当前位置:文档之家› 第六章 新型半导体薄膜材料

第六章 新型半导体薄膜材料

第六章
新型半导体薄膜材料
本章主要介绍硅基非晶半导体薄膜材料的结 构特点、制备方法、光学和电学特性以及这 些材料的研究现状。同时还将介绍微晶Si薄 膜和多晶Si薄膜的结构特点、制备方法及其 应用。在应用方面,将重点介绍高效率、长 寿命、低价格、大面积非晶硅(a-Si:H)太 阳能电池的工作原理及发展现状。

概 述
? 新型半导体薄膜材料的研究与发展,主要 是以研究和发展非晶态半导体薄膜材料制 备与器件应用最为活跃,已成为材料学科 的一个重要组成部分 ? 随着非晶态半导体在科学和技术上的飞速 发展,它已在高新技术领域中得到广泛应 用,并正在形成一类新兴产业。

例如,用高效、大面积非晶硅(a-Si:H)薄 膜太阳电池制作的发电站已并网发电(它是 无任何污染的绿色电源);用a-Si薄膜晶体 管制成的大屏幕液晶显示器和平面显像电视 机已作为商品出售;非晶硅电致发光器件和 高记录速度大容量光盘等。也正在向实际应 用和商业化方向发展。 大量事实说明,研究非晶态半导体薄膜材料 的意义不仅在于技术上能够产生新材料、新 器件和新工艺,而且对于认识固体理论中的 许多基本问题也会产生深远的影响。

硅基非晶态半导体薄膜
“非晶”固体或“无定形”(Amorphous)固 体是一种不具有晶体结构的固体。通常“非晶” 或“无定形”是同义词。但是,严格说来,所 谓“非晶”就是指那些不结晶的物质。液体等 也包括在内。所谓“无定形”是指“玻璃态”的 物质。“玻璃”这一术语多半是指将熔化状态 的物质通过冷急法冻结成的固体。

非晶硅材料的一般特性
非晶硅(Amorphous Silicon或Non-crystalline silicon,简称a-Si)是近代发展起来的一种新型非 晶态半导体材料,非晶硅是当前非晶半导体材料和 器件的研究重点和核心。 同晶体硅相比,它的最基本特征是组成原子没有长 程有序性,只是在几个晶格常数范围内具有短程有 序。原子之间的键合十分类似晶体硅,形成一种共 价无规网络结构。

非晶硅材料的一般特性
另一特点是:在非晶硅半导体中可以实现连续的 物性控制。 当连续改变非晶硅中掺杂元素和掺杂量时,可 连续改变电导率、禁带宽度等,如用于太阳电池的掺 硼(B)的p型a-Si材料和掺磷的n型a-Si材料,它们 的电导率可由本征a-Si的约10-9 s/m提高到10-2~1 s/m。本征a-Si材料的带隙约1.7eV,通过掺碳可获 得Eg>2.0eV的宽带隙a-SiC材料,通过掺入不同量的 Ge可获得1.7~1.4eV的窄带隙a-SiGe材料。通常把 这些不同带隙的掺杂非晶硅材料称为非晶硅基合金。

非晶态半导体薄膜的分类
? 非晶半导体按其特性可分为两大类: ? 硅系化合物(C、Si、Ge及其合金) ? 硫系化合物(S、Se、Te及其合金)。 ? 目前研究得最多、应用最为广泛的是氢化 非晶硅膜(a-Si:H)及硅基合金膜(如aSiC:H、a-SiN:H、a-SiGe:H等)。

非晶态半导体薄膜结构特点
①在结构上,非晶半导体组成原子没有长程有序性 ②对于大多数非晶半导体,其组成原子都是由共价 键结合在一起的,形成一种连续共价键无规网络 ③非晶半导体可以部分实现连续的物性控制。 ④非晶半导体在热力学上处于亚稳状态,在一定条 件下可以转变为晶态。 ⑤非晶硅及其合金膜的结构、电学和光学性质,依 赖于它们的制备条件和制备方法。 ⑥非晶半导体的物理性能是各向同性。

非晶硅薄膜的制备
? 非晶硅薄膜制备的常用方法:辉光放电法(glow discharge method)、射频溅射法(rfsputtering)、化学气相沉积法(CVD)、电子束 蒸发法(EBE)、电解沉积法、激光沉积法、等离 子体化学传输沉积法(PCTD)和超急冷法等。目 前广泛采用的是辉光放电法。 ? 辉光放电法制备非晶硅基薄膜的装置如图所示。根 据辉光放电功率源频率的不同,辉光放电分为射频 (rf-13.56MHz)辉光放电、直流辉光放电、超高 频(VHF-70~150MHz)辉光放电等。

制备a-Si:H薄膜的辉光放电装置示意图

非晶硅薄膜的制备
? 把硅烷(SiH4)等原料气体导入真空反应室中, 用等离子体辉光放电加以分解,产生包含带电离 子、中心粒子、活性基团和电子等的等离子体, 它们在带有TCO膜的玻璃衬底表面发生化学反应 形成a-Si:H膜。故这种技术又被称为等离子体增 强化学气相沉积(PECVD)。 ? 目前,为了提高沉积速度采用:甚高频或超高频 法(VHF-CVD)、等离子体增强CVD法 (PECVD)、微波法(MW-CVD)、微波电子 回旋共振CVD法(MW-ECR-CVD法)。

a-Si薄膜材料的研究近况
? 要想获得稳定的高质量的a-Si薄膜器件,就 必须有高质量的a-Si薄膜。高质量a-Si薄膜 的标志,就是有最低的缺陷态密度(即载 流子的迁移率μ和τ寿命要大)和稳定的光 电导特性(即光照后性能不变)。

a-Si薄膜材料的研究近况
S-W效应和H在a-Si中的作用 大量实验结果表明,用一般方法制备的a-Si薄膜,在经过 长时间的强光照射后,它的光电导特性出现明显的衰退现 象,称为光诱导效应或Staebler-wronski(S-W)效应。由 于光诱导效应的存在,会使a-Si器件性能下降,稳定性变 差。 ? 针对这个问题,近年来各国科学家都在研究这种效应产生 的原因和如何消除或降低S-W效应的工艺措施。 ? 目前,在理论方面和制膜技术方面已获得了新的进展。普 遍认为强光照射会在a-Si中产生新的亚稳缺陷态,而且认 为这种缺陷态是同a-Si:H中H的存在有密切关系。

化学退火和分层多次制膜技术
为了获得高质量和光电性能稳定的a-Si薄膜,以减 少或消除S-W效应,经过近几年的努力,人们已摸 索到了一些新的制膜技术。 例如在等离子体化学气相沉积(PCVD)反应中, 提高衬底温度(直到450℃),使a-Si中含有少量的 H;在制备太阳电池中将P-a-SiC:H膜改为a-Si/aSiC,或改为a-Si/a-C:H多层膜,或改为a-SiO:H 膜,也可将a-Si的p-n结改为a-SiO:H的p-n结;将射 频功率源改为超高频功率源、微波功率源或微波电 子回旋共振(MW-ECR)功率源。

