当前位置:文档之家› 混凝土结构设计规范--正常使用极限状态验算

混凝土结构设计规范--正常使用极限状态验算

混凝土结构设计规范--正常使用极限状态验算
混凝土结构设计规范--正常使用极限状态验算

https://www.doczj.com/doc/6f10345695.html,

正常使用极限状态验算

8.1 裂缝控制验算

第8.1.1条钢筋混凝土和预应力混凝土构件,应根据本规范第3.3.4条的规定,按所处环境类别和结构类别确定相应的裂缝控制等级及最大裂缝宽度限值,并按下列规定进行受拉边缘应力或正截面裂缝宽度验算:

1一级--严格要求不出现裂缝的构件

在荷载效应的标准组合下应符合下列规定:

σck-σpc≤0(8.1.1-1)

2二级--一般要求不出现裂缝的构件

在荷载效应的标准组合下应符合下列规定:

σck-σpc≤f tk(8.1.1-2) 在荷载效应的准永久组合下宜符合下列规定:

σcq-σpc≤0(8.1.1-3)

3三级--允许出现裂缝的构件

按荷载效应的标准组合并考虑长期作用影响计算的最大裂缝宽度,应符合下列规定;

ωmax≤ω1im(8.1.1-4) 式中

σck、σcq——荷载效应的标准组合、准永久组合下抗裂验算边缘的混凝土法向应力;

σpc——扣除全部预应力损失后在抗裂验算边缘混凝土的预压应力,按本规范公式(6.1.5-1)或公式(6.1.5-4)计算;

f tk--混凝土轴心抗拉强度标准值,按本规范表4.1.3采用;

ωmax--按荷载效应的标准组合并考虑长期作用影响计算的最大裂缝宽度,按本规范第8.1.2条计算;

ω1im--最大裂缝宽度限值,按本规范第3.3.4条采用。

注:对受弯和大偏心受压的预应力混凝土构件,其预拉区在施工阶段出现裂缝的区段,公式(8.1.1-1)至公式(8.1.1-3)中的σpc应乘以系数0.9。

第8.1.2条在矩形、T形、倒T形和I形截面的钢筋混凝土受拉、受弯和偏心受压构件及预应力混凝土轴心受拉和受弯构件中,按荷载效应的标准组合并

考虑长期作用影响的最大裂缝宽度(mm)可按下列公式计算:

(8.1.2-1)

(8.1.2-2)

d eq=Σn i d2i/Σn i v i d i(8.1.2-3)

(8.1.2-4)

式中

αcr--构件受力特征系数,按表8.1.2-1采用;

ψ--裂缝间纵向受拉钢筋应变不均匀系数:当ψ<0.2时,取ψ=0.2;当ψ>1时,取ψ=1;对直接承受重复荷载的构件,取ψ=1;

σsk--按荷载效应的标准组合计算的钢筋混凝土构件纵向受拉钢筋的应力或预应力混凝土构件纵向受拉钢筋的等效应力,按本规范第8.1.3条计算;

E s--钢筋弹性模量,按本规范表4.2.4采用;

c--最外层纵向受拉钢筋外边缘至受拉区底边的距离(mm):当c<20时,取c=20;当c>65时,取c=65;

ρte--按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率;在最大裂缝宽度计算中,当ρte<0.01时,取ρte=0.01;

A te--有效受拉混凝土截面面积:对轴心受拉构件,取构件截面面积;对受弯、偏心受压和偏心受拉构件,取A te=0.5bh+(b f-b)h f,此处,b f、h f为受拉翼缘的宽度、高度;

A s--受拉区纵向非预应力钢筋截面面积;

A p--受拉区纵向预应力钢筋截面面积;

d eq--受拉区纵向钢筋的等效直径(mm);

d i--受拉区第i种纵向钢筋的公称直径(mm);

n i--受拉区第i种纵向钢筋的根数;

v i--受拉区第i种纵向钢筋的相对粘结特性系数,按表8.1.2-2采用。

注:1对承受吊车荷载但不需作疲劳验算的受弯构件,可将计算求得的最大裂缝宽度乘以系数0.85;

2对e0/h0≤0.55的偏心受压构件,可不验算裂缝宽度。

构件受力特征系数表8.1.2-1

钢筋的相对粘结特性系数表8.1.2-2

第8.1.3条在荷载效应的标准组合下,钢筋混凝土构件受拉区纵向钢筋的应力或预应力混凝土构件受拉区纵向钢筋的等效应力可按下列公式计算:

1钢筋混凝土构件受拉区纵向钢筋的应力

1)轴心受拉构件

σsk=N k/A s(8.1.3-1) 2)偏心受拉构件

σsk=N k e'/A s(h0-a's) (8.1.3-2) 3)受弯构件

σsk=M k/0.87h0A s(8.1.3-3) 4)偏心受压构件

σsk=N k(e-z)/A s z (8.1.3-4)

z=[0.87-0.12(1-r'f)(h0/e)2]h0(8.1.3-5)

e=ηs e0+y s(8.1.3-6)

γ'f=(b'f-b)h'f/bh0(8.1.3-7)

(8.1.3-8)

式中

A s--受拉区纵向钢筋截面面积:对轴心受拉构件,取全部纵向钢筋截面面积;对偏心受拉构件,取受拉较大边的纵向钢筋截面面积;对受弯、偏心受压构件,取受拉区纵向钢筋截面面积;

e'--轴向拉力作用点至受压区或受拉较小边纵向钢筋合力点的距离;

e--轴向压力作用点至纵向受拉钢筋合力点的距离;

z--纵向受拉钢筋合力点至截面受压区合力点的距离,且不大于0.87h0;

ηs--使用阶段的轴向压力偏心距增大系数,当l0/h≤14时,取ηs=1.0;

y s--截面重心至纵向受拉钢筋合力点的距离;

γ'f--受压翼缘截面面积与腹板有效截面面积的比值;

b'f、h'f--受压区翼缘的宽度、高度;在公式(8.1.3-7)中,当h'f>0.2h0时,取h'f=0.2h0;

N k、M k--按荷载效应的标准组合计算的轴向力值、弯矩值。

2预应力混凝土构件受拉区纵向钢筋的等效应力

1)轴心受拉构件

(8.1.3-9)

2)受弯构件

(8.1.3-10)

(8.1.3-11)

式中

A p--受拉区纵向预应力钢筋截面面积:对轴心受拉构件,取全部纵向预应力钢筋截面面积;对受弯构件,取受拉区纵向预应力钢筋截面面积;

z--受拉区纵向非预应力钢筋和预应力钢筋合力点至截面受压区合力点的距离,按公式(8.1.3-5)计算,其中e按公式(8.1.3-11)计算;

e p--混凝土法向预应力等于零时全部纵向预应力和非预应力钢筋的合力N p0的作用点至受拉区纵向预应力和非预应力钢筋合力点的距离;

M2--后张法预应力混凝土超静定结构构件中的次弯矩,按本规范第6.1.7条的规定确定。

注:在公式(8.1.3-10)、(8.1.3-11)中,当M2与M k的作用方向相同时,取加号;当M2与M k的作用方向相反时,取减号。

第8.1.4条在荷载效应的标准组合和准永久组合下,抗裂验算边缘混凝土的法向应力应按下列公式计算:

1轴心受拉构件

σck=N k/A0(8.1.4-1)

σcq=N q/A0(8.1.4-2) 2受弯构件

σck=M k/W0(8.1.4-3)

σcq=M q/W0(8.1.4-4) 3偏心受拉和偏心受压构件

σck=M k/W0±N k/A0(8.1.4-5)

σcq=M q/W0±N q/A0(8.1.4-6)

式中

N q、M q--按荷载效应的准永久组合计算的轴向力值、弯矩值;

A0--构件换算截面面积;

W0--构件换算截面受拉边缘的弹性抵抗矩。

注:在公式(8.1.4-5)、(8.1.4-6)中右边项,当轴向力为拉力时取加号,为压力时取减号。

第8.1.5条预应力混凝土受弯构件应分别对截面上的混凝土主拉应力和主压应力进行验算:

