骤 (一)数学建模知识讲座 1、前期准备:邀请相关老师并协调好时间、通知协会会员及兴趣 爱好者 2、中期过程:(1)安排知识讲座时间、地点以及准备相关物品 (2)内容:数学建模思想、数学建模理论 3、后期安排:相关工作人员做工作总结 (二)新老会员见面交流会 1、前期准备:邀请相关人员为交流会做准备、通知协会会员 2、中期过程:安排见面交流会的时间、地点以及准备相关物品 3、后期安排:相关工作人员做工作总结 (三)团队娱乐游戏活动(待定) (四)小型数学建模大赛 1、前期准备:对举行小型数学建模大赛的意义进行宣传,并通知 比赛时间地点、比赛模式,邀请相关老师参与 2、中期过程:由相关老师批阅后进行表彰

关于如何安排生产的数学模型

蒋爱萍200911131904 韩昕彤200911131976 菅美娟200911131914 关于如何安排生产的数学模型 【摘要】为了对生产做出正确的安排,使得收入达到最大,根据题中的条件和数据找到决策变量和目标函数,从而抽象出数学表达,并得到约束条件,利用lingo程序对此优化模型进行求解,得到最优解,再对此做灵敏度分析,得出增加三个工序的生产能力时工序的单位增长带来的价值,利用结果与P1,P2相比P3,,P4,P5的定价提到什么程度时值得生产。 【关键词】决策变量目标函数约束条件灵敏度分析优化模型 1.问题重述 某工厂生产5种产品为P1,P2,P3,P4,P5,它们的单价分别为550, 600, 350, 400, 200。每种产品的生产过程都要经过三道工序:研磨、钻孔和装配,分别记为工序I、II、III。每道工序所需的工时见下表: 每道工序的生产能力即工时数分别为288、192、384,建立模型讨论,如何安排生产才能使得收入达到最大。并进一步讨论(1)如果增加三个工序的生产能力,每个工序的单位增长会带来多少价值?(2)结果表明与P1,P2相比P3,,P4,P5的定价低了,那么价格提到什么程度,它们才值得生产? 2.问题分析 对于工厂生产的五种产品,要确定如何安排生产才能使得收入达到最大,根据题中的数据确定决策变量xi,列出目标函数为max f=550x1+600x2+350x3+400x4+200x5,并且得到约束条件,即建立了关于收入达到最大的优化模型,运用lingo程序对模型进行化简和求值。表明三道工序的工时均未被完全利用,即劳动力并没达到完全利用,所以在此基础上对模型进行灵敏度分析,讨论增加三个工序的生产能力时每个工序的单位增长会带来的价值和与P1,P2相比P3,,P4,P5的定价提高到多少时才值得生产。 3 .模型假设 (1)上述使用的数据都是准确合理的。 (2)假设生产出来的产品全部是合格的,不考虑生产过程中的浪费情况。

