当前位置:文档之家› 电缆故障查找方法及精确定位

电缆故障查找方法及精确定位

电缆故障查找方法及精确定位
电缆故障查找方法及精确定位

电缆故障点查找方法

电缆故障点查找方法 【摘要】企业电缆因短路、过负荷运行、绝缘老化或外力作用等原因造成短路、接地故障。本文针对电缆不同故障方式提出相应故障定位方法。 【关键词】电缆;电缆故障;接地;短路 0.前言 唐山不锈钢有限责任公司作为一个国有股份制冶金企业,拥有110kv变电站3座、35kv变电站2座、高压配电室26个,变压器130余台,为其提供可靠的电力供应,其中高压电缆总长度约10万米,其敷设方式多样,部分电缆因施工、运行等原因,时常发生短路和接地性短路故障,因此迅速找出电缆故障点,并及时进行处理,对降低事故损失,具有重大意义。通过近几年电缆故障处理,我总结、探索出一套寻找电缆故障点迅速而有效的方法,现介绍如下: 1.电缆故障种类 当运行中的电缆发生故障时,首先判别故障的种类。电缆故障种类大致可以分为三种:接地故障、短路故障、断线故障、断线及接地故障。其故障类型常见的有以下几方面: ①三芯电缆单相或两相接地。 ②二相间短路。 ③三相间短路。 ④单相断线或多相断线。 判别电缆故障性质时,首先采用兆欧表法对故障电缆线路进行判定,测量电缆相间及相与地之间的绝缘电阻,根据阻值判定电缆是否断线、短路、接地等。测量的断线的方法是将电缆两相电缆的一头短接,在电缆另一端进行阻值测量,得出结果。短路及接地故障,是将非检测相接地,然后用高压摇表对检测相进行电阻测量,根据阻值情况,判断电缆是短路故障(一般阻值为零)、低阻故障、还是高阻故障。 2.电缆故障点排查方法 确定好电缆故障类型后,采取相应的排查方法,对故障点进行定位,是电缆故障处理中的关键环节,下面由简到繁介绍几种方法: 2.1感官搜寻法 当运行中的电缆发生故障造成断路器报警动作后,先用兆欧表测量判断电缆故障类型,电缆遥测为短路或低阻故障时,表明电缆已经击穿,此类事故暴露较为明显,如果电缆敷设方式及位置便于人员进入观察,且距离不是很长时,可采用感官搜寻法,即采用眼观、手摸、鼻闻等方式进行逐步排查,重点对电缆终端头、中间头部位进行排查。可在较短时间内迅速找到故障点。 2.2分割查找法 分割查找法是将故障电缆线路分段,此方法用于电缆敷设路线较长,中间有串联设备或电缆头采用高压插头连接方式的场合,可以起到缩小排查范围,减小排查难度的作用。 2.3电桥法 电桥法就是双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算的故障点。用电桥法测寻单相或两相低阻接地故障,原理接线如图一所示。在三相电缆中,将一相绝缘损坏的缆芯

电力电缆故障原因及常用的检测方法(超全讲解)

https://www.doczj.com/doc/6e77715.html, 电力电缆故障原因及常用的检测方法(超全讲解)盲目的进行电缆故障查找工作往往费时费力而且无法准确的进行故障定点判断,这不是因为电缆故障种类的复杂造成,而是因为电缆周边环境所造成的。 1、电力电缆基础理论 我们目前采用的电缆故障查找方法离不开:故障诊断、粗测定点与精确定点三个步骤。但是往往在实际测试中能够确定故障类型,做到粗测定点,但是却无法真正精确定点进行开挖。这种原因的形成是因为客观存在的我们听得到的因素(公路或施工处振动噪声过大等原因)和看不到的因素(电缆走向、电缆埋设深度过深、故障点在积水中、电缆施工时余留不规范等原因)所造成的。因此在电缆故障查找前通过电缆施工、运行管理人员明确电缆长度、电缆走向、周边特殊情况、中间头位置、周边是否存在施工等要因是电缆故障查找前不可或缺的准备工作。 2、电缆故障原因及测量仪器 了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。