1混凝土主拉应力

1)一级--严格要求不出现裂缝的构件,应符合下列规定:

σtp≤0.85f tk(8.1.5-1) 2)二级--一般要求不出现裂缝的构件,应符合下列规定:

σtp≤0.95f tk(8.1.5-2)

2混凝土主压应力

对严格要求和一般要求不出现裂缝的构件,均应符合下列规定:

σcp≤0.6f ck(8.1.5-3)

式中

σtp、σcp--混凝土的主拉应力、主压应力,按本规范第8.1.6条确定。

此时,应选择跨度内不利位置的截面,对该截面的换算截面重心处和截面宽度剧烈改变处进行验算。

注:对允许出现裂缝的吊车梁,在静力计算中应符合公式(8.1.5-2)和公式(8.1.5-3)的规定。

第8.1.6条混凝土主拉应力和主压应力应按下列公式计算:

(8.1.6-1)

σx=σpc+M k y0/I0(8.1.6-2)

τ=(V k-Σσpe A pb sinαp)S0/I0b (8.1.6-3)

式中

σx——由预加力和弯矩值M k在计算纤维处产生的混凝土法向应力;

σy——由集中荷载标准值F k产生的混凝土竖向压应力;

τ——由剪力值V k和预应力弯起钢筋的预加力在计算纤维处产生的混凝土剪应力;当计算截面上有扭矩作用时,尚应计入扭矩引起的剪应力;对后张法预应力混凝土超静定结构构件,在计算剪应力时,尚应计入预加力引起的次剪力;σpc——扣除全部预应力损失后,在计算纤维处由预加力产生的混凝土法向应力,按本规范公式(6.1.5-1)或(6.1.5-4)计算;

y0——换算截面重心至计算纤维处的距离;

I0--换算截面惯性矩;

V k——按荷载效应的标准组合计算的剪力值;

S0——计算纤维以上部分的换算截面面积对构件换算截面重心的面积矩;

σpe——预应力弯起钢筋的有效预应力;

A pb——计算截面上同一弯起平面内的预应力弯起钢筋的截面面积;

αp——计算截面上预应力弯起钢筋的切线与构件纵向轴线的夹角。

注:公式(8.1.6-1)、(8.1.6-2)中的σx、σy、σpc和M k y0/I0,当为拉应力时,以正值代入;当为压应力时,以负值代入;

第8.1.7条对预应力混凝土吊车梁,在集中力作用点两侧各0.6h的长度范围内,由集中荷载标准值F k产生的混凝土竖向压应力和剪应力的简化分布,可按图8.1.7确定,其应力的最大值可按下列公式计算:

σy,max=0.6F k/bh (8.1.7-1)

τF=(τl-τr)/2 (8.1.7-2)

τl=V l k S0/I0b (8.1.7-3)

τr=V r k S0/I0b (8.1.7-4)

式中

τl、τr--位于集中荷载标准值F k作用点左侧、右侧0.6h处截面上的剪应力;τF--集中荷载标准值F k作用截面上的剪应力;

V l k、V r k--集中荷载标准值F k作用点左侧、右侧截面上的剪力标准值。

第8.1.8条对先张法预应力混凝土构件端部进行正截面、斜截面抗裂验算时,应考虑预应力钢筋在其预应力传递长度1tr范围内实际应力值的变化。预应力钢筋的实际应力按线性规律增大,在构件端部取为零,在其预应力传递长度的末端取有效预应力值σpe(图8.1.8),预应力钢筋的预应力传递长度1tr应按本规范第6.1.9条确定。

受弯构件挠度验算

第8.2.1条钢筋混凝土和预应力混凝土受弯构件在正常使用极限状态下的挠度,可根据构件的刚度用结构力学方法计算。

在等截面构件中,可假定各同号弯矩区段内的刚度相等,并取用该区段内最大弯矩处的刚度。当计算跨度内的支座截面刚度不大于跨中截面刚度的两倍或不小于跨中截面刚度的二分之一时,该跨也可按等刚度构件进行计算,其构件刚度可取跨中最大弯矩截面的刚度。

受弯构件的挠度应按荷载效应标准组合并考虑荷载长期作用影响的刚度B进行计

算,所求得的挠度计算值不应超过本规范表3.3.2规定的限值。

第8.2.2条矩形、T形、倒T形和I形截面受弯构件的刚度B,可按下列公式计算:

(8.2.2)

式中

M k--按荷载效应的标准组合计算的弯矩,取计算区段内的最大弯矩值;

M q--按荷载效应的准永久组合计算的弯矩,取计算区段内的最大弯矩值;

B s--荷载效应的标准组合作用下受弯构件的短期刚度,按本规范第8.2.3条的公式计算;

θ--考虑荷载长期作用对挠度增大的影响系数,按本规范第8.2.5条取用。

第8.2.3条在荷载效应的标准组合作用下,受弯构件的短期刚度B s可按下列公式计算:

1钢筋混凝土受弯构件

(8.2.3-1)

2预应力混凝土受弯构件

1)要求不出现裂缝的构件

B s=0.85E c I0(8.2.3-2)

2)允许出现裂缝的构件

(8.2.3-3)

k cr=M cr/M k(8.2.3-4) ω=(1.0+0.21/αEρ)(1+0.45γf)-0.7 (8.2.3-5)

M cr=(σpc+γf tk)W0(8.2.3-6)

γf=(b f-b)h f/bh0(8.2.3-7)

式中

ψ--裂缝间纵向受拉钢筋应变不均匀系数,按本规范第8.1.2条确定;

αE--钢筋弹性模量与混凝土弹性模量的比值:αE=E s/E c;

ρ--纵向受拉钢筋配筋率:对钢筋混凝土受弯构件,取ρ=A s/(bh0);对预应力混凝土受弯构件,取ρ=(A p+A s)/(bh0);

I0--换算截面惯性矩;

γf--受拉翼缘截面面积与腹板有效截面面积的比值;

b f、h f--受拉区翼缘的宽度、高度;

K cr--预应力混凝土受弯构件正截面的开裂弯矩M cr与弯矩M k的比值,当k cr>1.0时,取k cr=1.0;

σpc--扣除全部预应力损失后,由预加力在抗裂验算边缘产生的混凝土预压应力;γ--混凝土构件的截面抵抗矩塑性影响系数,按本规范第8.2.4条确定。

注:对预压时预拉区出现裂缝的构件,B s应降低10%.

第8.2.4条混凝土构件的截面抵抗矩塑性影响系数γ可按下列公式计算:

γ=(0.7+120/h)γm(8.2.4)

式中

γm--混凝土构件的截面抵抗矩塑性影响系数基本值,可按正截面应变保持平面的假定,并取受拉区混凝土应力图形为梯形、受拉边缘混凝土极限拉应变为2f tk/E c确定;对常用的截面形状,γm值可按表8.2.4取用;

h--截面高度(mm):当h<400时,取h=400;当h>1600时,取h=1600;对圆形、环形截面,取h=2r,此处,r为圆形截面半径或环形截面的外环半径。

截面抵抗矩塑性影响系数基本值γm表8.2.4

第8.2.5条考虑荷载长期作用对挠度增大的影响系数θ可按下列规定取用: 1钢筋混凝土受弯构件

当ρ'=0时,取θ=2.0;当ρ'=ρ时,取θ=1.6;当ρ'为中间数值时,θ按线性内插法取用。此处,ρ'=A's/(bh0),ρ=A s/(bh0).

对翼缘位于受拉区的倒T形截面,θ应增加20%.

