当前位置:文档之家› 第六章(模拟信号的数字传输)习题及其答案

第六章(模拟信号的数字传输)习题及其答案

第六章(模拟信号的数字传输)习题及其答案
第六章(模拟信号的数字传输)习题及其答案

第六章(模拟信号的数字传输)习题及其答案

【题6-1】已知信号()m t 的最高频率为m f ,由矩形脉冲()m t 进行瞬时抽样,矩形脉冲的宽度为2τ,幅度为1,试确定已抽样信号及其频谱表示式。 【答案6-1】

矩形脉冲形成网络的传输函数

()(

)(

)2

2

Q A Sa Sa ωτ

ωτ

ωττ==

理想冲激抽样后的信号频谱为

1

()(2) =2 s m

m m n s

M M n f T ωωω

ωπ∞

=-∞

=

-∑

瞬时抽样信号频谱为

()()()(

)(2)2

H s m n s

M M Q Sa M n T τ

ωτ

ωωωωω∞

=-∞

==

-∑

()H M ω中包括调制信号频谱与原始信号频谱()M ω不同,这是因为()Q ω的加权。

瞬时抽样信号时域表达式为

()()()()H s

n m t m t t nT q t δ∞

=-∞

=

-*∑

【题6-2】设输入抽样器的信号为门函数()G t τ,宽度200ms τ=,若忽略其频谱的第10个零点以外的频率分量,试求最小抽样速率。 【答案6-2】

门函数()G t τ的宽度200ms τ=,其第一个零点频率1150f Hz τ==,其余零

点之间间隔都是1τ

,所以第10个零点频率为110500m f f Hz ==。忽略第10个

零点以外的频率分量,门函数的最高频率是500Hz 。由抽样定理,可知最小抽样速率21000s m f f Hz ==。

【题6-3】设信号()9cos m t A t ω=+,其中10A V 。若()m t 被均匀量化为40

个电平,试确定所需的二进制码组的位数N 和量化间隔v ?。 【答案6-3】

()m t 需要被量化为40个电平,即40M =,表示40个电平需要的二进制码

组位数

2[log ]16N M =+=

量化间隔

22100.540

A v V M ??=

==

【题6-4】已知模拟信号抽样的概率密度()f x 如下图所示。若按四电平进行均匀量化,试计算信号量化噪声功率比。

【答案6-4】

根据()f x 图形可知

10<1()1 -1001x x f x x x x -≤??

=+≤≤??≥?

x 动态范围为:1(1)2v =--=

量化级间隔为:2

0.54

v v M ?=

== 量化区间端点和量化输出为:01m =-,10.5m =-,20m =,30.5m =,41m =;

10.75q =-,20.25q =-,30.25q =,40.75q =。

量化信号功率为:

4

21

0.50

221

0.5

0.5

1220

0.5

() (0.75)(1)(0.25)(1)3 0.25(1)0.75(1)16

i

i

m q i m i S q f x dx

x dx x dx x dx x dx -=---==-++-++-+-=

∑?

?

?

??

量化噪声功率为

4

21

0.5

0221

0.50.5

1

220

0.5

()() (0.75)(1)(0.25)(1)1 (0.25)(1)(0.75)(1)48

i

i

m q i m i N x q f x dx

x x dx x x dx

x x dx x x dx -=---=-=++++++--+--=

∑?

?

?

??

信号量化噪声功率比为:

316

9148

q q

S N =

=

【题6-5】采用13折线A 律编码,设最小量化间隔为1个单位,已知抽样脉冲值为+635单位:

1)试求此时编码器输出码组,并计算量化误差;

2)写出对应于该7位码(不包括极性码)的均匀量化11位码。(采用自然二进制码。) 【答案6-5】

1)极性码: +635〉0 c1=1

段落码:

635>125 c2=1 635>512

c3=1

635<1024 c4=0

由这三次比较,可知+635处于第七段。

段内码:第7段其实电平为512,均匀量化间隔为512/16=32个单位。 635<512+32X8=768 c5=0 635<512+32x4=640 c6=0 635<512+32x2=576 c7=1 635<512+32x3=608 c8=1

编码器输出码组为11100011

量化输出为+608个量化单位;量化误差为635-608=27个量化单位。

2)除极性码外的7为非线性码组为1100011,相对应的11为均匀码为010*******。

【题6-6】采用13折线A律编码电路,设接受端收到的码组位“01010010”、最小量化界各为1个量化单位,并已知段内码改用折叠二进制码:

1)试问译码器输出为多少量化单位;

2)写出对应于该7位码(不包括极性码)的均匀量化11位码。

【答案6-6】

1)因为C 1=0,所以抽样值为负。

C2 C 3 C 4=101,可知抽样值位于第6段,该段的起始电平为256,量化间隔为16个量化单位。

因为C5C6C 7C8=0010,表示抽样值在第6段中的第4小段,其量化值为256+16x4=320个量化单位。

所以,译码器输出为-320个量化单位。

2)对应的均匀量化11位码位0010100000。

【题6-7】采用13折线A律编码,设最小的量化间隔为1个量化单位,已知抽样脉冲值为-95量化单位;

1)试求出此时编码器输出码组,并计算量化误差;

2)写出对应于该7位码(不包括极性码)的均匀量化11位码。

【答案6-7】

1)极性码:-95<0 c1=0

段落码:

95<128 c2=0

95>32c3=1

95<64 c4=1

由此可知抽样值位于第4段,第4段的起始电平位64,量化间隔位4个量化单位。

段内码:

95<64+4*8=96 c5=0 95>64+4*4=80 c6=1 95>64+4*6=88 c7=1 95>64+4*7=92 c8=1

编码器输出码组为00110111;量化输出为-92个量化单位,量化误差为95-92=3个量化单位。

2)对应均匀量化11位码:。

【题6-8】信号0()sin 2m t M f t π=进行简单增量调制,若台阶σ和抽样频率选择得既保证不过载,又保证不致因信号振幅太小而使增量调制器不能正常编码,试证明此时要求0s f f π>。 【答案6-8】

要保证增量调制不过载,则要求

()s MAX s

dm t K f dt t T σσ

σ<===?

