当前位置:文档之家› 量子力学讲义3-2(最新版-08)

量子力学讲义3-2(最新版-08)

物理化学-高盘良155-158第八章物质运动状态的量子力学描述

第8 章 物质运动状态的量子力学描述 主要公式 自由平动子:能级 22222 22 ,(1,2,3,) 28 t n h n q n ma ma π ===??? h 简并度1 t ω= 刚性转子:能级 2 (1) 2 r J J I ε +h (I为转动惯量) 简并度21 r J ω=+(J=0,1,2,3,…) 三维各向同性谐振子:能级 3 ( 2 r x y z n n n ε=+++hv 简并度 (1)(2) ,() 2 v x y z n n n n n n v ω ++ ==++ = (f为力常数) 分子能量: t r v e n εεεεεε =++++ 分子简并度: t r v e n ωωωωωω = 例题分析 例8.1双原子分子12C16O,其中原子摩尔质量为m(16O )=15.99491g·mol-1,m(12C )=12.00000g·mol-1。 (1)T=298 K ,在a=1.000m范围内平动,请计算n=1及n=2能级的平动能及两能级之间的能量差,各相当于k B T的多少倍。 (2)当发生转动能级跃迁J=0?1,12C16O微波吸收光谱为115271.20MH z,请计算核间距 co r、 转动惯量I几转动能级能量 ,r t ε及 r ε?。

(3)振动激发时,从低分辨的红外吸收光谱,测得,求振动运动的力常数,振动频率,基态和第一激发态的振动能,能级差。 解析:这是从实验数据及量子力学原理去了解粒子的微观运动状态,这也是统计力学的基础。 说明A 代替ε) (2)根据量子力学原理,B 为转动常数 22,,2(1),28e r r C h B I B J B I μγωωπ==+?=61281 1 115271.2(10/1)(1/1)(10/1)2.997925103.84503Z r z z Z MH H MH s H m cm m s cm ω----= ????= 1/2(0)/2 1.92252r r B cm ωω-=?=-= 161216 122-23-123-1 26()()()() (15.9949112.00000)g mol (10kg/g) (15.9949112.00000)g mol 6.02204510mol 1.13851810kg mol m O m C m O m C μ--?=+???=+???=?? 根据 28c h I B π= [ 46 12 2.799310],(/)(/) e cm kg r m μ--?= 461/2 102.799310( ) 1.130910/e r m kg μ--?==? 222 28,12 7,0(1)128.26510J 22242.00910(0,0)r J B r J J h h I I I k T J εεππε--??+?====?=? ???=?==h (3)1/2 1/2 -1212 -1V 10/N m 5.308810cm 2πc /kg f f ωμμ--???? ?= ≥=? ? ? ? ?? ?? 2 26-1-1122142.61 1.13851810N m 1854.5N m 5.308810f --?? =???=? ? ??? 1/2 25V,0 011 3.2371610J 222h f hv επμ-??===? ??? 25,1119.7115102 v hvo J ε-?? =+=? ?? ?

量子力学讲义第二章讲义

第二章 一维势场中的粒子 §2.2 方 势 一、一维运动 当粒子在势场V (x ,y ,z )中运动时,其 Schrodinger 方程为: 22 [(,,)](,,)(,,)2V x y z x y z E x y z m ψψ-?+= 若势可写成: V (x ,y ,z ) = V 1(x ) + V 2(y ) + V 3(z ) 形式, 2212 [()]()()2x d V x X x E X x m dx -+= 2222 [()]()()2y d V y Y y E Y y m dy -+= 2232 [()]()()2z d V z Z z E Z z m dz -+= ψ(x ,y ,z ) = X (x ) Y (y ) Z (z ) ψ1(x ) x y z E E E E =++ 二、一维无限深势阱 0(0)()(0,) x a V x x x a ?<?? 这是定态问题 一维无限深势阱(0~a )的求解 解:(1)列出各势域的 S — 方程 22 2 [()]()()2d V x x E x m dx ψψ-+= 20222 2 2202 22()0202()0I I II II III III d m V E dx d mE dx d m V E dx ψψψψψψ?--=???+=???--=?? 00E V << 0()V →∞ ,令k = )(0>k ,β=方程可简化为:22 2 222 222 000I I II II III III d dx d k dx d dx ψβψψψψβψ?-=????+=???-=??

