Virtual Synchronous Machine
- 格式:pdf
- 大小:507.89 KB
- 文档页数:6
常用电气自动化专业英语词汇电流 current电压 voltage功率 power频率 frequency电阻 resistance电容 capacitance电抗 reactance电阻率 resistivity阻抗 impedance相,相位 phase有功功率 active power无功功率 reactive power视在功率 apparent power装设功率 installed power安培 ampere (A)伏 volt (V)欧姆 ohm赫兹 hertz (HZ)瓦 watt (W)供电局 power supply authority电力公司 power supplycompany发电厂 power plant变电所 substation配电站 distribution substation配变电站 transformer station终端变电站 terminal substation车间变电站 substation in workshop :室内变电站 indoor substation自动变电站 automatic substation成套变电站 unit substation高压室 H.T room低压室 L.T room变压器室 transformer room变压器平台 transformer platform柴油发电机室 diesel generator room 控制室 control room蓄电池室 battery room维修间 maintenance room值班室 duty room休息室 rest room电容器室 condenser room充电室 battery --charging room室外储油罐 outdoor oil tank地下油罐 underground oiltank日用油箱 day tank负荷 load一类负荷 first-class load二类负荷 second-class load三类负荷 third-class load照明负荷 lighting load动力负荷 power load电阻负荷 resistance load电抗负荷 reactive load冲击负荷 shock load空载 non -load有载 on-load满载 full -load过载 over -load不平衡负荷 unbalanced load平衡负荷 balanced load额定负载 nominal load负荷计算 load circulation功率因数 power factor同时使用系数 diversity factor需要系数法 demand factor method利用系数法 utilization factor method二项式法 binomial method无功功率补偿 reactive powercompensation自然功率因数 natural power factor补偿后功率因数 power factorafter compensating 高压补偿 compensating inH.T side低压补偿 compensating in L.T side负荷率 load rate补偿容量 compensating capacity设备装设容量 installed capacity备用容量 standby capacity额定容量 rated capacity视在容量 apparent capacity计算容量 calculated capacity短路容量 short circuit capacity负荷计算表 load calculation table电压 voltage高压 high tension(H.T)低压 low tension (L.T)冲击电压 impulse voltage临界电压 critical voltage残余电压 residual voltage击穿电压 breakdown voltage供电电压 supply voltage照明电压 lighting voltage工作电压 working voltage额定电压 rated voltage相电压 phase voltage线电压 line voltage过压 over--voltage欠压 under--voltage电压降 voltage drop电压损失 voltage loss电压偏移 voltage deviation电压波动 voltage variation电压标准 voltage standard电压等级 voltage class电压调整率 voltage regulation rate电流 current交流 alternating current (A.C)直流 direct current (D.C)短路电流 short--circuit短路点 short circuitpoint三相短路电流 three-phase short-circuit current 两相短路电流 two-phase short-circuit current 单相短路电流 single--phase short-circuit current 短路电阻 short-circuit resistance短路电压 short-circuit voltage短路电抗 short-circuit reactance短路容量 short-circuit capacity短路稳定性 short-circuit stability短路冲击电流 short-circuitimpulse current热效应 thermal effect稳定短路电流 steady stateshort-circuit current切断电流 cut-off current整定电流 setting current动作电流 action current额定电流 rated current,nominal current熔体电流 melt current熔丝电流 fuse current故障电流 fault current极限电流 limiting current过电流 over--current有效值 virtual value,effective value电源,供电方式 power andsupply system工作电源 working powersource操作电源 operating powersource备用电源 standby source应急电源 emergency source常用电源 normal source供电电压 supply voltage双回路供电 two-feeder supply两个独立电源 two independentpower supply放射式 radial system单回路放射式 one-circuitradial system双回路放射式 two-circuitradial system有公用备用干线的放射式radial systemwith public standby main line树干式 trunk system单回路树干式 one-circuittrunk system单侧供电双回路树干式 two-circuittrunk system with one-side power supply双侧供电单回路树干式 one-circuit trunk system with two-sidepowersupply双侧供电双回路树干式 two-circuittrunk system with two-side power supply环式 ring system链式 chain system变压器—干线式 transformer-main line systemTN系统 TNsystemTN—S系统 TN-S systemTN—C 系统 TN-C systemTN—C—S系统 TN-C-S systemTT 系统 TTsystem单相二线制 1-phase 2-wire system三相四线制 3-phase 4-wire system三相五线制 3-phase 5-wire system保护线 protective earth (PE)中性线(N线) neutral分列运行 independent operation并列运行 parallel operation无载运行 non-load operation变压器 transformer三相变压器 three-phase transformer油浸变压器 oil-immersed transformer自冷变压器 self-cooling transformer铜线变压器 copper-coil transformer铝线变压器 aluminum-coil transformer有载调压的变压器 on-loadregulating transformer可调变压器 variable transformer全封闭的变压器 fully-enclosed transformer干式变压器 dry transformer单相变压器 single-phase transformer防雷变压器 lightning-proof transformer环氧浇注变压器 epoxy-resin filled transformer电力变压器 power transformer低损耗变压器 low losstransformer照明变压器 lighting transformer控制变压器 control transformer三相油浸自冷式铝线低损耗有调压电力变压器3-phase oil-immersed self-cooling andlow-loss aluminum-coil powertransformer变压器系数 transformer factor调压器 voltage regulator稳压器 stabilizer减压器 reducer整流器 rectifier限流器 current limiter不停电电源 uninterrupted power supply (UPS)变阻器 rheostat电阻器 resister自动功率调整器 automatic powerregulator电压互感器 voltage transformer电流互感器 current transformer降压变压器 step-down transformer自动调压器 automatic regulator高频变压器 high-frequency transformer降压器 step-down transformer升压器 step-up transformer编号 code型号 type用途 function二次接线图号 secondarywiring drawing No.外形尺寸 overall dimension一次主要设备 preliminary main equipment辅助设备 auxiliary equipment进线 incoming line出线 outgoing line规格 specification数量 quantity高压电器 H.T equipment高压配电柜 H.T distribution cabinet高压开关柜 H.T switchgear手车式高压开关柜 draw—out type H.T switchgear户内交流金属铠装移动式开关柜indoor A.C armored movable switchgear高压无功功率补偿装置H.T reactive power compensator高压静电电容器柜H.T electrostatic capacitor cabinet大功率并联电容无功功率补偿high power parallel capacitor reactive powercompensating 高压断路器H.T circuit breaker少油断路器 minimum oil circuit breaker油断路器 oil circuitbreaker真空断路器 vacuum circuit breaker空气断路器 air circuit breaker六氟化硫断路器 sulfurhexaflouride breaker (SF6 breaker)户内式 indoor (type)户外式 outdoor (type)电磁式 electromagnetic产气式 aerogenic高压接触器 H.T contactor高压真空接触器 H.T vacuumcontactor高压负荷开关 H.T loadswitch高压隔离开关 H.T isolator操动机构 control mechanism手动操动机构 hand controlmechanism电磁操动机构 magnetic control mechanism弹簧储能操动机构(energystoring) spring operating mechanism电动操动机构 motor drivedoperating mechanism高压熔断器 H.T fuse跌落式熔断器 drop—out fuse高压电抗器 H.T reactor串联电抗器 series reactor高压互感器 H.T transformer移相电容器 phase—shift capacitor低压配电装置 L.T distributordevice低压配电屏 L.T distribution panel低压无功功率补偿装置 L.T reactive power compensator抽屉式低压配电屏 drawable L.Tdistribution panel电动机控制中心 motor controlcenter (MCC)固定式低压配电屏 fixed L.Tdistribution panel低压静电电容器屏 L.Telectrostatic capacitor panel出线屏 outgoing panel进线屏 incoming panel联络屏 connection panel计量屏 measurement panel动力馈电屏 power feeder panel照明馈电屏 lighting feeder panel控制柜 control cabinet配电箱 distribution cabinet总配电箱 generaldistribution box动力配电箱 power distribution box照明配电箱 lighting distribution box插座箱 socket box电度表箱 kilowatt-hour meter box非标准控制箱,柜,台non-standard control box, cabinet, desk电源切换箱 power change-over box开关 switch总开关 master switch主开关 main switch刀开关 knife switch负荷开关 load switch开启式开关 open switch封闭式开关 closed switch组合开关 combination switch自动空气断路器 automatic airbreaker框架式 skeleton type塑料外壳式断路器 moulded casecircuit breaker (MCCB)行程开关 position switch微动开关 microswitch万能转换开关 universal switch分级转换开关 stepping switch换相开关 phase converter防爆开关 explosion proof switch漏电保护开关 leakage protection switch三向开关 three—way switch轻载开关 underload switch压力开关 pressure switch单刀双掷开关 single-poledouble throw switch接触器 contactor交流接触器 A.C contactor直流接触器 D.C contactor消弧接触器 arc extinction contactor起动器 starter电磁起动器 electromagnetic starter磁力起动器 magnetic starter自动空气式星三角起动器 automatic airstar-delta starter 减压起动器 voltage reducing starter起动控制箱 starting controler低压熔断器 L.T fuse螺旋式熔断器 screw fuse快速熔断器 quick fuse瓷插式熔断器 plug-in fuse继电器 relay电流继电器 current relay电压继电器 voltage relay过电流继电器 over-current relay信号继电器 signal relay时间继电器 timing relay中间继电器 intermediate relay漏电继电器 leakage relay欠压继电器 under-voltage relay绝缘监视继合器 insulation detection relay交流电度表 A.C kilowatt hour meter单相电度表 single-phase