当前位置:文档之家› Virtual Synchronous Machine

Virtual Synchronous Machine

Virtual Synchronous Machine
Virtual Synchronous Machine

Virtual Synchronous Machine

Prof. Dr.-Ing. Hans-Peter Beck

Clausthal University of Technology Institute of Electric Power Technology (IEE) Clausthal-Zellerfeld, Germany

info@iee.tu-clausthal.de

Dipl.-Ing. Ralf Hesse

Clausthal University of Technology Institute of Electric Power Technology (IEE Clausthal-Zellerfeld, Germany

ralf.hesse@tu-clausthal.de

Demands in the area of electrical energy generation and distribution, as a result of energy policies, are leading to far reaching changes in the structure of the energy supply, which is characterised, on the one hand, by the substitution of conventional power stations by renewable energy generation, a decision which has already been made, and, on the other hand, by the changeover from centralised to decentralised energy generation. From an electrical engineering point of view, a new situation will arise for consumers concerning security of supply and power quality, which calls for further technical measures by the grid operators to ensure that the increasingly stringent supply criteria can be met. This article describes a new power electronics based approach which allows a grid compatible integration of predominantly renewable electricity generators even in weak grids making them appear to be electromechanical synchronous machines. As a consequence, all the proven properties of this type of machine which have so far defined the grid continue to do so, even when integrating photovoltaic or wind energy. These properties include, for instance, interaction between grid and generator as in a remote power dispatch, reaction to transients as well as the full electrical effects of a rotating mass. In addition, this new development can be operated in such a way that it provides primary reserve allowing, from a grid point of view, electricity generators such as wind and PV to be regarded as conventional power stations.

I. I NTRODUCTION

The changes in the grid structure can be described as a transition from the proven vertical structure of generation to consumption with a few, but powerful generators (figure 1, left), to a distributed, increasingly amorphous and strongly meshed structure with numerous renewable energy generators which have very different feed-in characteristics (fig. 1 right). Consequently, depending on the local distribution of generators and local grid capacity, there can be an increased line impedance and reduction in short circuit power, which may cause or promote the appearance and mitigation of various disturbances.

The integration of electricity generators today is carried out using conventional converters and inverters, whose properties are the result of the implemented control principles. Frequently output voltage controlled inverters with subharmonic [1] or space-vector modulators [2, 3, 4] are used to locally stabilise the grid and supply the active and reactive power required by the grid depending on the local system management. The disadvantages of this operating principle lie in the large differences in grid behaviour between the grid coupled inverters and converters and conventional synchronous machines used for coupling traditional prime movers to the grid.

Up to now the layout, properties and operating strategy of electrical grids, the potential for automatically balancing a power deficit between grid areas as well as the dynamic behaviour of the grid have been closely connected to the static and dynamic properties of the electromechanical synchronous

machines.

Figure 1. Change in structure of generation and distribution of electrical energy It therefore seems necessary to develop a process by which inverters are able to connect any type of electrical generator to the grid in such a manner that the combination of inverter and

generator behaves identically to an electromechanical synchro-nous generator.

II. S OLUTION APPROACH

The VISMA principle is based on combining the advantages of today’s dynamic inverter technology with those of the static and dynamic operating properties of electromechanical synchronous machines. As shown in fig. 2, it is possible to specify the properties of an inverter in such a way that it acts like a synchronous machine between any direct voltage generator or storage system and the grid.

As a result of the storage connected to the direct voltage side of the VISMA, it can be operated in a full four quadrant mode and its alternating voltage side thus corresponds to the

stator output of an electromechanical synchronous machine.

Figure 2. Basic concept of the Virtual Synchronous Machine (VISMA)

The mechanical system of an electromechanical machine with its shaft provides the second energy coupling point of this energy conversion machine. The mechanical component of a VISMA only exists as a logical concept. However, it is electrically fully effective from a grid point of view because it is modelled mathematically in real time by the control system, respectively process computer of the VISMA, and physically by means of the direct voltage supply circuit of the VISMA inverter. In this way a virtual rotating mass is created which is electrically effective in relation to the grid but can in addition be parameterised freely just as any of the other machine parameters.

In practice, access to the virtual pole system and the virtual shaft is achieved by influencing the corresponding parameters of the software running on the process computer and can therefore be carried out locally or by remote dispatch. If the grid requires active power, a corresponding virtual torque on the virtual shaft must be provided. The energy necessary for this is taken from the direct voltage system of the VISMA inverter, respectively supplied to the direct voltage system by the electricity generation unit. If reactive power has to be supplied to the grid, then in analogy the process computer influences the value of the virtual excitation voltage. The capacitor of the VISMA in the intermediate circuit supplies the

reactive current.

Figure 3. Transport of active or reactive power either locally induced (left) or

due to voltage and frequency changes in the grid (right)

The full analogy with the electromechanical synchronous machine is established on the basis of the virtual values of torque and excitation voltage in combination with the intermediate circuit.

Similar to conventional machines, the transport of active and reactive power can be initiated by voltage and frequency changes in the grid by means of remote dispatch. This tried and proven mechanism requires no additional exchange of information and entire grid areas are able to balance their power deficit or surplus themselves.

The VISMA model is based on the complete two shaft model of an electrically excited synchronous machine as to be seen in fig 4 (left) which is fully described electrically by the d-q impedances of the stator Ld, Rd and Lq, Rq, the damper LD, RD and LQ, RQ as well as the exciter Le, Re, and magnetically by the coupling impedances and the mass inertia of the virtual rotor. As a consequence, the VISMA not only has static, but also dynamic properties, as the example shows in fig. 5 (right). The stator current reacts as a result of a decrease in the stator voltage and the rotor oscillates depending on the configuration

of the damper after a change in the load.

Figure 4. A model of the machine (left) and adjustability of the dynamic

properties of the VISMA using the machine parameters (right)

III. T ECHNICAL R EALISATION

Modelling the synchronous machine requires the measurement of the voltage at the point of common coupling with the grid, the calculation of the machine current in real time and the feeding of the current into the grid.

Figure 5. VISMA components

Figure 5 shows the components required for the VISMA including the highly dynamic three level inverter with phase current control.

This combination, regardless of the grid voltage but within design specific limitations, makes it possible to generate any current profile including direct current components which are, for instance, necessary for the exact modelling of the stator current of the machine in the case of a voltage drop in the grid. The program interfaces for the machine parameters and the fundamental component management are addressed in each cycle of the algorithm. The on-going calculation of the machine model in real time as shown in fig. 6 allows a fast response to parameter changes so that newly calculated electrical properties

of the machine become effective in the grid immediately.

Figure 6. Synchronous machine model of the VISMA

The coefficients of the system of differential equations describing the VISMA can be parameterised freely and changed at any time during operation. The calculated machine currents are the reference values for the three phase current which the inverter feeds into the grid. It is important to note that the inverter must always be capable of feeding the current value calculated by the machine model into the grid. If not, the system loses it linear properties.