因为

0000()

cos 2dm t M t f dt

ωωωπ== 所以

0()

s MAX

dm t M f dt ωσ=<

同时系统要求保证正常编码,要求

max ()2

m t σ

>

2

M σ>

从而可得

0022

s f M f σ

σωπ>>

所以

0s f f π>

【题6-9】对10路带宽君为300-3400Hz 的模拟信号进行PCM 时分复用传输。抽样速率为8000Hz ,抽样后进行8级量化,并编为自然二进制码,码元波形是宽度为τ的矩形脉冲,且占空比为1。试求传输此时分复用PCM 信号所需的带宽。

【答案6-9】

每路信号所占时隙宽度为

111

80001080

i T ms =

?= 抽样后进行8级量化编码,由2log N M =得3N =,说明进行3位编码。每比特宽度

13240

i

b T T ms =

=

由占空比为1,得出脉冲宽度

b T τ=

所以系统带宽为

1240B kHz τ

==。

【题6-10】单路话音信号的最高频率为4kHz,抽样速率为8kHz,以PCM 方式传输。设传输信号的波形为矩形脉冲,其宽度为τ,且占空比为1:

1)抽样后信号按8级量化,求PCM 基带信号第一零点频宽;

2)若抽样后信号按128级量化,PCM 二进制基带信号第一零点频宽又为多少?

【答案6-10】

1)抽样后信号按8级量化,由于N=log 2M=log 28=3,说明每个抽样值要编3位二进制码。此时每比特宽度为133b s

T T f =

=,因为占空比位1,所以脉冲宽度

b T τ=,所以PCM 系统的第一零点频宽为

1324s B f kHz τ

===

2)若抽样信号按128级量化,由于N=log 2M=log 2128=7,说明每个抽样值要编7位二进制码。此时每比特宽度为177b s

T T f =

=,因为占空比位1,所以脉冲宽度b T τ=,所以PCM 系统的第一零点频宽为

1756s B f kHz τ

===

【题6-11】若12路话音信号(每路信号的最高频率为4kHz )进行抽样和时分复用,将所有的脉冲用PCM 系统传输,重做上题。 【答案6-11】

1)每路信号所占带宽

111

1296

i s T ms f =

= 抽样后信号按8级量化,由于N=log 2M=log 28=3,说明每个抽样值要编3位二进制码。此时每比特宽度为3

i

b T T =,因为占空比位1,所以脉冲宽度b T τ=,所以PCM 系统的第一零点频宽为

1

288B kHz τ

=

=

2)由于N=log 2M=log 2128=7,说明每个抽样值要编7位二进制码。此时每比特宽度为7

i

b T T =,因为占空比为1,所以脉冲宽度b T τ=,所以PCM 系统的第一零点频宽为

1

672B kHz τ

=

=

【题6-12】已知话音信号的最高频率3400m f kHz =,今用PCM 系统传输,要求信号量化噪声比

30S dB N ≥。试求此PCM 系统所需的理论最小基带频宽。

【答案6-12】

要求系统量化信噪比

30S dB N ≥,也就是01000q S N =,根据信噪比公式

22m

B q f q

S N =,可以计算得出PCM 系统所需的频带宽度约17kHz 。

模拟信号和数字信号的对比

模拟信号是将源信号的一些特征未经编码直接通过载波的方式发出,是连续的数字信号则是通过数学方法对原有信号进行处理,编码成二进制信号后,再通过载波的方式发送编码后的数字流,是离散的特点:模拟信号:将26个字母对应26种不同的颜色要传递时用不同颜色的滤光片改变电筒射出的光的颜色这里就会表现出模拟信号不可靠(容错性差、易受干扰)的缺点人对颜色的识别可能会有偏差大气对不同颜色的光线吸收程度不同数字信号:将26个字母编码成二进制数字(可参考莫尔斯电码)通过电筒光线的闪烁来传递信号由于光线的闪烁很容易分辨且不容易受到干扰这个通信方案的可靠性就比模拟信号更强模拟信号指幅度的取值是连续的(幅值可由无限个数值表示)。时间上连续的模拟信号连续变化的图像(电视、传真)信号等,时间上离散的模拟信号是一种抽样信号,数字信号指幅度的取值是离散的,幅值表示被限制在有限个数值之内。二进制码就是一种数字信号。二进制码受噪声的影响小,易于有数字电路进行处理,所以得到了广泛的应用。1.模拟通信模拟通信的优点是直观且容易实现,但存在两个主要缺点。(1)保密性差模拟通信,尤其是微波通信和有线明线通信,很容易被窃听。只要收到模拟信号,就容易得到通信内容。(2)抗干扰能力弱电信号在沿线路的传输过程中会受到外界的和通信系统内部的各种噪声干扰,噪声和信号混合后难以分开,从而使得通信质量下降。线路越长,噪声的积累也就越多2.数字通信(1)数字化传输与交换的优越性①加强了通信的保密性。②提高了抗干扰能力。数字信号在传输过程中会混入杂音,可以利用电子电路构成的门限电压(称为阈值)去衡量输入的信号电压,只有达到某一电压幅度,电路才会有输出值,并自动生成一整齐的脉冲(称为整形或再生)。较小杂音电压到达时,由于它低于阈值而被过滤掉,不会引起电路动作。因此再生的信号与原信号完全相同,除非干扰信号大于原信号才会产生误码。为了防止误码,在电路中设置了检验错误和纠正错误的方法,即在出现误码时,可以利用后向信号使对方重发。因而数字传输适用于较远距离的传输,也能适用于性能较差的线路。③可构建综合数字通信网。采用时分交换后,传输和交换统一起来,可以形成一个综合数字通信网。(2)数字化通信的缺点①占用频带较宽。因为线路传输的是脉冲信号,传送一路数字化语音信息需占20?64kHz的带宽,而一个模拟话路只占用4kHz带宽,即一路PCM信号占了几个模拟话路。对某一话路而言,它的利用率降低了,或者详它对线路的要求提高了。②技术要求复杂,尤其是同步技术要求精度很高。接收方要能正确地理解发送方的意思,就必须正确地把每个码元区分开来,并且找到每个信息组的开始,这就需要收发双方严格实现同步,如果组成一个数字网的话,同步问题的解决将更加困难。③进行模/数转换时会带来量化误差。随着大规模集成电路的使用以及光纤等宽频带传输介质的普及,对信息的存储和传输,越来越多使用的是数字信号的方式,因此必须对模拟信号进行模/数转换,在转换中不可避免地会产生量化误差数字信号与模拟信号的区别不在于该信号使用哪个波段(C、KU)进行转发,而在于信号采用何种标准进行传输。如:亚卫2号C波段转发器上是我国省区卫星数字电视节目,它所采用的标准是MPEG-2-DVBS。数字信号与模拟信号的区别不在于该信号使用哪个波段(C、KU)进行转发,而在于信号采用何种标准进行传输。如:亚卫2号C波段转发器上是我国省区卫星数字电视节目,它所采用的标准是MPEG-2-DVBS。模拟信号与数字信号(1)模拟信号与数字信号不同的数据必须转换为相应的信号才能进行传输:模拟数据一般采用模拟信号(AnalogSignal),例如用一系列连续变化的电磁波(如无线电与电视广播中的电磁波),或电压信号(如电话传输中的音频电压信号)来表示;数字数据则采用数字信号(DigitalSignal),例如用一系列断续变化的电压脉冲(如我们可用恒定的正电压表示二进制数1,用恒定的负电压表示二进制数0),或光脉冲来表示。当模拟信号采用连续变化的电磁波来表示时,电磁波本身既是信号载体,同时作为传输介质;而当模拟信号采用连续变化的信号电压来表示时,它一般通过传统的模拟信号传输线路(例如电话网、有线电视网)来传输。当数字信号采用断