数学建模Word使用

数学建模竞赛利用好Word教程 花一天时间学好Word排版,绝对是一劳永逸的事。 Word不是最重要的,但绝对是影响建模表达、写作效率和修改方便性的关键。 所有与内容无关的排版工作都交给Word去完成吧。 记得初识数模时,Word曾让下天同志郁闷了半个夏天;后来参加了几次大赛,自以为Word 用得还可以,结果毕业设计时经高人提点,发现Word竟可以这样用。好东西当然要大家一起分享,现介绍***(网上down的,未能核实真身)的大作如下,以抛砖引玉: 用Word编辑论文的几个建议由于各方面的原因,大家主要还是用Microsoft Word (以下简称Word)编辑论文。Word在写科技论文方面虽然有一些先天不足,但却提供了非常强大的功能。如果不能充分利用这些功能,可能经常要为不断地调整格式而烦恼。我把自己以前使用Word的经验和教训总结一下,抛块砖。 原则: 内容与表现分离 一篇论文应该包括两个层次的含义:内容与表现,前者是指文章作者用来表达自己思想的文字、图片、表格、公式及整个文章的章节段落结构等,而后者则是指论文页面大小、边距、各种字体、字号等。相同的内容可以有不同的表现,例如一篇文章在不同的出版社出版会有不同的表现;而不同的内容可以使用相同的表现,例如一个期刊上发表的所有文章的表现都是相同的。这两者的关系不言自明。在排版软件普及之前,作者只需关心文章的内容,文章表现则由出版社的排版工人完成,当然他们之间会有一定交互。Word倡导一种所见即所得(WYSIWYG)的方式,将编辑和排版集成在一起,使得作者在处理内容的同时就可以设置并立即看到其表现。可惜的是很多作者滥用WYSIWYG,将内容与表现混杂在一起,花费了大量的时间在人工排版上,然而效率和效果都很差。本文所强调的“内容与表现分离”的原则就是说文章作者只要关心文章的内容,所有与内容无关的排版工作都交给Word去完成,作者只需将自己的排版意图以适当的方式告诉Word。因为Word不仅仅是一个编辑器,还是一个排版软件,不要只拿它当记事本或写字板用。主要建议如下。 1. 一定要使用样式,除了Word原先所提供的标题、正文等样式外,还可以自定义样式。如果你发现自己是用选中文字然后用格式栏来设定格式的,一定要注意,想想其他地方是否需要相同的格式,如果是的话,最好就定义一个样式。对于相同排版表现的内容一定要坚持使用统一的样式。这样做能大大减少工作量和出错机会,如果要对排版格式(文档表现)做调整,只需一次性修改相关样式即可。使用样式的另一个好处是可以由Word自动生成各种目录和索引。 2. 一定不要自己敲编号,一定要使用交叉引用。如果你发现自己打了编号,一定要小心,这极可能给你文章的修改带来无穷的后患。标题的编号可以通过设置标题样式来实现,表格和图形的编号通过设置题注的编号来完成。在写“参见第x章、如图x所示”等字样时,不要自己敲编号,应使用交叉引用。这样做以后,当插入或删除新的内容时,所有的编号和引用都将自动更新,无需人力维护。并且可以自动生成图、表目录。公式的编号虽然也可以通过题注来完成,但我另有建议,见5。

数学建模会议筹备模型

会议筹备模型设计 摘要:本文给出了会议筹备策略的数学模型。对于客房安排我们对数据利用进行MATLAB 进行拟合,得到了实到人数与发回执人数的线性关系,大体估算出实际到的代表数量为639人。先对发来回执且会到的代表进行客房安排,考虑到经济且令代表满意,我们建立了一个非线性规划模型,再考虑方便管理以及距离远近的因素,对得出的结果进行调整,最后对未发来回执但与会的代表,进行分配。得到如文表4的住房安排。对会议室安排,文中先用表格对各宾馆会议室进行排列归类,再用一个简单的规划模型,求解出了最经济的会议选择,即会议室全部选宾馆7的六个会议室。且花费7000元。对客车的安排我们同样先用表格对数据进行排列归类,用一个规划模型,利用LINGO 软件进行求解,得客车最优安排, 即宾馆①安排33座车3辆;宾馆②安排36座车6辆;宾馆⑤安排45座车3辆,33座车3辆;宾馆⑥安排45座车3辆,33座车3辆,所花钱14800元。最后得到安排会议室与租赁客车总花费W==+21w w 7000+14800=21800元。本模型对于此类问题,能够较好的解决,且可解决诸如比赛安排,人员安排等问题。 关键词:拟合,排列归类,数学建模,非线性规划

问题的提出 某市的一家会议服务公司负责承办某专业领域的一届全国性会议,会议筹备组要为与会代表预订宾馆客房,租借会议室,并租用客车接送代表。由于预计会议规模庞大,而适于接待这次会议的几家宾馆的客房和会议室数量均有限,所以只能让与会代表分散到若干家宾馆住宿。为了便于管理,除了尽量满足代表在价位等方面的需求之外,所选择的宾馆数量应该尽可能少,并且距离上比较靠近。 筹备组经过实地考察,筛选出10家宾馆作为备选,它们的名称用代号①至⑩表示,相对位置见附图,有关客房及会议室的规格、间数、价格等数据见附表1。 根据这届会议代表回执整理出来的有关住房的信息见附表2。从以往几届会议情况看,有一些发来回执的代表不来开会,同时也有一些与会的代表事先不提交回执,相关数据见附表3。附表2,3都可以作为预订宾馆客房的参考。 需要说明的是,虽然客房房费由与会代表自付,但是如果预订客房的数量大于实际用房数量,筹备组需要支付一天的空房费,而若出现预订客房数量不足,则将造成非常被动的局面,引起代表的不满。 会议期间有一天的上下午各安排6个分组会议,筹备组需要在代表下榻的某几个宾馆租借会议室。由于事先无法知道哪些代表准备参加哪个分组会,筹备组还要向汽车租赁公司租用客车接送代表。现有45座、36座和33座三种类型的客车,租金分别是半天800元、700元和600元。 请你们通过数学建模方法,从经济、方便、代表满意等方面,为会议筹备组制定一个预订宾馆客房、租借会议室、租用客车的合理方案。 附表1 10家备选宾馆的有关数据