IV. M EASUREMENTS

The properties of the VISMA were investigated according to the experimental set-up shown in fig. 7. The characteristics of fundamental frequency and the contribution of the damper as regards the power flow to and from the grid, induced either locally or caused by the grid, were investigated as well as the response of reactive power during a drop in grid voltage and the transfer of power from the damper to the intermediate

circuit of the VISMA.

Figure 7. Single phase equivalent circuit diagram of the experimental set-up of

the VISMA

The VISMA was supplied by a battery on the direct voltage side and connected to the grid using a three phase autotransformer with three magnetically decoupled systems with a transfer ratio of 4.5. The grid resistance shown in fig. 7 was used to achieve a reduction in short circuit power at the point of coupling to the grid.

Fig. 8. shows the fundamental frequency properties of the VISMA when using it together with the damper to decouple the grid from the connected electricity generators. In analogy to the electromechanical synchronous machine, the virtual shaft of the VISMA is provided with a positive virtual torque for transferring active power from the grid to the storage of the electricity generating system.

Also in analogy, the virtual rotor is excited and then stabilises at a new angle with a speed depending on the configuration of the damper. With the nearly optimal damper configuration shown in figure 8 the rotor stabilises at its new position after a single overshoot. The power of the overshoot is fully effective in the grid and indicates the existence of the virtual mass.

Figure 8. Transfer of active power from the grid to the intermediate circuit under almost optimal conditions. M: virtual torque of the machine model, PDC

Power of intermediate circuit

Figure 9. Output voltage and grid current of the VISMA under stationary power

conditions (see fig 8) when using the VISMA in a motor mode

Figure 9 shows in addition the output voltage of the VISMA as well as the current drawn from the grid for the motor mode after decaying of all transients.

Figure 10 shows the effect of a change in the grid angle which alternates within seconds in the range of in a trapezoidal shape.

The grid angle is defined as the displacement angle between the three phase voltage system and the virtual rotor of the VISMA. It was possible to change it freely when connecting the VISMA to a space vector modulated inverter for autonomous electricity grids which can control amplitude, phase and frequency.

The rotor must be prevented from following the changes of angle as this would result in an average displacement angle

value of zero. This is easy to achieve with the VISMA by setting the logical parameter of rotor inertia to as large a value as necessary. As regards the grid, this corresponds electrically to a synchronous machine with a rotating mass sufficiently large that the rotor angle remains constant solely due to grid

interaction.

Figure 10. Remote dispatch of active power from the VISMA by changing the

grid angle in relation to the virtual rotor rotating at a fixed speed

A positive grid angle as shown in fig. 10 corresponds to an offset of the three phase voltage system along the time axis and thus an angle related lag. This causes the VISMA to act in a generating mode because the rotor has been parameterised with a very large virtual mass and thus continues to rotate unaffected. In addition to increasing the virtual mass of the VISMA, a control algorithm corresponding to a power action controller can be used and can set the machine angle to the desired value.

Reactive power can be drawn from a VISMA running neutrally in parallel to the grid without active or reactive power transfer by changing the grid voltage in complete analogy to

the electromechanical synchronous machine.

Figure 11. Remote dispatch of reactive power from the VISMA by changing

the grid voltage, respectively the output voltage of the VISMA

Fig. 11. shows this using an almost trapezoidal change in voltage and the subsequent response of reactive power as an example. If the virtual excitation voltage is maintained, a drop in the grid voltage causes an overexcitation of the VISMA and results in the supply of capacitative reactive power.

The linear parts in the curves of as in fig 10 as well as in fig 11 reflect the PQ control of the VISMA. As the machine parameters can be freely set and an additional power station control algorithm can be superimposed, the proportionality

factors of the PQ control can be modified simply.

Figure 12. Reaction of VISMA to a grid voltage drop: reduction in the voltage drop by supplying dynamic capacitive reactive power as well as supplying constant capacitive reactive power (2 kVAr) after the transients because the

grid voltage is still reduced

Fig. 12 shows the demand for dynamic capacitive reactive power to support the grid.

A 35 V voltage drop caused by connecting a large load to the grid connecting point of the VISMA for which the short circuit power has been reduced leads in the first instance to a strong dynamic reactive power response which counteracts the voltage drop. After the decay of the transients in the virtual machine, there is a constant supply of capacitive reactive power as long as the grid voltage depression is maintained.

The power electronics modelling of the synchronous machine, as regards the properties of the damper, offers the advantage that the energy in the damping process is not converted to heat in the damper of the electromechanical machine, but transferred to the intermediate circuit as a result of the analogy between the damper and intermediate circuit and can thus be reutilised.

Oscillations of the grid in the form of periodic changes in the grid voltage lead to an excitation of the damper system of the VISMA as shown in figure 13. To demonstrate the effect, a sinusoidal phase change of the voltage of the grid forming inverter used in the experiments was introduced. The phase change had an angle of (see fig 10, right) and a frequency of 12 Hz. In order to make a comparison with the undisturbed state, the disturbance was initiated after ca. t = 2.5 s and

removed after ca. t = 40 s.

Figure 13. Damping of a sinusoidal oscillation of the phase angle of the three phase grid voltage with an elongation of at 12 Hz. From top to bottom: virtual rotating speed of VISMA, active oscillating power absorbed from the grid, active power transferred to the intermediate circuit, calculated active power

stored in the modelled damper system

The rotor of the machine model remains almost unaffected due to its virtual mass, while the power (see fig 13) becomes effective in the damping system. The power values were filtered with relatively large time constants to suppress the effect of disturbances.

It was possible to transfer the calculated power of the damping process to the intermediate circuit of the VISMA inverter thus confirming the energy based analogy of the damping system of the electromechanical machine and the intermediate circuit of the VISMA.

Sufficient computational capacity is necessary to build a real time machine model. The rapid prototyping DSP system DS1103 from dSPACE was used for the VISMA prototype. It was able to calculate the complete model of the VISMA including all auxiliary algorithms for signal filtering and alternating current measurements within a cycle time of approx. 100 μs. Currently the development is being carried out using a single board process computer on the basis of the Tricore microcontroller made by Infineon Technologies AG.

V. S UMMARY

The VISMA concept as presented here makes it possible to connect every kind of decentralised electrical, preferably renewable, generators, such as wind, PV and fuel cell systems also to weak grids. Due to the analogy to an electromechanical

synchronous machine, conventional and proven grid operation with all the usual static and dynamic properties is possible.

On account of the exact modelling of the synchronous machine the self organising grid parallel operation is possible via the three phases of the grid with any number of generators without additional communication lines.

A further aim of the development of the VISMA concept is to establish the properties of a power station by superimposing a virtual machine control system.