化学退火和分层多次制膜技术
在这些技术中,最引人注目的是日本东京工业大学清水勇 (I.Shimizu)教授提出了一种新的制膜技术,称为化学退火 和分层多次(layer by layer)制膜技术,已获得了光电性能 稳定的高质量a-Si和poly-Si薄膜并受到各国学者的重视 这种化学退火和分层多次制膜技术的基本思想和工艺过程: 使用的气源分别是SiH4、SiF4和SiH2Cl2,微波源加在ECR 装置上。他们认为: ①由于H的特殊化学性能,使H和Cl之间(对于用SiH2Cl2) 或H和F之间(用SiF4)会发生强烈的化学反应,从而有效地 增强了生长膜表面上的结构驰豫(重构),使表面能生成一 层硬的Si-网络(而不是Si-Si键);

化学退火和分层多次制膜技术
②在制膜的过程中,不断地用原子H进行处 理,即在沉积了一薄层a-Si膜后,立即通入 H2并穿过ECR系统,经过处理后的H进行处 理,然后再沉积下一层a-Si膜,再进行H处 理……。 此方法中的①强调了H的化学反应使生长表 面重构(称化学退火);此法中的②强调了 原子H对生长面的处理要多次和反复进行。

制膜设备和缺陷密度的测量的进展
在制膜方面的进展主要有: ①反应室已由单室改为多室分离连续操作,对a-SiC:H,掺磷、 掺硼、未掺杂的i-a-Si:H、a-SiGe:H等薄层均分别单独进行, 以免相互污染。另外,这些工艺是连续进行的,全部在密闭高 真空体条件下操作。 ②气源是高纯的。 ③制膜系统有很高的真空度,一般真空度达10-5~10-6Pa。另 外采用无油系统,不用油扩散泵。 ④在制备大面积太阳电池和薄膜晶体管中,一般采用了半导体 微电子技术中的集成技术,用激光刻蚀大大提高了成品率

非晶半导体薄膜材料在光电器件方面 的独特性能
①非晶硅及硅基合金材料,对太阳光有很高的吸收 系数,并产生最佳的光电导值。例如,a-Si:H的光 吸收系数要比单晶硅(c-Si)高50~100倍,它的 光电导率与暗电导率之比可达106以上。 ②很容易实现高浓度可控掺杂,并能获得优良的pn结,这是非晶硅材料在器件方面的最重要和最基 本的特性。 ③可以在很宽的组分范围内控制它的能隙变化,如 a-Si及其合金的能隙Eg可以从1.0eV变到3.6eV(对 应于a-SiGe:H→a-Si:H→a-SiC:H)。

非晶半导体薄膜材料在光电器件方面 的独特性能
④很容易形成异质结,并有十分低的界面态。 ⑤沉积温度低,100℃

a-Si: H太阳能电池
1)太阳能光伏知识 光生伏特效应简称为光伏效应,指光照使不均匀半导 体或半导体与金属组合的不同部位之间产生电位差的 现象。 2)太阳能电池的工作原理 所谓太阳能电池是一种对光有响应并能将光能转换成 电能的器件。太阳能电池是指由光电效应或光化学效 应直接把光能转换成电能的装置。太阳光照在半导体 P-N结上,形成新的空穴-电子对,在P-N结电场的 作用下,空穴由N区流向P区,电子由P区流向N区, 接通电路后就形成电流。这就是光电效应太阳能电池 的工作原理。

半导体薄膜材料分析

半導體薄膜材料分析 李文鴻 化學工程系 黎明技術學院 摘要 使用電子迴旋共振電漿化學氣相沉積法(electron cyclotron resonance plasma chemical vapor deposition, ECRCVD)以CH4/SiH4/Ar混合氣體於低溫下成長碳化矽薄膜為例,藉由穿透式電子顯微鏡(TEM)、X光繞射儀(XRD)、掃描式電子顯微鏡(SEM)、原子力顯微鏡(AFM)、傅立葉轉換紅外線光譜儀(FTIR)、X射線光電子能譜儀(XPS; ESCA)、歐傑電子能譜儀(AES)、拉塞福背向散射儀(RBS)、低能量電子繞射(LEED)、反射式高能量電子繞射(RHEED)、拉曼光譜儀(Raman)來研究碳化矽薄膜的微結構、表面型態及化學組成與沉積參數之間的關係,藉由二次離子質譜儀(SIMS)來研究沉積膜的雜質濃度分佈,利用光子激發光(PL)來量測發光波長範圍。 關鍵字:材料分析、電子迴旋共振電漿化學氣相沉積法、碳化矽薄膜 一、前言光電半導體產業的發展非常迅速,其中

積體電路製程技術的發展朝向尺寸微小化,目前已邁入0.13μm以下製程及邁向奈米的範疇,並朝多層薄膜的趨勢。然而新材料和製程的開發及其分析更是必須掌握的。本文將以跨世紀的接班材料-碳化矽(silicon carbide)為例,介紹材料之薄膜成長及其分析。 碳化矽為具有許多優異特性的電子材料,如寬能隙、高電子遷移率、高飽和飄移速度、高崩潰電壓、高操作溫度、高熱傳導度、化學惰性、高融點及高硬度【1】,並具耐熱震(thermal shock resistance)、抗高溫氧化、比矽低的介電常數等優點。由Johnson 之優值指標(評估元件在高功率及高頻下運作的指標)碳化矽(β-SiC)為矽之1137.8倍,及Keyes 之優值指標(評估元件在高速下運作的指標) 碳化矽(β-SiC)為矽之5.8倍【2】,故碳化矽元件能在高功率、高頻及高速下操作的特性,在光電元件的製造上,具極大之應用價值,且可用於微機電系統(microelectromechanical system;MEMS)元件之薄膜【3】、封裝材料及濾材之分離膜等【4】。在商業應用發展方面,Cree Research、日本三洋公司及信越半導體等的碳化矽藍光LED已商品化,Motorola將碳化矽應用於RF 及微波的高頻高功率元件,General Electric 應用於高功率及高溫元件之感測器,Westinghouse 應用於高頻MESFET元件等。可見碳化矽具多用途且具發展潛力,因此被諭為跨世紀的接班材料。 由於材料之製程會影響材料結構及性質進而影響其應用,因此本文將介紹碳化矽材