2预应力混凝土受弯构件,取θ=2.0。

第8.2.6条预应力混凝土受弯构件在使用阶段的预加力反拱值,可用结构力学方法按刚度E c I0进行计算,并应考虑预压应力长期作用的影响,将计算求得的预加力反拱值乘以增大系数2.0;在计算中,预应力钢筋的应力应扣除全部预应力损失。注:1对重要的或特殊的预应力混凝土受弯构件的长期反拱值,可根据专门的试验分析确定或采用合理的收缩、徐变计算方法经分析确定;

2对恒载较小的构件,应考虑反拱过大对使用的不利影响。

https://www.doczj.com/doc/6f10345695.html,

理正验算重力式挡土墙的设计结果

理正验算 重力式挡土墙验算[执行标准:公路] 计算项目:重力式挡土墙 1 计算时间:2013-12-23 23:21:54 星期一 ------------------------------------------------------------------------ 原始条件: 墙身尺寸: 墙身高: 5.000(m) 墙顶宽: 1.500(m) 面坡倾斜坡度: 1:0.250 背坡倾斜坡度: 1:-0.250 采用1个扩展墙址台阶: 墙趾台阶b1: 0.300(m) 墙趾台阶h1: 0.750(m) 墙趾台阶与墙面坡坡度相同 墙踵台阶b3: 0.500(m) 墙踵台阶h3: 0.750(m) 墙底倾斜坡率: 0.200:1 物理参数: 圬工砌体容重: 20.123(kN/m3) 圬工之间摩擦系数: 0.700 地基土摩擦系数: 0.800 墙身砌体容许压应力: 800.000(kPa) 墙身砌体容许弯曲拉应力: 110.000(kPa) 墙身砌体容许剪应力: 80.000(kPa) 材料抗压极限强度: 2.500(MPa) 材料抗力分项系数: 2.310 系数αs: 0.0020 挡土墙类型: 一般挡土墙 墙后填土内摩擦角: 35.000(度) 墙后填土粘聚力: 0.000(kPa) 墙后填土容重: 19.000(kN/m3) 墙背与墙后填土摩擦角: 17.500(度)

地基土容重: 18.000(kN/m3) 修正后地基承载力特征值: 423.000(kPa) 地基承载力特征值提高系数: 墙趾值提高系数: 1.200 墙踵值提高系数: 1.300 平均值提高系数: 1.000 墙底摩擦系数: 0.400 地基土类型: 土质地基 地基土内摩擦角: 30.000(度) 土压力计算方法: 库仑 坡线土柱: 坡面线段数: 1 折线序号水平投影长(m) 竖向投影长(m) 换算土柱数 1 10.000 0.000 1 第1个: 定位距离0.000(m) 公路-I级 作用于墙上的附加集中荷载数: 1 (作用点坐标相对于墙左上角点) 荷载号 X Y P 作用角是否为被动土压力 (m) (m) (kN/m) (度) 1 0.200 0.000 7.10 2 270.000 ㄨ 坡面起始距离: 0.000(m) 地面横坡角度: 20.000(度) 填土对横坡面的摩擦角: 35.000(度) 墙顶标高: 0.000(m) 挡墙分段长度: 2.500(m) ===================================================================== 第 1 种情况: 组合1 ============================================= 组合系数: 1.000 1. 挡土墙结构重力分项系数 = 1.000 √ 2. 墙顶上的有效永久荷载分项系数 = 1.000 √ 3. 墙顶与第二破裂面间有效荷载分项系数 = 1.000 √ 4. 填土侧压力分项系数 = 1.000 √ 5. 车辆荷载引起的土侧压力分项系数 = 1.000 √ 6. 附加集中力分项系数 = 1.000 √ ============================================= [土压力计算] 计算高度为 5.343(m)处的库仑主动土压力 无荷载时的破裂角 = 36.108(度) 公路-I级 路基面总宽= 10.000(m), 路肩宽=0.000(m) 安全距离=0.500(m) 单车车辆外侧车轮中心到车辆边缘距离= 0.350(m), 车与车之间距离=0.600(m)

挡土墙稳定性验算

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 挡土墙稳定性验算 中铁五局沪昆铁路客运专线云南段(TJ1 标)项目经理部临建挡土墙类型的确定及稳定性验算一、挡土墙类型选择从经济使用的角度出发,结合当地的实际情况,初步确定用于本施工管段内的临建及便道挡土墙类型为石砌重力式挡土墙。 其特点是○依靠墙身自重 1 抵抗土压力的作用;○形式简单,取材容易,施工简易。 2 挡墙根据墙背的倾斜方向,墙身断面形式可分为仰斜、垂直、俯斜、凸形折线和衡重式几种。 在其他条件相同时,仰斜墙背所承受的土压力比俯斜式小,故其墙身断面亦较俯斜墙背经济。 同时,由于仰斜式墙背的倾斜方向与开挖面边坡方向一致,故开挖量和回填量均比俯斜式墙背小。 综合考虑,在此确定挡墙类型为重力式(仰斜式)挡土墙。 其墙身断面形式如下图所示:1:m1:m1:m1:m重力式挡土墙断面图重力式挡土墙断面图(扩大基础)1:m图中,m=n,且 m 值宜为0.05~0.30,H=2.0~6.0m,B≥0.5m 当地基承载力不足且墙趾处地形平坦时,为减小地基应力和增加抗倾覆稳定性,常采用扩基础。 扩大基础是将墙趾或墙蹱部分加宽成台阶,也可以同时将两侧加宽,以在、增大承压面积,减小基底压力。 台阶宽度一般不小于 0.2m。 1/ 8

台阶高度按加宽部分的1

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 抗剪、抗弯和基础材料的扩散角要求确定,高宽比可采用 3:2 或2:1。 挡墙基础埋臵深度:为保证挡土墙的稳定性,必须根据地基的条件,将挡土墙基础埋入地面以下适当深度。 基础埋臵深度需满足:○设臵在土质地基 1 上的挡墙,基底埋臵深度一般应在天然地面以下 1.0m;受水冲刷时,应在冲刷线以下1.0m。 ○ 设臵在石质地基上的挡土墙,应清除表面风化层,当风化层 2 厚难于清除时,可根据风化程度及允许地基承载力,将基础埋臵在风化层中,并保证有一定的襟边宽度。 二、挡土墙稳定性验算挡土墙的设计方法有容许应力法和极限状态法两种。 容许应力法是把结构材料视为理想的弹性体,在荷载的作用下产生的应力和应变不超过规定的容许值。 极限状态法是根据结构在荷载作用下的工作特征,在容许应力法基础上发展形成的一种方法。 但由于极限状态法在工程实践中的应用尚不充分,目前挡墙的设计仍按容许应力法。 本路段内表层土体大部分属于西南地区碳酸盐类岩层的残积红土,参照《公路桥涵地基与基础设计规范》(JTJ 024-85)第 2.1.2 条和第 2.1.3 条的相关规定,地基容许承载力 [? 0 ] 取值如下表: 3/ 8

极限状态法定义

极限状态法定义 、极限状态设计法 limit state design method 当以整个结构或结构的一部分超过某一特定状态就不能满足设计规定的某一功能要求,则此特定状态称为该功能的极限状态,按此状态进行设计的方法称极限状态设计法。它是针对破坏强度设计法的缺点而改进的工程结构设计法。分为半概率极限状态设计法和概率极限状态设计法。 半概率极限状态设计法将工程结构的极限状态分为承载能力极限状态、变形极限状态和裂缝极限状态三类(也可将后两者归并为一类),并以荷载系数、材料强度系数和工作条件系数代替单一的安全系数。对荷载或荷载效应和材料强度的标准值分别以数理统计方法取值,但不考虑荷载效应和材料抗力的联合概率分布和结构的失效概率。 概率极限状态设计法将工程结构的极限状态分为承载能力极限状态和正常使用极限状态两大类。按照各种结构的特点和使用要求,给出极限状态方程和具体的限值,作为结构设计的依据。用结构的失效概率或可靠指标度量结构可靠度,在结构极限状态方程和结构可靠度之间以概率理论建立关系。这种设计方法即为基于概率的极限状态设计法,简称为概率极限状态设计法。其设计式是用荷载或荷载效应、材料性能和几何参数的标准值附以各种分项系数,再加上结构重要性系数来表达。对承载能力极限状态采用荷载效应的基本组合和偶然组合进行设计,对正常使用极限状态按荷载的短期效应组合和长期效应组合进行设计。