量子力学第五章习题

第五章 微扰理论 5.1 如果类氢原子的核不是点电荷,而是半径为0r ,电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。 解: 这种分布只对0r r <的区域有影响, 对0r r ≥的区域无影响. 根据题意知 ()()0 ?H U r U r '=- 其中()0U r 是不考虑这种效应的势能分布, 即 ()2004ze U r r πε=- ()U r 为考虑这种效应后的势能分布, 在0r r ≥的区域为 ()2 04ze U r r πε=- 在0r r <的区域, ()U r 可由下式 ()r U r e Edr ∞ =-? 其中电场为 () () 3023300000201 4,443434Ze Ze r r r r r r r E Ze r r r ππεπεππε?=≤?? =? ?>? ? 则有: ()()()() 2 2 3 2 000 22222 2200 033000000 1443848r r r r r r U r e Edr e Edr Ze Ze rdr dr r r Ze Ze Ze r r r r r r r r r πεπεπεπεπε∞ ∞ =--=- - =---=--≤??? ? 因此有微扰哈密顿量为 ()()()() 222 200300 031?220s s Ze r Ze r r r r r H U r U r r r ???--+ ≤? ?'=-=????>? 其中s e =类氢原子基态的一级波函数为 ()( 32 10010000032 02exp 2Zr a R Y Z a Zr a Z e a ψ-==-?=?? 按定态微扰论公式,基态的一级能量修正值为 ()()()0 0*0011 11 100100 3 2222222000000?1 31sin 4422Zr r a s s E H H d Z e Ze Z r d d e r dr a r r r ππψψτ?θθπ -''==??????=--+?? ? ????????? ? ???

原子物理讲义 第五章 多电子原子

第五章 多电子原子:泡利原理(YCS ) §5-1 氦光谱和能级 氦原子是1868年分析日全蚀光谱时发现的,30年后在地球矿物中找到.实验表明,氦及元素周期表第二族元素铍、镁、钙、锶、钡、镭、锌、镉、汞的光谱结构相仿.氦原子光谱的特点(详见P.213氦原子能级图)(氦能谱的以上4个特点分别包含着4个物理概念): 1)明显地分成两套谱线系,左边一套为单层,右边一套多为三层;两套能级间无跃迁,各自内部的跃迁产生了两套独立的光谱.每一套都象碱金属原子光谱一样含有主线系,辅线系和伯格曼系等.但两套线系的构成截然不同. 2)存在几个亚稳态,表明某种选择规则限制了这些态以自发辐射的形式发生衰变; 3)基态01 S 1与第一激发态13 S 2 间能量相差很大,为eV .7719;电离能也是所有元素中最大的,为eV .5824; 4)在三层结构那套能级中没有来自2 (1S)的能级. §5-2 电子组态和原子态 1.电子组态:原子中各电子状态的组合 描述一个电子的状态可用s l m m l n 、、、四个量子数. 考虑电子的自旋-轨道相互作用,s l m m 、不再有确定值,则电子的状态用j j m l n 、、、描述. 氢原子只有一个电子,在不考虑原子核运动时,电子状态就表示原子状态. 对于碱金属原子,理论上可证明原子实的总角动量为0且不易被激发,被激发的只是价电子,可认为价电子的状态就表示碱金属原子状态. 多电子原子则必须考虑电子间的相互作用,原子的状态是价电子运动状态的耦合. 由于轨道运动的能量只取决于量子数l n 、,所以常用nl 来标记电子状态. 例如:氢原子处于基态时,电子处于01=、= l n 的状态,记为s 1;氦原子处于基态时,两个电子都处于s 1态,则用两个电子状态的组合s 1s 1或21s 来表示;若一个原子有 3个电子,其中两个处在0,2==l n 的状态,另一个处在1,2==l n 的状态,则电子 组态为p s 222 . 在给定的电子组态中,各电子的轨道角动量大小是确定的,但其轨道角动量和自旋角动量的方向不确定.因此每一个电子组态 可耦合成若干原子态,由同一电子组态耦合成的不同原子态将且具有不同的能量,因为不同的角动量耦合产生的附加能量不同. 2.价电子间的相互作用 价电子间的相互作用除电子自身的轨道与自旋耦合外,电子间的轨道与轨道、自旋与自旋、轨道与自旋等角动量都要发生耦合作用.如两个价电子间可有6种耦合方式(如图示):),(),(),(),(),(),(126215224113212211s l G s l G s l G s l G s s G l l G 、、、、、. 这6种耦合的强弱不等,一般情况下,65G G 、较弱可不考虑.下面考虑两种极端情况. 1)S L -耦合:21G G 、较43G G 、强得多,将两个轨道角动量和两个自旋角动量分别合 成总轨道角动量L 和总自旋角动量S ,再将L 和S 合成总角动量J .(S L -耦合对于较轻元素 的低激发态成立,适用性较广) 2)j j -耦合:43G G 、较21G G 、强得多,将各个电子的轨道与自旋耦合成各个电子的总 角动量1j 和2j ,再将其耦合成原子的总角动量J .(j j -耦合则较少见,只在较重元素的激发态中出现) 对于多电子耦合的情况可记为:? ??==-==-J j j j l s l s l s j j J L S l l l s s s S L )())()((:),(),,)(,,(:323322113213211 3.S L -耦合的原子态 21l l L +=.L 的大小为: 212121,,1,,)1(l l l l l l L L L L --++=+= 21s s S +=.S 的大小为:???=±=+=0 1,)1(21s s S S S S 原子的总角动量S L J +=,量子数S L S L S L J --++=,,1, 对于具有两个价电子的原子,当L 给定时,对应于0,1==S S 的两种情况,J 的取值分别 为: 1)0=S 时,L J =,表示原子只有一个可能的角动量状态,所以是单态. 2)1=S 时,1,,1-+=L L L J ,所以原子是三重态. 由以上分析知,具有两个价电子的原子都有单态和三重态的能级结构. 例:原子有两个价电子,其角动量状态分别为 2 1 ,2;21,12211= ===s l s l ,用