Such an operating mode also offers the advantages of free parameterisation during operation.

R EFERENCES

[1] J. Wenske, Elektronische Synchonmaschine mit aktivem D?mpferkreis

zur Energieversorgung in elektrischen Versorgungsnetzen, Diss. TU-Clausthal 1999

[2] D. Turschner, R. Hesse, Power electronic substitution of a classical

synchronous machine for power conditioning in decentralized energy supply, 3rd French – German conference Renewable and Alternative Energies, University of Le Havre, PFT Fécamp, France, 5.-6. Dezember 2005

[3] H.-P. Beck, M. Clemens, Konditionierung elektrischer Energie in

dezentralen Netzen, etz Elektrotechnik + Automatisierung, 05/2004 [4] R. Zingel, Limiting Grid Disturbances of Renewable Power Sources by

Means of Modern Power Electronics, VDE-Kongre? ETG-2006

翻译技巧和经验第17期Virtual reality 该如何翻译

近一个时期来,Virtual Reality (VR)一词在报刊等新闻媒体上频频出现,十分活跃,从而也引出了对VR 该怎么好的问题。据《光明日报》载,VR 的译名计有:“虚拟实在”(1996 年,10 月28 日)“临境”、“虚实”、“电象”、“虚拟境象”以及“灵境”(1997 年1 月16 日);此外,还有最常见的“虚拟现实”(如《文汇报》1997 年3 月12 日“小辞典”)。 对VR 究竟怎么理解和怎么翻译,笔者不敢妄下结论。不过,从最近一期外刊上读到的一篇文章(载于 Jane's DEFENCE'97,作者为 Ian Strachan,Editor,Jane's Simulationand Training Systems)在这两方面都可给人以不小的启发。为帮助说明问题,现将此文中有关的部分摘录于下。文章标题和引语是: VIRTUALLY REAL Virtual reality is rapidly becoming the training tool o f the 21stCentury - but what exactly is it? 将此翻译过来大致是: 可说是真的Virtual reality 正在迅速成为二十一世纪的训练器具--但它确切的含义是什么呢? 文中在讲到 virtual 一词的定义时是这样说的:One dictionary definition of "virtual" is"something which is unreal but can be considered as being real for some purposes." 文章接着对 VR 作了几种实质性的释义: Cyber-something? To some, VR is putting on a Cyber-helmet (whatever that is) and involvestotal immersion (whatever that means) in cyberspace (where ver that is). Collimation? To some, VR is a view through a collimated display system. Tactile sensors? To some, VR implies tactile simulation as well a visual syst em. 对以上这些解释或释义,Strachan 认为它们都是对的:Which of these interpretations of VR is right? Ibelieve that they all are.(对VR 的这些诠释中哪个是对的?我相信它们都是对的。)为什么都对?Strachan 说那是因为 English is a living language and insistence on any preciseinterpretation of VR is narrow and not in accordance with what has already become commo nusage.(英语是一门活的语言,而坚持对 VR 作任何精确的诠释是狭隘观念,也不符合约定俗成。) 通过以上介绍,我们似乎能够得出这样的结论:各位专家学者所给的译名都是对的。因为,汉语也是一门活的语言,坚持对 Virtual Reality 作任何精确的翻译是狭隘观念。但是,另一方面,则仍有必要从以上译名中挑选出一两个最好的来,或者也可以另起炉灶,如果还有更好的话。那么,我们认为“虚拟现实”和“虚拟实在”与原文更加“形似”。其它几个译名虽各有千秋,但总嫌“神似”有余,而“形似”不足。词和词语的翻译同句子和篇章一样应力求“神形兼具”。在这种情况下,找到一个最理想的译名实属必要。 借鉴以上众多译名,并综合Strachan 所做的分析和解释,经过反复比较和推敲,我们认为 VirtualReality 视情可译为“拟真技术”、“拟真”或“虚拟真实”。这几个译名与所介绍的那些在含义上大致相同而表述略有不同,或许是最为得体的。理由如下: 第一,这么译十分符合英文词语的本义。Virtual 在这里意为 in effect, though not in fact; not such infact but capable of being consider

(完整版)初级语法总结(标准日本语初级上下册)

1.名[场所]名[物/人]力*笳◎去歹/「仮歹 名[物/人]总名[场所]笳◎去歹/「仮歹 意思:“ ~有~ ”“~在~”,此语法句型重点在于助词“心‘ 例:部屋忙机力?笳◎去歹。 机总部屋 2.疑问词+哲+动(否定) 意思:表示全面否定 例:教室忙疋沁o 3?“壁①上”意思是墙壁上方的天棚,“壁才是指墙壁上 例:壁 4. ( 1)名[时间]动 表示动作发生的时间时,要在具体的时间词语后面加上助词“V”,这个一个时间点 例:森总心比7時V 起吉去To 注意:只有在包含具体数字的时间时后续助词“V”,比如“ 3月14 日V, 2008年V”;星期后面可加V,比如“月曜日V” ,也可以不加V;但是“今年、今、昨日、明日、来年、去年”等词后面不能加V。 此外:表示一定时间内进行若干次动作时,使用句型“名[时间]V 名[次数]+动” 例:李1週間V2回7°-^^行吉去T。 (2)名[时间段]动:说明动作、状态的持续时间,不能加“ V” 例:李毎日7時間働^^L^o (PS: “V”的更多用法总结请看初级上第15课) ( 3)名V 【用途】【基准】 表示用途时,前接说明用途的名词,后面一般是使"去T等动词 表示基准时,前名词是基准,后面一般是表示评价的形容词。 例:--乙①写真总何V使"去T力、。「用途」 --申請V使"去T。「用途」 乙①本总大人V易L^^ToL力'L、子供V总難L^^To 「基准」 X —X—力*近乙買⑴物V便利^To 「基准」 (4)动(基本形) OV 【用途】【基准】:使用与上述( 3)一样 例:乙O写真求一卜总申請T^OV 使"去T。 ^OV>^3>^ 買“物T^OV 便利^To (5)小句1 (简体形)OV,小句2:名/形動+肚+OV 表示在“小句1 ”的情况下发生“小句2”的情况不符合常识常理,翻译为“尽管…还是…,虽