2、许应力设计法 allowable stress design method 以结构构件的计算应力不大于有关规范所给定的材料容许应力[]的原则来进行设计的方法。一般的设计表达式为 [] 结构构件的计算应力按荷载标准值以线性弹性理论计算;容许应力[]由规定的材料弹性极限(或极限强度、流限)除以大于1的单一安全系数而得。 容许应力设计法以线性弹性理论为基础,以构件危险截面的某一点或某一局部的计算应力小于或等于材料的容许应力为准则。在应力分布不均匀的情况下,如受弯构件、受扭构件或静不定结构,用这种设计方法比较保守。 容许应力设计应用简便,是工程结构中的一种传统设计方法,目前在公路、铁路工程设计中仍在应用。它的主要缺点是由于单一安全系数是一个笼统的经验系数,因之给定的容许应力不能保证各种结构具有比较一致的安全水平,也未考虑荷载增大的不同比率或具有异号荷载效应情况对结构安全的影响。 我国公路使用极限状态设计法,铁路仍使用容许应力设计法,但公路中使用的分项系数并不是完全利用概率理论计算可靠度得来的,而是在容许应力基础上,通过经验得来的,所以有披着极限外衣的容许应力之嫌。

挡土墙计算要点

关键词:山区公路挡土墙设计土压力库伦理论稳定截面强度措施 1 前言 公路挡土墙是用来支承路基填土或山坡土体,防止填土或土体变形失稳的一种构造物。在路基工程中,挡土墙可用以稳定路堤和路堑边坡,减少土石方工程量和占地面积,防止水流冲刷路基,并经常用于整治坍方、滑坡等路基病害。 挡土墙的形式多种多样,按其结构特点,可分为:石砌重力式、石砌衡重式、加筋土轻型式、砼半重力式、钢筋砼悬臂式和扶壁式、柱板式、锚杆式、锚定板式及垛式等类型;按其中路基横断面上的位置,又可分:路肩墙、路堤墙及路堑墙;按所处的环境条件,又可分为:一般地区挡墙、浸水地区挡土墙及地震地区挡土墙。考虑挡土墙设计方案时,应与其他工程方案进行技术经济比较,分析其技术的可行性、可靠性及经济的合理性,然后才确定设计方案,并根据实际情况进行挡土墙的选型。 在山区公路中,由于地形条件更为复杂,地势更为陡峭,因此,挡土墙的应用更为广泛。近几年来,笔者参加了二十多段、共三百多公里的山区公路(二、三级)的设计,主要负责路基防护工程,特别是挡土墙的设计,对山区公路挡土墙的设计积累了一定的经验与体会,在此提出,仅供同类工程设计时参考。 2 挡土墙设计的基础资料及设计参数 2.1 基础资料 挡土墙设计时,必须具备以下资料:路线平面图、纵断面图、横断面图,地质资料(包括工程地质勘察报告、工程物探报告),地震勘探报告,水文资料,总体设计资料及构造物一览表等。 2.2 设计参数的选取 2.2.1 墙背填料的物理力学性质对于山岭重丘二、三级公路的挡土墙设计,当缺乏试验数据时,填料的计算内摩擦角及容重可参照表1及表2选用: 表1 填料内摩擦角ψ参考值 土的种类 块石 大卵石、碎石类土

结构按极限状态设计法设计原则

第二章 结构按极限状态法设计原则 (1)经验承载能力法; (2)容许应力法:以弹性理论为基础的,要求[]σσ≤max , 其中[]n s /σσ=,n 为安全系数。 (3)破坏荷载法:考虑了材料塑性要求:[]P P ≤,其中 []n P P s /=,n 由经验确定。 (4)半经验、半概率极限状态法:分项安全系数,主要由 概率统计确定,不足的部分由经验确定。 (5)近似概率法:对作用的大小、结构或构件或截面抗力的“可靠概率”作出较为近似的相对估计 (6)全概率法:对影响结构可靠度的各种因素用随机变量 概率模型来描述,并用随机过程概率模型去描述,在对整个结构体系进行精确分析的基础上,以结构的失效概率作为结构可靠度的直接度量。 §2-1 极限状态法设计的基本概念 一、结构的功能要求 结构可靠性(度)———结构在规定的时间内,在规定的条件下,完成预定预定功能的能力(概率) 规定的时间——分析结构可靠度时考虑各项基本变量与 时间关系所取用的设计基准期 规定的条件——设计时规定的正常设计、施工和使用的条件,既不考虑认为过失 概率预定功能: (1) 能承受在正常施工和正常使用时可能出现的各种作用 —————安全性 在偶然作用发生时或发生后,结构能保持必要的整体稳定性(不发生倒塌)——安全性 偶然作用—如超过设计烈度的地震、爆炸、撞击、火灾等

必要的整体稳定性——在偶然作用发生时或发生后,仅发生局部损坏而不致连续倒塌 (2)在正常使用时应具有良好的工作性能——适用性如:不发生影响正常使用的过大变形或局部损坏(3)在正常维护条件下,具有足够的耐久性——耐久性耐久性——结构在化学的、生物的或其他不利因素 的作用下,在预定期限内,其材料性能 的恶化不导致结构出现不可接受的失 效概率 如:不发生由于保护层碳化或裂缝过宽,导致钢筋锈蚀。安全性、适用性、耐久性———三者总称为结构的可靠性二、极限状态 1.极限状态的定义 整个结构或结构的一部分超过某一特定状态而不能满足设计规定的某一功能要求时,则此特定状态称为——该功能的极限状态。 2.极限状态的分类 国际上一般将结构的极限状态分为三类: (1)承载能力极限状态———结构或构件达到最大承载力或不适于继续承载的变形 ①整个结构或结构的一部分作为刚体失去平衡(如滑动、倾覆等)——刚体失去平衡 ②结构构件或连接处因超过材料强度而破坏——强度破坏 ③结构转变成机动体系——————机动体系 ④结构或构件丧失稳定———失稳 ⑤由于材料的塑性或徐变变形过大,或由于截面开裂而引起过大的几何变形等,致使结构或结构不再能继续承载和使用———————变形过大

重力式挡土墙设计示例

路基与路面工程课程设计任务书 题目: 重力式挡土墙设计 (一)初始条件: (1)浆砌片石重力式仰斜路堤墙,墙顶填土边坡1:1.5,墙身纵向分段长度为10m ;路 基宽度26m ,路肩宽度3.0m ; (2)基底倾斜角0α:tan 0α=0.190,取汽车荷载边缘距路肩边缘d =0.5m ; (3)设计车辆荷载标准值按公路-I 级汽车荷载采用,即相当于汽车?超20级、挂车 ?120(验算荷载); (4)墙后填料砂性土容重γ=183 /m kN ,填料与墙背的外摩擦角τ=0.5φ;粘性土地基 与浆砌片石基底的摩擦系数μ=0.30,地基容许承载力[0σ]=250a kP ; (5)墙身采用 2.5号砂浆砌25号片石,圬工容重k γ=223/m kN ,容许压应力a a kP 600][=σ,容许剪应力a j kP 100][][==στ,容许拉应力a L kP 60][=σ; 墙后砂性土填料的内摩擦角φ: 34° 墙面与墙背平行,墙背仰斜坡度(1:n ): 1:0.25 墙高H : 7m 墙顶填土高a : 3.0m (二)要求完成的主要任务: 按《公路路基设计规范》(JTG D30-2004)“5.4 挡土墙”一节,采用极限状态设计法进 行设计: (1)车辆荷载换算; (2)计算墙后主动土压力a E 及其作用点位置; (3)设计挡土墙截面,墙顶宽度和基础埋置深度应符合规范要求。进行抗滑动稳定性 验算及抗倾覆稳定性验算; (4)基础稳定性验算与地基承载力验算; (5)挡土墙正截面强度及抗剪强度验算。