https://www.doczj.com/doc/6e77715.html, 注:(HZ-TC电缆故障测试仪) 电缆故障测试仪是我公司根据用户要求,从现场使用考虑,精心设计和制造的全新一代便携式电缆故障测试仪器。它秉承我们一贯高科技、高精度、高质量的宗旨,将电缆测试水平提高到一个新境界。 电缆故障测试仪(闪测仪)可用于检测各种电缆的低阻、高阻、短路、开路、泄漏性故障以及闪络性故障,可准确的检测地下电缆的故障点位置、电缆长度和电缆的埋设路径。具有测试准确、智能化程度高、适应面广、性能稳定以及轻巧便携等特点。仪器采用汉字系统,高清晰度显示,界面友好。

https://www.doczj.com/doc/6e77715.html, 电缆寻迹及故障定点是由路径仪、定点仪、T型探头、A字架、听筒等组成。本仪器是电缆故障定位测试的专用仪表,适用测试对象为具有金属导体(线对、护层、屏蔽层)的各种电缆。其主要功能为对地绝缘不良点的定位测试,线缆路径的探测以及线缆埋深的测试。 注:(HZ-TCD全智能多次脉冲电缆故障测试仪) 全智能多次脉冲电缆故障测试仪是我公司为了迎合电力工业电力时代的到来,在集成了电缆故障测试行业的诸多精品方案,以IT时代的快速发展为契机,将单片机及笔记本式的电缆故障测试仪彻底摒弃,在嵌入式计算机平台的基础上打造出适合电缆故障测试行业自身特点的网络化电缆故障测试服务平台,并且系统化得集成了USB通信技术,触摸屏技术,3G 通信技术,极大提高了仪器的使用功能和利用价值以及便捷的现场环境操作。考虑到现在地

电缆故障测距方法.

电缆故障测距方法 在线测距方法 故障定位技术的发展主要经历了三个阶段:模拟式定位技术、单端数字式定位技术、双端定位技术。早期的故障定位装置是机电式或静态电子仪器构成的模拟式装置。后期的故障录波器是以光电转化为原理、以胶片为记录载体、根据故障录波仪记录的电信号来粗略估计故障点位置。测试技术的出现以及计算机技术和通信技术都加速了故障定位技术的发展。这个阶段出现了许多利用计算机进行故障定位的方法,其特点是采用单端信息,应用计算机的超强运算能力对各自算法进行修正,求得故障距离。有些算法已应用到实际故障定位装置中,不足之处是无法克服故障电阻对故障定位精度的影响。 其中,单端阻抗法只用到线路一侧的电压、电流测量值,由于其理论上无法克服过渡电阻的影响,需要在测距算法中做一定的假设,所以其测量精度在很多情况下难以保证,但是有着造价低,不受通信因数的限制的优点,在实际应用中有着一定的应用需求。单纯依靠单端信息不能有效地消除因素包括:负荷电流;系统运行阻抗;故障点过渡电阻,这自然影响到测距的精度。 单端行波法 是基于单端信息量的一种测距方法,其中单端行波测距的关键是准确求出行波第一次到达监测端与其从故障点反射回到监测端的时间差,并包括故障行波分量的提取。常用的行波单端故障定位算法有求导数法、相关法、匹配滤波器法和主频率法。由于行波在特征阻抗变化处的折反射情况比较复杂(如行波到达故障点后会发生反射也会通过故障点折射到对侧母线上去),非故障线路不是“无限长”,由测量点折射过去的行波分量经一定时间后,又会从测量点折射回故障线路等,使行波分析和利用单端行波精确故障定位有较大困难。 双端行波测距 是通过计算故障行波到达线路两端的时间差来计算故障位置,其测距精度基本不受线路的故障位置、故障类型、线路长度、接地电阻等因素的影响。双端行波法的关键是准确记录下电流或电压行波到达线路两端的时间,误差应在几微秒以内,以保证故障定位误差在几百米内,行波在线路上的传播速度近似为300m/μs,1μs 时间误差对应约150m 的测距误差。双端信号要求严格的同步,随着GPS对民用开放,使得双端故障定位法迅速发展。这种定位方法的定位精度高,已成为近几年来故障定位方法研究的热点。 电缆故障定位技术经过国内外专家学者几十年的共同努力,已取得了