和声学基本知识

和声学基本知识 1. 大小三和弦、大小调中的主、属、下属和弦西方古典音乐体系的和声基础是三和弦,三和弦又以大小三和弦为最基本。三和弦是由三个音组成的,分别被称为根音、三音和五音。而和弦的性质,则是由根音、三音和五音之间的距离(及音程),来决定的:根音和三音之间是大三度,三音和五音之间是小三度的,被称为“大三和弦”。根音和三音之间是小三度,三音和五音之间是大三度的,被称为“小三和弦”。西方古典音乐(从16世纪以后),是以大小调为主的。大小调都各有三个最主要的三和弦:主和弦,属和弦和下属和弦,分别是调内的I 级、V级和IV级。我们看到,大调的主、属、下属是大三和弦。小调的主、属、下属是小三和弦。作为小三和弦的小调属和弦,当进行到主和弦时,感觉缺乏力量。原因是小调的VII级,到I级是大二度,没有向I级的强烈倾向。而大调的VII级和I级之间是小二度关系,有强烈的倾向。因此,西方传统和声,常常把小调的VII级音升高半音。升高后的VII级音和I级和大调一样,是小二度关系,被称为“导音”,(大调的VII 级亦被称为“导音”) 这样,小调音阶中的VII 级就被升高了。这种小调音阶,VI级和VII级间是增二度,被称为“和声小调”。VII级没有升高的,被称为“自然小调” 。这两种小调,在现代流行音乐中,都被广泛运用,而在西方古典音乐中,和声小调占绝对优势。西方传统和声是建立在这样的进行:由主和弦开始,经过下属和弦,到属和弦,最后解决到主和弦上的。这个进行是西方传统和声的基础,所有的其它和声进行,都是这个进行的扩展和补充。其中,最重要的原则是:下属不能直接接在属之后,这被称为功能倒置。这是因为,西方古典音乐是建立在一种美学体系,及──力量不断增加,最后解决──的美学体系基础上的。属后直接接下属,被认为是解决到主和弦之前的力量衰减,因此不被接受。但现代流行音乐中,这种限制完全被打破。我们的第一个和声公式:I-V-IV-V,后面可以接I级,或其它可以接V级的和弦。(其它可以接V级的和弦将在以后介绍。) 注1:“大小三和弦”是指和弦的性质,及这个和弦的特性是什么。而“主和弦,属和弦和下属和弦”是指和弦的功能,及在大小调中起什么作用。“I级、V级和IV级”是和弦根音的音级,及和弦根音在音阶中所占的位置。 2. 增减三和弦和大调中的副三和弦西方传统和声体系中,除了大小三和弦外,增减三和弦也是很常用的。增三和弦是由两个大三度叠置而成。减三和弦是由两个小三度叠置而成。在大小调中,除了主、下属和属以外,其他音级上的副三和弦也是很常用的。大调上的副三和弦的性质分别为: ii级:小三和弦。iii级:小三和弦。vi级:小三和弦。vii级:减三和弦。 ii级三和弦,由于和IV级三和弦有两个共同音,有下属的功能倾向,因此被归为下属和声组。 vi级三和弦,由于和IV级三和弦有两个共同音,有下属的功能倾向,因此也被归为下属和声组。然而vi级三和弦,同时和I级三和弦也有两个共同音,因此也有主的倾向,因此有时在属到主的进行中,用来代替主和弦的位置,被称为“阻碍终止”(因为它并不是真正的终止,感觉上象被vi级和弦从中间阻住了一样。) iii 级三和弦是一个较少用的和弦,它具有I级和V级的双重功能(因为它和I级、V

标准日本语初级语法总结(上)

第一部分——名词 名词:名词是词性的一种,也是实词的一种,是指待人、物、事、时、地、情感、概念等实体或抽象事物的词。在日文中的充当句子成分时可以做主语,宾语,目的语等。与数量词、代词等构成体言。在单词方面完全由汉字组成的词汇如:説明せつめい 等很多是音读即类似汉语发音,当然也有训读的时候(海うみ ),甚至一个词有音读和训读两种念法(紅葉こうよう 和紅葉もみじ )。由汉字和假名组成的词语大多训读念法例:お知らせ 名词无变形但有时态的差别: 名词 简 体 敬 体 现在式 过去式 现在式 过去式 肯定 名词+だ 例:学生だ 名词+だった 学生だった 名词+です 学生です 名词+でした 学生でした 否定 名词+ではない 学生ではない 名词+ではなかった 学生ではなか った 名词+ではありません 学生ではありません 名词+ではありませんでした 学生ではありませんでした 另外名词的中顿形:名词+で、~~~。 名词的推量形,表示推测或向对方确认:でしょう。 初级上名词相关时态、句型: 敬体: 1.现在肯定:N です わたしは 王です。「3」2.现在否定:N ではありません わたしは 日本人では ありません。「3」 3.过去肯定:Nでした 前の 会社は 日系企業でした。「11」 4.过去否定:Nでは ありませんでした 先週,大阪は いい 天気では ありませんでした。「11」 简体: 1.现在肯定:Nだ 今日は 日曜日だ。「18」 2.现在否定:Nではない クリスマスは 祝日では ない。「18」 3.过去肯定:Nだった 恋人からの 誕生日の プレゼンは ネクタイだった。「18」 4.过去否定:Nではなかった 昨日は 休みでは なかった。「18」

《基础和声学》教学大纲

《基础和声学》教学大纲 适用专业:音乐学专业 课程类别:基础理论课 授课学时: 学分: 总纲 课程的性质: 《基础和声学》是音乐学专业各专业方向的一门专业专业基础理论课,是学习多声部音乐中的和弦结构方式、声部进行规律、和声序进规律以及四部和声写作技术与应用的课程,它起着提高学生和声写作与分析能力的作用,并且,为以后学习《即兴伴奏》、《复调基础》、《配器法常识》、《曲式与作品分析》、《歌曲作法》、《电脑音乐》等课程打下良好的基础。课程基本任务: 本课程是音乐学专业的基础理论课,是学习多声音乐中的和声规律及其应用的一门基础理论课程。通过教学使学生比较系统地理解基础和声理论及其运用,能分析一般中、外乐曲中常见的和声现象,掌握初步的和声写作技能。为音乐表演、编写歌曲伴奏与小型合唱曲、学习有关作曲技术理论课程打下基础。 课程内容概要: 本课程以冯鄂生、贾方爵、薛世民编著的《和声实用基础教程》教材为主,适当参考其他教材,如桑同主编的《和声学教程》、金铁宏主编的《基础和声学》,本课程主要讲授了四部和声的写作原则、和弦的连接方法、和声进行的一般规律、副属和弦的构成及使用方法、转调的方法和在实际作品中的应用等内容。 课程教学形式: 教学中采用四部和声写作和作品谱例分析相结合的形式,使学生具备写作和分析的能力,注重理论与实践相结合,注意培养和声听觉及和声思维能力,并根据实际情况将学生分组授课,加强学生的四部和声写作练习,并一对一修改,使学生掌握扎实的理论基础。 课程学时分配: 课程考核方式: 理论闭卷考试