课程时间安排数学建模

课程时间安排数学建模公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

课程时间安排的优化模型 摘要 排课是教务运作中的一项重要工作,同时排课问题也是一个复杂的组合优化问题,对此问题的建模和求解,难度都非常大。多数情况下我们只是满足于求解问题的一个可行解,而对此可行解的进一步优化往往通过手工完成,效率很低。目前有很多计算机专家和数学专家都致力于对大规模排课问题的研究,在此我们给出一个规模相对较少,约束相对较少的较为简单的排课问题。解决排课中的问题,既能满足老师授课上机的要求又能满足学生对上机时间的合理安排。让学校、老师和同学的满意。 让老师满意,就是安排尽量少出现像同一天同一位老师上1-2节,7-8节,最好是1-2节面授然后4-5节课上机;让同学们满意,可从以下几方面考虑,比如,同一班级同一门课程,至少应隔一天上一次,另外对学生感到比较难学的课程尽量安排在最好的时段,上机时间要安排在面授课之后;让学校满意,就是尽量减少因出现问题而不得不为老师调课的次数。根据实际情况在具体模型建立过程中采用了0-1矩阵法,矩阵的乘法等数学方法,建立优化类数学模型来求解有效矩阵,根据有效矩阵初排课表,结合多方面因素建立修正矩阵,对初排课表逐层修改,得出最优排课表。并通过matlab实现算法和给出模型的解。 先将123班级课表和20张老师课表转换为0-1变量,有课改为0,没课改为1,组成两个矩阵,然后可用VB编程得到一个新的矩阵,两矩阵中元素都为1时,新的矩阵对应的元素就为1,即老师和班级同时有空时为1。将多目标函数转换为单目标函数,其他的要求可直接在约束条件中满足。然后用lingo软件编程解决(其约束条件和目标函数都可用lingo的语句表示出来) 关键词:排课问题 0-1矩阵矩阵的乘法优化目标矩阵 lingo VB 1 问题重述 排课是教务运作中的一项重要工作,同时排课问题也是一个复杂的组合优化问题,对此问题的建模和求解,难度都非常大。多数情况下我们只是满足于求解问题的一个可行解,而对此可行解的进一步优化往往通过手工完成,效率很低。目前有很多计算机专家和数学专家都致力于

2013数学建模会议分组问题

会议分组问题 摘要 通过对问题的分析,我们确定运用优化的整数规划模型、矩阵理论和置换等方面的知识和技巧。通过矩阵将决策变量和所要求解的目标函数建立联系。 在提出模型目标函数的过程中,首先我们提出了代表相遇次数的概念,用矩阵Q 表示其任意两个代表的相遇次数,并利用矩阵的Frobenius范数控制了Q中元素的大小及其均匀程度,得到目标函数f(x),从而求解代表的相遇次数。 第一个目标函数设定后,基于f(x)在群体整体换组时不能起到控制作用的问题,决定使用共同成员概念:即任意两组(可以属于不同场次)整个会议中的交集。利用矩阵A,对矩阵的Frobenius范数的运用使群体整体换组现象得到了有效的遏制,对与会者混合程度进行了控制。 求解模型时,使用迭代算法,利用线性规划,在目标函数可行域范围内查找最优解可以利用MATLAB软件设计出计算可行初始解->随机产生一个可行解->局部优化->全局优化从而达到全局最优解的三步求解的方法,局部->全局的步骤解出了全局最优解,简化运算步骤的同时提高了结果优化程度,降低对初值的依赖程度,很好的达到了与会者需要充分混合的目的。基于算法的目标函数,因为在建立时具有一般性,若需建立起优化全局的目标函数,只需对参数进行改变。这样一来模型的推广得到了算法上的支持,带来了极大的便利。 我们此次建模得到了合适的人员分配结果,达到了建模的目的。 关键词:抽屉原理相遇矩阵共同成员 Frobenius范数