电缆故障定位仪基本原理

电缆故障定位仪基本原理 根据故障的探测原理,当电缆故障定位仪处于闪络触发方式时,故障点瞬时击穿放电所形成的闪络回波是随机的单次瞬态波形,因此测试仪器应具备存储示波器的功能,可捕获和显示单次瞬态波形。本仪器采用数字存储技术,利用高速A/D 转换器采样,将输入的瞬态模拟信号实时地转换成数字信号,存储在高速存储器中,经CPU 微处理器处理后,送至LCD 显示控制电路,变为时序点阵信息,于是在LCD 屏幕上显示当前采样的波形参数。 当仪器处于脉冲触发方式时,仪器按一定周期发出探测脉冲加入被测电缆和输入电路,即时启动A/D 工作,其采样、存储、处理和显示与前述过程相同。LCD 显示屏上应有反射回波。 仪器的组成 HT-TC 电缆故障测试仪是以微处理器为核心,控制信号的发射、接收及数字化处理过程。仪器的工作原理方框图如图6所示。 微处理器完成的数字处理任务包括:数据的采集、储存、数字滤波、光标移动、距离计算、图形比较、图像的比例扩展,直到送LCD 显示。也可根据需要由通讯口与PC 机通讯。 脉冲发生器是根据微处理器送来的编码信号,自动形成一定宽度的逻辑脉冲。此脉冲经微处理器 脉冲发生器 高速A/D 存储器 电 源 输入电路 键盘 被测电缆 LCD 液晶显示器 图6 工作原理方框图

发射电路转换成高幅值的发射脉冲,送至被测电缆上。 高速A/D发生器是将被测电缆上返回的信号经输入电路送高速A/D采样电路转换成数字信号,最后送微处理器进行处理。 键盘是人机对话的窗口,操作人员可根据测试需要通过键盘将命令输入给计算机,然后由计算机控制仪器完成某一测试功能。 面板控制机构和按键菜单的作用 1、控制机构 1)触发:供选择触发工作方式用。按下开关(位置)为闪络法工作方式。在使用脉冲法测试时,开关置于位置。 2)输出:仪器输出线连接被测电缆的测试端。 3)充电:仪器使用直流蓄电池组,若仪器显示电量不足,插入电源充电指示灯亮即可。 2、按键作用说明 1)“开、关”键:控制仪器电源开启/关断。按下此键,仪器电源接通,显示屏将显示工作视窗。 2)“采样”键:按键向被测线路上发射脉冲,每按一次,仪器就发射一次脉冲并进行采样,若按下三秒钟,仪器则连续发射脉冲,只有当其它键按下时才停止。 3)“??”键:具有两种作用: 仪器测试功能时,为活动光标左右移动操作。 仪器菜单功能时,为左、右移动选择菜单项操作。 4)“+○—”键:LCD液晶显示屏对比度调节。 3、菜单功能的作用及操作

浅析电缆的故障及测寻方法(新版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 浅析电缆的故障及测寻方法(新 版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

浅析电缆的故障及测寻方法(新版) 【摘要】电力电缆在电力系统中作为传输和分配电能,以及连接各种电气设备等,起着不可估量的作用,因此,维护电缆的安全运行,是一项至关重要的工作。当地下电缆发生故障时,可以使用简易的测寻方法——声测法来寻找电缆故障点,缩短修复时间。 【关键词】电缆故障声测法供电可靠 随着社会经济的发展和现代化建设步伐的加快,工农业生产及人民生活的用电量日益增加,对电力的需求量越来越大,要求电网的安全运行也越来越高。而作为连接各种电气设备、传输和分配电能的电力电缆,已逐渐取代了架空线的位置。电缆供电的传输性能在城乡内比架空线既稳定,可靠性高,且占地小,不会造成对市容的影响,也不受自然环境的制约,从而提高了供电的安全性。电力电缆长期在电网的工作电压下运行,充分具备承受内部过电压和大