kilowatt hour meter三相电度表 three-phasekilowatt hour meter无功电度表 reactivekilovolt ampere-hour meter无功功率表 reactive power meter有功功率表 active power meter电流表 ammeter, current meter电压表 voltmeter万用电表 universal meter绝缘检查电压表 insulationcheck voltage meter 功率因数表 power factor meter多相电度表 polyphase meter电力定量器电机 electrical machine同步的 synchronous异步的 asynchronous电动机 motor发电机 generator转子 rotor定子 stator柴油发电机(组) dieselgenerator (set)电动发电机(组) motor generator(set)感应电动机 induction motor鼠笼式感应电动机 squirrel cageinduction motor 绕线式电动机 wound-rotor induction motor滑环式电动机 slip-ring motor起动电动机 starting motor; actuating motor自激电动机 motor with self excitation同步器 synchronizer励磁机 exciter伺服电动机 service motor插接装置 plug device插头 plug螺口插座 screw socket卡口插座 bayonet socket插座 socket; outlet单相二极插头 1-phase 2-poleplug三相插头 3-phase plug单相插座 single phase socket三相四极插座 3-phase 4-polesocket接线柱 binding post接头 adapter接线板 terminal block接线盒 terminal box;junction box接线箱 connection box;junction box 线路及安装 line and installation线,线路 line andcircuit高压线路 H.T line输电线路 transmission line电源进线 incoming line出线 outgoing line馈线 feeder供电干线 main supplyline; supply main 低压线路 L.T line电力干线 main power line照明干线 main lighting line支线 branch line电力支线 power branchline照明支线 lighting branchline封闭式母线 enclosed bus--bar接插式母线 plug-in bus--bar接地母线 earth line中性线,零线 neutral应急照明线 emergency lighting line联络线 liaison line滑触线 trolley line埋地线 underground line明线 open wire暗线 concealed wire明线布线 open wiring暗线布线 concealed wiring通信线路 communication line 架空线路 overhead line架空干线 overhead main电缆线路 cable line电缆沟 cable trench电缆桥架 cable bridge电缆托架 cable tray电缆槽 cable duct墙式电缆槽 wall duct导线 conductor andcable裸导线 bare conductor铝线 aluminum conductor铜芯线 copper core cable电缆 cable馈电电缆 feed cable电力电缆 power cable照明电缆 lighting cable通信电缆 communication cable 控制电缆 control cable信号电缆 signal cable实心电缆 solid cable同轴电缆 coaxial cable单芯电缆 single-core cable双股电缆 paired cable高压电缆 H.T cable低压电缆 L.T cable绝缘电缆 insulated cable屏蔽电缆 shielded cable护套电缆 sheathed cable铜芯电缆 copper corecable铠装电缆 armored cable铅包电缆 lead-covered cable油浸电缆 oil-immersed cable漆包电缆 lacquer-cover cable纸绝缘电缆 paper-insulated cable橡皮绝缘电缆 rubber-insulated cable塑料绝缘电缆 plastic-insulate cable绕扎电缆 wrapped cable聚乙烯 polyethylene, polythene聚氯乙烯绝缘电缆 polyvinylchloride (PVC) cable交联聚乙烯绝缘电缆 x-linked polyethylene (XLPE) cable乙烯绝缘软性电缆 vinyl cabtyre cable阻燃铜芯塑料绝缘电线flame retardant copper core plasticinsulated wire交联聚乙烯绝缘钢带铠装聚氯乙烯护套电力电缆x—linked polythene insulated steel tapearmored PVC sheathed power cable韧性橡皮绝缘电缆 tough-rubbersheathed cable地下电缆 ground cable架空电缆 overhead cable软电缆 flexible cable电缆隧道 cable tunnel电缆隧道口 cable tunnel exit电缆井 cable pit电缆人孔 cable manhole电缆夹 cable cleat电缆分线箱 cable junction box 电缆箱,分线盒 cable cabinet电缆接线头 cable plug电缆终端盒,电缆接头电缆吊架,电缆吊杆 cable hanger 电缆桥架 cable bridge埋深 buried depth安装 installation安装高度 installation height电杆长度 pole length线间距离 distance between lines 跨度 span弧垂 sag交叉点 crossing point架空引出 over-head leading out 落地安装 installed onground嵌装在墙上 built in wall挂墙安装 suspended onwall明装 surface mounted嵌装 flush mounted暗装 conceal mounted架空引入 over-head leading-in 敷设 laying明敷 exposed laying暗敷 concealed laying埋地敷设 led underground 由……引来 (led) from引至 (led) to直埋 buried directlyunderground穿钢管敷设 laid in steelconduit引上 led-up引下 led--down沿……敷设 run along沿墙 along wall沿梁 along beam跨柱 across column弯曲半径 bending radius抽头 tap-off电缆终端头 cable termination joint试验,维护 test, maintenance试车 test run,commission整定 setting修理 repair验收 acceptance故障 fault停电 power cut,power failure校正 correct停机 stop定期检修 periodic maintenance继电保护 relaying保护 protection保护配置 protection disposition电流速断保护 current quick-breaking protection 过电流保护 over-current protection纵联差动保护 tandem differential protection过载保护 over-load protection距离保护 distance protection功率方向保护 directional power protection 继电器 relay逆流继电器 reverse-current relay阻抗继电器 impedance relay低周率继电器 low frequencyrelay重合闸继电器 reclosing relay定向继电器 directional relay瞬动继电器 instantaneous relay辅助继电器 auxiliary relay差周率继电器 difference frequency relay 极化继电器 polarized relay合闸位置继电器 closing position relay整定 setting整定值 set value整定范围 setting range时限 time lag反时限 inverse time定时限 definite time定时反时限 definite inverse time变时限 dependent time死区 dead zone保护范围 protection range动作 action动作时间 action time,actuating time动作范围 action range延时 delay切换 switchover瞬时动作 instantaneous action复位 reset直流操作 D.C operation交流操作 A.C operation操作电压 control voltage合闸 switch on跳闸 trip off接通 switch-in, close-up备用电源自动投入automaticswitch-on of standby power supply自动重合闸 automatic reclosing脱扣线圈 tripping coil电流脱扣,串联脱扣 series tripping电压脱扣,并联脱扣 shunt tripping起动 start停止 stop按钮 push button断开,切断 break, cut off直接起动 direct starting延时速断 delay quickbreaking保护跳闸 protecting tripping防跳 tripping prevent跳闸指示灯 trippingindicating lamp合闸回路 closing circuit超温报警 overtemperature alarming防雷,接地 lightningprotection and earthing雷击 lightning stroke雷害 lightning disturbance雷电闪络 lightning flash over雷电过电,雷涌 lightning surge直击雷 direct stroke侧击雷 side stroke感应雷 induction stroke雷暴 thunderstorm雷电日 thunder day雷电日数 number oflightning days雷电或然率 lightning probability触电 electric shock静电感应 electrostatic induction放电 electric discharge间隙 gap电火花 spark电弧 arc漏电 leakage漏电路径 leakage path避雷装置 lightning protector避雷针 lightning rod,lightning conductor避雷带 lightning belt避雷网 lightning-protection net避雷针支架 lightning rodsupport避雷针基础 lightning rodbase避雷器 arrester球形避雷 spherical arrester管式避雷 tubular arrester阀式避雷器 auto-valve arrester角式避雷器 horn arrester多隙避雷器 multigap arrester金属氧化物避雷器 metal-oxide arrester铅避雷器 aluminum arrester氧化膜避雷器 oxide filmarrester磁吹避雷器 magnetic blow-out arrester磁吹阀式避雷器 magneticblow-out valve type arrester 防雷工程 lightning protection engineering均压网 voltagebalancing net保护和接地 protection and earthing保护范围 protection range保护高度 protection height保护半径 protection radius保护角 protection angle防雷分类 classificationof lightning protection 一类防雷区 first classprotection接地 earthing接地电阻 earth resistance接地电阻表 earth tester防雷接地 earthing forlightning protection人工接地 artificial earthing工作接地 working earthing保护接地 protective earthing保护地 protective earth信号地 signal earth重复接地 re-earthing中性点接地 neutral point earthing屏蔽接地 shielding earthing接地系统 earthing system接地故障 earth fault暗接地线 concealed earth line暗检测点 concealed checkpoint接地装置 earthing device接地开关 earthing switch接地火花避雷器 earthing arrester接地母线 earth bus接地线 earth conductor接地极 earth electrode引下线 led-down conductor断接卡 disconnector接地干线 ground bus垂直接地极 vertical electrode水平接地极 horizontal electrode降阻剂 resistance reducer利用主筋作引下线mainreinforcing bar used as down-led conductor利用铁爬梯作引下线 iron ladderused as down-led conductor 接地线引入处 entrance ofearth wire自然接地体 natural grounding基础接地体 foundation grounding接零保护 neutral protection保护接零 protective neutralization接零干线 neutral main利用电线管作零线 conduit used asneutral line零线,接地线 neutral line(conductor)零线,中性线 neutral line(conductor)带电金属外壳 currentcarrying metallic case不带电金属外壳 non-currentcarrying metallic case材料 material金属 metal镀锌 zinc plating ,galvanization镀铂 platinum plating镀钠 cadmium plating镀铬 chromium plating镀镍 nickel plating镀锡 tin plating镀锌板 galvanized sheet镀锌层 zinc coat镀锌钢板 galvanized steel plate 镀锌扁钢 galvanized flatsteel镀锌角钢 galvanized angle steel 镀锌圆钢 galvanizedround steel 镀锌钢管 galvanized steel pipe 镀锌槽钢 galvanizedchannel steel 硬塑料管 hard plastic pipe绝缘材料 insulating materials绝缘包布 insulating tape填充 filling填料 filler, fillingmaterial电缆膏 cable compound绝缘膏 insulating compound膏 compound漆 lacquer, paint清漆 varnish搪瓷 enamel; porcelain enamel 沥青 bitumen; asphalt云母 mica环氧树脂 epoxy resin腊 wax石膏 gypsum石棉asbestos电木,酚醛塑料 bakelite玻璃纤维 glass fiber橡皮 rubber辅件 auxiliaries支架 support电缆夹具 cable cleal电缆接头 cable spice电缆套 cable box电缆铠装 cable armouring接地螺栓 earthing bolt百叶窗 louvres隔板 closure, partition隔热板 heat shield法兰,垫圈 flange镀锌螺母 galvanized nut螺钉 screw, nail螺栓 bolt垫块 bearer垫木 skid垫片 gasket, spacer垫圈 washer; (ring )gasket吊钩 hanging hook轨 rail照明 lighting人工照明 artificial lighting工作照明 working lighting直接照明 direct lighting间接照明 indirect lighting局部照明 local lighting;spot lighting 移动照明 portable lighting应急照明 emergency lighting疏散照明 egress lighting值班照明 duty lighting警卫照明 guard lighting障碍照明 obstacle lighting正常照明 normal lighting舞台照明 stage lighting走道照明 corridor lighting盘面照明 dial lighting楼梯照明 staircase lighting剧场照明 theater lighting室内照明 indoor lighting室外照明 outdoor lighting道路照明 road lighting广场照明 plaza lighting街道照明 street lighting照明方式 lighting pattern一般照明 general lighting辅助照明 supplementary lighting 大面积照明 area lighting大面积泛光照明 area flood lighting 逆光照明 back lighting漫散照明 diffuse lighting橱窗照明 shop windowlighting。