一、问题重述 目前,国内外许多重要会议都是以分组形式进行研讨,以便充分交流、沟通。一般地,一个由N名代表参加的会议,要分为M个场次,每场会议分为L个小组,并且要求每个小组的人数基本均衡。 问题1:请建立分组方案的数学模型,使得尽可能让任意两个来自不同地区的委员之间都有见面交流的机会。 问题2:设计求解上述分组模型的有效算法。 问题3:现有一个学术团体要举行由37位专家参加的学术研讨会,每个专家所在地区的信息见表1。会议分5场进行,每场会议又分5个小组,每个小组人数要基本均衡。请根据问题1所建立的模型以及问题2设计的算法,给出5场会议的每一场各个组中有哪些委员参加的安排方案。 说明:论文要附有求解问题3源程序的全部代码,并确保能够直接运行以检验结果的正确性。

数学建模比赛的选拔问题

数学建模比赛的选拔问题 卢艳阳 王伟 朱亮亮 (黄河科技学院通信系,) 摘 要 本文是关于全国大学生数学建模竞赛选拔的问题,依据数学建模组队的要求,每队应具备较好的数学基础和必要的数学建模知识、良好的编程能力和熟练使用数学软件等的综合实力,在此前提下合理的分配队员,利用层次分析法,建立合理分配队员的数学模型,利用MATLAB ,LONGO 工具求出最优解。、 问题一:依据建模组队的要求,合理分配每个队员是关键,主要由团队精神、建模能力、编程能力、论文写作能力、思维敏捷以及数学知识等等,经过讨论分析,确定良好的数学基础、建模能力,编程能力为主要参考因素。 问题二:根据表中所给15人的可参考信息,我们对每个队员的每一项素质进行加权,利用层次分析法选出综合素质好的前9名同学,然后利用0-1规划的相关知识对这9人进行合理分组,利用MATLAB 、LINGO 得到其中一个如下的 分组:'1s 、10s 、4s ;2s 、11s 、14s ;6s 、13s 、8s 问题三:我们将所选出的这9名同学和这个计算机编程高手的素质进行量化加权,然后根据层次分析法,利用MATLAB 工具进行求解,得出了最佳解。由于我们选取队员参考的是这个人的综合素质,而不是这个人的某项素质,并由解出的数据可以看出这个计算机编程高手不能被直接录用。所以说只考虑某项素质,而不考虑其他的素质的同学是不能被直接录用的。 问题四:根据前面三问中的分组的思路,我们通过层次分析法先从所有人中依据一种量化标准选出符合要求的高质量的同学,然后利用0-1变量进行规划,在根据实际问题的约束,对问题进行分析,然后可以得出高效率的分组。

数学建模时间安排及论文要点

竞赛时间的安排 第一天: 上午:确定题目,并查阅文献 下午:开始分析,建立初步模型 晚上:编程,得到初步计算结果 第二天: 上午:得到初步模型的合理结果 下午:开始写论文,并考虑对初步模型的改进 晚上:得到改进的模型的初步结果 第三天: 上午:得到改进模型的合理结果 下午:考虑对前二个模型的进一步优化,得到第三个数学模型,或对前二个模型的正确性等进行验证等 晚上:得到最后结果,完成整篇论文 论文写作要点 论文组成部分: 1. 摘要 2. 问题重述与背景 3. 假设 4. 建模 5. 求解和结论分析 6. 讨论优缺点 7. 模型改进 论文评卷标准 1. 假设的合理性 2. 建模的创造性 3. 结果的正确性 4. 文字清晰程度 (一)摘要 一定要写好(不超过一页纸)。主要写四个方面: 1. 解决什么问题(简明扼要) 2. 采取什么建模方法和算法(引起阅卷老师的注意,不能太粗,也不能太细) 3. 得到什么结果(清楚、生动、公式要简单、必要时可采用小图表) 4. 有什么特色