1、模拟信号到数字信号的转换

模拟信号到数字信号的转换(A/D转换) (胥永刚) 现在大部分传感器输出的信号都是模拟信号,主要包括电压信号和电流信号两种,当然也有直接输出数字信号的传感器。对于传感器输出的模拟信号,除了一些简单的仪表直接进行显示之外,大部分都需要转换成数字信号,以便在网络上进行传输,并保存在硬盘、CF卡等存储介质上,用于后续的分析和处理,如此,就需要用专门的器件将模拟信号转换成数字信号。对于部分技术人员来说,了解模数转换的原理,对深入了解测试仪器,开发测试系统,修正仪器的技术参数等有着很大的帮助。 对于一个完整的带反馈控制的监控系统来说,大体可以用图1这个框图来描述,从图中可以看出来,一般而言,模数转换(A/D)大多在数模转换(D/A)之前,但在很多教材上,往往是先讲数模转换(D/A),再讲模数转换(A/D),因为模数转换电路里要用到数模转换。当然这是从理论上来讲的,对于现在工程中实际应用的数模转换究竟基于什么原理,我也不是很清楚,但并不妨碍我们对模数转换的理解。. 因此,我们尝试着讲解数模转换原理,因为从对应关系上来说,这两者是一样的,只是转换电路不同而已。 图1 典型的监控系统(带反馈控制) 1、数模转换原理 图2是很多教材上给出的数模转换电路,要想讲清楚这个,需要用到电工电子方面的知识,这里我们就不详细展开了。(原谅我一次一次提到教材二字,因为在高校里工作,养成习惯了,^_^) 图2 数模转换电路

图1是一个4位的数模转换电路,意思是将一个4位的二进制数转换成对应的电压。4位的二进制数可以表示成3210d d d d ,翻译成十进制数,就是 32103210 2*+2*+2*+2*d d d d (1) 式(1)中的四位二进制数,每个位上要么是0,要么是1,不可能是其它数字。 因此,四位二进制数最大可表示十进制的15,最小可表示十进制的0。 若我们任意给一个四位的二进制数,可以按照如下公式进行数字和电压之间的换算。 321043210=(2+2+2+2)32F R o R U U d d d d R (2) 比如,我们假设这个四位的数模转换器参考电压=10R U V ,=3F R R ,若输入的四位二进制数是0000(对应的十进制数是0),则输出的电压为: 3210 410=(2*0+2*0+2*0+2*0)=032 F o R U V R 若输入的四位二进制数是1101(对应的十进制数是13),则输出的电压为: 321041010130=(2*1+2*1+2*0+2*1)=(8+4+0+1)=321616 F o R U V R 也就是说,要是输入的十进制数是0,则输出电压0V,若输入的十进制数是13,则输出的电压为13016 V ,如此类推,我们就可以得知,输入任意一个四位二进制数(对应的十进制数在0~15之间),就可以按照式(2)得到一个对应的电压值。如此,就实现了数字信号到模拟信号的转换。 当然,现在市场上很少能买到4位的数模转换器,大部分都是12位,16位,24位的,转换规律是一样的,参考下式: -1-20-1-20= (2+2++2)32F R n n n o n n R U U d d d R (3) 2 关于数模转换的直观理解 不理解上面那几个公式也没关系,只要明白下面这个对应关系也可以。 不管是数模转换(D/A)还是模数转换(A/D),就是根据某一个公式实现电压信号和对应的数字信号之间的转换。 比如,一个数模转换器允许输入的数字范围是0~4095,对应输出的电压为-5V~+5V。之所以这样假设,是因为大多数数模转换输入的是十进制数字,12位的二进制信号对应的十进制数字就是000000000000对应着十进制的0,111111111对应着十进制的4095,常见的数模转换和模数转换电压范围为-5V~+5V。 在这个假设下,如图4所示,若是数模转换,意味着输入数字为0时,输出电压是-5V,输入数字为4095时,输出电压为+5V,输入数字为2048时,输出电压为0V。

模拟信号的数字化传输系统设计

模拟信号的数字化传输系统设计

摘要 本设计结合PCM的抽样、量化、编码原理,利用MATLAB软件编程和绘图功能,完成了对脉冲编码调制(PCM)系统的建模与仿真分析。课题中主要分为三部分对脉冲编码调制(PCM)系统原理进行建模与仿真分析,分别为采样、量化和编码原理的建模仿真。通过对脉冲编码调制(PCM)系统原理的仿真分析,设计者对PCM原理及性能有了更深刻的认识,并进一步掌握MATLAB软件的使用。 第一章绪论 数字通信系统由于具有许多优点而成为当今通信的发展方向。然而日常生活中大部分信号都是模拟信号。相对于模拟通信来说,数字通信有抗干扰能力强、保密性好、可以再生、没有噪声积累等优势。但是,现实生活中有很多模拟新源,模拟信源输出的信号是模拟信号,要将其在数字通信系统中进行传输,则必须经过相应的处理。研究模拟信号的数字化传输有着极其重要的意义。 在1937年,英国人里费(A.H.Reeves)提出了脉冲编码调制(PCM)方式。从此揭开了近代数字传输的序幕。PCM系统的优点是:抗干扰性强;失真小;传输特性稳定,远距离再生中继时噪声不累积,而且可以采用有效编码、纠错编码和保密编码来提高通信系统的有效性、可靠性和保密性。另外,由于PCM可以把各种消息(声音、图像、数据等等)都变换成数字信号进行传输,因此可以实现传输和交换一体化的综合通信方式,而且还可以实现数据传输与数据处理一体化的综合信息处理。故它能较好地适应信息化社会对通信的要求。PCM的缺点是传输带宽宽、系统较复杂。但是,随着数字技术的飞跃发展这些缺点也不重要。因此,PCM是一种极有发展前途的通信方式。 第二章MATLAB简介 2.1 MATLAB软件简介 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一