One Stop Virtualization Shop StarWind Virtual SAN ®Hyperconverged 2-Node Scenariowith VMware vSphere 6.5APRIL 2018TECHNICAL PAPERTrademarks“StarWind”, “StarWind Software” and the StarWind and the StarWind Software logos are registered trademarks of StarWind Software. “StarWind LSFS” is a trademark of StarWind Software which may be registered in some jurisdictions. All other trademarks are owned by their respective owners. ChangesThe material in this document is for information only and is subject to change without notice. While reasonable efforts have been made in the preparation of this document to assure its accuracy, StarWind Software assumes no liability resulting from errors or omissions in this document, or from the use of the information contained herein. StarWind Software reserves the right to make changes in the product design without reservation and without notification to its users.Technical Support and ServicesIf you have questions about installing or using this software, check this and other documents first - you will find answers to most of your questions on the Technical Papers webpage or in StarWind Forum. If you need further assistance, please contact us.About StarWindStarWind is a pioneer in virtualization and a company that participated in the development of this technology from its earliest days. Now the company is among the leading vendors of software and hardware hyperconverged solutions. The company’s core product is the years-proven StarWind Virtual SAN, which allows SMB and ROBO to benefit from cost-efficient HyperСonverged IT infrastructure. Having earned a reputation of reliability, StarWind created a hardware product line and is actively tapping into HyperСonverged and storage appliances market. In 2016, Gartner named StarWind “Cool Vendor for Compute Platforms” following the success and popularity of StarWind HyperСonverged Appliance. StarWind partners with world-known companies: Microsoft, VMware, Veeam, Intel, Dell, Mellanox, Citrix, Western Digital, etc.Copyright ©2009-2018 StarWind Software Inc.No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of StarWind Software.ContentsIntroduction (4)Pre-Configuring the Servers (5)Preparing Hypervisor for StarWind Deployment (6)Configuring Networks (6)Preparing StarWind Virtual Machines (8)Configuring StarWind VMs Startup/Shutdown (9)Downloading, Installing and Registering the Software (10)Configuring Automatic Storage Rescan (17)Provisioning Storage with StarWind VSAN (25)Creating StarWind HA devices (DS1, DS2) (25)Preparing Datastores (34)Adding Discover Portals (34)Creating Datastores (37)Additional Tweaks (40)Creating Datacenter (43)Creating Cluster (44)Conclusion (47)IntroductionTraditionally, VMware requires having some sort of the shared storage to guarantee the data safety, allow the virtual machines migration, enable continuous application availability, and eliminate any single point of failure within IT environment. VMware users have to choose between two options when selecting the shared storage:•Hyperconverged solutions that allow sharing the same hardware resources for the application (i.e. hypervisor, database) and the shared storage, thus decreasing the TCO and achieving the outstanding performance results.•Compute and Storage separated solutions that keep the compute and storage layers separately from each other, thus making the maintenance easier, increasing the hardware usage efficiency, and allow building the system accurately for solving the task.This guide is intended for experienced VMware and Windows system administrators and IT professionals who would like to configure StarWind Virtual SAN® hyperconverged solution for vSphere deployments. It provides a step-by-step guidance on configuring a 2-node vSphere cluster using StarWind Virtual SAN® to convert local storage of the ESXi hosts into a fault tolerant shared storage resource for ESXi.A full set of up-to-date technical documentation can always be found here, or by pressing the Help button in the StarWind Management Console.For any technical inquiries, please visit our online community, Frequently Asked Questions page, or use the support form to contact our technical support department.Pre-Configuring the ServersThe diagram below illustrates the network and storage configuration of the solution described in this guide.Preparing Hypervisor for StarWind Deployment Configuring NetworksConfigure network interfaces on each node to make sure that Synchronization and iSCSI/StarWind heartbeat interfaces are in different subnets and connected physically according to the network diagram above. In this document, 172.16.10.x subnet is used for iSCSI/StarWind heartbeat traffic, while 172.16.20.x subnet is used for the Synchronization traffic. All actions below should be applied to each ESXi server.1.Create two vSwitches, one for the iSCSI/ StarWind Heartbeat channel and the other one forthe Synchronization channel.NOTE: Virtual Machine Port Group should be created for iSCSI/ StarWind Heartbeat and the Synchronization vSwitches while VMKernel port should be created only for iSCSI traffic. Static IP address should be assigned to VMKernel ports.2.Create a VMKernel port for iSCSI/ StarWind Heartbeat channel.3.Add Virtual Machine Port Group on the vSwitch for iSCSI traffic and on the vSwitch forSynchronization traffic.NOTE: It is recommended to set jumbo frames to 9000 on vSwitches and VMKernel ports for iSCSI and Synchronization traffic. Additionally, vMotion can be enabled on VMKernel ports.4.Repeat steps 1-3 for any other links intended for Synchronization and iSCSI/Heartbeat trafficon both ESXi nodes.Preparing StarWind Virtual Machines5.Create Virtual Machines (VMs) on each ESXi host with Windows Server 2016 (2012 R2) andStarWind VSAN installed.StarWind VMs on ESXi hosts should be configured with the following settings:RAM: at least 4 GB (plus the size of the RAM cache if it is planned to be used)CPUs: at least 4 virtual processors with 2 GHz reserved;Hard disk 1: 100 GB for OS (recommended);Hard disk 2: Depends on the storage volume to be used as shared storage.NOTE: Each hard disk should be Thick Provisioned Eager Zeroed.Network adapter 1: ManagementNetwork adapter 2: iSCSINetwork adapter 3: SyncNOTE: All network adapters should be of the VMXNET3 type.NOTE: Active Directory Domain Services role can be added on StarWind Virtual Machine (VM) if