蓬勃发展中的磁性薄膜材料模板

蓬勃发展中的磁性薄膜材料 1前言 随着电子系统向高集成度、高复杂性、轻小、高性能、多功能与高频方向发展,要求在更小的基片上集成更多的元器件。研制小型化、薄膜化的元器件,以减小系统的整体体积和重量,无疑是适应这一要求的一条实际可行的途径。因此,对在电子设备中占据较大体积和重量的磁性器件,如电感器、变压器的小型化、高频化也相应提出了很高的要求。在这种背景下,国际上对于采用磁性薄膜做成的微磁器件的研究以及与半导体器件成为一体的磁性集成电路(IC)的研究十分活跃。这些器件主要用于便携式信息通信设备,如移动电话等。在这些设备中,为保证其工作稳定性及经济性,电源部分的小型化和高效率化是很重要的。所以薄膜化的磁性器件最早是从各种电感器、滤波器、DC/DC变换器中的变压器等开始的。 以往用于磁性器件的NiFe合金、铁氧体等,不论是饱和磁通密Bs,还是磁导率μ的频率特性,远不能满足日益发展的新型电子设备的要求。例如为了防止滤波器、变压器的磁饱和,以及在信息存储中为使高密度记录用的高矫顽力介质充分磁化,要求材料的Bs在1.5T以上。另外,很多通信机用环形天线、电感器等,要求能在数百MHz到数GHz的频率范围工作。这些要求都是目前常用的磁性材料无法满足的。 磁性材料的薄膜化为满足上述要求提供了可能。如此,磁性材料的薄膜化是微磁器件的基础,也是将来实现磁性IC的前提之一。 2 磁性薄膜材料的基本特点与种类 2.1 常用薄膜材料的特点 众所周知,薄膜材料是典型的二维材料,具有许多与三维材料不同的特点。通过研究各种薄膜材料生成机理和加工方法,可以制备出有各种特殊功能的薄膜材料来,这也是薄膜功能材料近来成为研究的热点材料的原因。 由于尺寸小,薄膜材料中表面和界面所占的相对比例较大,与表面的有关性质极为突出,存在一系列与表面界面有关的物理效应: 1) 光干涉效应引起的选择性透射和反射; 2) 电子与表面碰撞发生非弹性散射,使电导率、霍耳系数、电流磁场效应等发生变化; 3) 因薄膜厚度比电子的平均自由程小得多,且与电子的德布罗意波长相近时,在膜的两个表面之间往返运动的电子就会发生干涉,与表面垂直运动相关的能量将取分立值,由此会对电子输运产生影响; 4) 在表面,原子周期性中断,产生的表面能级、表面态数目与表面原子数具有同一量级,对于半导体等载流子少的物质将产生较大影响; 5) 表面磁性原子的相邻原子数减少,引起表面原子磁矩增大; 6) 薄膜材料具有各向异性等等。 由于薄膜材料性能受制备过程的影响,在制备过程中多数处于非平衡状态,因而可以在很大范围内改变薄膜材料的成分、结构,不受平衡状态时限制,所以人们可以制备出许多块体难以实现的材料以获得新的性能。这是薄膜材料的重要特点,也是薄膜材料引人注目的重要原因。无论采用化学法还是物理法都可以得到设计的薄膜,例如: 1) 可以在很大范围内将几种材料掺杂在一起得到均匀膜,而不必考虑是否会形成均匀相,这样就能较自由地改变薄膜的性能。 2) 可以在纳米自清洁玻璃的镀膜过程中任意改变膜的厚度和其中的组分,增加或减少玻璃的某些性能。

薄膜材料简介

薄膜材料简介 薄膜具有良好的韧性、防潮性和热封性能,使用非常广泛;PVDC薄膜适合包装食品,并能长时间保鲜;而水溶性PV A薄膜不必开封直接投入水中即可使用;PC薄膜无味、无毒,有类似玻璃纸的透明度和光泽,可在高温高压下蒸煮杀菌。本文将主要介绍几种塑料薄膜的性能及其使用。 从商品生产到销售,再到使用,包装件要经过储存、装卸、运输、货架陈列以及在消费者手中存放,这个过程中即可能遇到严寒、酷暑、干燥、潮湿等恶劣的自然气候条件,也要遭受振动、冲击和挤压等各种机械破坏,甚至还有微生物和虫类的侵害。要保证商品的质量,主要依靠包装材料来保护,所以包装材料非常重要。 塑料薄膜是最主要的软包装材料之一,塑料薄膜的种类繁多,特性各异,根据薄膜的不同特性,其用处也不同,下面介绍几种常见的塑料薄膜: 聚乙烯薄膜 PE薄膜使用大量最大的塑料包装薄膜,约占塑料薄膜总耗用量的40%以上。PE薄膜虽然在外观、强度等方面并不十分理想,但它具有良好的韧性、防潮性和热封性能,且加工成型方便,价格便宜,所以使用非常广泛。 1、低密度聚乙烯薄膜。LDPE薄膜主要采用挤出吹塑法和T模法生产的LDPE薄膜是一种柔韧而透明的薄膜,无毒、无嗅,厚度一

般在0.02~0.1?L之间。具有良好的耐水性、防潮性、耐旱性和化学稳定性。大量用于食品、药品、日用品及金属制品的一般防潮包装和冷冻食品的包装。但对于吸湿性大,防潮性要求较高的物品,则需要采用防潮性更好的薄膜和复合薄膜包装。LDPE薄膜的透气率大、无保香性且耐油性差,不能用于易氧化食品、风味食品和含油食品的包装。但透气性好使它能用于水果、蔬菜等新鲜物品的保鲜包装。LDPE 薄膜的热粘合性和低温热封性好,因此常用作复合薄膜的粘合层和热封层等,但由于其耐热性差,故不能用作蒸煮袋的热封层。 2、高密度聚乙烯薄膜。HDPE薄膜是一种韧性的半透明薄膜,其外观为乳白色,表面光泽度较差。HDPE薄膜的抗张强度、防潮性、耐热性、耐油性和化学稳定性均优于LDPE薄膜,也可以热封合,但透明性不如LDPE。HDPE可制成厚度为0.01?L的为薄薄膜,其外观和薄绢纸很相似,手感舒服,又称拟纸膜。它具有良好的强度、韧性和开口性,为增强拟纸感和降低成本,可加入少量的轻质碳酸钙。HDPE拟纸膜主要用于制作各种购物袋、垃圾袋,水果包装袋和各种食品包装袋等。因其气密性差,不具有保香性,因此包装食品的贮藏期不长。另外,HDPE薄膜因耐热性好,可用作蒸煮袋的热封层。 3、线型低密度聚乙烯薄膜。LLDPE薄膜是近来发展的聚乙烯薄膜新品种,和LDPE薄膜相比,LLDPE薄膜具有更高的抗拉、抗冲击强度,乃撕裂强度和耐穿刺性。在和LDPE薄膜具有同等强度和使用性能的情况下,LLDPE薄膜的厚度可减至LDPE薄膜的20~25%,因而使成本大幅度降低。即使用作重包装袋其厚度也只需0.1?L就能