通信原理第六章(模拟信号的数字传输)习题及其答案

第六章(模拟信号的数字传输)习题及其答案 【题6-1】已知信号()m t 的最高频率为m f ,由矩形脉冲()m t 进行瞬时抽样,矩形脉冲的宽度为2τ,幅度为1,试确定已抽样信号及其频谱表示式。 【答案6-1】 矩形脉冲形成网络的传输函数 ()( )( ) 2 2Q A Sa Sa ωτ ωτ ωττ== 理想冲激抽样后的信号频谱为 1 ()(2) =2 s m m m n s M M n f T ωωω ωπ∞ =-∞ = -∑ 瞬时抽样信号频谱为 ()()()( )(2) 2 H s m n s M M Q Sa M n T τ ωτ ωωωωω∞ =-∞ == -∑ ()H M ω中包括调制信号频谱与原始信号频谱()M ω不同,这是因为()Q ω的加权。 瞬时抽样信号时域表达式为 ()()()() H s n m t m t t nT q t δ∞ =-∞ = -*∑ 【题6-2】设输入抽样器的信号为门函数()G t τ,宽度200ms τ=,若忽略其频谱的第10个零点以外的频率分量,试求最小抽样速率。 【答案6-2】 门函数()G t τ的宽度200ms τ=,其第一个零点频率1150f Hz τ==,其余零 点之间间隔都是1 τ,所以第10个零点频率为110500m f f Hz ==。忽略第10个零点以外的频率分量,门函数的最高频率是500Hz 。由抽样定理,可知最小抽样速率21000s m f f Hz ==。

【题6-3】设信号()9cos m t A t ω=+,其中10A V =。若()m t 被均匀量化为40个电平,试确定所需的二进制码组的位数N 和量化间隔v ?。 【答案6-3】 ()m t 需要被量化为40个电平,即40M =,表示40个电平需要的二进制码 组位数 2[log ]16N M =+= 量化间隔 22100.540A v V M ??= == 【题6-4】已知模拟信号抽样的概率密度()f x 如下图所示。若按四电平进行均匀量化,试计算信号量化噪声功率比。 【答案6-4】 根据()f x 图形可知 10<1()1 -10 01x x f x x x x -≤?? =+≤≤??≥? x 动态范围为:1(1)2v =--= 量化级间隔为: 2 0.54v v M ?= == 量化区间端点和量化输出为:01m =-,10.5m =-,20m =,30.5m =,41m =; 10.75q =-,20.25q =-,30.25q =,40.75q =。 量化信号功率为:

模拟信号与数字信号之间的转换

模拟数据(Analog Data)是由传感器采集得到的连续变化的值,例如温度、压力,以及目前在电话、无线电和电视广播中的声音和图像。数字数据(Digital Data)则是模拟数据经量化后得到的离散的值,例如在计算机中用二进制代码表示的字符、图形、音频与视频数据。目前,ASCII美国信息交换标准码(American Standard Code for Information Interchange)已为ISO国际标准化组织和CCITT国际电报电话咨询委员会所采纳,成为国际通用的信息交换标准代码,使用7位二进制数来表示一个英文字母、数字、标点或控制符号;图形、音频与视频数据则可分别采用多种编码格式。 模拟信号与数字信号 (1)模拟信号与数字信号 不同的数据必须转换为相应的信号才能进行传输:模拟数据一般采用模拟信号(Analog Signal),例如用一系列连续变化的电磁波(如无线电与电视广播中的电磁波),或电压信号(如电话传输中的音频电压信号)来表示;数字数据则采用数字信号(Digital Signal),例如用一系列断续变化的电压脉冲(如我们可用恒定的正电压表示二进制数1,用恒定的负电压表示二进制数0),或光脉冲来表示。当模拟信号采用连续变化的电磁波来表示时,电磁波本身既是信号载体,同时作为传输介质;而当模拟信号采用连续变化的信号电压来表示时,它一般通过传统的模拟信号传输线路(例如电话网、有线电视网)来传输。当数字信号采用断续变化的电压或光脉冲来表示时,一般则需要用双绞线、电缆或光纤介质将通信双方连接起来,才能将信号从一个节点传到另一个节点。 (2)模拟信号与数字信号之间的相互转换 模拟信号和数字信号之间可以相互转换:模拟信号一般通过PCM脉码调制(Pulse Code Modulation)方法量化为数字信号,即让模拟信号的不同幅度分别对应不同的二进制值,例如采用8位编码可将模拟信号量化为2^8=256个量级,实用中常采取24位或30位编码;数字信号一般通过对载波进行移相(Phase Shift)的方法转换为模拟信号。计算机、计算机局域网与城域网中均使用二进制数字信号,目前在计算机广域网中实际传送的则既有二进制数字信号,也有由数字信号转换而得的模拟信号。但是更具应用发展前景的是数字信号。

八位模拟信号转换成数字信号

八位模拟信号转换成数字信号的实验设计报告 一、实验目的 1、了解A/D转换的基本知识及ADC0804的工作原理。 2、掌握基本的编程方法。 3、熟练掌握protel画电路原理图及PCB板的方法。 4、掌握运用keil软件编写单片机C语言。 二、基本原理 1、所谓A/D转换此就是模拟/数字转换器(ADC),是将输入的模拟信号转换 成数字信号。信号输入端可以使传感器或转换器的输出,而ADC输出的数字信号可以提供给微处理器,以便更广泛地应用。 2、AT89S52的基本介绍: AT89S52是一种低功耗、高性能CMOS8位微控制器,具有8K 在系统可 编程Flash 存储器,与工业80C51 产品指令和引脚完全兼容,此实验中 采用AT89S52芯片。 3、ADC0804的主要技术指标: (1) 高阻抗状态输出(2) 分辨率:8 位(0~255) (3) 存取/转换时间:135 ms/100 ms (4) 模拟输入电压范围:0V~5V (5) 参考电压:2.5V (6) 工作电压:5V 3、ADC0804电压输入与数字输出关系