necessary, thus it can serve as a domain controller.NOTE: When using StarWind with synchronous replication feature inside of a Virtual Machine, it is recommended not to make backups and snapshots of the Virtual Machine with StarWind Service which could pause the StarWind Virtual Machine.Pausing the Virtual Machines while StarWind service under load may lead to split-brain issues in devices with synchronous replication and data corruption.Configuring StarWind VMs Startup/Shutdown6.Setup the VMs startup policy on both ESXi hosts from Manage -> System tab in ESXiweb console. In the appeared window, check Yes to enable the option and choose stop action as Shut down. Click Save to proceed.7.To configure VM autostart, right – click on it, navigate to Autostart and click Enable.plete the actions above on StarWind VM located on another host.9.Start the both virtual machines, install OS and StarWind Virtual SAN.Downloading, Installing and Registering the Software10.Download the StarWind setup executable file from our website by following the next link:https:///registration-starwind-virtual-sanunch the downloaded setup file on the virtual machine where StarWind Virtual SANwill be installed. The setup wizard will appear.12.Read and accept the License Agreement.Click Next to continue.13.Carefully read the information about new features and improvements. Red text indicateswarnings for users who are updating existing software installations.Click Next to continue.14.Select the following components for the minimum setup:•StarWind Virtual SAN ServiceThe StarWind service is the “core” of the software. It can create iSCSI targets as well as share virtual and physical devices. The service can be managed from StarWind ManagementConsole on any Windows computer or VSA that connected to the network. Alternatively, the service can be managed from StarWind Web Console deployed separately.•StarWind Management ConsoleThe StarWind Management Console is the Graphic User Interface (GUI) part of the software that controls and monitors all storage-related operations (e.g. allows users to create targets and devices on StarWind Virtual SAN servers connected to the network).15.Specify the Start Menu folder.Click Next to continue.16.Enable the checkbox if you want to create a desktop icon.17. A prompt will appear that allows requesting a time-limited fully functional evaluation key, or aFREE version key. Alternatively, the already purchased commercial license key for StarWind Virtual SAN can be used. Select the appropriate option.18.Click Browse to locate the license file.19.Review the licensing information.Click Next to apply the license key.20.Verify the installation settings. Click Back to make any changes or Install to continue.21.Click Finish to complete the installation process. Optionally, StarWind ManagementConsole can be launched by choosing the corresponding setting.22.Repeat the steps above on the second virtual machine.Configuring Automatic Storage RescanFor each ESXi host, configure automatic storage rescan.23.Log in to StarWind VM and install vSphere PowerCLI on each StarWind virtual machine byadding the PowerShell module (Internet connectivity is required). To do so, run the following command in PowerShell:Install-Module-Name VMware.PowerCLI-AllowClobberNOTE: In case of using Windows Server 2012 R2, online installation of PowerCLI requires Windows Management Framework 5.1 or upper version available on VMs. Windows Management Framework 5.1 can be downloaded by the following link:https:///fwlink/?linkid=83951624.Open PowerShell and change the Execution Policy to Unrestricted by running thefollowing command:Set-ExecutionPolicy Unrestricted25.Create a PowerShell script which will perform an HBA rescan on the hypervisor host.Import-Module VMware.PowerCLI$counter=0if ($counter-eq0){Set-PowerCLIConfiguration-InvalidCertificateAction ignore-Confirm:$false| Out-Null}$ESXiHost="IP address"$ESXiUser="Login"$ESXiPassword="Password"Connect-VIServer$ESXiHost-User$ESXiUser-Password$ESXiPassword|Out-NullGet-VMHostStorage$ESXiHost-RescanAllHba|Out-NullGet-ScsiLun-VMHost$ESXiHost-LunType disk|Where-Object Vendor-EQ"STARWIND"| Where-Object ConsoleDeviceName-NE" "|Set-ScsiLun-MultipathPolicy RoundRobin| Out-Null$StarwindCN=Get-ScsiLun-VMHost$ESXiHost-LunType disk|Where-Object Vendor-EQ"STARWIND"|Where-Object ConsoleDeviceName-NE" "|Select-Object CanonicalName$esxcli=Get-EsxCli-VMHost$ESXiHostforeach($CN in$StarwindCN){$esxcli.storage.nmp.psp.roundrobin.deviceconfig.set(0,$null,$CN.CanonicalName,1,` "iops",0) |Out-Null}Disconnect-VIServer$ESXiHost-Confirm:$false$file=Get-Content"$PSScriptRoot\rescan_script.ps1"if ($file[1]-ne"`$counter = 1") {$file[1]="`$counter = 1"$file>"$PSScriptRoot\rescan_script.ps1"}In the appropriate lines, specify the IP address and login credentials of the ESXi host on which the current StarWind VM is stored and running:$ESXiHost1 = “IP address”$ESXiUser = “Login”$ESXiPassword = “Password”Save the script as rescan_script.ps1 to the root of the C:\ drive of the VM.26.Perform the configuration steps above on the partner node.27.Go to Control Panel -> Administrative Tools -> Task Scheduler -> CreateBasic Task and follow the wizard steps:28.Specify the task name, select When a specific event is logged, and click Next.29.Select Application in the Log dropdown, type StarWindService as the event sourceand 788 as the event ID. Click the Next button.30.Choose Start a Program as the action that the task will perform and click Next.31.Type powershell.exe in the Program/script field. In the Add arguments field,type:“ -ExecutionPolicy Bypass -NoLogo -NonInteractive -NoProfile -WindowStyle Hidden -File C:\rescan_script.ps1 ”Click the Next button to continue.32.Click Finish to exit the Wizard.33.Configure the task to run with highest privileges by enabling the checkbox at the bottom ofthe window. Also, make sure that the “Run whether user is logged on or not”option is selected.34.Switch to the Triggers tab. Verify that the trigger on event 788 is set up correctly.35.Click New and add other triggers by Event ID 782, 257, 773, and 817.36.All added triggers should look like in the picture below.37.Switch to the Actions tab and verify the parameters for the task.Press OK and type in the credentials for the user whose rights will be used to execute the command.38.Perform the same steps on the second StarWind VM, specifying the corresponding settings.Provisioning Storage with StarWind VSANCreating StarWind HA devices (DS1, DS2)39.Open StarWind Management Console and click on the Add Device (advanced)button.40.Select Hard disk device as the type of device to be created. Click Next to continue.41.Select Virtual disk. Click Next to continue.42.Specify virtual disk name, location, and size.Click Next.43.Specify virtual disk options.Click Next to continue.NOTE: Sector size should be 512 bytes in case you are using ESXi.44.Define the RAM caching policy and specify the cache size (in corresponding units).NOTE: Recommended RAM cache size is 1 GB per 1 TB of storage.Click Next to continue.45.Define the Flash caching policy and the cache size. Click Next to continue.NOTE: Recommended Flash cache size is 10% of your Device size.46.Specify target parameters. Select the Target Name checkbox to enter a custom name of atarget if required. Otherwise, the name will be generated automatically in