气过电压的能力,可靠地输送电能。但电缆在某些情况下也会发生故障,其原因很多,常见的有以下几种:(1)电力电缆在敷设过程中受到外力损伤而造成电缆绝缘层的破坏;(2)由于地下杂散电流的电化腐蚀或中性土壤化学腐蚀,从而使地埋电缆产生腐蚀;(3)由于地面的下沉或地面上叠放重物,而造成电缆受外力损害变形,导致电缆防护层、铠装、铅包、铝包破裂甚至折断;(4)长期过负荷运行或散热不良造成电缆过热或接头过热;(5)电力电缆的安装敷设不符合工艺技术和质量的要求,电缆的附件质量不过关或电缆头制作工艺不良,密封性能差,都会造成电缆在运行中发生故障,等等。这样就影响了电缆线路的运行和用户的正常用电。为了进一步了解电缆的故障,我们可以按其故障点电缆绝缘损坏的程度进行分析。 1.低阻故障:故障点绝缘阻值下降至该电缆的特性阻抗,甚至支路电阻值等于零,电缆就呈现低阻故障; 2.开路故障:电缆的绝缘电阻值为无限大或虽与正常电缆的绝缘电阻值相同,但电压却不能馈送到用电设备,电缆就呈现开路故障;

电缆故障的查找与处理

电缆故障的查找与处理 电缆常见故障有漏电接地、短路(俗称电缆“放炮“)、断线等。主要原因是电缆老化或受到外力碰、砸、挤压、接线工艺不合格以及保护失灵等。电缆故障的查找与处理程序是:先判断故障性质,后找故障点,再根据情况按规定进行处理。 (一)电缆故障性质的判断 1、漏电故障 ①电缆的绝缘水平低,出现漏电现象。 ②芯线相间或对地绝缘电阻达不到要求。 ③芯线之间或对地泄露电流过大。 2、接地故障 ①完全接地(也称“死接地”),即电缆某相芯线接地,如用摇表(或万用表)测量两者之间绝缘电阻为零。 ②低电阻接地,即电缆一相或几相芯线对地的绝缘电阻值低于500K?。 ③高电阻接地,即电缆一相或几相芯线对地的绝缘电阻值在500 K?以上,甚至1M ?以上。 3、短路故障 有完全短路、低电阻或高电阻短路;有两相同时接地短路或两相直接短路;有三相短路或接地。 4、断线故障 电缆一相或几相芯线断开,或者一相导电芯线断一部分。 5、闪络性故障 当电缆的电压达到某一定值时,芯线间或芯线对地发生闪络性击穿;当电压降低后,击穿停止。在某些情况下,即使再次提高电压时,击穿亦不出现,经过若干时间后又会发生。这种故障有自动封闭故障点的特点。

6、电缆着火 电缆着火事故,其原因是发生相间短路故障后,熔断器、过电流继电器等保护失灵,强大的短路电流产生的高温点燃了橡套电缆的胶皮,引起火灾。 7、橡套电缆龟裂 这种故障在煤矿井下低压橡套电缆中较为常见,其主要原因是由于长期过负荷运行,造成绝缘老化,芯线绝缘与芯线粘连,就容易出现相间短路事故。产生的故障原因,除电缆的型号和截面选择不当、施工工艺质量不好、电缆质量有问题外,许多故障都和电缆的管理、运行和维护有关。因此,对电缆的选用、敷设、吊挂等都要按《煤矿安全规程》有关规定进行。 (二)电缆故障点的查找 1、直接判断 首先应确定哪条电缆出了故障。当维修人员无法查明是过负荷跳闸还是故障跳闸时,可以进行一次试送电来判断跳闸停电原因。 如果属于电缆事故跳闸,应首先用摇表测定电缆芯线之间和对地的绝缘电阻,初步判断故障的性质。凡属电缆漏电故障,往往是通过检测绝缘电阻和做泄露实验时发现,或者从检漏继电器指针数值判断。凡接地事故,可通过检漏继电器跳闸发现;如果属于短路故障,常常是因接地短路或短路后接地,也有少数只短路不接地。 对于在空气中敷设的电缆,包括井下沿巷道敷设的电缆,如果因短路故障造成外皮烧伤,一般通过沿电缆线路查找外观就可找到故障点。电缆接线盒出现短路事故时,如果检查得及时,接线盒表面可以摸到有温度。电缆某处短路,有时可以看到烧穿的伤痕或穿孔,在短路点还可以嗅到绝缘烧焦的特殊气味。 2、用万用表查找 首先将电缆两端的芯线全部开路,如果电缆故障是相间短路,将发生短路的两根芯线的端头与万用表相连接;如果是接地故障,就将发生接地的芯线和接地芯线接到万用表上。将万用表的选择开关打到欧姆档,然后由检修人员对电缆逐段进行弯曲或翻动。当弯曲到某一点,万用表指针有较大的摆动时,说明这就是故障点;也可用干燥的木棒敲打电缆护套,当敲打到某处,万用表针有较大的摆动时,也就找到了故障点。