重力式挡土墙设计 1 设计参数 挡土墙墙高H=7m ,取基础埋置深度D=1.5m ,挡土墙纵向分段长度取L=10m ; 路基宽度26m ,路肩宽度3.0m ; 墙面与墙背平行,墙背仰斜,仰斜坡度1:0.25,α=-14.03°,墙底(基 底)倾斜度tan 0α=0.190,倾斜角0α=10.76°; 墙顶填土高度a =3.0m ,填土边坡坡度1:1.5,β=arctan (1.5)1-=33.69°, 汽车荷载边缘距路肩边缘d =0.5m 墙后填土砂性土内摩擦角φ=?34,填土与墙背外摩擦角δ=φ/2=?17,填 土容重γ=18kN/m 3 ;粘性土地基与浆砌片石基底的摩擦系数μ=0.30; 墙身采用2.5号砂浆砌25号片石,墙身砌体容重 k γ=22kN/m 3,砌体容许压应力[ a σ]=600kPa,砌体容许剪应力[τ]=100kPa,砌体容许拉应力[wl σ]=60kPa ; 地基容许承载力[0σ]=250kPa 。 2 车辆荷载换算 0.78m 3 主动土压力计算 3.1 计算破裂角θ ===18 140γq h

建筑结构应按承载能力极限状态和正常使用极限状态设计

第一章概述 建筑结构应按承载能力极限状态和正常使用极限状态设计。前者指结构或构件达到最大承载力或达到不适于继续承载的变形时的极限状态;后者为结构或构件达到正常使用的某项规定限值时的极限状态[1]。钢结构可能出现的承载能力极限状态有:①结构构件或连接因材料强度被超过而破坏;②结构转变为机动体系;③整个结构或其中一部分作为刚体失去平衡而倾覆;④结构或构件丧失稳定;⑤结构出现过度塑性变形,不适于继续承载;⑥在重复荷载下构件疲劳断裂。其中稳定问题是钢结构的突出问题,在各种类型的钢结构中,都可能遇到稳定问题,因稳定问题处理不利造成的事故也时有发生。 1.1钢结构的失稳破坏 钢结构因其优良的性能被广泛地应用于大跨度结构、重型厂房、高层建筑、高耸构筑物、轻型钢结构和桥梁结构等。如果钢结构发生事故则会造成很大损失。 1907年,加拿大圣劳伦斯河上的魁北克桥,在用悬臂法架设桥的中跨桥架时,由于悬臂的受压下弦失稳,导致桥架倒塌,9000t钢结构变成一堆废铁,桥上施工人员75人罹难。大跨度箱形截面钢桥在1970年前后曾出现多次事故[2]。 美国哈特福德市(Hartford City)的一座体育馆网架屋盖,平面尺寸92m×110m,该体育馆交付使用后,于1987年1月18日夜突然坍塌[3]。由于网架杆件采用了4个等肢角钢组成的十字形截面,其抗扭刚度较差;加之为压杆设置的支撑杆有偏心,不能起到预期的减少计算长度的作用,导致网架破坏[4]。20世纪80年代,在我国也发生了数起因钢构件失稳而导致的事故[5]。 科纳科夫和马霍夫曾分析前苏联1951—1977年期间所发生的59起重大钢结构事故,其中17起事故是由于结构的整体或局部失稳造成的。如原古比雪夫列宁冶金厂锻压车间在1957年末,7榀钢屋架因压杆提前屈曲,连同1200 m2屋盖突然塌落。 高层建筑钢结构在地震中因失稳而破坏也不乏其例。1985年9月19日,墨西哥城湖泊沉淀区发生8.1级强震,持时长达180s,只隔36h又发生一次7.5级强余震。震后调查表明,位于墨西哥城中心区的Pino Suarez综合楼第4层有3根钢柱严重屈曲(失稳),横向X形支撑交叉点的连接板屈曲,纵向桁架梁腹杆屈曲破坏[6]。1994年发生在美国加利福尼亚州Northridge的地震震害表明,该地区有超过100座钢框架发生了梁柱节点破坏[7],对位于Woodland Hills地区的一座17层钢框架观察后发现节点破坏很严重[8],竖向支撑的整体失稳和局部失稳现象明显。1995年发生在日本Hyogoken-Nanbu的强烈地震中,钢结构发生的典型破坏主要有局部屈曲、脆性断裂和低周疲劳破坏[9]。 对结构构件,强度计算是基本要求,但是对钢结构构件,稳定计算比强度计算更为重要。强度问题与稳定问题虽然均属第一极限状态问题,但两者之间概念不同。强度问题关注在结构构件截面上产生的最大内力或最大应力是否达到该截面的承载力或材料的强度,因此,强度问题是应力问题;而稳定问题是要找出作用与结构内部抵抗力之间的不稳定平衡状态,即变形开始急剧增长的状态,属于变形问题。稳定问题有如下几个特点: (1)稳定问题采用二阶分析。以未变形的结构来分析它的平衡,不考虑变形对作用效应的影响称为一阶分析(FOA—First Order Analysis);针对已变形的结构来分析它的平衡,则是二阶分析(SOA—Second Order Analysis)。应力问题通常采用一阶分析,也称线性分析;稳定问题原则上均采用二阶分析,也称几何非线性分析。 (2)不能应用叠加原理。应用叠加原理应满足两个条件:①材料符合虎克定律,即应力与应变成正比;②结构处于小变形状态,可用一阶分析进行计算。弹性稳定问题不满足第二个条件,即对二阶分析不能用叠加原理;非弹性稳定计算则两个条件均不满足。因此,叠加原理不适用于稳定问题。 (3)稳定问题不必区分静定和超静定结构。对应力问题,静定和超静定结构内力分析方法

理正挡土墙设计详解

第一章功能概述 挡土墙是岩土工程中经常遇到的土工构筑物之一。为了满足工程技术人员的需要,理正开发了本挡土墙软件。下面介绍挡土墙软件的主要功能: ⑴包括13种类型挡土墙――重力式、衡重式、加筋土式、半重力式、悬臂式、扶壁式、桩板式、锚杆式、锚定板式、垂直预应力锚杆式、装配式悬臂、装配式扶壁、卸荷板式; ⑵参照公路、铁路、水利、市政、工民建等行业的规范及标准,适应各个行业的要求;可进行公路、铁路、水利、水运、矿山、市政、工民建等行业挡土墙的设计。 ⑶适用的地区有:一般地区、浸水地区、抗震地区、抗震浸水地区; ⑷挡土墙基础的形式有:天然地基、钢筋砼底板、台阶式、换填土式、锚桩式; ⑸挡土墙计算中关键点之一是土压力的计算。理正岩土软件依据库仑土压力理论,采用优化的数值扫描法,对不同的边界条件,均可快速、确定地计算其土体破坏楔形体的第一、第二破裂面角度。避免公式方法对边界条件有限值的弊病。尤其是衡重式挡土墙下墙土压力的计算,过去有延长墙背法、修正延长墙背法及等效荷载法等,在理论上均有不合理的一面。理正岩土软件综合考虑分析上、下墙的土压力,接力运行,得到合理的上、下墙的土压力。保证后续计算结果的合理性; ⑹除土压力外,还可考虑地震作用、外加荷载、水等对挡土墙设计、验算的影响; ⑺计算内容完善――土压力、挡土墙的抗滑移、抗倾覆、地基强

度验算及墙身强度的验算等一起呵成。且可以生成图文并茂的计算书,大量节省设计人员的劳动强度。

1第二章快速操作指南 1.1操作流程 图2.1-1 操作流程 1.2快速操作指南 1.2.1选择工作路径 图2.2-1 指定工作路径 注意:此处指定的工作路径是所有岩土模块的工作路径。进入某一计算模块后,还可以通过按钮【选工程】重新指定此模块的工作路径。