三、电路原理图

四、原理图接线分析 1、ADC0804芯片主要端口接线原理: (1) (CS ):片选端。与RD、WR 接脚的输入电压高低一起判断读取或写入 与否,此实验直接接地让其处于选通状态。 (2) ( RD ):当CS 、RD 皆为低位准(low) 时,ADC0804 会将转换后的数字 讯号经由DB7 ~ DB0 输出至其它处理单元。 (3) (WR ):启动转换的控制讯号。当CS 、WR 皆为低位准(low) 时,ADC0804 做清除的动作,系统重置。当WR 由0→1且CS =0 时,ADC0804会开始转换信号,此时INTR 设定为高位准(high)。 (4) (CLK IN、CLKR):频率输入/输出。频率输入可连接处理单元的讯号频率 范围为100 kHz 至800 kHz。而频率输出频率最大值无法大于640KHz,一般可选用外部或内部来提供频率。在CLK R 及CLK IN 加上电阻及电容,构成RC振荡电路,则可产生ADC 工作所需的时序,其频率约为:f=1/1.1RC ≈640KHz, (5) ( INTR ):中断请求。转换期间为高位准(high),等到转换完毕时INTR 会 变为低位准(low)告知其它的处理单元已转换完成,可读取数字数据,此实验不用中断控制,接去MCU其中某个引脚。 (6) (VIN(+)、VIN(-)):差动模拟讯号的输入端。输入电压VIN=VIN(+) -VIN(-), 此图使用单端输入,而将VIN(-)接地,VIN(+)由电位器R1控制其电压从0~5V 变化,产生了模拟量。 (7) (A GND):模拟电压的接地端。 (8) (VREF/2):滑动变阻器R2和R3利用分压原理提供ADC芯片的基准电压。 2、AT89S52芯片主要端口接线原理: (1) XTAL2、XTAL1:晶振电路中电容C2、C3选取30pF。 (2) REST:复位电路中电容C4隔直作用,Urest=R6/(R5+R6),因为高电平有 效,故R5取小阻值1K, R6取小阻值10K. (3) P0:内部无上拉电阻,故接上1K的上拉排阻。 (3)P1:流水灯采用共阳极接法。 五、控制原理及实验内容 控制原理 根据ADC0804芯片主要端口接线原理部分的介绍,工作控制过程可简单描述如下:调节电位器R4产生连续变化的电压值,ADC0804启动转换,产生与之对应的信号送到单片机中,其高低电平从而控制D1~D8发光二级管的亮灭,这就实现了模拟信号(连续的电压值)到数字信号(高低电平1、0)的转换。

模拟信号的数字传输.

第七章 模拟信号的数字传输 数字通信系统中信道中传输的是数字信号。但自然界中,有些信源是以模拟形式出现的,如话音、图像等。因此在进行数字通信往往需先对信号(模拟的)数字化。模拟信号数字化属信源编码范围,当然信源编码还包括并/串转换、加密和数据压缩。本章重点讨论模拟信号数字化的基本方法,主要有PCM 、Δm 、ADPCM,还有其它VQ 、LPC 和CELP 。 模拟信号数字化的过程(得到数字信号)一般分三步:抽样、量化和编码。 其中“抽样”指抽取样值,抽取样点。抽样的多少,快慢对通信的性能指标有决定影响。抽样类似物理实验中实验曲线的描绘方法,测样点太少容易失真,;太多即费时又费力。在通信中抽样点太少容易失真;太多时数据量大,传输时间长,效率低。(带宽大,因Rb 大)。 如何抽样,由下面的抽样定理描述。 抽样定理是数字通信的基础。下面引出定理,给出必要的证明,再说明其具体应用。 7.1抽样定理 一 低通抽样定理 1、定理描述 频率受限于(0,H f )的时间连续信号m(t) ,若抽样频率s f 不小于2 H f ,则m(t)可被其抽样值s m (t) 完全确定。(写完后解释,或强调两点)。 2、证明: s m (t)包含m(t)的全部信息;从s m (t)可无失真恢复m(t)。 抽样过程如图:

T (t)m(t)(t)δ= s T 1 M ()M()()2ωωδωπ = * T s n (t)(t nT )δδ∞ =-∞= -∑ T s s n ()(n )δ ωωδωω∞ =-∞ =-∑ s s s n m (t)m(nT )(t nT )δ∞ =-∞ =-∑ s s n s 1 M ()M(n )T ωωω∞ =-∞ = -∑ s m(t)=m (t)h(t)* s M()M ()H()ωωω= H H 21,H(W)G ()0,ωωωω? ≤?==? ?? 其它 H H H a H H sin t h(t)S (t)t ωωωωππω= = s H f 2f ≥ 时,得到的M()ω不失真。 抽样频率s f 不同时,s M ()ω的变化如图:

实验二模拟信号数字化传输系统的建模与分析

实验二模拟信号数字化传输系统的建模与分析 一、实验目的 1. 进一步掌握Simulink 软件使用的基本方法; 2. 熟悉信号的压缩扩张; 3. 熟悉信号的量化; 4. 熟悉PCM 编码与解码。 二、实验仪器 带有MATLAB 和SIMULINK 开发平台的微机。 三、实验原理 3.1 信号的压缩和扩张 非均匀量化等价为对输入信号进行动态范围压缩后再进行均匀量 化。中国和欧洲的PCM 数字电话系统采用A 律压扩方式,美国和日本 则采用μ律方式。设归一化的话音输入信号为[ 1, 1] x∈? ,则 A 律压缩器的输出信号y 是: 其中,sgn(x) 为符号函数。A 律PCM 数字电话系统国际标准中, 参数A=87.6。 Simulink 通信库中提供了“A-Law Compressor”、“A-Law Expander”以及“Mu-Law Compressor”和“Mu-Law Expander”来实 现 A 律和? 律压缩扩张计算。 压缩系数为87.6 的A 律压缩扩张曲线可以用折线来近似。16 段折 线点坐标是 其中靠近原点的4 段折线的斜率相等,可视为一段,因此总折线 数为13 段,故称13 段折线近似。用Simulink 中的“Look-Up Table ” 查表模块可以实现对13 段折线近似的压缩扩张计算的建模,其中,压 缩模块的输入值向量设置为 [-1,-1/2,-1/4,-1/8,-1/16,-1/32,-1/64,-1/128,0,1/128,1/64,1/32,1/16,1/8,1 /4,1/2,1] 输出值向量设置为[-1:1/8:1]