(二)问题重述 正文(15页左右,某些内容可以放在附录中) 将原问题用数学的语言表达出来 指出需要解决哪些问题,重点解决的问题应着重说明,将读者或评阅者引导到自己的思路中。 (三)假设 根据题目的条件和要求做合理的假设。关键假设不能少,要简明扼要、准确清楚 1. 假设不能太多。要归结出一些重要的假设,一般3~5条,有些不是很重要的假设在论文适当的地方提到 2. 假设要数学化,重视逻辑性要求 3. 设计好符号,使人看起来清楚,前后不要有重复 (四)建模 建模的思路要清晰 注重建模的原始想法,直观的思想往往是重要模型的来源,一定要说清楚 模型要实用、有效,数学表达(或方案)要完整 推导要严密时,公式推导若过长,可放在附录中 一般要求设计2~3个模型(一个简单的、再对模型进行改进,得到第二个模型,就会生动),鼓励创新,但不要离题。 (五)模型求解 (1)模型的定性 线性或非线性 连续、离散或混合 随机或确定 (2)模型求解 建立数学命题要表达规范,论证严密 算法原理、步骤要明确,利用现成的软件应说明 设法算出合理的数学结果或给出模拟 没有现成软件的需自己编程解出问题 (六)结果分析与检验 最终数值结果的正确性或合理性 结果检验,灵敏度分析等 考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据 必要时对问题解答作定性或规律性的讨论

数学建模格式排版的若干建议及操作步骤

数学建模格式排版的若干建议及操作步骤 本文依据《全国大学生数学建模竞赛论文格式规范》(全国大学生数学建模竞赛组委会,2016年修订稿)(以下简称《2016版格式规范》)的相关要求编写,若遇到当年度格式规范与《2016版格式规范》有相悖之处,以当年度格式规范为准。 本文当中的相关操作是在Word 2010版下进行的,如果采用的是其他版本的Word 或其他的文字编辑工具,可适当参考。 须强调的是,在《2016版格式规范》的第八条明确指明“本规范中未作规定的,如排版格式(字号、字体、行距、颜色等)不做统一要求,可由赛区自行决定。”。因此,本文中涉及的排版格式(字号、字体、行距、颜色等)仅供参考,重点是要学会一些排版技巧。 1“承诺书”和“编号专用页” 在《2016版格式规范》第3页的“2016版承诺书”和第4页的“2016版编号专用页”的下方都有特别强调“电子版论文中不得出现此页”,但是纸质版是需要这两页的,所以在编写论文时,不用考虑“承诺书”和“编号专用页”的排版问题,由协会统一打印,在论文装订之前发放给各参赛队。但是,“承诺书”和“编号专用页”也强调“请勿改动此页内容和格式”,因此,为了保证纸质版论文前后排版格式的一致性,在编写论文时,论文中的部分格式尽量保持跟“承诺书”和“编号专用页”一致,如页面设置、正文样式等。 2页面设置 2.1格式规范 在《2016版格式规范》的第一条“论文用白色A4纸打印(单面、双面均可);上下左右各留出至少2.5厘米的页边距;从左侧装订”,同时,参考了《2016版格式规范》文档的页面设置,考虑到《2016版格式规范》中强调的排版统一性,因此建议论文的页面设置格式为“A4纸打印,上下左右页边距均为2.5厘米”。