量子力学知识点小结(良心出品必属精品)

第一章 ⒈玻尔的量子化条件,索末菲的量子化条件。 ⒉黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。 ⒎普朗克量子假说: 表述1:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。 表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:ε=hν。 表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。 ⒏光电效应:光照射到金属上,有电子从金属上逸出的现象。这种电子称之为光电子。 ⒐光电效应有两个突出的特点: ①存在临界频率ν0:只有当光的频率大于一定值v0 时,才有光电子发射出来。若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。 ②光电子的能量只与光的频率有关,与光的强度无关。光的强度只决定光电子数目的多少。 ⒑爱因斯坦光量子假说: 光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出

现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子。爱因斯坦方程 ⒒光电效应机理: 当光射到金属表面上时,能量为 E= h ν 的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。 ⒓解释光电效应的两个典型特点: ①存在临界频率v 0:由上式明显看出,当h ν- W 0 ≤0时,即ν≤ν0 = W 0 / h 时,电子不能脱出金属表面,从而没有光电子产生。 ②光电子动能只决定于光子的频率:上式表明光电子的能量只与光的频率ν有关,而与光的强度无关。 ⒔康普顿效应:高频率的X 射线被轻元素如白蜡、石墨中的电子散射后出现的效应。 ⒕康普顿效应的实验规律: ①散射光中,除了原来X 光的波长λ外,增加了一个新的波长为λ'的X 光,且λ' >λ; ②波长增量Δλ=λ-λ随散射角增大而增大。 ⒖量子现象凡是普朗克常数h 在其中起重要作用的现象 ⒗光具有微粒和波动的双重性质,这种性质称为光的波粒二象性 ⒘与运动粒子相联系的波称为德布罗意波或物质波。 ???? ? ???? ======n k h k n h P h E λππλων2 ,2

量子力学周世勋习题解答第五章范文

第五章习题解 5.1 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。 解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。据题意知 )()(?0 r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 r ze r U 02 4πε- =)( )(r U 为考虑这种效应后的势能分布,在0r r ≥区域, r Ze r U 02 4)(πε-= 在0r r <区域,)(r U 可由下式得出, ?∞ -=r Edr e r U )( ??? ????≥≤=??=)( 4 )( ,4344102 00300330420r r r Ze r r r r Ze r r Ze r E πεπεπππε ??∞ --=0 )(r r r Edr e Edr e r U ?? ∞ - - =00 20 2 3 002 144r r r dr r Ze rdr r Ze πεπε )3(84)(82 203 020*********r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤ ?? ???≥≤+--=-=')( 0 )( 4)3(8)()(?00022 2030020r r r r r Ze r r r Ze r U r U H πεπε 由于0r 很小,所以)(2??022)0(r U H H +?-=<<'μ ,可视为一种微扰,由它引起的一级修正为(基态r a Z e a Z 02/130 3) 0(1)(-=πψ)

量子力学讲义第三章讲义

第三章 力学量用算符表达 §3.1 算符的运算规则 一、算符的定义: 算符代表对波函数进行某种运算或变换的符号。 ?Au v = 表示?把函数u 变成 v , ?就是这种变换的算符。 为强调算符的特点,常常在算符的符号上方加一个“^”号。但在不会引起误解的地方,也常把“^”略去。 二、算符的一般特性 1、线性算符 满足如下运算规律的算符?,称为线性算符 11221122 ???()A c c c A c A ψψψψ+=+ 其中c 1, c 2是任意复常数,ψ1, ψ2是任意两个波函数。 例如:动量算符?p i =-? , 单位算符I 是线性算符。 2、算符相等 若两个算符?、?B 对体系的任何波函数ψ的运算结果都相同,即??A B ψψ=,则算符?和算符?B 相等记为??A B =。 3、算符之和 若两个算符?、?B 对体系的任何波函数ψ有:?????()A B A B C ψψψψ+=+=,则???A B C +=称为算符之和。 ????A B B A +=+,??????()()A B C A B C ++=++ 4、算符之积 算符?与?B 之积,记为??AB ,定义为 ????()()AB A B ψψ=?C ψ= ψ是任意波函数。一般来说算符之积不满足交换律,即????AB BA ≠。 5、对易关系 若????AB BA ≠,则称?与?B 不对易。 若A B B A ????=,则称?与?B 对易。 若算符满足????AB BA =-, 则称?A 和?B 反对易。 例如:算符x , ?x p i x ? =-? 不对易