扩张模块的设置与压缩模块相反。 3.2 PCM 编码与解码 PCM 是脉冲编码调制的简称,是现代数字电话系统的标准语音编码方式。A 律PCM 数字电话系统中规定:传输话音信号频段为300Hz到3400Hz ,采样率为8000 次/ 秒,对样值进行13 折线压缩后编码为8bit二进制数字序列。因此,PCM 编码输出的数码速率为64Kbps 。 PCM 编码输出的二进制序列中,每个样值用8 位二进制码表示, 其中最高比特位表示样值的正负极性,规定负值用“0 ”表示,正值用“1 ”表示。接下来3 位比特表示样值的绝对值所在的8 段折线的段落号,最后 4 位是样值处于段落内16 个均匀间隔上的间隔序号。在数学上,PCM 编码的低7 位相当于对样值的绝对值进行13 折线近似压缩后的7bit 均匀量化编码输出。 四、实验内容 1. 设计一PCM 编码器,要求该编码器能够对取值在[-1 ;1] 内的归一 化信号样值进行编码; 2. 设计一个对应于以上编码器的PCM 解码器; 3. 在以上两项内容的基础上,建立PCM 串行传输系统,并在传输信 道中加入指定错误概率的随机误码。 五、实验过程 1、PCM编码器建模与仿真 框图 参数设置:saturation限幅器:上限值为1,下限值为-1. Relay:

实验五+模拟信号的数字传输仿真

实验五模拟信号的数字传输仿真 一、实验目的 1、掌握PCM的编码原理。 2、掌握PCM编码信号的压缩与扩张的实现方式 二、实验内容 1、设计一个PCM调制系统的仿真模型 2、采用信号的压缩与扩张方式来提高信号的信噪比 三、基本原理 在现代通信系统中,以PCM(脉冲编码调制)为代表的编码调制技术被广泛地应用于模拟信号和数字传输中,所谓脉冲编码调制,就是将模拟信号的抽样量化值变换成代码,其编码方式如下图所示: PCM编码经过抽样、量化、编码三个步骤将连续变化的模拟信号转换为数字编码。为了便于用数字电路实现,其量化电平数一般为2的整数次幂,这样可以将模拟信号量化为二进制编码形式。其量化方式可分为两种: 均匀量化编码: 常用二进制编码,主要有自然二进码和折叠二进码两种。 非均匀量化编码: 常用13折线编码,它用8位折叠二进码来表示输入信号的抽样量化值,第一位表示量化值的极性,第二至第四位(段落码)的8种可能状态分别代表8个段落的起始电平,其它4位码(段内码)的16种状态用来分别代表每一段落的16个均匀划分的量化级。 通常情况下,我们采用信号压缩与扩张技术来实现非均匀量化,就是在保持信号固有的动态范围的前提下,在量化前将小信号放大,而将大信号进行压缩。采用信号压缩后,用8位编码就可以表示均匀量化11位编码是才能表示的动态范围,这样能有效地提高校信号编码时的信噪比。 四、实验步骤 在SystemVue系统仿真软件中,系统提供了A律和μ律两种标准的压缩气和扩张器,用户可以根据需要选取其中一种进行仿真实验。

1、设置一个均值为0,标准差为0.5的具有高斯分布的随机信号作为仿真用的模拟信号源。 2、在信号源的后方放置一个巴特沃思低通滤波器,设置其截止频率为10Hz,滤除高频分量。 3、在滤波器右侧放置一个A律13折线的压缩器(在通信库的Processors标签下),对信号进行压缩,并设定最大输入为1v。 4、放置一个模数转换器(在逻辑库下的Mix Signal中),对压缩的模拟信号进行抽样量化,并编码为数字信号,根据PCM的要求,设定编码位数为8位,输出真假值为1和0,阈值为0.5,最大最小输入为正负1.28v;并放置一个100Hz 的采样时钟信号对模拟信号进行抽样。由此可得出8位编码的PCM信号。 5、放置一个数模转换器,将编码好的PCM信号重新还原为模拟信号。数模转换器的参数设置与模数转换器基本相同 6、将模数转换器的8个数据位与数模转换器相对应的8个数据位相连,将数字信号送入数模转换器。 7、放置一个扩张器,接收从数模转换器产生的经过压缩的模拟信号,并对其进行扩张,还原为原始信号,参数的设置与压缩器基本相同。最终的仿真系统如下图所示: 五、实验报告要求 画出仿真系统中各个接收器的波形

模拟信号的数字传输

135 第七章 模拟信号的数字传输 7.1 引 言 前几章已讨论了模拟信号在模拟通信系统中的传输和数字信号在数字通信系统中的传输。 本章将要讨论的是模拟信号经过数字化以后在数字通信系统中的传输,简称模拟信号的数字传输。 数字传输随着微电子技术和计算机技术的发展,其优越性日益明显,优点是抗干扰强、失真小、传输特性稳定、远距离中继噪声不积累、还可以有效编码、译码和保密编码来提高通信系统的有效性,可靠性和保密性。另外,还可以存储,时间标度变换,复杂计算处理等。 模拟信号用得多的是语音信号,把语音信号数字化后,在数字通信系统中传输,称为数字电话通信系统。 模拟信号的数字传输的方框图见下图: 图中,)(t m 、∧)(t m :模拟随机信号,{}k s 、{}∧ k S :数字随机序列。 模拟信号的数字传输分三个步骤进行: ① A/D 把模拟信号变成数字信号 ② 数字信号传输 ③ D/A 把数字信号还原成模拟信号 第二步骤在第5章,第6章已经论述。因此,本章仅讨论第一和第三步骤。 模拟信号数字输入的关键是模拟信号和数字信号的互相转换。 A/D 转换步骤示意如下图: A/D 转换 D/A 转换

136 本章主要内容: 1、抽样(介绍模拟信号数字化的理论基础之一:抽样定理) 2、量化(介绍模拟信号的量化) 3、编码和译码 4、PCM (脉冲编码调制) (模拟信号抽样、量化、编译码的一种常用方式)系统 5、m (增量调制)系统(模拟信号数字化的另一种常用方式) 6、DPCM 系统 7、数字电话通信系统 (简要介绍模拟电话信号的数字传输)(一个例子) 7.2抽样定理 将模拟信息源信号转变成数字信号叫做A/D 转换,A/D 转换中有三个基本过程: 抽样、量化、编码。 抽样是A/D 转换的第一步。 A/D 转换时,抽样间隔越宽,量化越粗,信号数据处理量少,但精度不高,甚至可能失掉信号最重要的特征。 抽样间隔如何确定?(抽样速率如何确定?) 举正弦波信号抽样的例子: t 抽样 量化 1 t 024 t 100 编码 A/D 转换步骤示意图

模拟信号数字化传输系统的设计与仿真分析

唐山学院 通信原理课程设计 题目模拟信号数字化传输系统的设计与仿真分析系 (部) 班级 姓名 学号 指导教师 2017 年 6 月 26 日至2017 年7月 8 日共 2 周

通信原理课程设计任务书

课程设计成绩评定表

目录 前言................................................................. 1模拟信号抽样过程原理............................................... 抽样原理......................................................... 低通型连续信号的抽样.......................................... 带通信号的抽样定理........................................... 量化原理........................................................ 均匀量化...................................................... 非均匀量化................................................... A律压缩律................................................... 13折线...................................................... 脉冲编码调制(PCM).............................................. 差分脉冲编码调制(DPCM)........................................ 2 Matlab/Simulink的简介............................................. 3 基于Simulink的模拟信号数字化传输的设计与仿真分析.................. 抽样过程的设计与仿真分析......................................... 量化过程的设计与仿真分析......................................... PCM编译码系统设计与仿真分析..................................... PCM编码器设计............................................... PCM解码器设计............................................... 有干扰信号的PCM编码与解码.................................... DPCM编译码系统的设计与仿真分析.................................. 4 总结............................................................... 5参考文献...........................................................