第六章金属及金属材料专题复习

第六章金属及金属材料专题复习 【教学目标】 知识目标: 1.了解金属的物理性质和金属材料的主要用途。 2.掌握金属的化学性质。 3. 掌握并熟练运用金属活动性顺序。 4.了解铁矿石炼铁的方法和金属防锈的原理和措施。 能力目标:培养学生归纳、解决问题的能力; 情感目标:培养学生严谨的学习态度,激发学生学习的积极性。 【教学重难点】金属活动性的应用 【教学方法】问题探究、合作展示、点评归纳 【教学过程】 【PPT】展示课题及复习目标 【师】同学们,这节课我们来复习《金属及金属材料》先请同学们看本章的复习目标。 第一阶段:考点知识梳理 【师】1、根据大屏幕上的考点提示进行基础知识复习。 2、同桌之间互相提问。 3、每个知识点复习2-3分钟不等。 【生】:根据大屏幕填空。(其他同学补充或矫正) 第二阶段:对应知识点简单应用 【师】PPT展示针对考点的简单应用题目(1-12题) 看哪位同学做的又快又正确,完成的举手 【生】做题,完成后举手 【师】分别找三名学生起立,展示答案。(7题、10题答案不一样)分别请认为第7题选A、B的同学起来解释理由; 【生】合成材料又称人造材料,是人为地把不同物质经化学方法或聚合作用加工而成的材料,其特质与原料不同,如塑料、玻璃等。 【师】这位同学解释的非常好,同学们要注意概念的差别。 【师】请认为第10题选C的同学起来解释理由; 【生】以前我们做过类似的题,此类型题解题方法是,抓住中间物质,要么选它的单质,其它两种金属用它们的盐溶液;要么选中间金属的盐溶液,其它两种金属用它们的单质。 【师】对于此题中物质的活动性排序我们还可以选用什么样的物质? 【生】Zn、FeCl2、Cu 第三阶段:中考典例分析 考点一:金属与酸的反应的有关计算 【师】我们一起来回想一下金属与酸反应需要用到的知识点: 1.等质量的金属与足量酸反应,产生氢气的量由多到少依次是:铝、镁、铁、锌。 2.足量的金属与等质量的酸反应,产生氢气的量相等。

第六章 薄膜材料及其应用

第六章 薄膜材料及其应用(1) 主要内容 一、超硬薄膜 二、智能薄膜 三、纳米薄膜 四、三族元素氮化物薄膜 五、巨磁和庞磁薄膜 六、铁电薄膜 七、红外敏感薄膜 八、人工周期调制材料 一、超硬薄膜 材料的硬度不仅取决于材料的宏观性质(弹性和塑性),而且 也取决于材料的微观性质(原子间的相互作用力)。合成超硬材料对于了解原子间相互作用的微观特性与宏观特性间的基本关系,以及纯技术的应用都十分重要。 超硬材料(包括已有超硬材料和理论预言超硬材料)可以分为三类: 1. 由周期表中第2、3周期的轻元素所形成的共价和离子-共价化合物; 2. 特殊共价固体,包括各种结晶和无序的碳材料; 3. 与轻元素形成的部分过渡金属化合物,如:硼化物、碳化物、氮化物和氧化物。 超硬材料的特点 1. 超硬材料在正常条件下大多是亚稳相; 2. 绝大多数超硬材料都是共价型或离子型固体; 3. 过渡金属化合物超硬材料具有共价键和金属键; 4. 超硬材料在元素周期表中都由位于中间位置的主族元素组成,这些元素具有最小离子、共价或金属半径,且固态中的原子间具有最大的结合能; 5. 元素中电子壳层的周期填充使固体中的原子半径或分子体积呈规律性变化; 6. 元素固相在变化时,如具有最小摩尔体积,则具有最大的体弹性模量、最大的结合能和最高的熔点。满足Aleksandrov 关系: k 为体弹性模量,Vm 为摩尔体积,Ec 为结合能 对单一元素的固体, 绝大多数在1-4; (一)由原子序数较小的元素形成的超硬化合物 这些超硬材料由位于第2、3周期中的元素如:铍、硼、碳、氮、氧、铝、硅、磷 的化合物组成。它们能形成三维刚性点阵、原子间具有较强的共价键。典型的离子-共价化合物例子是氧化物,如:刚玉Al2O3,超石英(SiO2的高压相)。 这些超硬化合物主要有:BeO 、B6O 、P2O5、Al-B-O 系统、CNx 、SiC 、Be2C 、Si3N4及其它硼碳化合物、硼磷化物、硼硅化物等。 (二)碳材料 由于C 原子间存在不同类型的化学键合,所以C 存在大量的同素异构体和无序相。如 sp3 C 杂化键合形成的金刚石,是最硬的的已知材料。所以可将碳划到特殊材料。 单晶金刚石的维氏硬度达70-140GPa 。另一sp3 C 杂化键合形成的六方金刚石具有与金刚石类似的力学性质。近年来,利用各种沉积技术,制备了高sp3 键合度的非晶碳膜,也称类金刚石薄膜。它的显微硬度达到70GPa 。足球烯C60是有C 的sp2 原子键合形成m c V E k ∝160.5/E kV c m -≡

半导体物理习题第六章第七章答案

第6章 p-n 结 1、一个Ge 突变结的p 区和n 区掺杂浓度分别为N A =1017cm -3和N D =5?1015cm -3,求该pn 结室温下的自建电势。 解:pn 结的自建电势 2(ln )D A D i N N kT V q n = 已知室温下,0.026kT =eV ,Ge 的本征载流子密度1332.410 cm i n -=? 代入后算得:1517 132 510100.026ln 0.36(2.410)D V V ??=?=? 4.证明反向饱和电流公式(6-35)可改写为 202 11()(1)i s n n p p b k T J b q L L σσσ=++ 式中n p b μμ= ,n σ和p σ分别为n 型和p 型半导体电导率,i σ为本征半导体电导率。 证明:将爱因斯坦关系式p p kT D q μ= 和n n kT D q μ=代入式(6-35)得 0000( )p n p n S p n n p n p n p p n n p J kT n kT p kT L L L L μμμμμμ=+=+ 因为002i p p n n p =,0 2 i n n n p n =,上式可进一步改写为 221111( )( )S n p i n p i n p p p n n n p p n J kT n qkT n L p L n L L μμμμμμσσ=+ =+ 又因为 ()i i n p n q σμμ=+ 22222222()(1)i i n p i p n q n q b σμμμ=+=+ 即 22 2 2222 2 ()(1) i i i n p p n q q b σσμμμ==++ 将此结果代入原式即得证

(完整)史上最全的半导体材料工艺设备汇总,推荐文档.docx

小编为您解读半导体生产过程中的主要设备概况。 1、单晶炉 设备名称:单晶炉。

设备功能:熔融半导体材料,拉单晶,为后续半导体器件制造,提供单晶体的半导体晶坯。 主要企业(品牌): 国际:德国 PVA TePla AG 公司、日本 Ferrotec 公司、美国 QUANTUM DESIGN公司、德国 Gero 公司、美国KAYEX公司。 国内:北京京运通、七星华创、北京京仪世纪、河北晶龙阳光、西安理工晶科、常州华盛天龙、上海汉虹、 西安华德、中国电子科技集团第四十八所、上海申和热磁、上虞晶盛、晋江耐特克、宁夏晶阳、常州江南、 合肥科晶材料技术有限公司、沈阳科仪公司。 2、气相外延炉 设备名称:气相外延炉。 设备功能:为气相外延生长提供特定的工艺环境,实现在单晶上,生长与单晶晶相具有对应关系的薄层晶 体,为单晶沉底实现功能化做基础准备。气相外延即化学气相沉积的一种特殊工艺,其生长薄层的晶体结 构是单晶衬底的延续,而且与衬底的晶向保持对应的关系。 主要企业(品牌): ProtoFlex公司、国际:美国 CVD Equipment 公司、美国GT公司、法国Soitec公司、法国AS公司、美 国 美国科特·莱思科(Kurt J.Lesker)公司、美国Applied Materials公司。 国内:中国电子科技集团第四十八所、青岛赛瑞达、合肥科晶材料技术有限公司、北京金盛微纳、济南 力冠电子科技有限公司。