证明:(1) ?()x xp x i x ψψ?=-? i x x ψ? =-? (2) ?()x p x i x x ψψ?=-? i i x x ψψ?=--? 显然二者结果不相等,所以: ??x x xp p x ≠ ??()x x xp p x i ψψ-= 因为ψ是体系的任意波函数,所以 ??x x xp p x i -= 对易关系 同理可证其它坐标算符与共轭动量满足 ??y y yp p y i -= ,??z z zp p z i -= 但是坐标算符与其非共轭动量对易,各动量之间相互对易。 ??0??0y y z z xp p x xp p x -=??-=?,??0??0x x z z yp p y yp p y -=??-=?,??0??0x x y y zp p z zp p z -=???-=?? ????0x y y x p p p p -=,????0y z z y p p p p -=,????0z x x z p p p p -= ????0xy yx -=,????0y z z y p p p p -=,????0z x x z p p p p -= 写成通式(概括起来): ??x p p x i αββααβδ-= (1) ????0x x x x αββα-= ????0p p p p αββα-= 其中,,,x y z αβ=或1,2,3 量子力学中最基本的对易关系。 注意:当?与?B 对易,?B 与?对易,不能推知?与?对易与否。 6、对易括号(对易式) 为了表述简洁,运算便利和研究量子力学与经典力学的关系,人们定义了对易括号: ??????[,]A B AB BA ≡- 这样一来,坐标和动量的对易关系可改写成如下形式: ?[,]x p i αβαβδ= 不难证明对易括号满足下列代数恒等式: 1) ????[,][,]A B B A =- 2) ???????[,][,][,]A B C A B A C +=+ 3) ?????????[,][,][,]A BC B A C A B C =+ ,?????????[,][,][,]AB C A B C A C B =+,]?,?[]?,?[B A k B k A = 4) ?????????[,[,]][,[,]][,[,]]0A B C B C A C A B ++= ——称为 Jacobi 恒等式。

量子力学曾谨言第八章第九章习题详解

第八章:自旋 [1]在x σ ?表象中,求x σ?的本征态 (解) 设泡利算符2 σ,x σ,的共同本征函数组是: ()z s x 2 1 和()z s x 2 1 - (1) 或者简单地记作α和β,因为这两个波函数并不是x σ ?的本征函数,但它们构成一个完整系,所以任何自旋态都能用这两个本征函数的线性式表示(叠加原理),x σ ?的本征函数可表示: β αχ21c c += (2) 21,c c 待定常数,又设x σ ?的本征值λ,则x σ?的本征方程式是: λχχσ =x ? (3) 将(2)代入(3): ()()βαλβασ 2121?c c c c x +=+ (4) 根据本章问题6(P .264),x σ ?对z σ?表象基矢的运算法则是: βασ =x ? αβσ=x ? 此外又假设x σ?的本征矢(2)是归一花的,将(5)代入(4): βλαλαβ2111c c c c +=+ 比较βα,的系数(这二者线性不相关),再加的归一化条件,有: ) 6()6() 6(12221 1 221c b a c c c c c c ------------------------------------??? ??=+==λλ 前二式得12 =λ,即1=λ,或1-=λ 当时1=λ,代入(6a )得21c c =,再代入(6c),得: δi e c 2 11= δi e c 2 12=

δ 是任意的相位因子。 当时1-=λ,代入(6a )得 21c c -= 代入(6c),得: δi e c 2 11= δi e c 2 12- = 最后得x σ ?的本征函数: )(21βαδ+= i e x 对应本征值1 )(2 2βαδ-= i e x 对应本征值-1 以上是利用寻常的波函数表示法,但在2??σσ x 共同表象中,采用z s 作自变量时,既是坐标表象,同时又是角动量表象。可用矩阵表示算符和本征矢。 ??????=01α ?? ? ???=10β ??????=21c c χ (7) x σ ?的矩阵已证明是 ?? ????=0110?x σ 因此x σ ?的矩阵式本征方程式是: ?? ????=??? ??????? ??21211010c c c c λ (8) 其余步骤与坐标表象的方法相同,x σ?本征矢的矩阵形式是: ??????=1121δi e x ?? ? ???-=1122δi e x [2]在z σ表象中,求n ?σ的本征态,)cos ,sin sin ,cos (sin θ?θ?θn 是) ,(?θ方向的单位矢。 (解) 方法类似前题,设n ?σ算符的本征矢是: βα21c c x += (1)