成绩评定: 采用总分百分制或五级制计分方式。 平时成绩(考勤、作业、态度等)占30%,考试成绩占60%,其它(课程实验、专业技能性考核等)占10%。 选用教材及参考书目: 桑桐主编的《和声学教程》 杨通八主编的《和声分析教程》 金铁宏主编的《基础和声学》 课程教学内容提要 第一章绪论 (一)基本要求 1、了解和声的起源和发展概况 2、掌握和声这门学科的性质 (二)主要教学内容 1、掌握有关多声部音乐的几个概念 2、什么是主调音乐 3、什么是复调音乐 4、什么是多声部音乐以及以上几种音乐形式的区别 (三)教学重点难点 1、和声学是怎么样一门学问 2、和声在多声部音乐中所起到的作用 3、和声对形成作品的曲式结构具有重要作用 第二章和弦 (一)基本要求 1、了解和弦的基本概念 2、熟悉和弦的种类以及性质 (二)主要教学内容 1、掌握什么是原位和弦及转位和弦 2、掌握大、小调体系中各级和弦的名称以及各级和弦的结构 3、熟悉以五声音阶为基础的各调式和弦名称 (三)教学重点难点 1、掌握什么是原位和弦及转位和弦 2、掌握第一、第二转位和弦的名称 3、第一、第二转位和弦的性质 4、熟悉各级和弦在大小调体系中的结构和色彩 第三章四部和声 (一)基本要求 1、学习四部和声的基本记谱形式及各声部的名称 2、了解关于和弦音的省略与重复问题 3、学会四部和声的排列法

高中英语 unit5 virtual reality-reading教案 上海牛津版S2A

Unit5 Virtual Reality Reading教案 一、章节分析(Reading section ) (一)综述 本章节讲述虚拟现实(VR)在各个领域的运用并分析其利弊。由于此主题较新,并与学生日常生活的电脑网络的使用有关,学生们对此应该是比较熟悉也颇有兴趣的。 因此,教师应充分利用学生的兴趣来教授本课,并进行适当拓展。 本课的任务有两个: 1.学生通过对课文的学习。掌握一些核心词汇,例如:imaginary, realistic, security, image等。 2.通过学习课文,了解如何运用想象写说明文,为writing部分做一定的铺垫和 准备。 (二)阅读目标 1知识目标 学习课文中重点词、词组、句型和语法。 2能力目标 通过阅读了解虚拟现实在各个领域的使用以及其他相关知识。 3情感目标 正确判断电脑、网络以及虚拟现实对日常生活的利弊影响。 (三)教学方法 采用任务型教学法组织教学,通过听说,讨论等具体活动,达到教学效果。 (四)重点和难点 1词汇学习 1)核心词汇 artificial

commit imaginary realistic security image amazing 2)拓展词汇 inspect manufacture architect amazing glide head-set inspect medium virtual fantasy 3)词组和短语 look down upon go back in time come true thanks to introduce … into reach out just for entertainment before long

和声学专著

1.《和声学》.姜之国编著.湖南文艺出版社, 2008 本书内容包括:自然音体系和弦、调性扩张的三种基本方式、和弦外音与持续音、调性转换等四篇。专业公共课教材音乐考研复习精要。 2.《多声部音乐写作与分析基础教程, 基础和声》.张建华主编.安徽文艺出版社, 2008 本书内容包括:原位正三和弦的平稳连接、为低声部配和声、正三和弦的转位、属七和弦、和弦外音、调内模进、近关系转调等。高等学校音乐学专业教材 3.《和声学教程》. (苏)伊·杜波夫斯基[等]合著 ; 陈敏译.人民音乐出版社, 2008.2版, 增订重译版 本版图书将原来的上下两册合为一册,从学术上说把传统和声归纳得科学、缜密、井然有序;阐述得合理透彻、丝丝入扣;从交教学上循序渐进。 4.《基础和声》.现代远程音乐教育丛书.刘锦宣著.中央民族大学出版社, 2007 本书分为上编与下编两部分,上编为自然音体系,下编为半音体系。其中还有两章五声性旋律民族调式和声配置手法的介绍。附1光盘。 5.《和声的结构功能》.(Structural functions of harmony)(奥)阿诺德·勋伯格(Arnold Schoenberg)著 ; 茅于润译.上海音乐出版社, 2007 本书介绍了和声的结构功能、和声的原则、代替音与领域、小调的领域、变和弦、游移和弦等内容。据原书修订本译出。 6.《勋伯格和声学》(Arnold Schoenberg theory of harmony).奥)阿诺德·勋伯格著 ; 罗伯特·D. W. 阿达姆斯英译 ; 罗忠镕译.上海音乐出版社, 2007 本书内容包括:大调音阶的自然音和弦、小调调式、没有共同音的和弦的连接、转调、来自教会调式的副属和弦和其他非自然音和弦等。 7.《和声对位化写作与综合性分析》.徐平力著.吉林人民出版社, 2007 本书分为上下两篇“对位化和声写作”、“综合性和声分析”,内容包括:对位部分,外音部分,其他部分等。 8.《综合和声理论写作与应用》.李龙德编.哈尔滨地图出版社, 2007 本书的学习对象以巴洛克开始到浪漫派西洋音乐和声为依据,写作部分和分析部分完全保持在这个框架里面,理论与学习的射程从中世纪、文艺复兴尝试扩展到近代、现代西欧多声音乐的全史。 9.《键盘和声与即兴伴奏》.周慕俊主编.高等教育出版社, 2006 本书主要内容有:和弦基础与初步伴奏;属七和弦、终止四六和弦及进行曲风格的歌曲伴奏、常用七和弦的连接及抒情性歌曲伴奏等。五年制高等职业教育幼儿教育专业教学用书。附1光盘。 10.《二十世纪音乐的和声技法》(Harmonik in der Musik des 20. Jahrhunderts ).(德)瓦尔特·基泽勒(Walter Gieseler)著 ; 杨立青译.上海音乐学院出版社, 2006.上海市重点学科建设项目资助上海音乐学院音乐研究所课题.上音译丛.丛书第一辑

标准日本语初级上册语法总结(改:动词原形)

日语初级上册语法总结 ㈠日语常用的词汇分类及用法: 1 名词:在句子中作主语,谓语,宾语,定语(名词+の名词)。 2 形容词:定语,谓语。 3 形容动词:定语,谓语。 4 动词:定语,谓语。 5 副词:可做状语,修饰动词,形容词,形容动词。 6 助词:相当中文里的助词,用于说明一个句子或一个词,与其它句子或词的关系。 ㈡动词的分类及「て形」、「ない形」、「た形」的变形规则。 ㈣上册所学语法中与「て」「ない」「た」相关的语法。 ①「て」:~ています、~てから、~てもいいです、~てください、~てはいけません、~ても 补充:动词的「て」形表示动作的先后顺序,以及动作行为的方式方法。 例えば:顔を洗って学校へ行きます。 歩いて駅へ行きます。 ②「ない」:~なくてもいいです、~ないでください、~ないほうがいいです、~なければならない 补充:动词的「ない」形表示否定。 例えば:会社へ行かない。 ③「た」:~たことがあります、~たほうがいいです、~たり~たりします、~たら 补充:动词的「た」形表示过去时。 例えば:フランスへ行った。