最新21结构按极限状态设计法设计原则汇总

21结构按极限状态设计法设计原则

第二章 结构按极限状态法设计原则 (1)经验承载能力法; (2)容许应力法:以弹性理论为基础的,要求[]σσ≤max , 其中[]n s /σσ=,n 为安全系数。 (3)破坏荷载法:考虑了材料塑性要求:[]P P ≤,其中 []n P P s /=,n 由经验确定。 (4)半经验、半概率极限状态法:分项安全系数,主要 由概率统计确定,不足的部分由经验确定。 (5)近似概率法:对作用的大小、结构或构件或截面抗 力的“可靠概率”作出较为近似的相对估计 (6)全概率法:对影响结构可靠度的各种因素用随机变 量概率模型来描述,并用随机过程概率模型去描述, 在对整个结构体系进行精确分析的基础上,以结构的 失效概率作为结构可靠度的直接度量。 §2-1 极限状态法设计的基本概念 一、结构的功能要求 结构可靠性(度)———结构在规定的时间内,在规定的条件下,完成预定预定功能的能力(概率) 规定的时间——分析结构可靠度时考虑各项基本变量与 时间关系所取用的设计基准期 规定的条件——设计时规定的正常设计、施工和使用的条件,既不考虑认为过失 概率预定功能: (1) 能承受在正常施工和正常使用时可能出现的各种作用 —————安全性 在偶然作用发生时或发生后,结构能保持必要的整体稳定性(不发生倒塌)——安全性 偶然作用—如超过设计烈度的地震、爆炸、撞击、火灾等

必要的整体稳定性——在偶然作用发生时或发生后,仅发生局部损坏而不致连续倒塌 (2)在正常使用时应具有良好的工作性能——适用性如:不发生影响正常使用的过大变形或局部损坏 (3)在正常维护条件下,具有足够的耐久性——耐久性 耐久性——结构在化学的、生物的或其他不利因 素的作用下,在预定期限内,其材料 性能的恶化不导致结构出现不可接受 的失效概率 如:不发生由于保护层碳化或裂缝过宽,导致钢筋锈蚀。安全性、适用性、耐久性———三者总称为结构的可靠性二、极限状态 1.极限状态的定义 整个结构或结构的一部分超过某一特定状态而不能满足设计规定的某一功能要求时,则此特定状态称为——该功能的极限状态。 2.极限状态的分类 国际上一般将结构的极限状态分为三类: (1)承载能力极限状态———结构或构件达到最大承载力或不适于继续承载的变形 ①整个结构或结构的一部分作为刚体失去平衡(如滑动、倾覆等)——刚体失去平衡 ②结构构件或连接处因超过材料强度而破坏——强度破坏 ③结构转变成机动体系——————机动体系 ④结构或构件丧失稳定———失稳

五种常见挡土墙的设计计算实例

挡土墙设计实例 挡土墙是指支承路基填土或山坡土体、防止填土或土体变形失稳的构造物。在挡土墙横断面中,与被支承土体直接接触的部位称为墙背;与墙背相对的、临空的部位称为墙面;与地基直接接触的部位称为基地;与基底相对的、墙的顶面称为墙顶;基底的前端称为墙趾;基底的后端称为墙踵。 根据挡土墙的设置位置不同,分为路肩墙、路堤墙、路堑墙和山坡墙等。设置于路堤边坡的挡土墙称为路堤墙;墙顶位于路肩的挡土墙称为路肩墙;设置于路堑边坡的挡土墙称为路堑墙;设置于山坡上,支承山坡上可能坍塌的覆盖层土体或破碎岩层的挡土墙称为山坡墙。 本实例中主要讲述了5种常见挡土墙的设计计算实例。 1、重力式挡土墙 ------------------------------------------------------------------------ 原始条件: 墙身尺寸: 墙身高: 6.500(m) 墙顶宽: 0.660(m)

面坡倾斜坡度: 1:0.250 背坡倾斜坡度: 1:0.200 采用1个扩展墙址台阶: 墙趾台阶b1: 0.300(m) 墙趾台阶h1: 0.500(m) 墙趾台阶与墙面坡坡度相同 墙底倾斜坡率: 0.200:1 物理参数: 圬工砌体容重: 23.000(kN/m3) 圬工之间摩擦系数: 0.400 地基土摩擦系数: 0.500 砌体种类: 片石砌体 砂浆标号: 5 石料强度(MPa): 30 挡土墙类型: 一般挡土墙 墙后填土内摩擦角: 35.000(度) 墙后填土粘聚力: 0.000(kPa) 墙后填土容重: 19.000(kN/m3) 墙背与墙后填土摩擦角: 17.500(度) 地基土容重: 18.000(kN/m3) 修正后地基土容许承载力: 500.000(kPa) 地基土容许承载力提高系数: 墙趾值提高系数: 1.200 墙踵值提高系数: 1.300 平均值提高系数: 1.000 墙底摩擦系数: 0.500 地基土类型: 土质地基 地基土内摩擦角: 30.000(度) 土压力计算方法: 库仑 坡线土柱: 坡面线段数: 2 折线序号水平投影长(m) 竖向投影长(m) 换算土柱数 1 3.000 2.000 0 2 5.000 0.000 0 坡面起始距离: 0.000(m) 地面横坡角度: 20.000(度) 墙顶标高: 0.000(m) 挡墙分段长度: 10.000(m) ===================================================================== 组合1(仅取一种组合计算)

混凝土结构设计规范--正常使用极限状态验算

https://www.doczj.com/doc/6f10345695.html, 正常使用极限状态验算 8.1 裂缝控制验算 第8.1.1条钢筋混凝土和预应力混凝土构件,应根据本规范第3.3.4条的规定,按所处环境类别和结构类别确定相应的裂缝控制等级及最大裂缝宽度限值,并按下列规定进行受拉边缘应力或正截面裂缝宽度验算: 1一级--严格要求不出现裂缝的构件 在荷载效应的标准组合下应符合下列规定: σck-σpc≤0(8.1.1-1) 2二级--一般要求不出现裂缝的构件 在荷载效应的标准组合下应符合下列规定: σck-σpc≤f tk(8.1.1-2) 在荷载效应的准永久组合下宜符合下列规定: σcq-σpc≤0(8.1.1-3) 3三级--允许出现裂缝的构件 按荷载效应的标准组合并考虑长期作用影响计算的最大裂缝宽度,应符合下列规定; ωmax≤ω1im(8.1.1-4) 式中 σck、σcq——荷载效应的标准组合、准永久组合下抗裂验算边缘的混凝土法向应力; σpc——扣除全部预应力损失后在抗裂验算边缘混凝土的预压应力,按本规范公式(6.1.5-1)或公式(6.1.5-4)计算; f tk--混凝土轴心抗拉强度标准值,按本规范表4.1.3采用; ωmax--按荷载效应的标准组合并考虑长期作用影响计算的最大裂缝宽度,按本规范第8.1.2条计算; ω1im--最大裂缝宽度限值,按本规范第3.3.4条采用。 注:对受弯和大偏心受压的预应力混凝土构件,其预拉区在施工阶段出现裂缝的区段,公式(8.1.1-1)至公式(8.1.1-3)中的σpc应乘以系数0.9。 第8.1.2条在矩形、T形、倒T形和I形截面的钢筋混凝土受拉、受弯和偏心受压构件及预应力混凝土轴心受拉和受弯构件中,按荷载效应的标准组合并