赛程安排数学建模问题

题目 赛程安排 摘要 赛程安排在体育活动中举足轻重,在很大程度上影响比赛的结果;本文主要针对最优赛程安排方案建立相应的数学模型,给出最优赛程的安排方案。 对于问题一,要给出一个各队每两场比赛中间都至少相隔一场的赛。因为参赛队伍只有5个,容易操作,所以可以利用排除-假设法可以得到一种满足条件的赛程安排,即,,,,,,,,,AB CD EA BC DE AC BD EC AD BE 。 对于问题二,考虑到各队每两场比赛中间至少相隔一场,我们用逆时针轮转法对比赛队伍进行排序,并根据这种方法,用Matlab 编出相应编程得出不同队伍比赛间隔的上限,再根据数据总结出规律,当N 为偶数时各队每两场比赛中间相隔的场次数的上限为22 N -场,用Matlab 软件验证其准确性。用同样的方 法可知,当N 为奇数时各队每两场比赛中间相隔的场次数的上限为 N 32 -()。 对于问题三,在达到第二问上限的情况下,可通过轮换模型得到8,9N N ==的赛程安排。N 8=时一种赛程安排如下: (1,2),(3,5),(4,6),(8,7),(1,3),(4,2),(8,5),(7,6),(1,4),(8,3),(7,2),(6,5),(1,8),(7,4),(6,3),(5,2),(1,7),(6,8),(5,4),(2,3),(1,6),(5,7),(2,8),(3,4),(1,5),(2,6),(3,7),(4,8) 9N =时一种赛程安排如下: (1,2),(3,4),(5,6),(7,8),(1,9),(2,4),(3,6),(5,8),(7,9),(1,4),(2,6),(3,8),(5,9),(1,7),(4,6),(8,2),(9,3),(5,7),(1,6),(4,8),(2,9),(3,7),(1,5),(6,8),(4,9),(2,7),(3,5),(1,8),(6,9),(4,7),(2,5),(1,3),(8,9),(6,7),(4,5),(2,3). 对于问题四,我们可以用每个队的每两场比赛中间间隔的场次数之和SUM 来衡量赛程的公平性。当SUM 不同时,SUM 大的队伍对其比赛结果越有利。当SUM 相同时,用每次间隔场次的标准差来衡量赛程的公平性,其中标准差越小的队对其比赛的结果越有利。当SUM 相同且每次间隔场次的标准差也相同时,两个队比赛时,我们用双方已参加比赛的次数来衡量比赛赛程的优劣,其中在双方比赛时,已参加比赛次数越少,其比赛的结果越有利。 关键词:排除-假设法 逆时针轮转法 Matlab 标准差

数学建模会议筹备模型

会议筹备模型设计 摘要:本文给出了会议筹备策略的数学模型。对于客房安排我们对数据利用进行MATLAB 进行拟合,得到了实到人数与发回执人数的线性关系,大体估算出实际到的代表数量为639人。先对发来回执且会到的代表进行客房安排,考虑到经济且令代表满意,我们建立了一个非线性规划模型,再考虑方便管理以及距离远近的因素,对得出的结果进行调整,最后对未发来回执但与会的代表,进行分配。得到如文表4的住房安排。对会议室安排,文中先用表格对各宾馆会议室进行排列归类,再用一个简单的规划模型,求解出了最经济的会议选择,即会议室全部选宾馆7的六个会议室。且花费7000元。对客车的安排我们同样先用表格对数据进行排列归类,用一个规划模型,利用LINGO 软件进行求解,得客车最优安排, 即宾馆①安排33座车3辆;宾馆②安排36座车6辆;宾馆⑤安排45座车3辆,33座车3辆;宾馆⑥安排45座车3辆,33座车3辆,所花钱14800元。最后得到安排会议室与租赁客车总花费W==+21w w 7000+14800=21800元。本模型对于此类问题,能够较好的解决,且可解决诸如比赛安排,人员安排等问题。 关键词:拟合,排列归类,数学建模,非线性规划

问题的提出 某市的一家会议服务公司负责承办某专业领域的一届全国性会议,会议筹备组要为与会代表预订宾馆客房,租借会议室,并租用客车接送代表。由于预计会议规模庞大,而适于接待这次会议的几家宾馆的客房和会议室数量均有限,所以只能让与会代表分散到若干家宾馆住宿。为了便于管理,除了尽量满足代表在价位等方面的需求之外,所选择的宾馆数量应该尽可能少,并且距离上比较靠近。 筹备组经过实地考察,筛选出10家宾馆作为备选,它们的名称用代号①至⑩表示,相对位置见附图,有关客房及会议室的规格、间数、价格等数据见附表1。 根据这届会议代表回执整理出来的有关住房的信息见附表2。从以往几届会议情况看,有一些发来回执的代表不来开会,同时也有一些与会的代表事先不提交回执,相关数据见附表3。附表2,3都可以作为预订宾馆客房的参考。 需要说明的是,虽然客房房费由与会代表自付,但是如果预订客房的数量大于实际用房数量,筹备组需要支付一天的空房费,而若出现预订客房数量不足,则将造成非常被动的局面,引起代表的不满。 会议期间有一天的上下午各安排6个分组会议,筹备组需要在代表下榻的某几个宾馆租借会议室。由于事先无法知道哪些代表准备参加哪个分组会,筹备组还要向汽车租赁公司租用客车接送代表。现有45座、36座和33座三种类型的客车,租金分别是半天800元、700元和600元。 请你们通过数学建模方法,从经济、方便、代表满意等方面,为会议筹备组制定一个预订宾馆客房、租借会议室、租用客车的合理方案。