量子力学曾谨言习题解答第五章

第五章: 对称性及守恒定律 [1]证明力学量A ?(不显含t )的平均值对时间的二次微商为: ]?],?,?[[2 22 H H A A dt d -= (H ?是哈密顿量) (解)根据力学量平均值的时间导数公式,若力学量A ? 不显含t ,有 ]?,?[1H A i dt A d = (1) 将前式对时间求导,将等号右方看成为另一力学量 ]?,?[1H A i 的平均值,则有: ]?],?,?[[1]?],?,?[1 [ 1222 H H A H H A i i dt A d -== (2) 此式遍乘2 即得待证式。 [2]证明,在不连续谱的能量本征态(束缚定态)下,不显含t 的物理量对时间t 的导数的平均值等于零。 (证明)设A ?是个不含t 的物理量,ψ是能量H ?的公立的本征态之一,求A ?在ψ态中的平均值,有: ???= τ τψψ d A A ?* 将此平均值求时间导数,可得以下式(推导见课本§5.1) ???-≡= τ τψψd A H H A i H A i dt A d )????(*1]?,?[1 (1) 今ψ代表H ?的本征态,故ψ满足本征方程式 ψψE H =? (E 为本征值) (2) 又因为H ?是厄密算符,按定义有下式(ψ需要是束缚态,这样下述积公存在) τψψτψψτ d A H d A H ??????=)? (*)?()~ (?* (3) (题中说力学量导数的平均值,与平均值的导数指同一量) (2)(3)代入(1)得:

τψψτψψd A H i d H A i dt A d )? (*)?(1)?(?*1?????? -= ??? ???-= τψψ τψψd A i E d A i E ?**?* 因*E E =,而0=dt A d [3]设粒子的哈密顿量为 )(2??2r V p H +=μ 。 (1) 证明 V r p p r dt d ??-=? μ/)(2 。 (2) 证明:对于定态 V r T ??=2 (证明)(1)z y x p z p y p x p r ??????++=? ,运用力学量平均值导数公式,以及对易算符的公配律: ]?,??[1)??(H p r i p r d t d ?=? )],,(?21,??????[]?,??[2z y x V p p z p y p x H p r z y x +++=?μ )],,()???(21,??????[2 22z y x V p p p p z p y p x z y x z y x +++++=μ )],,(,[21],??????[2 2 2z y x V zp yp xp p p p p z p y p x z y x z y x z y x +++++++=μ (2) 分动量算符仅与一个座标有关,例如x i p x ?? = ,而不同座标的算符相对易,因此(2)式 可简化成: ]?,??[21]?,??[21]?,??[21]?,??[222z z y y x x p p z p p y p p x H p r μ μμ++=? )],,(,??????[z y x V p z p y p x z y x +++ ],??[],??[],??[]?,??[21]?,??[21]?,??[2122 2 V p z V p y V p x p p z p p y p p x z y x z z y y x x ++++ + = μ μ μ (3)

量子力学讲义

量子力学的通俗讲座 一、粒子和波动 我们对粒子和波动的概念来自直接的经验。和粒子有关的经验对象:小到石子大到天上的星星等;和波动有关的经验对象:最常见的例子是水波,还有拨动的琴弦等。但这些还不是物理中所说的模型,物理中所谓粒子和波动是理想化的模型,是我们头脑中抽象的对象。 1.1 粒子的图像 在经典物理中,粒子的概念可进一步抽象为:大小可忽略不计的具有质量的对象,即所谓质点。质量在这里是新概念,我们可将其定义为包含物质量的多少,一个西瓜,比西瓜仔的质量大,因为西瓜里包含的物质的量更大。 为叙述的简介,我们现在可把粒子等同于质点。要描述一个质点的运动状态,我们需要知道其位置和质量(x,m ),这是一个抽象的数学表达。 但我们漏掉了时间,时间也是一个直观的概念,这里我们可把时间描述为一个时钟,我们会发现当指针指到不同位置时,质点的位置可能不同,于是指针的位置就定 义了时刻t 。有了时刻 t ,我们对质点的描述就变成了(x,t,m ),由此可定义速度v ,现在我们对质点运动状态的描述是(x,v,t,m )。 在日常经验中我们还有相互作用或所谓力的概念,我们在地球上拎起不同质量物体时肌肉的紧张程度是不同的,或者说弹簧秤拎起不同质量物体时弹簧的拉伸程度是不同的。 以上我们对质量、时间、力等的定义都是直观的,是可以操作的。按照以上思路进行研究,最终诞生了牛顿的经典力学。这里我们可简单地用两个公式:F=ma (牛顿第二定律) 和 2 GMm F x (万有引力公式) 来代表牛顿力学。前者是质点的运动方程,用数学的语言说是一个关于位置x 的二阶微分方程,所以只需要知道初始时刻t=0时的位置x 和速度v 即可求出以后任意时刻t 质点所处的位置,即x(t),我们称之为轨迹。 需要强调的是一旦我们知道t=0时x 和v 的精确值(没任何误差),x(t)的取值也是精确的,即我们得到是对质点未来演化的精确预测,并且这个求 解对t<0也精确成立,这意味着我们还可精确地反演质点的历史。这些结论都是由数学理论严格保证的,即轨迹是一根理想的线。 经典的多粒子系统