容许应力法和极限状态法

、极限状态设计法 limit state design method 当以整个结构或结构的一部分超过某一特定状态就不能满足设计规定的某一功能要求,则此特定状态称为该功能的极限状态,按此状态进行设计的方法称极限状态设计法。它是针对破坏强度设计法的缺点而改进的工程结构设计法。分为半概率极限状态设计法和概率极限状态设计法。 半概率极限状态设计法将工程结构的极限状态分为承载能力极限状态、变形极限状态和裂缝极限状态三类(也可将后两者归并为一类),并以荷载系数、材料强度系数和工作条件系数代替单一的安全系数。对荷载或荷载效应和材料强度的标准值分别以数理统计方法取值,但不考虑荷载效应和材料抗力的联合概率分布和结构的失效概率。 概率极限状态设计法将工程结构的极限状态分为承载能力极限状态和正常使用极限状态两大类。按照各种结构的特点和使用要求,给出极限状态方程和具体的限值,作为结构设计的依据。用结构的失效概率或可靠指标度量结构可靠度,在结构极限状态方程和结构可靠度之间以概率理论建立关系。这种设计方法即为基于概率的极限状态设计法,简称为概率极限状态设计法。其设计式是用荷载或荷载效应、材料性能和几何参数的标准值附以各种分项系数,再加上结构重要性系数来表达。对承载能力极限状态采用荷载效应的基本组合和偶然组合进行设计,对正常使用极限状态按荷载的短期效应组合和长期效应组合进行设计。 2、许应力设计法 allowable stress design method 以结构构件的计算应力σ不大于有关规范所给定的材料容许应力[σ]的原则来进行设计的方法。一般的设计表达式为 σ≤[σ] 结构构件的计算应力σ按荷载标准值以线性弹性理论计算;容许应力[σ]由规定的材料弹性极限(或极限强度、流限)除以大于1的单一安全系数而得。 容许应力设计法以线性弹性理论为基础,以构件危险截面的某一点或某一局部的计算应力小于或等于材料的容许应力为准则。在应力分布不均匀的情况下,如受弯构件、受扭构件或静不定结构,用这种设计方法比较保守。 容许应力设计应用简便,是工程结构中的一种传统设计方法,目前在公路、铁路工程设计中仍在应用。它的主要缺点是由于单一安全系数是一个笼统的经验系数,因之给定的容许应力不能保证各种结构具有比较一致的安全水平,也未考虑荷载增大的不同比率或具有异号荷载效应情况对结构安全的影响。

正常使用极限状态计算

6 +正常使用极限状态计算 6.1 抗裂性验算 6.1.1 正截面抗裂性验算 正截面抗裂性验算以跨中截面受拉边的正应力控制。在荷载短期效应组合作用下应满足: 085.0≤-pc st σ σ 上式中: st σ—荷载短期效应组合作用下,截面受拉边的法向拉应力; () x o o QK K G o x o mK G n x n PK G st y I M M I y M I y M 33 22 211 111/7.0μσ +++ + = 查表=PK G M 12236.58m KN ?,1n I =47040154.19564cm ,=x n y 1132.1121cm =mK G M 1264.53m KN ?,2o I =55811557.40454cm ,=x o y 2123.3379cm = K G M 2803.61m KN ?,3o I =63399576.03934cm ,=x o y 3133.4974cm =QK M 3380.18m KN ?, 1.23871=+μ 代入数据得: MPa st 453.25264.9834.1355.145846 .4749122387 .1/10001371.44197.0100061.8034096 .452509100053.2643557 .356062100058.2236=++=??+?+ ?+ ?= σ pc σ —截面下边缘的有效预压应力。 nx n pn p n p pc y I e N A N + =σ p N — 有效预压力, ()()KN A A N p s s con p pe p 674.5558/1000 5580312.175510.2231395=?--=--==∏ I σ σ σσ 1n A — 净截面面积,2 15826.7850cm A n = 1pn e — 净截面钢束群重心到形心轴的距离,cm e pn 2550.1131=

容许应力法和概率(极限状态)设计法

容许应力法和概率(极限状态)设计法 在钢结构设计中的应用 中铁五局集团公司经营开发部肖炳忠 内容提要 本文简要介绍了容许应力法、破坏阶段法、极限状态法、概率(极限状态)设计法四个结构设计理论,并且列出了我们经常用的容许应力法和概率(极限状态)设计法的实用表达式和参数选用,通过对上述两种方法参数的比较,总结出我们在工程施工中临时结构设计的实用办法和注意事项,以期望提高广大现场施工技术人员的设计水平的目的。 1、前言 我们在钢结构设计中经常用到容许应力法和概率(极限状态)设计法,有些没有经验的技术人员在设计计算中经常将二者混淆,因此有必要将两种设计计算方法进行介绍和比较,供广大技术人员参考。 2、四种结构设计理论简述 2.1、容许应力法 容许应力法将材料视为理想弹性体,用线弹性理论方法,算出结构在标准荷载下的应力,要求任一点的应力,不超过材料的容许应力。材料的容许应力,是由材料的屈服强度,或极限强度除以安全系数而得。 容许应力法的特点是: 简洁实用,K值逐步减小; 对具有塑性性质的材料,无法考虑其塑性阶段继续承载的能力,设计偏于保守; 用K使构件强度有一定的安全储备,但K的取值是经验性的,且对不同材料,K值大并不一定说明安全度就高; 单一K可能还包含了对其它因素(如荷载)的考虑,但其形式不便于对不同的情况分别处理(如恒载、活载)。 2.2、破坏阶段法 设计原则是:结构构件达到破坏阶段时的设计承载力不低于标准荷载产生的构件内力乘以安全系数K。

破坏阶段法的特点是: 以截面内力(而不是应力)为考察对象,考虑了材料的塑性性质及其极限强度; 内力计算多数仍采用线弹性方法,少数采用弹性方法; 仍采用单一的、经验的安全系数。 2.3、极限状态法 极限状态法中将单一的安全系数转化成多个(一般为3个)系数,分别用于考虑荷载、荷载组合和材料等的不定性影响,还在设计参数的取值上引入概率和统计数学的方法(半概率方法)。 极限状态法的特点是: 在可靠度问题的处理上有质的变化。这表现在用多系数取代单一系数,从而避免了单一系数笼统含混的缺点。 继承了容许应力法和破坏阶段法的优点; 在结构分析方面,承载能力状态以塑性理论为基础;正常使用状态以弹性理论为基础; 对于结构可靠度的定义和计算方法还没法给予明确回答。 2.4、概率(极限状态)设计法 该方法的设计准则是:对于规定的极限状态,荷载引起的荷载效应(结构内力)大于抗力(结构承载力)的概率(失效概率)不应超过规定的限值。 概率(极限状态)设计法的特点是: 继承了极限状态设计的概念和方法,但进一步明确提出了结构的功能函数和极限状态方程式,及一套计算可靠指标和推导分项系数的理论和方法; 设计表达式仍可继续采用分项安全系数的形式,以便与以往的设计方法衔接,但其中的系数是以一类结构为对象,根据规定的可靠指标,经概率分析和优化确定的。 3、容许应力法和概率(极限状态)设计法的实用表达式 3.1、容许应力法的实用表达式及容许应力计算规定 1)容许应力法的实用表达式为: σ≤[σ] 式中: σ——结构在标准荷载下的应力;