㈢名词,形容词,形容动词,动词的简体及敬体变形 ㈤常见助词用法的归纳总结。 1「は」用与提示主语,像「には、では、へは、からは、までは等」属于助词的重叠使用。 起加强语气或提示为主题的作用。 例えば:田中さんは日本人です。 教室には学生がいます。 2「が」提示主语和描述状态的作用。 常用「が」的情况有:1其后为形容词。 2表示自然现象。 3其前为疑问词。 4整句中的一小部分的主语。 5另外自动词前也用「が」来提示而不用「を」。 例えば:天気がいいです。 空は青いです。 誰がいますか。 私は足が痛い。 電気が付いている。 3「も」表示后项事物和前项事物一样。相当于中文的[也]。 例えば:陳さんは中国人です。 李さんも中国人です。

Unit 4 Cyberspace Lesson 3 Virtual Reality 教学设计3-优质公开课-北师大必修2精品

Unit 4 Cyberspace Lesson 3 Virtual Reality Teaching aims: To understand the dialogue. To get specific information about the virtual reality holidays. To voice your opinion on a virtual university. Teaching difficulties: How to make the students take part in the class actively. Before the class. You are divided into two groups: Group A and Group B. If some student in your group volunteersto answer the question, your group will get a smile face. The group that gets more smile faces willbe a winner. OK? Teaching procedures: Ⅰ. Lead in First,pleaselookatthreegroupsofpicturestodecide:whichoneshowsrealsituation? Which one shows unreal situation?Real/ Unreal They are all unreal situations, but they make us feel as if we are in real situations. Do youthink so? They are called virtual reality. Today we will read a passage---Lesson3 Virtual Reality Please look at objectives by yourselves. Do you understand? ⅡReading Task1. Skip to get main idea. Try to answer the two questions. 3’ 1. How many people are there in the dialogue? Who are they?

《和声学基础》课程教学大纲

《和声学基础》课程教学大纲一、课程基本信息 课程名称和声学基础 总学时数96 讲课学时56 实验 学时 上机 学时 习题 课学 时 40 周学 时 3 学分 6 开课单位音乐学院 适用专业音乐表演、音乐学 先修课程基本乐理、视唱练耳 课程性质必修课课程类型专业基础课群选用教材《初级和声教程》杨通八著高等教育出版社 2006年4月第二版 主要教学参考书1.《和声学基础教程》(上、下册)谢功成等编著人民音乐出版社 2001年4月 2.《和声的理论与应用》(上、下册)桑桐编著上海音乐出版社 1997年11月 3.《和声分析》刘春荣著广东高等教育出版社 1998年 4.《和声学教程》伊 .斯波索宾著人民音乐出版社 2008年3月 本课程地位(作用)和任务 本课程是一门音乐基础理论课程,是音乐表演专业学生进行专业学习的必修课程。 设置本课程的目的,是使学生掌握传统和声学的基础理论,认识和了解多声音乐在作品中的应用及发展规律,树立学生在音乐演奏、演唱等过程中的多声思维和较高的演绎力及鉴赏力,培养学生对音乐作品中和声现象的分析和理解力,以便能更充分地发挥自己本专业的能力。

二、教学内容与基本要求: 和声学基础1 第一章绪言 一、和声 二、大小调和声 三、四部和声 四、和声分析 基本要求: 了解学习和声写作的目的; 了解学习和声分析的目的; 掌握四部和声的书写方法。 第二章四部和声 一、三和弦的类别与构成,调式中的三和弦 二、四部和声的记谱方法 三、和弦音的重复 四、和弦音的排列法 基本要求: 能很好的识别三和弦的类型; 掌握书写各种旋律位置及低音位置的四部和声; 能识别各调中三和弦的级数。 第三章原位正三和弦连接(一) 一、不同三和弦之间的关系 二、和声连接法运用中的声部进行 三、和弦的连接法 四、根音为四、五度关系的原位三和弦连接(和声连接法) 基本要求: 了解一级、四级、五级三和弦的性质; 掌握和弦连接的两种方法; 掌握和声连接中声部进行的一般规律。 第三章原位正三和弦连接(二) 一、和弦连接中声部进行的一般规律 二、根音为四、五度关系的原位三和弦连接(旋律连接法) 三、根音为二度关系的原位三和弦连接 四、和声谱例分析 五、书面习作示范 基本要求: 分别掌握和声连接法与旋律连接法; 掌握和声连接中声部进行的一般规律; 掌握一级、四级、五三和弦连接的方法。 第四章为旋律配和声 一、和弦的选择 二、低音的设计 三、排列法的选择 四、和声习作示范

新标准日本语语法点总结(初级上)

新標準日本語語法點總結(初級上) 1.名【场所】名【物/人】力* / 庭忙何力?笳◎去T力、。 部屋忙誰力"、去T力、。 2.名【物/人】总名【场所】笳◎去T /「岷T 図書館乙忙笳◎去T力、。 猫总椅子 3. 表示方位 上*9^隣 下L尢中忌 力、 前外 後6 九勺 4.疑问词+哲+动词(否定)教室V誰去乜人。 冷蔵庫忙何哲笳◎去乜人。 5.去T 去乜人 6.时间的表达方式 今何時何分IT力、。 今四時三十分IT。 毎日何時忙寝去T力、。 11時3 0分忙寝去T。 (叙述包含数字的时间后续助词V,例3月14日V, 但是今日、今、昨日、明日、毎日、去年等词后不加V,星期后一般加V,但也可以不加。午前中 試験总始去◎去T力、。 来週①木曜日IT。 (詢問時間用 ^^,當詢問的時間很具體時,在表示時間的詞語后加V,如何時V、何曜日V、何日V )力、5……表示某动作发生在某个期间,也可以表示某移動動作的起點和終點森月曜日力、5水曜日去疋休注5。

表達時刻【何時何分】 1點一時7點七時 2點二時8點八時 3點三時9點九時

北师大版高中英语必修二 unit4 lesson3 Virtual Reality reading

Unit4 Cyberspace-Lesson3 Virtual Reality 一、学习目标 1.透彻理解课文内容。 2.对新学到的单词和句型等能学以致用。 3.学习条件状语从句。 二、重难点分析 1.对课文里长难语句的理解以及句子成分分析。 2.学习条件状语从句。 三、学习过程 Step 1: 预习课文 1.用15分钟阅读,粗通课文的大意,回答下面的问题。 (1)What’s the main idea of the text? A. The weekend life of Cathy and Tom. B. The life that students hope for living in the future C. The imagination of virtual reality’s holiday and study situation D. Imagination of how to live in the future (2)Which of the following is true? A. In the virtual reality holiday, we wouldn’t experience something directly. B. Tome will go camping with his families this weekend. C. Tom will send the website address to Cathy when he gets to school. D. It’s not hard for us to imagine the virtual reality studying situation. (3)From the text, we can infer that________ . A. Cathy has lots of work to do this weekend. B. In the future, we will not have to go to our destinations in the flesh at all. C. We will not only be able to travel around the world, but go to study in world famous universities we wanted to. D. Cathy dislikes to spend a long time traveling on planes during holiday.