数学建模宣传活动策划书

2010年**学院数学建模宣传活动策划书 策划人:杨**、李**等 活动内容:2010年**学院数学建模成果展系列宣传活动 活动时间:2010年12月3日——12月30日(暂定) 举办单位:**数学建模工作室,**数学建模协会 一、活动背景: 全国大学生数学建模竞赛(CUMCM)是由教育部高等教育司和中国工业与应用数学学会主办,目前全国高等学校中规模最大的课外科技活动之一。我校自2003年以来每年都组织参加该项赛事,并且在比赛中取得了优异的成绩。2010全国大学生数学建模竞赛陕西赛区获奖名单在11月19日正式公布。在今年的比赛中,我校取得了可喜可贺的成绩,参赛的20支队伍中共有18支队伍获奖,其中国家奖4个,省级奖14个,参赛队伍获奖率高达90%,在所有同类院校中名列前茅,同时也实现了我校参赛以来本科队国家奖零的突破,具体如下表: 而且我校的两支队伍已报名参加明年二月的数学建模国际赛,目前队员们正在为比赛进行准备,这需要学校给予鼓励和宣传支持。我

校今年无论是获奖队伍的数量还是获奖的等级上都有了很大的提高,在所有同类院校中名列前茅。美中不足的是我校还有很多人对数学建模竞赛一知半解,在每年选拔参赛队员的时候宣传极为费力,同时也可能使许多优秀的同学失去了参加比赛的机会。我校在这样的背境下正适合宣传数学建模系列活动,以使更多的同学接触并了解数学建模比赛,为在以后的全国比赛乃至国际赛取得优秀的成绩打下基础。 二、活动目的: 1.、增强我校学生对数学建模竞赛的认识,吸引更多喜欢数模的优秀大学生加入; 2、为我校的两支团队参加明年数学建模国际赛造势; 3、为**数学建模协会培养挑选一批优秀人才,使**数学建模协会能形成良性循环机制。 三、活动简介: **数学建模协会计划于2010年12月3日—30日举行“2010年**学院数学建模宣传系列活动”,并借助此次活动宣传数学建模,扩大数学建模的影响力。 本次系列活动包含三个子活动 活动一:“2010年**学院数学建模成果展” 活动二:“数学建模国际赛宣传活动” 活动三:“有奖征集,**数学建模协会会徽设计大赛” 四、活动地点及负责人:

课程时间安排-数学建模

课程时间安排的优化模型 摘要 排课是教务运作中的一项重要工作,同时排课问题也是一个复杂的组合优化问题,对此问题的建模和求解,难度都非常大。多数情况下我们只是满足于求解问题的一个可行解,而对此可行解的进一步优化往往通过手工完成,效率很低。目前有很多计算机专家和数学专家都致力于对大规模排课问题的研究,在此我们给出一个规模相对较少,约束相对较少的较为简单的排课问题。解决排课中的问题,既能满足老师授课上机的要求又能满足学生对上机时间的合理安排。让学校、老师和同学的满意。 让老师满意,就是安排尽量少出现像同一天同一位老师上1-2节,7-8节,最好是1-2节面授然后4-5节课上机;让同学们满意,可从以下几方面考虑,比如,同一班级同一门课程,至少应隔一天上一次,另外对学生感到比较难学的课程尽量安排在最好的时段,上机时间要安排在面授课之后;让学校满意,就是尽量减少因出现问题而不得不为老师调课的次数。根据实际情况在具体模型建立过程中采用了0-1矩阵法,矩阵的乘法等数学方法,建立优化类数学模型来求解有效矩阵,根据有效矩阵初排课表,结合多方面因素建立修正矩阵,对初排课表逐层修改,得出最优排课表。并通过matlab实现算法和给出模型的解。 先将123班级课表和20张老师课表转换为0-1变量,有课改为0,没课改为1,组成两个矩阵,然后可用VB编程得到一个新的矩阵,两矩阵中元素都为1时,新的矩阵对应的元素就为1,即老师和班级同时有空时为1。将多目标函数转换为单目标函数,其他的要求可直接在约束条件中满足。然后用lingo软件编程解决(其约束条件和目标函数都可用lingo的语句表示出来)