3、分子束外延系统(MBE,Molecular Beam Epitaxy System) 设备名称:分子束外延系统。 设备功能:分子束外延系统,提供在沉底表面按特定生长薄膜的工艺设备;分子束外延工艺,是一种制备 单晶薄膜的技术,它是在适当的衬底与合适的条件下,沿衬底材料晶轴方向逐层生长薄膜。主要企业(品 牌): 国际:法国 Riber 公司、美国Veeco 公司、芬兰DCA Instruments公司、美国SVTAssociates公司、美国NBM公司、德国 Omicron 公司、德国 MBE-Komponenten公司、英国 Oxford Applied Research(OAR)公司。 国内:沈阳中科仪器、北京汇德信科技有限公司、绍兴匡泰仪器设备有限公司、沈阳科友真空技术有限 公司。 4、氧化炉( VDF)

金属学与热处理课后习题答案第六章

第六章金属及合金的塑性变形和断裂 2)求出屈服载荷下的取向因子,作出取向因子和屈服应力的关系曲线,说明取向因子对屈服应力的影响。 答: 1)需临界临界分切应力的计算公式:τk=σs cosυcosλ,σs为屈服强度=屈服载荷/截面积 需要注意的是:在拉伸试验时,滑移面受大小相等,方向相反的一对轴向力的作用。当载荷与法线夹角υ为钝角时,则按υ的补角做余弦计算。 2)c osυcosλ称作取向因子,由表中σs和cosυcosλ的数值可以看出,随着取向因子的增大,屈服应力逐渐减小。cosυcosλ的最大值是υ、λ均为45度时,数值为0.5,此时σs为最小值,金属最易发生滑移,这种取向称为软取向。当外力与滑移面平行(υ=90°)或垂直(λ=90°)时,cosυcosλ为0,则无论τk数值如何,σs均为无穷大,表示晶体在此情况下根本无法滑移,这种取向称为硬取向。 6-2 画出铜晶体的一个晶胞,在晶胞上指出: 1)发生滑移的一个滑移面 2)在这一晶面上发生滑移的一个方向 3)滑移面上的原子密度与{001}等其他晶面相比有何差别 4)沿滑移方向的原子间距与其他方向有何差别。 答: 解答此题首先要知道铜在室温时的晶体结构是面心立方。 1)发生滑移的滑移面通常是晶体的密排面,也就是原子密度最大的晶面。在面心立方晶格中的密排面是{111}晶面。 2)发生滑移的滑移方向通常是晶体的密排方向,也就是原子密度最大的晶向,在{111}晶面中的密排方向<110>晶向。 3){111}晶面的原子密度为原子密度最大的晶面,其值为2.3/a2,{001}晶面的原子密度为1.5/a2 4)滑移方向通常是晶体的密排方向,也就是原子密度高于其他晶向,原子排列紧密,原子间距小于其他晶向,其值为1.414/a。 6-3 假定有一铜单晶体,其表面恰好平行于晶体的(001)晶面,若在[001]晶向

第六章 新型半导体薄膜材料

第六章
新型半导体薄膜材料
本章主要介绍硅基非晶半导体薄膜材料的结 构特点、制备方法、光学和电学特性以及这 些材料的研究现状。同时还将介绍微晶Si薄 膜和多晶Si薄膜的结构特点、制备方法及其 应用。在应用方面,将重点介绍高效率、长 寿命、低价格、大面积非晶硅(a-Si:H)太 阳能电池的工作原理及发展现状。

概 述
? 新型半导体薄膜材料的研究与发展,主要 是以研究和发展非晶态半导体薄膜材料制 备与器件应用最为活跃,已成为材料学科 的一个重要组成部分 ? 随着非晶态半导体在科学和技术上的飞速 发展,它已在高新技术领域中得到广泛应 用,并正在形成一类新兴产业。

例如,用高效、大面积非晶硅(a-Si:H)薄 膜太阳电池制作的发电站已并网发电(它是 无任何污染的绿色电源);用a-Si薄膜晶体 管制成的大屏幕液晶显示器和平面显像电视 机已作为商品出售;非晶硅电致发光器件和 高记录速度大容量光盘等。也正在向实际应 用和商业化方向发展。 大量事实说明,研究非晶态半导体薄膜材料 的意义不仅在于技术上能够产生新材料、新 器件和新工艺,而且对于认识固体理论中的 许多基本问题也会产生深远的影响。

硅基非晶态半导体薄膜
“非晶”固体或“无定形”(Amorphous)固 体是一种不具有晶体结构的固体。通常“非晶” 或“无定形”是同义词。但是,严格说来,所 谓“非晶”就是指那些不结晶的物质。液体等 也包括在内。所谓“无定形”是指“玻璃态”的 物质。“玻璃”这一术语多半是指将熔化状态 的物质通过冷急法冻结成的固体。

第6章 金属材料

第6章金属材料 一、学习指导 (一)内容提要 本章介绍钢的冶炼与分类;建筑钢材的主要技术性能;钢的组织与化学成分对其性能的影响;钢材的强化机理及强化方法;建筑钢材的分类、标准与选用;钢材的防护;铝合金与铜合金 (二)基本要求 1、了解钢的分类; 2、掌握钢的冶炼对钢材质量的影响;熟练掌握建筑钢材的技术性能(包括:抗拉性能、冲击韧性、耐疲劳性、硬度、冷弯性能、焊接性能、冷加工及热处理等); 3、熟悉建筑钢材的强化机理及强化方法; 4、掌握钢材的化学成分对钢材性能的影响; 5、掌握土木工程中常用建筑钢材的分类、主要品种及其选用原则; 6、了解建筑钢材的晶体组织对钢材性质的影响; 7、熟悉钢材的锈蚀与防护方法以及钢材的防火。 (三)重、难点提示 1、重点提示:钢材的冶炼对钢材质量的影响;建筑钢材的主要技术性能:抗拉性能、冲击韧性、冷弯性能;化学成分对其性能的影响;钢材的强化机理及强化方法;建筑钢材的分类、主要品种、标准与选用。 2、难点提示:钢材的强化机理及强化方法;化学成分对其性能的影响。 二、习题 (一)判断题 1、钢材的屈强比越大,反映结构的安全性越高,但钢材的有效利用率越低。 () 2、钢材的伸长率表明钢材的塑性变形能力,伸长率越大,钢材的塑性越好。() 3、钢材在焊接时产生裂纹,原因之一是钢材中含磷较高所致。() 4、建筑钢材的基本晶体组织是随着含碳质量分数的提高而珠光体增加渗碳体减少。() 5、钢中含磷影响钢材的塑性变形能力,而含硫则影响钢材的冷脆性。() 6、钢中N、O等杂质越多,越容易引起钢材的时效敏感性。() 7、钢材冷拉是指在常温下将钢材拉断,且以伸长率作为性能指标。() 8、某厂生产钢筋混凝土梁,配筋需用冷拉钢筋,但现有冷拉钢筋不够长,因此将此钢