accordance withthe specified target alias.Click Next to continue.47.Click Create to add a new device and attach it to the target.48.Click Finish to close the wizard.49.Right-click on the recently created device and select Replication Manager from theshortcut menu.50.Then, click Add replica.51.Select Synchronous “T wo-Way” Replication as a replication mode.Click Next to proceed.52.Specify a partner hostname, IP address, and port number.Click Next.53.Choose Create new Partner Device and click Next.54.Choose a device location and specify target name if required. Otherwise, the name isgenerated automatically in accordance with the specified target alias.55.Click Change Network Settings.56.Specify interfaces for Synchronization and Heartbeat channels.Click OK. Then click Next.57.Choose Synchronize from existing Device58.Click Create Replica.Click Finish to close the wizard.59.The successfully added devices appear in the StarWind Management Console.60.Follow the similar procedure to create other virtual disks that will be used as datastores.Preparing DatastoresAdding Discover Portals61.To connect the previously created devices to the ESXi host, click on the Storage ->Adapters -> Configure iSCSI and choose the Enabled option to enable Software iSCSI storage adapter.62.In the Configure iSCSI window, under Dynamic Targets, click on the Adddynamic target button to specify iSCSI interfaces.63.Enter the iSCSI IP address of the first StarWind node from the virtual local network 172.16.10.*64.Add the IP address of the second StarWind node – 172.16.10.*Confirm your actions by pressing Save configuration.65.The result should look like in the image below.66.Click on the Rescan button to rescan storage.67.Now, the previously created StarWind devices are visible.68.Repeat all the steps from this section on the other ESXi node, specifying corresponding IPaddresses for the iSCSI subnet.Creating Datastores69.Open the Storage tab on one of your hosts and click on New Datastore.70.Specify the Datastore name, select the previously discovered StarWind device, and clickNext.71.Enter datastore size. Click Next.72.Verify the settings. Click Finish.73.Add another Datastore (DS2) in the same way but select the second device for the seconddatastore.74.Verify that your storages (DS1, DS2) are connected to both hosts. Otherwise, rescan thestorage adapter.75.Path Selection Policy changing for Datastores from Most Recently Used (VMware) to RoundRobin (VMware) has been already added into the Rescan Script, and this action is performed automatically. For checking and changing this parameter manually, the hosts should beconnected to vCenter.76.Multipathing configuration can be checked only from vCenter. To check it, click theConfigure button, choose the Storage Devices tab, select the device, and click the Edit Multipathing button.Additional Tweaks77.From the ESXi host, click on the Manage tab on one of the hosts and proceed toServices. Choose SSH and right-click on Start, then select Start and Stop with host.78.Connect to the host using the SSH client (e.g. Putty).79.Check the device list using the following command:esxcli storage nmp device list80.For devices, adjust Round Robin size from 1000 to 1 using the following command:esxcli storage nmp psp roundrobin deviceconfig set --type=iops --iops=1 –deviceNOTE: Paste UID of the StarWind device in the end of the command. Also, this parameter has been already added into the Rescan Script and this action is performed automatically.81.Repeat the steps above on each host for each datastore.82.Click the configuration tab on one of the hosts and choose Advanced Settings.83.Select Disk and change the Disk.DiskMaxIOSize parameter to 512.Creating DatacenterNOTE: Before creating Datacenter, the vCenter server should be deployed.84.Connect to vCenter, select the Getting Started tab, click on Create Datacenter, andenter the Datacenter name.Creating Cluster85.Click the Datacenter’s Getting Started tab and click Create a cluster. Enter the nameof the cluster and click Next.Adding Hosts to Cluster86.Open the Cluster tab and click Add a host.87.Enter the name or IP address of the ESXi host and enter the administrative account.88.Lockdown mode is not enabled by default.89.Assign the License from the Licensing tab.Verify the settings.90.Turn on vSphere HA, click Cluster -> Configure -> EditConclusionThis technical paper has covered the configuration of the StarWind VSAN for minimalistic Hyperconverged 2-nodes scenario with VMware v6.5. In this setup, all virtual machines are stored on a shared storage that is provided by StarWind. VMware HA provides VMs with redundancy, while StarWind is responsible for the storage uptime. The combination of StarWind shared storage and VMware ensures high application and data availability across the entire virtualized environment. Using StarWind VSAN, the local storage of both ESXi hosts is converted into a fault-tolerant shared storage synchronously ''mirrored'' between the nodes. The VSAN nested inside a VM and running on both ESXi hosts ensures data safety and maintains continuous application availability.Contacts1-617-449-77 17 1-617-507-58 45 1-866-790-26 46 +44 203 769 18 57 (UK) +34 629 03 07 17 (Spain and Portugal)Customer Support Portal:Support Forum:Sales: General Information: https:///support https:///forums ***********************************StarWind Software, Inc. 35 Village Rd., Suite 100, Middleton, MA 01949 USA ©2018, StarWind Software Inc. All rights reserved.。
Hypervisor介绍根据维基百科:“Hypervisor 或者virtual machine monitor (VMM)是创造并且运⾏虚拟机的软件、固件、或者硬件”。
通俗来讲,Hypervisor是⼀种将操作系统与硬件抽象分离的⽅法,以达到host machine的硬件能同时运⾏⼀个⾄多个虚拟机作为guest machine的⽬的,这样能够使得这些虚拟机⾼效地分享主机硬件资源。
Hypervisor有如下优点:提⾼主机硬件的使⽤效率。
因为⼀个主机可以运⾏多个虚拟机,这样主机的硬件资源能被⾼效充分的利⽤起来。
虚拟机移动性强。
传统软件强烈捆绑在硬件上,转移⼀个软件⾄另⼀个服务器上耗时耗⼒(⽐如重新安装);然⽽,虚拟机与硬件是独⽴的,这样使得虚拟机可以在本地或远程虚拟服务器上低消耗转移。
虚拟机彼此独⽴。
⼀个虚拟机的奔溃不会影响其他分享同⼀硬件资源的虚拟机,⼤⼤提升安全性。
易保护,易恢复。
Snapshot技术可以记录下某⼀时间点下的虚拟机状态,这使得虚拟机在错误发⽣后能快速恢复。
Hypervisor的种类:bare-metal hypervisors:直接部署在主机硬件上,以管理硬件和guest machine。
hosted hypervisors:作为软件层部署在主机操作系统上,现在常⽤的VMware Player和VirtualBox就是这种类型。
类型I:本地或裸机Hypervisor第⼀类虚拟机这些虚拟机管理程序直接运⾏在主机的硬件来控制硬件和管理客体操作系统上。
特点需要硬件⽀持虚拟机监视器作为主操作系统运⾏效率⾼举例1:VMware5.5及以后版本2:Xen3.0以后版本3:Virtual PC 20054:KVM类型II:Hosted Hypervisor这些虚拟机管理程序运⾏在传统的操作系统上,就像其他计算机程序那样运⾏。
特点1. 虚拟机监视器作为应⽤程序运⾏在主操作系统环境内2. 运⾏效率⼀般较类型I低举例1. VMware5.5以前版本2. Xen3.0以前版本3. Virtual PC 2004。
深信服超融合架构技术白皮书深信服科技有限公司修订记录深信服超融合架构技术白皮书文档密级:内部第1章、前言 (8)1.1IT时代的变革 (8)1.2白皮书总览 (9)第2章、深信服超融合技术架构 (11)1.1超融合架构概述 (11)1.1.1超融合架构的定义 (11)1.2深信服超融合架构组成模块 (11)1.2.1.1系统总体架构 (11)1.2.1.2aSV计算虚拟化平台 (12)1.2.1.2.1概述 (12)1.2.1.2.2aSV技术原理 (13)1.2.1.2.2.1aSV的Hypervisor架构 (14)1.2.1.2.2.2Hypervisor虚拟化实现 (17)1.2.1.2.3aSV的技术特性 (25)1.2.1.2.3.1内存NUMA技术 (25)1.2.1.2.3.2SR-IOV (26)1.2.1.2.3.3Faik-raid (27)1.2.1.2.3.4虚拟机生命周期管理 (28)1.2.1.2.3.5虚拟交换机 (29)1.2.1.2.3.6动态资源调度 (30)1.2.1.2.4aSV的特色技术 (30)1.2.1.2.4.1快虚 (30)1.2.1.2.4.2虚拟机热迁移 (31)1.2.1.2.4.3虚拟磁盘加密 (32)1.2.1.2.4.4虚拟机的HA (33)1.2.1.2.4.5多USB映射 (33)1.2.1.3aSAN存储虚拟化 (35)1.2.1.3.1存储虚拟化概述 (35)1.2.1.3.1.1虚拟后对存储带来的挑战 (35)1.2.1.3.1.2分布式存储技术的发展 (35)1.2.1.3.1.3深信服aSAN概述 (36)1.2.1.3.2aSAN技术原理 (36)1.2.1.3.2.1主机管理 (36)1.2.1.3.2.2文件副本 (37)1.2.1.3.2.3磁盘管理 (38)1.2.1.3.2.4SSD读缓存原理 (39)1.2.1.3.2.5SSD写缓存原理 (45)1.2.1.3.2.6磁盘故障处理机制 (49)1.2.1.3.3深信服aSAN功能特性 (60)1.2.1.3.3.1存储精简配置 (60)1.2.1.3.3.2aSAN私网链路聚合 (61)1.2.1.3.3.3数据一致性检查 (61)1.2.1.4aNet网络虚拟化 (61)1.2.1.4.1网络虚拟化概述 (61)1.2.1.4.2aNET网络虚拟化技术原理 (62)1.2.1.4.2.1SDN (62)1.2.1.4.2.2NFV (63)1.2.1.4.2.3aNet底层的实现 (64)1.2.1.4.3功能特性 (68)1.2.1.4.3.1aSW分布式虚拟交换机 (68)1.2.1.4.3.2aRouter (68)1.2.1.4.3.3vAF (69)1.2.1.4.3.4vAD (69)1.2.1.4.4深信服aNet的特色技术 (69)1.2.1.4.4.1网络探测功能 (69)1.2.1.4.4.2全网流量可视 (70)1.2.1.4.4.3所画即所得业务逻辑拓扑 (70)1.2.2深信服超融合架构产品介绍 (71)1.2.2.1产品概述 (71)1.2.2.2产品定位 (71)第3章、深信服超融合架构带来的核心价值 (73)1.1可靠性: (73)1.2安全性 (73)1.3灵活弹性 (73)1.4易操作性 (73)第4章、超融合架构最佳实践 (74)第1章、前言1.1 IT时代的变革20 世纪90 年代,随着Windows 的广泛使用及Linux 服务器操作系统的出现奠定了x86服务器的行业标准地位,然而x86 服务器部署的增长带来了新的IT 基础架构和运作难题,包括:基础架构利用率低、物理基础架构成本日益攀升、IT 管理成本不断提高以及对关键应用故障和灾难保护不足等问题。