电缆故障排除原理

摘要:本文主要针对电力电缆的常见故障,从结构设计,人为因素,运行环境等方面进行分析,总结了电力电缆故障原因。并介绍了常用的电力电缆故障查找方法的原理、优缺点及适用范围,针对不同的电力电缆故障采用不同的方法以便快速、准确、方便查找故障,本文结合工作实际,以实际的电力电缆故障来说明各个各个电缆故障查找方法的适用性,具有一定的参考价值。 0 引言 电力电缆作为电力系统的重要组成部份,它的安全运行具有重要意义。一旦发生故障后,如何在最短时间内快速找出故障点一直电缆行业十分注重的研究课题。本文总结了多年来从事电缆运行维护的经验,对电缆故障原因进行了分析,重点介绍几种常用探测方法,并对各方法的优缺点和适用范围进行比较,以实际的例子进行分析,具有一定的参考意义。 1 电缆故障分类 电缆故障可概括为接地、短路、断线三类;如以故障点绝缘特征分类又可分 :1) 开路故障:电缆线芯连续性受到破坏,形成断线。 2 ) 低阻故障:绝缘电阻一般在几百欧姆以下。 3) 高阻故障:用兆欧表测量电缆绝缘电阻低于正常值但高于几百欧姆的故障。 2 形成电缆故障的原因分析 致使电缆发生故障的原因是多方面的,包括电缆运行环境,人为因素,施工质量等,现将常见的几种主要原因归纳如下。 2 .1 外力破坏 09年厦门电力电缆运行情况分析:10 kV电缆故障56次,其中外破28起,占50%。近几年来由于城市建设工程项目遍及各个角落,因施工单位在不明地下管线情况下进行地下管线施工或有些素质不高施工队的野蛮施工,是造成电缆受外力破坏的主要原因。

2 .2 电缆安装、产品质量不合格 09年厦门10kV电缆附件及电缆施工工艺不良造成电缆故障6起,占11%。由于附件施工人员对中间接头制作安装的操作细节不够重视或现场安装工艺条件较差等原因,导致中间接头的制作出现工艺和操作缺陷,对电缆的正常运行带来安全隐患。还有就是电缆附件产品存在质量问题;因此应加强对附件安装人员工艺培训和对电缆附件产品质量的入网把关显得尤为重要。 2 . 3 机械损伤 施工队伍在电缆敷设过程中未按要求和施工规范进行,用力不当或牵引力过大,使用的敷设工具不当或野蛮施工等原因造成电缆的机械损伤,有些机械损伤很轻微,当时并未造成故障,要在数月甚至数年后故障才会暴露出来。这类故障一般表现在 0.4 k V 电缆居多。 2 .4 电缆本体故障 电缆本体故障主要有电缆制造工艺和绝缘老化两种原因。制造工艺造成的故障现在比较少了,因国内中压电缆的制造已经达到国际先进水平了。而电缆的老化现象问题还是存在的,造成电缆提前老化的原因有: 1 、电缆在长期高温或高电压作用下容易产生局部放电,引起绝缘老化而出现故障; 2 、塑料绝缘电缆因长期浸泡在水中或水分侵入,使绝缘纤维产出水解,在电场集中处形成“ 水树枝” 现象,造成绝缘击穿等现象。 3 电缆故障检测方法及实例分析 电力电缆故障查找一般按故障性质诊断、故障测距、故障定点三个步骤进行。故障性质诊断过程是对故障电缆情况做初步了解及分析,然后用兆欧表及万用表进行故障性质判别,根据不同故障性质选择不同方法进行粗测,然后再依据粗测的结果进行精确定位。电缆故障检测的方法有许多,这些方法的适应对象及检测结果也各有不同,以下将介绍电缆故障测距电桥法、低压脉冲法、冲击高压闪络法的工作原理,并以实际的例子说明方法的适用情况,并对各种方法的优缺点进行比较。