2019-2020学年科粤版九年级下册化学第六章 金属 测试试题

2019-2020学年度第六章金属测试题 可能用到的相对原子质量:C—12 O—16 H—1 Zn—65 Fe—56 一、选择题(本题包括20小题,每小题2分,共40分,每小题有四个选项,其中只有一个选项符合题意。) 1.下列应用在高铁列车上的材料,不属于金属材料的是() A.不锈钢 B.玻璃 C.铝合金 D.铜线 2.下列有关金属和金属材料的说法不正确的是() A.不锈钢的抗腐蚀性强,可用来制作炊具、医疗器械 B.黄铜属于合金,它的硬度比铜小 C.铁的导热性好,可以制成锅 D.铝表面易形成致密的氧化膜,可阻止铝进一步被氧化 3.下列关于金属利用的说法错误的是() A.用铝制高压电线 B.用钨制灯丝 C.用纯铁制机床底座 D.用铝粉制防锈漆 4.下列说法正确的是() A.铁在潮湿的空气中容易生锈 B.金属的活动性:Zn>Ag>Cu C.合金属于纯净物 D.铝是地壳中含量最多的元素 5.新农村建设如火如荼,许多村庄道路两侧安装了太阳能路灯,关于太阳能路灯所用材料的叙述不正确的是() A.铝合金灯柱属于金属材料 B.透明的塑料灯罩属于有机合成高分子材料 C.灯泡中填充氮气做保护气 D.硅电池板中的硅元素是地壳中含量最多的金属元素 6.下列有关合金的说法正确的是() A.一般来说,合金的硬度比其纯金属大 B.一般来说,合金的熔点比其纯金属高 C.合金的性能都比纯金属好 D.合金是只由金属熔合而成的混合物 7.下表是一些金属熔点的数据: 金属锡铅铋镉 熔点/ 231.9 327.5 271.3 320.9 日常所用保险丝由铋、铅、锡、镉等金属组成,其熔点约为( ) A.300-320℃ B.230-250℃ C.60-80℃ D.20-40℃ 8.下列对金属和金属材料的认识中,错误的是()

纳米薄膜材料的制备方法

纳米薄膜材料的制备方法 摘要纳米薄膜材料是一种新型材料,由于其特殊的结构特点,使其作为功能材料和结构材料都具有良好的发展前景。本文综述了近几年来国内外对纳米薄膜材料研究的最新进展,包括对该类材料的制备方法、微结构、电、磁、光特性以及力学性能的最新研究成果。关键词纳米薄膜;薄膜制备; 微结构;性能 21 世纪,由于信息、生物技术、能源、环境、国防 等工业的快速发展, 对材料性能提出更新更高的要求,元器件的小型化、智能化、高集成、高密度存储和超快传输等要求材料的尺寸越来越小,航空航天、新型军事装备及先进制造技术使材料的性能趋于极端化。因此, 新材料的研究和创新必然是未来的科学研究的重要课题和发展基础,其中由于纳米材料的特殊的物理和化学性能, 以及 由此产生的特殊的应用价值, 必将使其成为科学研究的热点[1]。 事实上, 纳米材料并非新奇之物, 早在1000 多年以前, 我国古代利用蜡烛燃烧的烟雾制成碳黑作为墨的原料, 可能就是最早的纳 米颗粒材料;我国古代铜镜表面的防锈层, 经验证为一层纳米氧化锡颗粒构成的薄膜,这大概是最早的纳米薄膜材料。人类有意识的开展纳米材料的研究开始于大约50 年代,西德的Kanzig 观察到了BaTiO3 中的极性微区,尺寸在10~ 100纳米之间。苏联的G. A. Smolensky假设复合钙钛矿铁电体中的介电弥散是由于存Kanzig微区导致成分布不均匀引起的。60 年代日本的Ryogo Kubo在金属超微粒子理论中发现由于金属粒子的电子能级不连续,在低温下, 即当费米

能级附近的平均能级间隔> kT 时, 金属粒子显示出与块状物质不同的热性质[ 4]。西德的H. Gleiter 对纳米固体的制备、结构和性能进行了细致地研究[ 5]。随着技术水平的不断提高和分析测试技术手段的不断进步, 人类逐渐研制出了纳米碳管, 纳米颗粒,纳米晶体, 纳米薄膜等新材料, 这些纳米材料有一般的晶体和非晶体材料不具备的优良特性, 它的出现使凝聚态物理理论面临新的挑战。80 年代末有人利用粒度为1~ 15nm 的超微颗粒制造了纳米级固体材料。纳米材料由于其体积和单位质量的表面积与固体材料的差别,达到一定的极限, 使颗粒呈现出特殊的表面效应和体积效应,这些因素都决定着颗粒的最终的物理化学性能,如随着比表面积的显著增大,会使纳米粒子的表面极其活泼,呈现出不稳定状态,当其暴露于空气中时,瞬间就被氧化。此外, 纳米粒子还会出现特殊的电、光、磁学性能和超常的力学性能。 纳米薄膜的分类 纳米薄膜具有纳米结构的特殊性质, 目前可以分为两类: ( 1)含有纳米颗粒与原子团簇基质薄膜; ( 2) 纳米尺寸厚度的薄膜, 其厚度接近电子自由程和Denye 长度, 可以利用其显著的量子特性和统计特性组装成新型功能器件。例如, 镶嵌有原子团的功能薄膜会在基质中呈现出调制掺杂效应, 该结构相当于大原子超原子膜材料具有三维特征; 纳米厚度的信息存贮薄膜具有超高密度功能, 这类集成器件具有惊人的信息处理能力; 纳米磁性多层膜具有典型的周期性调制结构, 导致磁性材料的饱和磁化强度的减小或增强。对这