KVM虚拟化(一)——介绍与简单使用KVM(Kernel-based Virtual Machine)是一种基于Linux内核的开源虚拟化技术,它允许在一台物理服务器上运行多个虚拟机。
KVM使用了Linux内核的虚拟化扩展,支持x86、x86-64、ARM等处理器架构。
KVM的核心思想是将Linux内核转化为一个虚拟化的管理层,这个管理层被称为Hypervisor。
Hypervisor负责管理虚拟机的创建、销毁和调度,同时它也负责为虚拟机提供一些虚拟设备,如虚拟CPU、虚拟内存、虚拟磁盘等。
KVM虚拟机运行在用户空间下,由Linux内核作为宿主机。
KVM的优势包括:1.性能高效:由于KVM直接运行在硬件上,因此虚拟机与宿主机几乎没有性能差异。
2. 安全可靠:KVM利用Linux内核的安全机制,可以隔离虚拟机之间,提供更高的安全性。
3. 灵活性:KVM虚拟机能够支持多种操作系统,如Linux、Windows、FreeBSD等。
4. 易于管理:KVM提供了丰富的管理工具,如virsh和virt-manager,可以方便地创建、配置和监控虚拟机。
下面我们来看一下KVM的简单使用。
首先需要确认宿主机是否支持KVM虚拟化。
可以通过以下命令来确认:```shellegrep -c '(vmx,svm)' /proc/cpuinfo```如果输出结果大于0,则表示宿主机支持KVM虚拟化。
接下来,我们需要安装KVM软件包。
在大多数Linux发行版中,kvm 和libvirt已经默认安装。
如果没有安装,可以通过以下命令来安装:```shellsudo apt-get install qemu-kvm libvirt-clients libvirt-daemon-system virtinst bridge-utils```安装完成后,我们可以通过以下命令来确认KVM是否安装成功:```shellvirsh list```如果输出结果是空的,则表示KVM安装成功。
虚拟同步机标准虚拟同步机(Virtual Synchronous Machine,简称VSM)是一种基于虚拟同步机控制策略的新型电力电子装置,用于实现分布式电源与电网的电力交互。
它可以模拟传统的同步发电机(Synchronous Generator,简称SG),实现与传统电力系统的互操作性,实现电流、电压以及频率等特性的调控。
本文将介绍虚拟同步机的基本原理、应用场景、优势和参考项目。
一、虚拟同步机的基本原理虚拟同步机的基本原理是模拟传统同步发电机的运行特性,在电力系统中发挥类似于同步发电机的角色。
它通过控制电压和频率来实现与电网的同步运行,并能够提供无功功率支撑和电压稳定控制等功能。
虚拟同步机通过在线测量系统频率、电压和电流等参数,并通过控制策略实时调整自身的输出特性,以满足功率平衡、电压稳定等要求。
二、虚拟同步机的应用场景1. 分布式电力系统:随着分布式能源的快速发展,虚拟同步机可以实现分布式电源与电网的有机连接,保证电力系统的可靠运行和稳定供电。
2. 微电网系统:虚拟同步机可作为微电网系统的核心设备,实现不同能源、不同负荷和电网的协调运行,提高微电网的可靠性和经济性。
3. 电力电子转换系统:虚拟同步机可以应用于电力电子变换系统中,实现系统的同步运行、无功支撑、电压稳定等功能。
三、虚拟同步机的优势1. 灵活性:虚拟同步机可以根据电力系统的实际需求进行灵活配置和控制,满足不同应用场景的要求。
2. 抗扰度强:虚拟同步机采用了先进的控制算法和自适应控制策略,能够有效抵抗电网扰动和故障,提高系统的鲁棒性和稳定性。
3. 可扩展性:虚拟同步机可以与传统的同步发电机和其他虚拟同步机进行联动,形成多机协作控制,实现更大规模的电力系统运行。
四、虚拟同步机的参考项目1. 虚拟同步机控制器开发及应用研究:该项目旨在研究虚拟同步机的控制策略和算法,并开发相应的控制器,实现虚拟同步机在分布式电力系统和微电网系统中的应用。
虚拟同步机标准虚拟同步机(Virtual Synchronous Machine,VSM)是一种新的发电机控制方法,可以在分布式能源系统中实现同步发电、频率稳定和电压稳定的控制。
它通过虚拟同步发电机实现了逆变器控制。
虚拟同步发电机实现了将逆变器与传统发电机的控制方法结合起来的功效,从而可以在控制中实现传统发电机的所有优点同时消除一些低电压、高电压、电压波动、电流不良等问题。
虚拟同步发电机的基本功能是在逆变器系统中模仿传统发电机的控制方法,实时监测电力系统的频率、电压波动、相位角等信息,以便实现与电网之间的同步性。
同时,虚拟同步发电机还需要应对不同的负载变化,这就要求该系统充分考虑电网扰动和传统发电机的多重工作模式。
虚拟同步机的控制可以分为主动干预和被动响应两种情况。
主动干预主要是指通过改变功率和视在功率的控制策略,来实现虚拟同步机的各种功能,如提高频率水平、稳定电压、调节负载等。
被动响应则是指当电网发生故障时,虚拟同步机具有能够主动响应的能力,来实时补偿电网的不稳定性和扰动。
虚拟同步机的控制策略主要包括动态跟踪法、等效虚拟发电机法和动态电压调节法。
其中,动态跟踪法和等效虚拟发电机法主要是在控制频率和电压方面的,动态调节法则主要是在控制负载性和电压变化方面。
动态跟踪法是针对高性能要求的虚拟同步机设计的一种控制策略。
该策略将所有的功率控制和视在功率控制都视作一个整体,通过保证不断的监测电网的频率,来实现虚拟同步机与电网之间的同步性。
动态跟踪法的优点是可以实现多种电网连接形式的控制,如单相三线、三相三线和三相四线形式的电网,并且在短时间内有效缓解电网的压力。
等效虚拟发电机法则是在虚拟同步机高强度网络中应用最多的一种控制策略。
该策略通过监测电网的频率和电压,来实现虚拟同步机与电网之间的同步性。
等效虚拟发电机法的优点是可以在短时间内快速恢复电网的频率和电压,提高电网运行效率,并且可以实现长期网络稳定性。
动态电压调节法是一种对虚拟同步机的电压进行跟踪和调节的方法,主要是应用于小型节点集中的虚拟同步机中。
虚拟同步机标准虚拟同步机(Virtual Synchronous Machine,VSM)是一种基于数字控制技术的电力电子设备,在功率电子技术和计算机控制技术的支持下,可以在分布式电源接入电网时实现虚拟同步机控制方式。
它可以取代同步发电机控制方式,使得大规模分布式电源更具可靠性和稳定性。
本文将介绍虚拟同步机的相关参考内容。
一、虚拟同步机的基本概念虚拟同步机的核心控制算法是基于“同步机”概念的,该概念是指在电力系统中使用的传统同步发电机。
虚拟同步机根据负荷电流、电压和频率等信息,通过调节逆变器输出电流、电压和频率等参数,使得分布式电源作为“虚拟同步机”形成相似的动态特性,从而实现电力系统的稳定性和可靠性。
二、虚拟同步机的应用虚拟同步机广泛应用于分布式电源接入电网的场景中,可以提高电力系统的稳定性和可靠性,有效解决电力系统规模扩大、分布式电源比例增加等问题。
目前,国内外已有多个虚拟同步机控制方案,如ENEL公司提出的“SYNALG”控制算法,德国卡尔斯鲁厄理工学院提出的“SVM-Sync”控制算法等。
三、虚拟同步机的实现方案虚拟同步机实现的关键在于控制算法的设计和实现。
主要是通过对电压、电流和频率等参数的控制,实现虚拟同步机的动态特性。
此外,为了更加精确地模拟同步发电机的特性,还需要引入PLL(Phase Locked Loop)技术,实现频率和相位的锁定等。
四、虚拟同步机的优势和不足虚拟同步机相比于传统的同步发电机有着以下优势:(1)减少了对同步发电机的依赖,节省了设备成本;(2)可以进行灵活的区域调节,更好地适应电力系统的变化需求;(3)能够实现快速响应和高精度的控制,提高了电力系统的稳定性和可靠性等。
不过,虚拟同步机也存在一些不足之处,最主要的就是需要对虚拟同步机的控制算法进行精心设计,并在不同的系统场景中进行验证。
此外,由于虚拟同步机系统中多个电子元件之间的相互干扰,可能存在潜在的系统稳定性问题,需要在实际应用中进行实验验证。
Virtual Synchronous MachineProf. Dr.-Ing. Hans-Peter BeckClausthal University of Technology Institute of Electric Power Technology (IEE) Clausthal-Zellerfeld, Germanyinfo@iee.tu-clausthal.deDipl.-Ing. Ralf HesseClausthal University of Technology Institute of Electric Power Technology (IEE Clausthal-Zellerfeld, Germanyralf.hesse@tu-clausthal.deDemands in the area of electrical energy generation and distribution, as a result of energy policies, are leading to far reaching changes in the structure of the energy supply, which is characterised, on the one hand, by the substitution of conventional power stations by renewable energy generation, a decision which has already been made, and, on the other hand, by the changeover from centralised to decentralised energy generation. From an electrical engineering point of view, a new situation will arise for consumers concerning security of supply and power quality, which calls for further technical measures by the grid operators to ensure that the increasingly stringent supply criteria can be met. This article describes a new power electronics based approach which allows a grid compatible integration of predominantly renewable electricity generators even in weak grids making them appear to be electromechanical synchronous machines. As a consequence, all the proven properties of this type of machine which have so far defined the grid continue to do so, even when integrating photovoltaic or wind energy. These properties include, for instance, interaction between grid and generator as in a remote power dispatch, reaction to transients as well as the full electrical effects of a rotating mass. In addition, this new development can be operated in such a way that it provides primary reserve allowing, from a grid point of view, electricity generators such as wind and PV to be regarded as conventional power stations.I. I NTRODUCTIONThe changes in the grid structure can be described as a transition from the proven vertical structure of generation to consumption with a few, but powerful generators (figure 1, left), to a distributed, increasingly amorphous and strongly meshed structure with numerous renewable energy generators which have very different feed-in characteristics (fig. 1 right). Consequently, depending on the local distribution of generators and local grid capacity, there can be an increased line impedance and reduction in short circuit power, which may cause or promote the appearance and mitigation of various disturbances.The integration of electricity generators today is carried out using conventional converters and inverters, whose properties are the result of the implemented control principles. Frequently output voltage controlled inverters with subharmonic [1] or space-vector modulators [2, 3, 4] are used to locally stabilise the grid and supply the active and reactive power required by the grid depending on the local system management. The disadvantages of this operating principle lie in the large differences in grid behaviour between the grid coupled inverters and converters and conventional synchronous machines used for coupling traditional prime movers to the grid.Up to now the layout, properties and operating strategy of electrical grids, the potential for automatically balancing a power deficit between grid areas as well as the dynamic behaviour of the grid have been closely