数字信号转换为模拟信号实验

一、实验目的 熟悉数模转换的基本原理,掌握D/A的使用方法。 二、实验内容 利用D/A转换器产生锯齿波和三角波。 三、实验原理图 本实验用A/D、D/A电路 四、实验步骤 1、实验接线 CS0 ?CS0832 示波器?DOUT DS跳线:1 ?2 2、用实验箱左上角的“VERF.ADJ”电位器调节0832的8脚上的参考电压至5V。 3、调试程序并全速运行,产生不同波形。 4、用示波器观察波形。 五、实验提示 利用电位器“ZERO.ADJ”可以调零,“RANGE.ADJ”电位器调整满偏值。 DAC0832在本实验中,工作在双缓冲接口方式下。 当地址线A1=0时可锁存输入数据;当A1=1时,可起动转换输出。所以要进行D/A转换需分二步进行,方法如下: MOV DX,ADDRESS ;ADDRESS片选信号偶地址 MOV AL,DATA OUT DX,AL ADD DX ,2 OUT DX,AL 六、程序框图 程序一产生锯齿波程序二产生三角波 (实验程序名:dac-1.asm) (实验程序名:dac-2.asm)

七、程序源代码清单 dac-1.asm assume cs:code code segment public org 100h start: mov dx,04a0h up1: mov bx,0 up2: mov ax,bx out dx,ax ;锁存数据 mov dx,04a2h out dx,ax ;输出使能 mov dx,04a0h inc bx ;数据加一 jmp up2 code ends end start dac-2.asm assume cs:code code segment public org 100h start: mov dx,04a0h mov bx,0 up: mov ax,bx out dx,ax ;锁存数据 mov dx,04a2h out dx,ax ;输出使能 inc bx

基于matlab的模拟信号数字化仿真

基于matlab的模拟信号数字化仿真 作者:李亚琼 学号:1305160425

摘要 本文研究的主要内容模拟信号数字化Matlab软件仿真。若信源输出的是模拟信号,如电话传送的话音信号,模拟摄像机输出的图像信号等,若使其在数字信道中传输,必须在发送端将模拟信号转换成数字信号,即进行A/D变换,在接收端则要进行D/A变换。模拟信号数字化由抽样、量化、编码三部分组成。由于数字信号的传送具有稳定性好,可靠性高,方便传送和传送等诸多优点,使得被广泛应用到各种技术中。不仅如此,Matlab仿真软件是常用的工具之一,可用于通信系统的设计和仿真。在科研教学方面发挥着重要的作用。Matlab有诸多优点,编程简单,操作容易、处理数据迅速等。 本文主要阐述的是模拟信号数字化的理论基础和实现方法。利用Matlab提供的可视化工具建立了数字化系统的仿真模型,详细讲述了抽样、量化、编码的设计,并指出了在仿真建模中要注意的问题。在给定的仿真条件下,运行了仿真程序,得到了预期的仿真结果。 关键词:Matlab、模拟信号数字化、仿真 1.1基本原理 模拟信号的数字传输是指把模拟信号先变换为数字信号后,再进行传输。由于与模拟传输相比,数字传输有着众多优点,因而此技术越来越受到重视。此变化成为A/D变换。A/D变换是把模拟基带信号变换喂数字基带信号,尽管后者的带宽会比前者大得很多,但本质上仍属于基带信号。这种传输可直接采用基带传输,或经过熟悉调制后再做频带传输。A/D变化包括抽样、量化、编码三个步骤,如图。 图1.模拟信号数字化 1.1.1抽样定理 抽样就是把模拟信号在时间上的连续变成离散的抽样值。而能不能用这一系列抽样值重新恢复原信号,就需要抽样定理来解决了。所以说,如果我们要传输模拟信号,可以通过传输抽样定理的抽样值来实现而不是非要传输原本的模拟信号。模拟信号数字化的理论基础就是抽样定理,抽样定理的作用不言而喻。 抽样定理:设时间连续信号) f,其最高截止频率为m f,如果用时间间 (t