斯波索宾-和声学教程

刚看完斯波索宾《和声学教程》,发总结一篇共飨 ★调号 # ## ### #### ##### ###### G-e D-b A-#f E-#c B-#g #F-b b bb bbb bbbb bbbbb bbbbbb F-d bB-g bE-c bA-f bD-bb bG-be ★转调音程和调号的关系 ↑小二↑大二↑小三↑大三↑纯四↑增四↑纯五↑小六↑大六↑小七↑大七bbbbb ## bbb #### b 6个调 号# bbbb ### bb ##### ↓大七↓小七↓大六↓小六↓纯五↓增四↓纯四↓大三↓小三↓大二↓小二 ★属七和弦 S D7 T K D7 T S K D7 T T D34 T6 ★下属七和弦 {T, T6, K, S, SⅡ}-SⅡ7-{ D, T, D7 } ★导七和弦 {T, S, D, D7, SⅡ7, TSⅥ}-DⅦ7-{ T, D7 } DⅦ7的功能内解决:DⅦ7-D56-D34-D2-D7 DⅦ7之间的经过和弦:DⅦ7-{ T组,D组, S组}-DⅦ7 DⅦ34(4 6 7 2)有下属功能 ★属九和弦 { S, SⅡ, SⅡ7, T, K, D7, D }-D9-{T, D7} ★下属九和弦 SⅡ9-{ D7, D9, SⅡ7 } ★副七和弦 T7 DTⅢ7 S7 TSⅥ7(用于模进) 进行到下方五度的三和弦或进行到该级上的七和弦 T7-{ S, S7 } DTⅢ7-{ TSⅥ, TSⅥ7 } S7-{ DⅦ, DⅦ7 } TSⅥ7-{ SⅡ, SⅡ}

★重属和弦(升高IV) 在序列[2-#4-6-1-3(b3)]上随意截取形成: DD,DD7,DD9,DD9,DDⅦ,DDⅦ7 { S, SⅡ, SⅡ7, S7, T, TSⅥ}-DD-{ D, K, D7, DⅦ7, D9, sⅡ7 }★变音重属和弦(含增六度) b6-1-#4(亦可在1和#4之间增加2,b3或3) { T, S组, DD }-变DD-{ K, T46,(D)} X-变DD-X6(辅助) ★大调变音属和弦 变属和弦:#5D, b5D, #5D7, b5D7, #5D9, b5D9 变导和弦:#3DⅦ, b3DⅦ, #3DⅦ7, b3DⅦ7 重要的有:#5D, #5D7, b5D7, #3DⅦ7 {D, SⅡ, SⅡ7, DD, T6, S, 变DD}-变D-T 阻碍中止:b5D7-降Ⅵ级(tsⅥ), ★小调变音属和弦(仅用于和声小调) 降Ⅱ级:b5D, b5D7, b5D9,(3-#5-b7-2-4) 降Ⅳ级:b7D7(3 #5 7 b2), b5DⅦ(#5 7 b2) 降Ⅱ,Ⅳ级:b57D7(3 #5 b7 b2), b57DⅦ(#5 b7 b2) {D, sⅡ, sⅡ7, DD, t6, s, 变DD}-变D-t ★那不勒斯和弦(N6, N, N7) N6(小调:2 4 b7, 大调:4 b6 b2), N(小调:b7 2 4, 大调:b2 4 b6) N7(小调:b7 2 4 6, 大调:b2 4 b6 1) 用于小调:{t, tsⅥ, sⅡ, s, dtⅢ}-N6 用于大调:{tsⅥ, dtⅢ}-N6(交替大小调和弦) N6-{K, D, D7, T(t)} N7-{变D, 变D7, 变DⅦ7, 变D9} s-N, tsⅥ-N N-{D, D7, DⅦ7, D9} ★大调变音下属和弦(#1SⅡ56:4 6 1 #2, 相当于下属调的属七和弦) T-#1SⅡ56-T([4 6 1 #2]-[1 5 1 3]) ★用同主音小调复杂化的大调 t=b3T, s=b3S, sⅡ=b5SⅡ, tsⅥ=b1b5TSⅥ, d=b3D, dtⅢ=b1b5DT Ⅲ, dⅦ=b1DⅦ(逢3 6 7便降) ★用同主音大调复杂化的小调 T=#3t, D=#3d, DTⅢ=#1#5dtⅢ, DⅦ=#1dⅦ, S=#3s, SⅡ=#5s Ⅱ, TSⅥ=#1#5tsⅥ(逢1 4 5便升) 交替大小调常用进行

新版标准日本语初级上册语法总结

新版标准日语初级上册语法总结 ㈠日语常用的词汇分类及用法: 1 名词:在句子中作主语,谓语,宾语,定语(名词+の名词)。 2 形容词:定语,谓语。 3 形容动词:定语,谓语。 4 动词:定语,谓语。 5 副词:可做状语,修饰动词,形容词,形容动词。 6 助词:相当中文里的助词,用于说明一个句子或一个词,与其它句子或词的关系。㈡动词的分类及[ます形]「て形」、「ない形」、「た形」的变形规则。 动词的分类:ます形:て形: ない形: た形: ㈢名词,形容词,形容动词,动词的简体及敬体变形 ㈣上册所学语法中与「て」「ない」「た」相关的语法。 ㈤常见助词用法的归纳总结。 ㈥连词:连接句子于句子的词。 ㈦疑问词: ㈧副詞及接续词: 动词的分类: 动词「て形」「た形」的变形规则: 1、一类动词: ①动词的最后一个假名以「うつる」结尾时,将它们改为「って」「た」 買う買って 立つ立って 終わる終わって

②动词的最后一个假名以「むすぶ」结尾时,将它们改为「んで」「た」 読む読んで 遊ぶ遊んで 死ぬ死んで ③动词的最后一个假名以「くぐ」结尾时,将它改为「いて」「た」 書く書いて 泳ぎぐ泳いで ④行く行って「た」 ⑤話す話して「た」 2、二类动词:直接去掉加「て」「た」 食べる食べて出かける出かけて 鍛える鍛えて起きる起きて 3、三类动词:直接去掉「する」加「して」「た」。「来るー来(き)て」「た」。運動する運動して復習する復習して 買い物する買い物してチェックするチェックして 动词「ない形」的变形规则: 1、一类动词:将动词「ます形」的最后一个假名改为其「あ」段假名。若动词「ます形」的最后一个假名以「い」结尾时不要将其改为「あ」,而要改为「わ」。 買う買わない 立つ立たない 読む読まない