电缆故障点查找分析

https://www.doczj.com/doc/6e77715.html, 电缆故障点查找分析 随着我国国民经济迅猛发展,电力电缆在全国的各工矿企业、事业单位得到了广泛的 应用,特别是近几年城网和农网改造以来,城市美化日益突出,大量的架空线路下地,使 得电缆的用量进一步加大。但是在供用电力电缆过程中,一旦发生故障,很难较快地寻测 出故障点的确切位置,不能及时排除故障恢复供电,往往造成停电停产。对于配电运行维 护人员而言,如何快速查找电缆故障点是一项必备的技能,以下是笔者根据电缆故障发生 后分析查找故障点的顺序进行的一些讨论。 1.电缆故障巡视 按笔者实际电缆急修经验,在电缆故障发生后,运行人员若对于电缆走向较为清晰, 熟悉电缆中间接头位置,一般会采取先对故障电缆进行巡视的方式,从外观上初步看能否 判断到电缆的故障点。重点巡视包括:一是电缆路径上是否有人开挖施工。二是电缆路径 上路基是否有塌陷或明显地形变化。三是检查有中间接头位置,中间接头是否异常等等。 若能发现异常,基本能确认电缆的故障点。若无法发现异常,则只能使用仪器辅助定位电 缆故障。 2.电缆故障初步判断 10kV电缆故障类型概括而论有接地、短路和断线三种,主要包括以下类型:(1)三 芯电缆一芯或两芯接地;(2)二相相间短路;(3)三相芯线完全短路;(4)一相或多相断线。初步判断电缆的故障可使用兆欧表或万用表或做交流耐压试验。比如使用兆欧表测 量某相绝缘电阻,测得零值则代表该相已完全接地。 3.电缆故障探测方法及讨论 初步判定电缆类型后,一般会采用电缆故障探测仪对故障进行粗探和定位。目前国内外,故障探测仪种类繁多,但原理及方法多相似。电缆故障点粗探,使用电桥法通常简单有效,因电缆运行环境及故障种类千奇百怪,通常也结合脉冲法测量电缆具体长度及确定故障点,下面是对电桥法、脉冲法及用以精确定位的声探定位法进行的一些探讨。 3.1 电阻电桥法 此方法,可以粗略判断1相电缆芯完好,另外1相或2相低阻接地的电缆故障,原理图 如1-1:

电缆故障测试仪的四种实用测定方法

https://www.doczj.com/doc/6e77715.html, 电缆故障测试仪的四种实用测定方法电缆故障测试仪(闪测仪)可用于检测各种电缆的低阻、高阻、短路、开路、泄漏性故障以及闪络性故障,可准确的检测地下电缆的故障点位置、电缆长度和电缆的埋设路径。具有测试准确、智能化程度高、适应面广、性能稳定以及轻巧便携等特点。仪器采用汉字系统,高清晰度显示,界面友好。 一、电缆故障的种类与判断 无论是高压电缆或低压电缆,在施工安装、运行过程中经常因短路、过负荷运行、绝缘老化或外力损坏等原因造成故障。电缆故障分为接地、短路、断线三类。三芯电缆故障类型主要有以下几方面:一芯或两芯接触;二相芯线间短路;三相芯线完全短路;一相芯线断