量子力学习题解答-第5章

第五章 全同粒子 本章主要内容概要 1. 全同粒子:质量、电荷、自旋等固有性质完全相同的微观粒子称为全同粒子。在一个量子体系中全同粒子是不可区分的,两全同粒子相互交换不会引起物理性质的改变(全同性原理)。所有的微观粒子可以分为两类:波色子和费米子。所有自旋为 整数倍的粒子称为波色子,而所有自旋为/2 奇数倍的粒子称为费米子。由费米子组成的量子体系,不能有两个或两个以上的费米子处于同一个状态(泡利不相容原理),体系的波函数在交换任意两个费米子时是反对称的。对由波色子组成的量子体系,则不受泡利不相容原理的限制,两个或两个以上的波色子可以处于同一个状态,体系的波函数在交换任意两个波色子时是对称的。 如果体系的波函数可以由归一化的单粒子波函数()i q αφ的积表示,其中i 表示不同的单粒子态,q α表示第α个粒子的量子数(包括空间与自旋),则由N 个费米子组成体系的反对称波函数可以用N 阶行列式表示为 12121212() ()()()()()(,,...,,...,)()()() i i i N j j j N A N k k k N q q q q q q q q q q q q q αφφφφφφΦ= 交换任何两个粒子就是交换行列式中的两列,这使行列式改变符号,即波函数A Φ在交换两粒子时是反对称的。当任两粒子处于相同状态,即行列式中两行相同,行列式为零,表示不能有两个或两个以上的费米子处于同一个状态。 对由N 个波色子组成的体系,体系的对称波函数可以表示为 1212(,,...,,...,)()()...()A N i j k N P q q q q C P q q q αφφφΦ=∑ 其中P 表示N 个粒子在波函数中的某一种排列,P ∑表示对所有可能排列求和,由于波色 子可以处于相同的状态,,,...,i j k 可以相等,C 是归一化常数为求和的项数,,,...,i j k 完全相等时为1 ,全不相等时为1/ 2.交换力:以两粒子体系为例,若体系的波函数可以表示为空间部分和自旋部分之积,对称和反对称的空间波函数为 121212(,)()()()()]a b b a x x x x x x ψψψψψ±=± 这种波函数对称化的要求会使两粒子间出现一种力的作用,称为交换力。对对称空间波函数这个力是吸引力,倾向于把两粒子拉近;对反对称空间波函数,这个力是排斥力,倾向于让两粒子相互远离。固体中属于不同原子的两个电子组成的共价键可以由这种力解释,两电子体系的波函数是反对称的,当两个电子的自旋波函数为反对称的自旋单态时,空间波函数必是对称的,所以这种状态下的两个电子倾向于相互靠近,形成共价键。 3. 元素周期表:原子中一个单粒子态(),,n l m 称之为轨道,因为电子是费米子,受到泡利不相容原理的制约,一个轨道上只能有两个电子(一个自旋向上,一个自旋向下)。当原子处于基态时,电子将从最低能态开始依据洪特定则依次填充。1n =这个壳层能容纳两个电子,2n =壳层能容纳8个,3n =容纳18个,第n 个壳层可以容纳2 2n 个电子。(洪特第一定则:在其它量都相同时,总自旋(S )取最大值的状态的能量最低。第二定则:当

量子力学讲义第五章

第五章 中心力场 §5.1 中心力场中粒子运动的一般性质 一、角动量守恒与径向方程 设质量为μ的粒子在中心力场中运动,则哈密顿量算符表示为: 2??()2p H V r μ=+ 22 ()2V r μ =-?+ , 与经典力学中一样,角动量 l r p =? 也是守恒量,即 ?0l t ?=? ??[,]0l H = 2 22221?()22l H r V r r r r r μμ????=-++ ????? 2,0z l l ??=???? ; 2?,0l H ??=???? ; ( ) 2?,,z H l l 构成力学量完全集,存在共同本征态; 定态薛定谔(能量本征方程):2 22 22 1()22l r V r E r r r r ψψμμ????????-++= ????????? 上式左边第二项称为离心势能,第一项称为径向动能算符。 取ψ为 () 2,,z H l l 共同本征态,即:()()(),,,l lm r R r Y ψθ?θ?= (),lm Y θ?是() 2 ,z l l 共同本征态:0,1,2,...l =,0,1,2,...,m l =±±± 分离变量:()()2222 2120l l l E V l l d d R R R r dr dr r μ-+?? ++-= ??? 径向方程可写为:()()2222 2()120l l l E V r l l dR d R R dr r dr r μ-+?? ++-=???? ,0,1,2,...l = (1) 为求解径向方程,引入变换:() ()l l r R r r χ= ; 径向方程简化为:()()2 222 2()10l l E V r l l d dr r μχχ-+??+-=??? ? (2) 不同的中心力场中粒子的能量本征波函数的差别仅在于径向波函数R l (r )或χl (r ),它们由中心势V (r )的性质决定。一般而言,中心力场中粒子的能级是2l +1重简并的。 在一定边条件下求解径向方程(1)或(2),即可得出能量本征值E 。对于非束缚态,E 是连续变化的。对于束缚态,则E 取离散值。在求解径向方程时,由于束缚态边条件,将出现径向量子数n r ,