和声学教程

和声学(NBT理论教材) 声明:本和声教程以流行音乐的现代和声应用为主论,与传统和声学悖逆与反叛的部分,敬请音乐学术人员见谅,并予以亲善指导。谢谢! 第31讲—三和弦与四部和声(谱例讲解) 大三和弦-大三度(1-3)+小三度叠置(3-5),具有坚定的声响效果。-协和和弦。 小三和弦-小三度+大三度叠置,具有柔和温暖的声响效果。-协和和弦。 减三和弦-小三度+小三度叠置,具有压抑的声响效果。-不协和和弦。增三和弦-大三度+大三度叠置,具有外扩倾向的声响效果。-不协和和弦。 四部和声-三和弦经常加一个和弦中重复音来构成四个声部,1音,三音,5音都可以作为重复音,常见的为旋律音+三和弦;根音+三和弦。排列法—密集排列-流行音乐中以密集排列为主,1/和弦三个声部可以与旋律音构成四部和声,可以重叠;2/与根音构成四部和声,根音声部在流行音乐中往往用低音乐器来演奏,所以根音与三和弦的三个声部具有八度以上的音程的距离,甚至到3个八度的程度。密集排列法往往以某一内声部的应用为常见。 开放排列-在流行音乐中,常以织体和声形式应用。比如,贝司,吉他,电钢琴,弦乐声部,人声声部等的织体和声形式。

各级的原位三和弦-谱例。 功能属性—1/主功能组:1级主和弦,为调式稳定的唯一和弦;3级和弦,6级和弦,作为辅助性的主功能,常用在主和弦后面,或代替主和弦用在乐句的句首位置。偶尔也用在句尾。 2/下属功能组:下属和弦(半稳定),大调中的2级和弦,6级和弦,7级和弦;小调中的2级和弦,6级和弦。作为辅助性的,在下属和弦的前后(注:在下属和弦作为半终止的时候不能用在后面),或代替下属和弦单独用于过度。 3/属功能组:属和弦(半稳定)。3级和弦,7级和弦。作为辅助性的,在属和弦的前面(注:不能用在属和弦后面),或代替属和弦单独用于过度。 第32讲—正三和弦与副三和弦 正三和弦-各调式的主和弦(稳定和弦),下属和弦(半稳定和弦),属和弦(半稳定和弦)。 功能与连接应用-在一个乐句结构内作为主要的和声来应用,往往用在句首和句尾,起着调式的稳定作用。 副三和弦-各调式中2级,3级,6级,7级和弦。不稳定和弦。其中减三和弦为不协和和弦。 功能与连接应用-在一个乐句结构内以辅助和声的形式应用,常在其属性的正三和弦的前后,作为辅助;也经常代替其属性的正三和弦,独立应用,但一般在不重要的位置上。

新版标准日本语初级上册语法解释 第2课

新版标日初级·语法解释 第2课 1.これ/それ/あれは [名]です 相当于汉语“这是/那是~”。 “これ”“それ”“あれ”是指代事物的词,相当于汉语“这、这个”“那、那个”。用法如下: (1)说话人与听话人有一点距离,面对面时: ·これ:距离说话人较近的事物 ·それ:距离听话人较近的事物 ·あれ:距离说话人和听话人都较远的事物 (2)说话人和听话人处于同一位置,面向同一方向时: ·これ:距离说话人、听话人较近的事物 ·それ:距离说话人、听话人较远的事物 ·あれ:距离说话人、听话人更远的事物 例:これは 本です。 それは テレビです。 あれは パソコンですか。 2.だれですか/何ですか 相当于汉语“~是什么?/~是谁?”。不知道是什么人是用“だれ”,不知道是什么东西时用“何”。句尾后续助词“か”,读升调。例:それは 何ですか。 あの人は だれですか。 注意:“だれ”的礼貌说法是“どなた”。对方与自己是同辈、地位相当或地位较低时用“だれ”。对方比自己年长或地位高时用“どなた”。 例:吉田さんは どなたですか。 3.[名]の[名]【所属】 助词“の”连接名词和名词,表示所属。 例:私のかぎ。 小野さんの傘。 4.この/その/あの[名]は [名]です 相当于汉语“这个/那个~是~”。修饰名词时,要用“この”“その”“あの”。其表示的位置关系与“これ”“それ”“あれ”相同。例:このカメラは 私のです。 その傘は 小野さんのです。 あの車は だれのですか。 5.どれ/どの[名] 三个以上的事物中,不能确定哪一个时用疑问词“どれ”“どの”。单独使用时用“どれ”,修饰名词时用“どの”。 例:森さんのかばんは どれですか。 長島さんの靴は どれですか。 私の机は どの机ですか 扩展:100以下数字 0 れい/ぜろ 1 いち 2 に 3 さん 4 し/よん  5 ご 6 ろく

Virtual Reality

Virtual Reality is a kind of computer simulation technique that is able to assist people experience virtual world by using special lens in head-sets. It can be applied in plenty of areas such as military training and medical science. For military training, with head-sets and some additional facilities, special situations like forests, desert and ruin can be virtually simulated. Then soldiers will feel that they are in real battlefield and complete tasks to improve themselves better. In terms of medical science, when facing dangerous operations, the data of patients’ tissues and organs can be input in the computer in advance. Then computer can create the structure of the patient in details. Surgeons wearing head-sets can practice on such simulation to get more familiar with the operation so as to handle unexpected dangerous condition well and avoid some mistakes. Virtual reality (VR) typically refers to computer technologies that use virtual reality headsets, sometimes in combination with physical spaces or multi-projected environments, to generate realistic images, sounds and other sensations that simulates a user's physical presence in a virtual or imaginary environment. A person using virtual reality equipment is able to "look around" the artificial world, and with high quality VR move about in it and interact with virtual features or items. VR headsets are head-mounted goggles with a screen in front of the eyes. Programs may include audio and sounds through speakers or headphones. VR systems that include transmission of vibrations and other sensations to the user through a game controller or other devices are known as haptic systems. This tactile information is generally known as force feedback in medical, video gaming and military training applications. Virtual reality also refers to remote communication environments which provide a virtual presence of users with through telepresence and telexistence or the use of a virtual artifact (VA). The immersive environment can be similar to the real world in order to create a lifelike experience grounded in reality or sci-fi. Augmented reality systems may also be considered a form of VR that layers virtual information over a live camera feed into a headset, or through a smart phone or tablet device.

相关主题
文本预览
相关文档 最新文档