connected to the static and dynamic properties of the electromechanical synchronousmachines.Figure 1. Change in structure of generation and distribution of electrical energy It therefore seems necessary to develop a process by which inverters are able to connect any type of electrical generator to the grid in such a manner that the combination of inverter andgenerator behaves identically to an electromechanical synchro-nous generator.II. S OLUTION APPROACHThe VISMA principle is based on combining the advantages of today’s dynamic inverter technology with those of the static and dynamic operating properties of electromechanical synchronous machines. As shown in fig. 2, it is possible to specify the properties of an inverter in such a way that it acts like a synchronous machine between any direct voltage generator or storage system and the grid.As a result of the storage connected to the direct voltage side of the VISMA, it can be operated in a full four quadrant mode and its alternating voltage side thus corresponds to thestator output of an electromechanical synchronous machine.Figure 2. Basic concept of the Virtual Synchronous Machine (VISMA)The mechanical system of an electromechanical machine with its shaft provides the second energy coupling point of this energy conversion machine. The mechanical component of a VISMA only exists as a logical concept. However, it is electrically fully effective from a grid point of view because it is modelled mathematically in real time by the control system, respectively process computer of the VISMA, and physically by means of the direct voltage supply circuit of the VISMA inverter. In this way a virtual rotating mass is created which is electrically effective in relation to the grid but can in addition be parameterised freely just as any of the other machine parameters.In practice, access to the virtual pole system and the virtual shaft is achieved by influencing the corresponding parameters of the software running on the process computer and can therefore be carried out locally or by remote dispatch. If the grid requires active power, a corresponding virtual torque on the virtual shaft must be provided. The energy necessary for this is taken from the direct voltage system of the VISMA inverter, respectively supplied to the direct voltage system by the electricity generation unit. If reactive power has to be supplied to the grid, then in analogy the process computer influences the value of the virtual excitation voltage. The capacitor of the VISMA in the intermediate circuit supplies thereactive current.Figure 3. Transport of active or reactive power either locally induced (left) ordue to voltage and frequency changes in the grid (right)The full analogy with the electromechanical synchronous machine is established on the basis of the virtual values of torque and excitation voltage in combination with the intermediate circuit.Similar to conventional machines, the transport of active and reactive power can be initiated by voltage and frequency changes in the grid by means of remote dispatch. This tried and proven mechanism requires no additional exchange of information and entire grid areas are able to balance their power deficit or surplus themselves.The VISMA model is based on the complete two shaft model of an electrically excited synchronous machine as to be seen in fig 4 (left) which is fully described electrically by the d-q impedances of the stator Ld, Rd and Lq, Rq, the damper LD, RD and LQ, RQ as well as the exciter Le, Re, and magnetically by the coupling impedances and the mass inertia of the virtual rotor. As a consequence, the VISMA not only has static, but also dynamic properties, as the example shows in fig. 5 (right). The stator current reacts as a result of a decrease in the stator voltage and the rotor oscillates depending on the configurationof the damper after a change in the load.Figure 4. A model of the machine (left) and adjustability of the dynamicproperties of the VISMA using the machine parameters (right)III. T ECHNICAL R EALISATIONModelling the synchronous machine requires the measurement of the voltage at the point of common coupling with the grid, the calculation of the machine current in real time and the feeding of the current into the grid.Figure 5. VISMA componentsFigure 5 shows the components required for the VISMA including the highly dynamic three level inverter with phase current control.This combination, regardless of the grid voltage but within design specific limitations, makes it possible to generate any current profile including direct current components which are, for instance, necessary for the exact modelling of the stator current of the machine in the case of a voltage drop in the grid. The program interfaces for the machine parameters and the fundamental component management are addressed in each cycle of the algorithm. The on-going calculation of the machine model in real time as shown in fig. 6 allows a fast response to parameter changes so that newly calculated electrical propertiesof the machine become effective in the grid immediately.Figure 6. Synchronous machine model of the VISMAThe coefficients of the system of differential equations describing the VISMA can be parameterised freely and changed at any time during operation. The calculated machine currents are the reference values for the three phase current which the inverter feeds into the grid. It is important to note that the inverter must always be capable of feeding the current value calculated by the machine model into the grid. If not, the system loses it linear properties.IV. M EASUREMENTSThe properties of the VISMA were investigated according to the experimental set-up shown in fig. 7. The characteristics of fundamental frequency and the contribution of the damper as regards the power flow to and from the grid, induced either locally or caused by the grid, were investigated as well as the response of reactive power during a drop in grid voltage and the transfer of power from the damper to the intermediatecircuit of the VISMA.Figure 7. Single phase equivalent circuit diagram of the experimental set-up ofthe VISMAThe VISMA was supplied by a battery on the direct voltage side and connected to the grid using a three phase autotransformer with three magnetically decoupled systems with a transfer ratio of 4.5. The grid resistance shown in fig. 7 was used to achieve a reduction in short circuit power at the point of coupling to the grid.Fig. 8. shows the fundamental frequency properties of the VISMA when using it together with the damper to decouple the grid from the connected electricity generators. In analogy to the electromechanical synchronous machine, the virtual shaft of the VISMA is provided with a positive virtual torque for transferring active power from the grid to the storage of the electricity generating system.Also in analogy, the virtual rotor is excited and then stabilises at a new angle with a speed depending on the configuration of the damper. With the nearly optimal damper configuration shown in figure 8 the rotor stabilises at its new position after a single overshoot. The power of the overshoot is fully effective in the grid and indicates the existence of the virtual mass.Figure 8. Transfer of active power from the grid to the intermediate circuit under almost optimal conditions. M: virtual torque of the machine model, PDCPower of intermediate circuitFigure 9. Output voltage and grid current of the VISMA under stationary powerconditions (see fig 8) when using the VISMA in a motor modeFigure 9 shows in addition the output voltage of the VISMA as well as the current drawn from the grid for the motor mode after decaying of all transients.Figure 10 shows the effect of a change in the grid angle which alternates within seconds in the range of in a trapezoidal shape.The grid angle is defined as the displacement angle between the three phase voltage system and the virtual rotor of the VISMA. It was possible to change it freely when connecting the VISMA to a space vector modulated inverter for autonomous electricity grids which can control amplitude, phase and frequency.The rotor must be prevented from following the changes of angle as this would result in an average displacement anglevalue of zero. This is easy to achieve with the VISMA by setting the logical parameter of rotor inertia to as large a value as necessary. As regards the grid, this corresponds electrically to a synchronous machine with a rotating mass sufficiently large that the rotor angle remains constant solely due to gridinteraction.Figure 10. Remote dispatch of active power from the VISMA by changing thegrid angle in relation to the virtual rotor rotating at a fixed speedA positive grid angle as shown in fig. 10 corresponds to an offset of the three phase voltage system along the time axis and thus an angle related lag. This causes the VISMA to act in a generating mode because the rotor has been parameterised with a very large virtual mass and thus continues to rotate unaffected. In addition to increasing the virtual mass of the VISMA, a control algorithm corresponding to a power action controller can be used and can set the machine angle to the desired value.Reactive power can be drawn from a VISMA running neutrally in parallel to the grid without active or reactive power transfer by changing the grid voltage in complete analogy tothe electromechanical synchronous machine.Figure 11. Remote dispatch of reactive power from the VISMA by changingthe grid voltage, respectively the output voltage of the VISMAFig. 11. shows this using an almost trapezoidal change in voltage and the subsequent response of reactive power as an example. If the virtual excitation voltage is maintained, a drop in the grid voltage causes an overexcitation of the VISMA and results in the supply of capacitative reactive power.The linear parts in the curves of as in fig 10 as well as in fig 11 reflect the PQ control of the VISMA. As the machine parameters can be freely set and an additional power station control algorithm can be superimposed, the proportionalityfactors of the PQ control can be modified simply.Figure 12. Reaction of VISMA to a grid voltage drop: reduction in the voltage drop by supplying dynamic capacitive reactive power as well as supplying constant capacitive reactive power (2 kVAr) after the transients because thegrid voltage is still reducedFig. 12 shows the demand for dynamic capacitive reactive power to support the grid.A 35 V voltage drop caused by connecting a large load to the grid connecting point of the VISMA for which the short circuit power has been reduced leads in the first instance to a strong dynamic reactive power response which counteracts the voltage drop. After the decay of the transients in the virtual machine, there is a constant supply of capacitive reactive power as long as the grid voltage depression is maintained.The power electronics modelling of the synchronous machine, as regards the properties of the damper, offers the advantage that the energy in the damping process is not converted to heat in the damper of the electromechanical machine, but transferred to the intermediate circuit as a result of the analogy between the damper and intermediate circuit and can thus be reutilised.Oscillations of the grid in the form of periodic changes in the grid voltage lead to an excitation of the damper system of the VISMA as shown in figure 13. To demonstrate the effect, a sinusoidal phase change of the voltage of the grid forming inverter used in the experiments was introduced. The phase change had an angle of (see fig 10, right) and a frequency of 12 Hz. In order to make a comparison with the undisturbed state, the disturbance was initiated after ca. t = 2.5 s andremoved after ca. t = 40 s.Figure 13. Damping of a sinusoidal oscillation of the phase angle of the three phase grid voltage with an elongation of at 12 Hz. From top to bottom: virtual rotating speed of VISMA, active oscillating power absorbed from the grid, active power transferred to the intermediate circuit, calculated active powerstored in the modelled damper systemThe rotor of the machine model remains almost unaffected due to its virtual mass, while the power (see fig 13) becomes effective in the damping system. The power values were filtered with relatively large time constants to suppress the effect of disturbances.It was possible to transfer the calculated power of the damping process to the intermediate circuit of the VISMA inverter thus confirming the energy based analogy of the damping system of the electromechanical machine and the intermediate circuit of the VISMA.Sufficient computational capacity is necessary to build a real time machine model. The rapid prototyping DSP system DS1103 from dSPACE was used for the VISMA prototype. It was able to calculate the complete model of the VISMA including all auxiliary algorithms for signal filtering and alternating current measurements within a cycle time of approx. 100 µs. Currently the development is being carried out using a single board process computer on the basis of the Tricore microcontroller made by Infineon Technologies AG.V. S UMMARYThe VISMA concept as presented here makes it possible to connect every kind of decentralised electrical, preferably renewable, generators, such as wind, PV and fuel cell systems also to weak grids. Due to the analogy to an electromechanicalsynchronous machine, conventional and proven grid operation with all the usual static and dynamic properties is possible.On account of the exact modelling of the synchronous machine the self organising grid parallel operation is possible via the three phases of the grid with any number of generators without additional communication lines.A further aim of the development of the VISMA concept is to establish the properties of a power station by superimposing a virtual machine control system.Such an operating mode also offers the advantages of free parameterisation during operation.R EFERENCES[1] J. Wenske, Elektronische Synchonmaschine mit aktivem Dämpferkreiszur Energieversorgung in elektrischen Versorgungsnetzen, Diss. TU-Clausthal 1999[2] D. Turschner, R. Hesse, Power electronic substitution of a classicalsynchronous machine for power conditioning in decentralized energy supply, 3rd French – German conference Renewable and Alternative Energies, University of Le Havre, PFT Fécamp, France, 5.-6. Dezember 2005[3] H.-P. Beck, M. Clemens, Konditionierung elektrischer Energie indezentralen Netzen, etz Elektrotechnik + Automatisierung, 05/2004 [4] R. Zingel, Limiting Grid Disturbances of Renewable Power Sources byMeans of Modern Power Electronics, VDE-Kongreß ETG-2006。