量子力学导论第8章答案

第八章 自旋 8.1) 在z σ表象中,求x σ的本征态。 解:在z σ表象中,x σ的矩阵表示为:x σ ??? ? ? ?=0110 设x σ的本征矢(在z σ表象中)为??? ? ??b a ,则有??? ? ??=???? ?????? ??b a b a λ0110 可得a b λ=及b a λ= 1,12±==∴λλ 。 ,1=λ 则; b a = ,1-=λ 则b a -= 利用归一化条件,可求出x σ的两个本征态为 ,1=λ ;1121???? ?? ,1-=λ ??? ? ??-1121 。 8.2) 在z σ表象中,求n ?σ的本征态,()??θ?θcos ,sin sin ,cos sin n 是()?θ,方向的单位矢. 解:在z δ表象中,δ的矩阵表示为 x σ ??? ? ? ?=0110, y σ??? ? ? ?-=00 i i , z σ??? ? ? ?-=1001 (1) 因此, z z y y x x n n n n n σσσσσ++=?= ??? ? ??-=???? ?? -+-=-θθθθ ?? cos sin sin cos i i z y x y x z e e n in n in n n (2) 设n σ的本征函数表示为Φ??? ? ??=b a ,本征值为λ,则本征方程为 ()0=-φλσn ,即 0cos sin sin cos =? ??? ?????? ??----b a e e i i λθθθλ θ? ? (3) 由(3)式的系数行列式0=,可解得1±=λ。 对于1=λ,代回(3)式,可得 x y x y x x i i n in n in n n e e b a --=++==-=--112sin 2cos cos 1sin ?? θθ θθ 归一化本征函数用()?θ,表示,通常取为 ()???? ? ?=? θθ ?θφi e 2sin 2cos ,1或??? ? ? ? ?-222sin 2cos ? ? θθi i e e (4)

量子力学-第四版-卷一-(曾谨言-著)习题答案第5章-1

第五章: 对称性及守恒定律 P248设粒子的哈密顿量为 )(2??2r V p H +=μ 。 (1) 证明 V r p p r dt d ??-=? μ/)(2。 (2) 证明:对于定态 V r T ??=2 (证明)(1)z y x p z p y p x p r ??????++=? ,运用力学量平均值导数公式,以及对易算符的公配律: ]?,??[1)??(H p r i p r dt d ?=? ]?,??[H p r =? =)],z y (2) ?[r ? x x x x p x p p x p p x ?????]?,??[23 2-= x x x x x x p x p p x p p x p p x ???????????22 23-+-= x x x x x p p x p p p x ?]?,?[??]?,?[2+= 222?2??x x x p i p i p i =+= (4) ],?[?????????????],??[V p x p V x V p x p x V V p x V p x x x x x x x =-=-=

x V x i ??=?? (5) 将(4)(5)代入(3),得: }{)???(]?,??[222z V z y V y x V x i p p p i H p r z y x ??+??+??+++=? μ }?{2V r p i ??+= μ 代入(1),证得题给公式: V r p p r dt d ??-=? μ 2?)( (6) 的平均值,按前述习题2的结论,其 则=?p r dt d 由前式 P249 ) (2)库仑场 T V 2-= (3)T V n Cr V n 2,== (解)先证明维里定理:假设粒子所在的势场是直角坐标),,(z y x 的n 次齐次式,则不论n 是正、负数,势场用直角坐标表示的函数,可以表示为以下形式,式中V假定是有理函数(若是无理式,也可展开成级数): ∑=ijk k j i ijk z y x C z y x V ),,( (1)

量子力学讲义第八章

第8章 自 旋 与 全 同 粒 子 Stern-Gerlach 实验中得到了直接证实。 1、Stern-Gerlach (斯特恩-革拉赫)实验 2、自旋的提出 (1)、每个电子具有自旋角动量s (电子本身固有的,而不是自转而产生的),它在空间任何方向上的投影只能取两个数值:2z s =± ; (2)、每个电子具有自旋磁矩s μ ,它和自旋角动量s 的关系是 s e s mc μ=- ,-e 是电子的电荷,m 是电子的质量 自旋磁矩s μ 在空间任意方向上的投影只能取两个数值: 2sz B e mc μμ=± =± 2B e mc μ= 为玻尔磁子 sz z e s mc μ=-,2lz z e l mc μ=- 电子 s l (1) 无经典对应量 有经典对应量 (2) 2 z s =± 22(1)l l l =+ ,z l m = (3) sz z e s mc μ=- 2lz z e l mc μ=- 回转磁比率 实验证明,除电子外,其他微观粒子也都具有自旋。如原子、中子、μ介子的自旋角动量和电子一样(但自旋磁矩不同),π介子、k 介子的自旋角动量为0(但自旋磁矩不为零),以下除有特殊说明外,我们所讲的自旋都是指电子自旋。 §8.1 电子自旋态与自旋算符 一、自旋算符 通常的力学量都可以表示为坐标和动量的函数 ????(,)F F r p = 而自旋角动量则与电子的坐标和动量无关,它是电子内部状态的表征,是描写电子状态的第四个自由度(第四个变量)。 与其他力学量一样,自旋角动量 也是用一个算符描写,记为s 它是角动量,满足同样的角动量对易关系???s s i s ?= 轨道角动量?l 自旋角动量s ???l l i l ?= ???s s i s ?= ???[,]x y z l l i l = ???[,]x y z s s i s = ???[,]y z x l l i l = ???[,]y z x s s i s = ???[,]z x y l l i l = ???[,]z x y s s i s = 2??[,]0i l l = 2??[,]0i s s = 由于自旋角动量s 在空间任意方向上的投影只能取 ±?/2 两个值, 所以