模拟信号到数字信号转换器

K部分模拟信号到数字信号转换器 K.1 摘要 本章介绍了模拟信号到数字信号转换器电路板并包括介绍一个元件分布的丝网印层面。 其电路图可在总电路图集中找到;而元件表可在第七章中找到。模拟信号到数字信号的转换称为“A/D”或A到D转换。A/D转换器位于中心控制组合中。 ———————————————————————————————————————K.2 电路工作基本原理 从模拟输入板来的模拟音频信号进入A/D转换板,在这里信号被转换为12位数字音频信号,此功能由A/D转换集成块完成。其转换的速率为1.2到2.5微秒,主要取决于发射机载波频率。A/D转换过程是与发射载波RF信号同步的,因此PA模块的开关过程是在发射载波RF驱动器过零处进行的。来自A/D转换器的数字音频信号存贮在锁存器中。 锁存器的输出信号送至调制编码板,在编码板上信号被用来打开PA模块。锁存器输出也送入音频信号重现电路和在A/D板上的大台阶同步电路。重现的音频信号送入在控制器板(A38)上的包络误差电路。大台阶同步信号送“Dither”振荡器,其位于模拟信号输入电路板。 下面的说明请参阅模拟信号到数字信号转换电路板的电路图集(图839-7855-177)。 参阅第五章使用维护手册,作为调整和印制板维护操作过程参考。 参阅第四章全系统原理说明,来了解发射机音频和数字音频部分的总体说明和有关框图。 ———————————————————————————————————————K.3 电路说明 K.3.1 转换PA采样为A/D编码脉冲(T1,U29,Q9) 有两路RF采样信号输入到A/D转换器板。一路是RF分配器(A15)来的在J3-1和J3-2上的分配器采样频率输入信号。另一路是从输出合成器来的输出采样频率信号在J8-1和J8-2。作为这个采样的输入网络是一个R-C-L网络,它在525kHz处提供一个固定90°相移。跳转插头P11A-P11B允许不连接这个采样。 PA模块必须在RF驱动信号过零点时进行开关控制过程。在调制信号期间这个时间定位需要稍有移动尤其是对发射机载波频率的低频端,因此射频RF驱动信号和被90°相移的RF 输出其叠加在一起。两个信号矢量在R62迭加。其结果在有调制时输出有约+/-15°的相移值(在等宽的低端)。 射频RF输入送入宽带环形RF变压器T1的初级绕组。电阻R18和L-C网络及有关器件由针式双列直插开关S1部分选择提供可调整的,频率指定的相移(参阅在第五章中调谐和频率改变操作过程,及有关设置S1的使用维护信息)。 斯密特触发器U12C转换射频RF信号为TTL电平脉冲。二极管CR14和CR15使斯密特触发器的输入信号限制在+0.7和+4.3V之间。 K.3.2 频率分配器(U29,Q9) 在TP6的频率输出是RF输入频率(从J3的1脚),如果跳转插头插入在JP10的5脚和6脚之间。在TP6输出的是RF输入频率的一半如果跳转插头插在1脚和2脚之间。跳转插头插入3脚和4脚之间在TP6输出的是RF输入频率的三分之一。 跳转插头的位置取决于发射机工作频率。请参阅有关A/D转换器的电路图注释或频率

第八章 模拟信号的数字化传输

第八章 模拟信号的数字化传输 8-1 试构成先验等概的二进制确知ASK (OOK )信号的最佳接收机系统。若非零信号的码元能量为b E 时,试求该系统的抗高斯白噪声的性能。 解:ASK (OOK )信号的最佳接收机系统如图8-1所示 图8-1 因为根据最佳接收机性能,有 2n E A b = 所以该系统的误码率为 04erfc 2 12erfc 21n E A P b e === 8-2 设二进制FSK 信号为 s T t t A t s ≤≤=0 ,sin )(11? s T t t A t s ≤≤=0 ,sin )(22? 且)()(,2,421121t s t s T s 和??π ?== 等可能出现。 (1)构成相关检测器的最佳接收机结构。 (2)画出各点可能的工作波形。 (3)若接收机输入高斯噪声功率谱密度为 )W/Hz (2 n ,试求系统的误码率。 解:(1)最佳接收机结构如图8-2)(a 所示。 (2)各点波形如图8-2)(b 所示。 (3)由题意知信号是等能量,即 2 2 021s b T A E E E === 该系统的误码率为 2 002erfc 212rfc 21n T A n E e P s b e ==

图8-2 8-3 在功率谱密度为2/0n 的高斯白噪声下,设计一个对图8-3)(a 所示)(t f 的匹配滤波器。 (1)如何确定最大输出信噪比的时刻? (2)求匹配滤波器的冲击响应和输出波形,并绘出图形。 (3)求最大输出信噪比的值。 图8-3 解:(1)最大输出信噪比出现时刻应在信号结束之后,即 T t ≥0 (2)匹配滤波器的冲击响应为 )()(0t t f t h -= 其波形如图8-3)(b 所示。 匹配滤波器的输出 )(*)()(t f t h t y = 其波形如图8-3)(c 所示。 (3)最大输出信噪比值为 20max 022n T A n E r == 8-4 在图8-4)(a 中,设系统输入)()(1t h t s 及、)(2t h 分别如图8-4)(b 所示,试绘图解出)()(21t h t h 及的输出波形,并说明)()(21t h t h 及是否是)(t s 的匹配滤波器。

第2章 模拟信号的数字化传输

通信系统可以分为模拟通信系统和数字通信系统两类,而且可以把模拟信号数字化后,用数字通信方式传输。为了在数字通信系统中传输模拟消息,发送端首先应将模拟消息的信号抽样,使其成为一系列离散的抽样值,然后再将抽样值量化为相应的量化值,并经编码变换成数字信号,用数字通信方式传输,在接收端则相应地将接收到的数字信号恢复成模拟消息。模拟信号的数字传输方框图如图7-1所示。 图7-1模拟信号的数字传输 基本概念: 抽样定理抽样量化脉冲编码调制 基本原理: 抽样定理 低通型连续信号的抽样定理 带通型连续信号的抽样定理 平顶抽样 模拟信号的量化 利用预先规定的有限个电平来表示模拟抽样值的过程称为量化。抽样是把一个时间连续、幅度连续信号变换成时间离散、幅度连续的信号。量化是 将时间离散、状态连续的抽样变换成时间离散、状态离散的信号。对模拟 抽样值的量化过程会产生误差,称为量化误差,通常用均方误差来度量。由 于这种误差的影响相当于干扰或噪声,故又称其为量化噪声。量化后的信号 与原信号近似程度的好坏,通常用信号量化噪声功率比来衡量,它被定义为

式中E为统计平均,为量化器输出的信号功率,为量化噪声功率。 均匀量化 均匀量化的特点 非均匀量化 非均匀量化是根据信号的不同区间来确定量化间隔的。对于信号取值小的区间,其量化间隔也小;反之,量化间隔就大。它与均匀量化相比,有两个主要的优点: ?当输入量化器的信号具有非均匀分布的概率密度时,非均匀量化器的输出端可以较高的平均信号量化噪声功率比; ?非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例。 因此,量化噪声对大、小信号的影响大致相同,即改善了小信号时 的量化信噪比。 非均匀量化的实现方法是将抽样值通过压缩器压缩后再进行均匀量化。广泛采用的两种对数压缩律是: ?压缩律:美国 ?压缩律:我国和欧洲 脉冲编码调制 脉冲编码调制原理 模拟信息源输出的模拟信号经抽样和量化后得到的输出电平序列可以利用进制PAM直接进行传输,也可以将每一种量化电平用编码方式传 输。所谓脉冲编码调制,就是将模拟信号的抽样量化值转换成二进制码组的过程。PCM通信系统的组成方框图如图7-2所示。输入的模拟信号经抽样、量化、编码后变换成数字信号,经信道传送到接收端的译码器,由译码器还原出抽样值,再经低通滤波器滤出模拟信号。其中,量化与编码的组合通常称为A/D变换器;而译码与低通滤波的组合称为D/A变换。

相关主题
文本预览
相关文档 最新文档