关键词:排课问题 0-1矩阵矩阵的乘法优化目标矩阵 lingo VB 1 问题重述 排课是教务运作中的一项重要工作,同时排课问题也是一个复杂的组合优化问题,对此问题的建模和求解,难度都非常大。多数情况下我们只是满足于求解问题的一个可行解,而对此可行解的进一步优化往往通过手工完成,效率很低。目前有很多计算机专家和数学专家都致力于对大规模排课问题的研究,在此我们给出一个规模相对较少,约束相对较少的较为简单的排课问题,请同学们加以解决。 目前,某校的计算机上机课大都安排在计算机学院,计算机学院有5个机房用于学生上机,每个机房大约容纳90人。安排上机的课程共有4门,指导上机的教师共有24人,其中20人为课程的授课教师,见附件1,其他四人为机房的管理人员,依次为陆老师,章老师,张老师和彭老师,其中陆老师负责2个机房。共有123个班级需要上机,详细名单见附件1。教师和学生的上机时间不能和他们的授课课程时间冲突,为此我们给出了各位教师和各个班级学生的课程表,见文件夹附件2。四名管理人员可全天进行上机指导,但只能在自己负责的机房进行. 要求: (1)为了保证授课效果,学院规定每个老师在同一个时间段只能为1个班级进行指导;而同一时段允许有两名教师在同一个机房分别指导一个班级; (2)上机指导老师尽可能指导自己授课班级的学生; (3)周末尽可能不安排上机;其次晚上尽可能不安排上机。 (4)为了减少教师到新校区的次数,上机时间尽可能与其授课时间安排在同一天。 (5)还有其它要求可根据高校教学的情况,酌情给出,给出时要充分考虑教学规律、教学效果和大部分老师、学生的要求。

会议筹备问题的数学模型

会议筹备的数学模型 摘要 本文综合考虑了经济、方便、代表满意度等因素,通过线性规划的优化方法,为会议筹备组制定了一套预订宾馆客房、租借会议室、租用客车方案。 为了得到本届实际与会代表数量,首先根据往届与会人数的统计情况,采用一元线性回归的的方法对数据进行拟合,建立了与会人数预测模型,合理预测了本届与会代表人数为658人。 为解决宾馆预定的问题,分别以预订宾馆数最少和预订宾馆间距离最小为目标函数,以所预订的房间满足代表的要求作为约束条件,建立了0-1规划模型,通过Lingo软件求解,确定所要预订的宾馆,求得所选宾馆编号为1、2、5、7。基于所选宾馆,本文采用平均分组的方法,以租借会议室费用最低为目标函数,以会议室的规模及数量为约束条件,建立线性规划模型,通过Lingo软件求解,确定所需租借的会议室类型及数量。 基于尽可能少的代表到其它宾馆去开会的原则,对所选的4个宾馆安排客房,确定各宾馆将入住的人数及出去开分组会的人数。根据上述方案,建立线性规划模型:以总车座数满足外出开会的人数为约束条件,以最少的租车费用为目标函数进行求解,定出最佳租用客车方案。 最后,本文还对模型进行了评价,并作出了改进,建立了宾馆数量最小、住房费用最小的双目标规划,并进行合理的转化,首先规划出宾馆及房间的数量,选择2、6、7、8、9五个宾馆,并给出具体的房间分配。在此基础上,建立了会议室租金最小、租车费用最小的双目标模型,最终求解得到总共需要资金44400元,模型结合实际,对于类似的优化问题,具有一定的实用价值。 关键词: 一元线性回归整数规划0-1规划多目标规划

会议筹备的数学模型1 摘要1 一. 问题重述4 二.问题分析5 三.模型的假设5 四.符号说明6 五、模型建立与求解6 5.1 模型的准备6 5.2本届与会代表数量预测8 5.3求取宾馆数量的数学模型12 5.3.1方法一12 5.3.2 方法二13 5.4选择分组会议室的数学模型13 5.5 确定入住各宾馆的代表人数和房间分配的数学模型14 5.6确定客车数量的数学模型15 5.7会议筹备最终方案16 六、模型评价17 七、模型的改进18 7.1预定宾馆房间数量18 7.2预定会议室和车辆安排22 参考文献:24 附录25

相关主题
文本预览
相关文档 最新文档