量 子 力 学 习 题 钱

量 子 力 学 习 题 第一章 绪论 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长λm 与温度T 成反比,即 λm T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 1.3 氦原子的动能是E=3kT/2(k 为玻耳兹曼常数),求T =1K 时,氦原子的德布罗意波长。 1.4 利用玻尔-索末菲的量子化条件,求: (1)一维谐振子的能量; (2)在均匀磁场中作圆周运动的电子轨道的可能半径。 已知外磁场H =10特斯拉,玻尔磁子M B =9×10-24焦耳/特斯拉,试计算动能的量子化间隔?E ,并与T =4K 及T =100K 的热运动能量相比较。 1.5 两个光子在一定条件下可以转化为正负电子对。如果两光子的能量相等,问要实现这种转化,光子的波长最大是多少? 第二章 波函数和薛定谔方程 2.1 由下列两定态波函数计算几率流密度: (1) ψ1=e ikr /r , (2) ψ2=e -ikr /r . 从所得结果说明ψ1表示向外传播的球面波,ψ2表示向内(即向原点)传播的球面波。 2.2 一粒子在一维势场 a x a x x x U >≤≤?? ?>=, 0, 0)(0 中运动,求束缚态(0

量子力学讲义第4章

第四章 量子力学的表述形式 (本章对初学者来讲是难点) 表象:量子力学中态和力学量的具体表示形式。 为了便于理解本章内容,我们先进行一下类比: 矢量(欧几里德空间) 量子力学的态(希尔伯特空间) 基矢),,(321e e e ~三维 本征函数,...),...,,(21n ψψψ~无限维 任意矢展开∑=i i i e A A 任意态展开 ∑=n n n a ψψ ),,(z y x e e e ),...)(),...,(),((21x x x n ψψψ 取不同坐标系 ),,(?θe e e r 取不同表象 ),...)(),...,(),((21p C p C p C n ………. ………. 不同坐标之间可以进行变换 不同表象之间可以进行变换 由此可见,可以类似于矢量A ,将量子力学“几何化”→在矢量空间中建立它的一般形式。 为此,我们将 ① 引进量子力学的矢量空间~希尔伯特空间; ② 给出态和力学量算符在该空间的表示; ③ 建立各种不同表示之间的变换关系。 最后介绍一个典型应用(谐振子的粒子数表象)和量子力学的三种绘景。 4.1希尔伯特空间 狄拉克符号 狄拉克符号“ ”~类比: ),,(z y x A A A 欧氏空间的矢量 A →坐标系中的分量 ),,(?θA A A r ………. )(r ψ →表象下的表示 )(p C ……….

引入狄拉克符号的优点:①运算简洁;②勿需采用具体表象讨论。 一、 希尔伯特空间的矢量 定义:希尔伯特空间是定义在复数域上的、完备的、线性内积空间,并且一般 是无限维的。 1、线性:①c b a =+;②a b λ=。 2、完备性:∑=n n n a a 。 3、内积空间: 引入与右矢空间相互共轭的左矢空间 ∑ ==? +n n n a a a a * ; )(:。 定义内积:==* a b b a 复数,0≥a a 。 1=a a ~归一化;b a b a ,~0=正交; m n n m δ=~正交归一;)(x x x x '-='δ~连续谱的正交归一。 二、 量子体系的态用希尔伯特空间的矢量表示 (此属“符号问题”,仅作简要介绍,主要由学生自己通过练习来熟悉符号) 1、态矢符合线性空间的要求:?λψψψψ=+=21。 2、任意态矢可用一组完备的基矢展开: nm m n n n n f f f a δψ==∑, 。 ∑∑ =→====n n n n m mn n n m n m n f a a a f f a f a ψδψ? 。 3、态可以求内积: ??==dx x x dx x x )(,)(??ψψ ~ 以}{x 为基, 其中 ??ψψx x x x ==)()(。 取ψ的左矢:?=dx x x )(*ψψ,有内积 ????='''='''=dx x x dx x d x x x x x d x x dx x x )()()()()()(***?ψ?ψ?ψ?ψ 上式已利用了连续谱的正交归一性)(x x x x '-='δ。 三、 希尔伯特空间的算符 算符 ψ?F F =: 1、算符对左矢的作用: F b 存在,其意义(定义)为 )()(a F b a F a F ==。

相关主题
文本预览
相关文档 最新文档