第六章 金属材料

Chapter 6 Metallic Materials 1.名词解释:Explain the concepts: 1)黑色金属: 指铁、铬、锰金属及其合金,以铁及铁合金为主。Blank metals: refers to Fe, Cr, Mn and their alloys, mainly are Fe and its alloy. 2)有色金属:除铁、铬、锰以外的金属成为有色金属。Non-ferrous metals: refers to metals except iron, chromium, manganese and their alloys. 3)奥氏体:碳溶解在γ-Fe中的间隙固溶体,它仍保持γ-Fe的面心立方晶格,晶界比较直,呈规则多边形。Austenite: interstitial solid solution formed by carbon dissolves in γ-Fe, it remains face-centered cubic lattice of γ-Fe, the grain boundary is relatively straight, and is regular polygon. 4)马氏体:碳在α-Fe中的过饱和固溶体,晶体结构为体心四方结构,中高碳钢中加速冷却通常能够得到这种组织。Martensite: supersaturated solid solution formed by the carbon dissolves in α-Fe, the crystal structure is body-centered tetragonal structure, it can be obtained by accelerated cooling the high-carbon steel. 5)超耐热合金:在700~1200℃高温下能长时间保持所需力学性能,具抗氧化、抗腐蚀能力,且能满意工作的金属材料。Super heat-resistant alloys: materials that can maintain the required mechanical properties at high temperature of 700 to 1200 ℃ for a long time. They are antioxidant, corrosion resistant and can work satisfactory. 6)金属固溶体:指一种溶质元素(金属或非金属)原子溶解到另一种溶剂金属元素(较大量的)的晶体中形成的一种均匀的固态溶液。Metal solid solutions: refers to a homogeneous solid solution that formed by a solute elements (metal or nonmetal) atoms dissolve into a solvent metal element (relatively large). 7)金属间化合物:指金属和金属之间,类金属和金属原子之间以共价键形式结合生成的化合物,具有不同于其组成元素的长程有序晶体结构和金属基本特性。Intermetallic compounds: refers to compounds that formed between the metal and the metal atoms by covalent binding. They have basic characteristics of metal and long-range ordered crystal structure. 2.简述形状记忆合金原理。Describe the principle of shape memory alloys. 答:形状记忆合金是指具有一定初始形状的材料经形变并固定成另一形状后,通过热、光、电等物理刺激或化学刺激的处理又可恢复成初始形状的合金。其形状记忆效应源于某些特殊

第六章半导体的物质结构和能带结构

第6章 异质结和纳米结构 1、试讨论用窄禁带n 型半导体和宽禁带p 型半导体构成的反型异质结中的能带弯曲情况,画出能带图。 答: 2、仿照第4章对pn 同质结的讨论方法,完成突变pn 异质结接触电势差表达式(6-5)和势垒区宽度表达式(6-7)的推导过程。 解:设p 型和n 型半导体中的杂质都是均匀分布的,其浓度分别为N A1和N D2。势垒区的正负空间电荷去的宽度分别为(x 0-x 1)=d 1,(x 2-x 0)=d 2。取x=x 0为交界面,则两边势垒区中的电荷密度可以写成 ? ?? -=<<-=<<22201101)(,)(,D A qN x x x x qN x x x x ρρ 势垒区总宽度为 211002)()(d d x x x x X D +=-+-= 势垒区的正负电荷总量相等,即 Q x x qN x x qN D A =-=-)()(022101 Q 就是势垒区中单位面积上的空间电荷数值。因此上式可以简化为 1 2 0210)()(A D N N x x x x =-- 设V(x)代表势垒区中x 点得电势,则突变反型异质结交界面两边的泊松方程分别为 )()(0111 212x x x qN dx x V d A <<=ε )()(202 2 2 22x x x qN dx x V d D <<=ε ε1ε2分别为p 型及n 型半导体的介电常数。对以上两式分别积分一次得 )()(011111x x x C x qN dx x dV A <<+=ε )()(2022 22x x x C x qN dx x dV D <<+=ε C 1‘C 2是积分常数,有边界条件决定。因势垒区外是电中性的,电场集中在势垒区内,故边 界条件为 0)(1 111=- ==x x dx dV x E

半导体材料ZnO专题介绍

深圳大学考试答题纸 (以论文、报告等形式考核专用) 二○~二○学年度第学期 课程编号课程名称主讲教师评分学号姓名专业年级 教师评语: 题目:

目录 摘要 (4) 1.ZnO的发展历史与基本性质 (5) 1.1 ZnO的发展历史 (5) 1.2 ZnO的基本性质 (5) 1.2.1 ZnO的晶体结构 (5) 1.2.2 ZnO的物理化学性质 (6) 1.2.3 ZnO的其他性质 (7) 1.2.3.1 紫外受激发射特性 (7) 1.2.3.2透明导体特性 (8) 1.2.3.3 气敏性 (8) 1.2.3.4 压敏特性 (8) 1.2.3.5 P-N结特性 (9) 1.2.3.6压电特性 (9) 2.ZnO的原料的获取与提纯 (10) 2.1原料的获取 (10) 2.2原料的提纯 (11) 2.2.1直接法(美国法) (11) 2.2.2间接法(法国法) (11) 2.2.3化学湿法 (12) 3.ZnO的单晶的制备 (13) 3.1水热法 (13) 3.2 化学气相输运法 (14) 4.ZnO的薄膜的制备 (16) 4.1 脉冲激光沉积法PLD (16) 4.2 金属有机物气相外延法MOCVD (17) 4.3 喷雾热解法 (17) 4.4磁控溅射法 (18)

4.5溶胶-凝胶法Sol-gel (19) 5.ZnO的应用与前景 (21) 5.1ZnO的应用方向 (21) 5.1.1短波长发光材料 (21) 5.1.2氮化镓薄膜的缓冲层 (22) 5.1.3集成光学 (22) 5.1.4电声器件与声光器件 (22) 5.1.5 传感器和高效率器件 (22) 5.2 ZnO的问题与挑战 (23) 5.3 ZnO的前景 (24) 谢辞 (25) 参考文献 (26)

第六章金属材料及热处理

第六章答案 1.用 45 钢制造机床齿轮,其工艺路线为:锻造—正火—粗加工一调 质一精加工—高频感应加热表面淬火一低温回火—磨加工。说明各热处理 工序的目的及使用状态下的组织。 答:锻造后的 45 钢硬度较高,不利于切削加工,正火后将其硬度控制 在 160-230HBS 围,提高切削加工性能。组织状态是索氏体。粗加工后, 调质处理整个提高了 45 钢强度、硬度、塑性和韧性,组织状态是回火索氏 体。高频感应加热表面淬火是要提高 45 钢表面硬度的同时,保持心部良好 的塑性和韧性。低温回火的组织状态是回火马氏体,回火马氏体既保持了 45 钢的高硬度、高强度和良好的耐磨性,又适当提高了韧性。2.常用的合金元素有哪些?其中非碳化物形成元素有一一一:碳化物 形成元素有一一一;扩大 A 区元素有——;缩小 A 区元素在一一。答:常用的合金元素有:锰、铬、钼、钨、钒、铌、锆、钛、镍、硅、铝、钴、镍、氮等。其中非碳化物形成元素有:镍、硅、铝、钴等;

形成元素有:锰、铬、钼、钨、钒、铌、锆、钛等;扩大 A 区元素有:镍、 锰、碳、氮等;小 A 区元素有:铬、铝、硅、钨等。 3.用 W18Cr4V 钢制作盘形铣刀,试安排其加工工艺路线,说明各热加工工序的目的,使用状态下的显微组织是什么?为什么淬火温度高达 1280℃?淬火后为什么要经过三次 560℃回火?能否用一次长时间 回火代 替? 答:工艺路线: 锻造十球化退火→切削加工→淬火+多次 560℃回火→喷砂→磨 削加工→成品 热处理工艺: 球化退火:高速钢在锻后进行球化退火,以降低硬度,消除锻造应力,便于切削加工,并为淬火做好组织准备。球化退火后的组织为球状珠光体。 淬火和回火:高速钢的优越性能需要经正确的淬火回火处理后才能获得。 淬火温度高(1220-1280℃)的原因是:合金元素只有溶入钢中才能有 效提高红硬性,高速钢量的 W、MO、Cr、V 的是难熔碳化物,它们只