第六章 钢结构的正常使用极限状态

第6章钢结构的正常使用极限状态 6.1常使用极限状态的特点 正常使用极限状态对应于结构或构件达到正常使用或耐久性能的某项规定限值。《建筑结构可靠度设计统一标准》(GB50068-2001)规定,当结构或构件出现下列状态之一时,即认为超过了正常使用极限状态: 1)影响正常使用或外观的变形; 2)影响正常使用或耐久性能的局部破坏(包括裂缝) 3)影响正常使用或耐久性能的振动 4)影响正常使用或耐久性能的其它特定状态。 正常使用极限状态可以理解为适用性极限状态,常见的适用性问题有以下七类:1)由荷载、温度变化、潮湿、收缩和徐变引起的非结构构件的局部损坏(如顶棚、隔墙、墙、窗); 2)荷载产生的挠度防碍家具或设备(如电梯)的正常使用功能; 3)明显的挠度使居住者感到不安; 4)由剧烈的自然现象(如飓风、龙卷风)造成的非结构构件彻底损坏; 5)结构因时效和服役而退化(如地下停车场结构因防水层破坏而损坏); 6)建筑物因活荷载、风荷载、或地震荷载造成的运动,导致居住者身体或心理上不舒适感; 7)使用荷载下的连续变形(如高强螺栓滑移)。 长期以来,正常使用极限状态不如承载极限状态那样受到重视,认为只不过是适当限制一下挠度和侧移。随着结构材料强度的提高和构件的轻型化(包括围护结构和非承重结构构件),情况已经有所改变,研究工作日趋活跃,包括分析正常使用极限状态的可靠指标取值问题。不过我国的设计规范和规程中仍然只有变形和振动限制两个方面。 6.2拉杆、压杆的刚度要求 1. 轴心受力构件刚度验算 按照结构的使用要求,钢结构的轴心拉杆、轴心压杆以及拉弯构件都不应过分柔弱而应该具有必要的刚度,保证构件不产生过度的变形。这种变形可能因其自重而产生,也可能在运输或安装构件的过程中产生。承受轴线拉力或压力的构件其刚度用长细比控制,即: λmax=(L0/i) max≤[λ] 式中λmax——杆件的最大长细比 L0——杆件的计算长度 I —截面的回转半径

混凝土按近似概率理论的极限状态设计法习题答案

第3章按近似概率理论的极限状态设计法 3.1选择题 1.结构的( D )是:结构在规定的时间内,在规定的条件下,完成预定功能的能力。 A.安全性 B.适用性 C.耐久性 D.可靠性 2.下列情况属于超出正常使用极限状态的情况的是( B )。 A.雨篷倾倒 B.现浇双向板楼面在人行走动中振动较大 C.连续梁中间支座产生塑性铰 D.构件丧失稳定 3.可变荷载中作用时间占设计基准期内总持续时间超过50%的荷载值,称为( D )。 A.荷载设计值 B.荷载标准值 C.荷载频遇值 D.可变荷载准永久值 4.混凝土强度等级C是由立方体抗压强度试验值按下述( B )项原则确定的。 A.取平均值,超值保证率50% B.取标准值,超值保证率95% C.取标准值,超值保证率97.72% D.取标准值,超值保证率85.5% 5.现行混凝土结构设计规范(GB50010—2002)度量混凝土结构可靠性的原则是(D)A.用分项系数,不计失效率 B.用分项系数和结构重要性系数,不计失效率 C.用可靠指标β,不计失效率 D.用β表示,并在形式上采用分项系数和结构重要性系数代替β 6.规范对混凝土结构的目标可靠指标要求为3.7(脆性破坏)和3.2(延性破坏)时,该建筑结构的安全等级属于( C ) A.一级,重要建筑 B.二级,重要建筑 C.二级,一般建筑 D.三级,次要建筑 7.当楼面均布活荷载大于或等于4kN/m2时,取可变荷载分项系数等于(A)A.1.3 B.1.2 C.1.0 D.1.4 问答题 1.结构可靠性的含义是什么?它包括哪些功能要求? 答:结构可靠性是指结构在规定时间(设计基准期)内,在规定条件下(正常设计、正常施工、正常使用和维护)完成预定功能的能力。 它的功能要求为: (1)安全性;(2)适用性;(3)耐久性。 2.结构超过极限状态会产生什么后果?

极限状态设计法简介

极限状态设计法简介 顾迪民 一, 定义 ①极限状态设计法 以相应于结构和构件各种功能要求的极限状态,如承载能力的极限状态和正常使用的极限状态等为依据的设计方法。结构和构件应满足这些极限状态的限制。 ② 许用应力设计法 在规定的使用载荷(标准值)作用下,按线性弹性理论算得的结构或构件中的应力(计算应力)应不大于规范规定的材料许用应力。材料的许用应力由材料的平均极限抗力(屈服点、临界应力和疲劳强度)除以安全系数而得,安全系数可由经验确定。 ③ 概率设计法 以概率理论为基础确定的结构或构件的失效概率)P (f 或可靠概率)1P P )(P (f s s =+来定量地度量结构或构件的可靠性。用此法设计的各类结构或构件具有大体相同的可靠度。 ④ 概率极限状态设计法 在概率设计法基础上,进一步建立结构可靠性指标与极限状态方程之间的数学关系。在设计表达式中采用载荷分项系数,这些分项系数也是根据各载荷变量的统计特征在概率分析的基础上经优选确定的。载荷分项系数的确定有三种水平:其一为部分系数由概率分析确定,部分系数用经验确定,也称半概率极限状态设计法;其二为所有系数均由概率分析确定,但其概率分布曲线一列用正态分布曲线代替,故称近似概率极限状态设计法;其三为全概率极限状态设计法,是发展趋向. 二, 近似概率极限状态设计法 1, 极限状态 承载能力极限状态------静强度,动力强度和稳定等计算. 正常使用极限状态------静,动变形(刚性)和耐久性(疲劳)的计算. 2, 结构可靠度 包括结构安全性,适用性和耐久性.其定义为:在规定时间(寿命)内,规定条件下,完成预定功能的概率. 3, 极限状态方程 0),,(321=???????=n X X X X g Z 式中Xi 是影响结构可靠度的变量。在结构设计中可归纳为二个基本变量R (抗力)和S (载荷效应—内力)。 0),(=-==S R S R g Z R = S ,极限状态;R < S , 失效;R > S ,有效(可靠)。 失效率f P 加可靠率s P 为1。 即:s f P P -=1

正常使用极限状态验算

1.正常使用极限状态验算:抗裂验算裂缝宽度验算变形验算 2.抗弯刚度:截面抗弯刚度的物理意义是使截面产生单位转角所需施加的弯矩它体现了截面抵抗弯曲变形的能力(B是一个随弯矩M增大而减小的变量) 3.裂缝宽度取决于裂缝截面的钢筋应力σs裂缝间距l和裂缝间纵向受拉钢筋应变不均匀系数ψ 4.裂缝控制措施 对轴拉或小偏拉构件及发生裂缝后会产生严重渗漏的构件应进行抗裂度验算 对荷载引起的裂缝规定了最大裂缝宽度限值并进行验算 对其他原因产生的非受力裂缝应采取相应的处理措施 5混凝土结构的耐久性是指结构在指定的工作环境中正常使用和维护条件下随时间变化而仍能满足预定功能要求的能力 单向板肋形结构:当梁格布置使板的长短跨之比b/h>=3时则板上荷载绝大部分沿短跨L1方向传递到次梁上因此可仅考虑板载短跨方向受力故称单向板双向板肋形结构 当梁格布置使板的长短跨之比b/h<=2时板上荷载将沿两个方向传到四边的支承梁上计算式应考虑两个方向受力故称双向板 平截面假定:截面上任一点应变与该点到中和轴的距离成正比及截面上的应变为直线分布 5.可靠性和可靠度结构在规定条件下,在规定的时间内,完成其预定功能的能力称为结构的可靠性. 结构在规定条件下,在规定的时间内,完成其预

定功能的概率称为结构的可靠度. 影响结构可靠度的两大主要因素为:结构上的荷载效应和结构抵抗荷载的能力 最小刚度原则(第八章)同号弯矩区段内弯矩最大截面处的刚度作为该区段梁的刚度,将变刚度梁简化为等刚度梁来计算挠度 界限破坏远端钢筋σs→f y(εs→εy ),同时,近端边缘混凝土εc→εcu 张拉控制力钢筋张拉时所控制达到的最大应力 1.混凝土徐变和钢筋应力松弛混凝土上应力不变, 但其应变随时间延长而增大的现象为混凝土的徐变应力松弛:在钢筋长度保持不变条件下其应力随时间增长而降低的现象 结构的功能函数z=R-S=g(x1,x2,x3....)g(...)由所研究 的结构功能而定如承载力变形或裂缝等,xi为影响该结构功能的各种荷载效应以及材料强度构件的几何尺寸等

相关主题
文本预览
相关文档 最新文档