半导体工艺第六章

第六章习题 6-1 解释欧姆接触,并说明形成欧姆接触的常用方法。 欧姆接触是指金属与半导体之间的电压与电流的关系具有对称和线性关系,而且接触电阻尽可能低,不产生明显的附加阻抗。 常用方法:扩散法和合金法 扩散法:是在半导体中先扩散形成重掺杂区以获得N+N或P+P的结构,然后使金属与重掺杂的半导体区接触,形成欧姆接触。 合金法:是利用合金工艺对金属互联线进行热处理,使金属与半导体界面形成一层合金层或化合物层,并通过这一层与表面重掺杂的半导体形成良好的欧姆接触。 6-2 列出并描述集成电路制造中对金属薄膜的要求。 要求:(1)具有高的导电率和纯度 (2)与下层衬底(通常是二氧化硅或氮化硅)具有良好的粘附性 (3)与半导体材料连接时接触电阻低 (4)能够淀积出均匀而且没有“空洞”的薄膜,易于填充通孔 (5)易于光刻和刻蚀,容易制备出精细图形 (6)很好的耐腐蚀性 (7)在处理和应用过程中具有长期的稳定性 6-3 列出半导体制造中使用的金属种类,并说明每种金属的用途。 种类:铝、铝铜合金、铜、阻挡层金属、硅化物和钨 铝:作为金属互连的材料,以薄膜的形式在硅片中连接不同器件。 铝铜合金:有效解决电迁徙问题。 铜:作为互连线。 阻挡层金属:防止上下层材料相互扩散。 硅化物:减小接触电阻。 钨:填充通孔。 6-4 解释铝已被选择作为微芯片互连金属的原因。 (1)较低的电阻率 (2)铝价格低廉 (3)工艺兼容性 (4)铝膜与下层衬底(通常是硅、二氧化硅或氮化硅)具有良好的粘附性 6-5 哪种金属已经成为传统互连金属线?什么是它的取代物? 铝已经成为传统互连金属线,铝铜合金是它的取代物 6-6 描述结尖刺现象,如何解决结尖刺问题? 由于硅在铝中的溶解度比较高,形成合金时,硅会从衬底向铝中溶解,这样就在接触区下层的硅中留下空洞,从而有可能发生尖刺效应。解决方法:在接触区引入阻挡层金属可阻止上下层材料互相混合。 6-7 描述电迁徙现象,如何解决电迁徙现象? 电迁徙现象:在大电流密度的情形下,大量电子对金属原子的持续碰撞,会引起原子逐渐而缓慢的移动。 6-8 列出并讨论引入铜金属化的原因。 (1)更低的电阻率 (2)减少了功率 (3)更高的互连线集成密度 (4)良好的抗电迁徙性能

真空薄膜技术与薄膜材料的应用

真空薄膜技术与薄膜材料的应用及学习薄膜技术意义 ——张龙 090243138 材料物理 摘要:本文要紧讲述薄膜材料的一些差不多特点和在能源,军事以及其它方面的一些应用,并列举部分应用比较广泛的薄膜材料及现今前沿的薄膜材料和薄膜技术如光学薄膜中的太阳能薄膜,眼镜镀膜,抗反射膜及其他的一些耐腐蚀薄膜和电容薄膜,并阐述学习薄膜技术的意义。 关键词:薄膜;应用;进展;意义

Abstract:This article focuses on some basic characteristics of thin film material and the application of in the energy, military and some other aspects. Then it gives part of broader application of the thin film material and the edge of the film materials and thin film technologies such as optical thin films in solar thin film, optical coating, anti reflective film and other corrosion resistant film and film capacitors. At last it gives the significance of the thin film technology and expounds. Keywords:Thin Film; Application; Development; Meaning 引言:真空薄膜技术进展至今已有200年的历史。在一代代探究者的艰辛研究下各种材料的薄膜化差不多成为一种普遍趋势,以至于将薄膜材料及薄膜技术看成21世纪科学与技术领域的重要进展方向之一。 正文: 真空薄膜技术进展至今已有200年的历史。在19世纪能够讲一直是处于探究和预研时期。通过一代代探究者的艰辛研究,时至今日大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位,各种

金属材料与热处理第六章答案

1 滑移与孪生的区别及它们在塑性变形过程中的作用。 答:滑移与孪生的区别: (1)滑移是晶体两部分发生相对滑动,不改变晶体位向,孪生是晶体一部分相对另一部分发生均匀切变,发生位向的改变,孪生面两侧原子呈镜面对称。 (2)滑移面上的原子移动的距离是原子间距的整数倍,而孪生方向移动的原子不是原子间距的整数倍。 (3)滑移是个缓慢的过程,孪生产生速度极快。 (4)滑移是在晶体内各晶粒内部产生不均匀,而孪生在整个孪生区内部都是均匀的切变。 作用:晶体产生塑性变形过程主要依靠滑移机制来完成的;孪生所需的临界应力要高很多,对塑性变形的贡献比滑移小得多,但孪生改变了部分晶体的空间取向,使原来处于不利取向的滑移系转变为新的有利取向,激发晶体滑移。 2面心立方、体心立方、密排六方金属的主要塑性变形方式是什么?温度、变形速度对其有何影响?铝、铁、鎂中哪种金属的塑性最好?哪种最差? 答:面心立方、体心立方有较多的滑移系,塑性变形以滑移为主,而密排六方金属对称性低,滑移系少,塑性变形方式主要是孪生。变形温度越高,滑移越容易,孪生产生的几率越小,反之变形温度越高,滑移越困难,产生孪晶的几率越大。变形速度越大,滑移常来不及产生足够大的变形,因此导致切应力增大,产生孪晶的几率也增大。铝为面心立方结构、铁为体心立方结构、镁为密排六方结构,因此铝的塑性最好,镁的塑性最差。 3绘图说明常见fcc、bcc结构金属的滑移系有哪些?这两种晶体结构的密排面、密排方向是哪些?与滑移系之间有何关系? 答:FCC晶格:滑移面就是最密排面:{111}包括(111), (111), (111), (111); 滑移方向就是最密排方向:〈110〉每个滑移面上有三个,如图中箭头所示。 一个滑移面与滑移面上的一个滑移方向构成一个滑移系,因此滑移系数: 4×3=12 BCC晶格:滑移面:{110} (110), (011), (101), (110), (011), (101)共6个 滑移方向:〈111〉,每个滑移面上两个,如图箭头所示。 所以共有滑移系数:6×2=12

相关主题
文本预览
相关文档 最新文档