https://www.doczj.com/doc/6e77715.html, 线或多相断线。对于直接短路或断线故障用万用表可直接测量判断,对于非直接短路和接池故障,用兆欧表遥测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判定故障类型。 二、电缆故障点的查找方法 1、测声法所谓测声法就是根据故障电缆放电的声音进行查找,该方法对于高压电缆芯线对绝缘层闪络放电较为有效。此方法所用设备为直流耐压试验机。电路接线如图1所示,其中SYB为高压试验变压器,C为高压电容器,ZL为高压整流硅堆,R为限流电阻,Q为放电球间隙,L为电缆芯线。当电容器C充电到一定电压值时,球间隙对电缆故障

https://www.doczj.com/doc/6e77715.html, 芯线放电,在故障处电缆芯线对绝缘层放电产生"滋、滋"的火花放电声,再在杂噪声音最小的时候,借助耳聋助听器或医用听诊器等音频放大设备进行查找。查找时,将拾音器贴近地面,沿电缆走向慢慢移动,当听到"滋、滋"放电声最大时,该处即为故障点。使用该方法一定要注意安全,在试验设备端和电缆末端应设专人监视。 2、电桥法电桥法就是双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算的故障点。该方法对于电缆芯线间直接短路或短路点接触电阻小于1Ω的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Ω的故障,可采用加高电压烧穿的方法使电阻降至1Ω以下,再按此方法测量。 测量电路首先测出芯线a与b之间的电阻R1,则R1=2RX+R,其中R为a相或b相至故障点的一相电阻值,R为短接点的接触电阻。再就电缆的另一端测出a’和b’芯线间的直流电阻值R2,则R2=2R(L-X)+R,式中R(L-X)为a’相和b’相芯线至故障点的一相电阻值。测完R1与R2后,再按图3所示电路将b’与C’短接,测出b、c两相芯线间的直流电阻值,则该阻值的1/2为每相芯线的电阻值,用RL表示。RL=RX +R(L-X),由此可得出故障点的接触电阻值:R=R1+R2-2RL。因此,故障点两侧芯线的电阻值可用下式表示:RX=(R1-R)/2,R(L-X)=(R2-R)/2。RX、R(L-X)、RL三个数值确定后,按比例公式即可求出故障点距电缆端头的距离X或(L-X):X=(RX/RL)L,(L-X)=(R(L-X)/RL)L,式中L为电缆的总长度。采用电桥法时应保证测量精度,电桥连接线要尽量短,经径要足够大,与电缆芯线连接要采用压接或焊搂,计算过程中小数位要全部保留。

如何快速测试定位电缆故障点

要想精确定位电缆故障点,充分利用和合理选择使用电缆故障测试仪,也是提高效率赢得时间必不可少的条件,目前国内普遍使用电缆故障仪的采用高压冲击法。 高压冲击法的原理为:由调压器调压使升压器产生高压,经电阻限流,经二极管整流为电容充电,当电容电压上升到放电间隙放电电压时,间隙放电向故障电缆释放冲击电流,电流经过故障点产生声波,利用声音放大器寻找故障点。这种方法十分精确有效,关键的是要故障点声音足够大,频率适当。要在故障点产生足够大的声音,关键取决于冲击电流的大小。而冲击电流的大小,取决于电容器C的容量和放电间隙的大小。间隙加大放电电压增高,但是如果电压太高,无论对电缆还是设备都是一种威协。所以我们在设备和元件选用控制时一定要计算好,不能超过它的额定值。 当高压冲击法放电后,我们就可以通过声测法、声磁同步检测法和音频感应法进行电缆故障的精确定点。这是因为在进行电缆故障测距时,无论采用哪种仪器和测量方法,难免有误差,为减少开挖,测距后必须进行精确定点,通常使用的方法为: (一)声测法 目前在国内是常用的定点方法,故障测寻时给故障电缆加上一个幅度足够高的冲击电压,故障点发生闪络放电的同时会产生相当大的放电声并传至地表面,利用这种现象来定点可以准确地找出故障点。 (二)声磁同步检测法 在监听到声音信号的同时,利用磁性天线接收脉冲磁场信号,并用电表或光电指示。如果耳机听到的声音与电表指针的摆动或光电信号同步,即可判断该声音是由故障点放电产生的,故障点就在附近。

(三)音频感应法 一般用于探测故障电阻小于10KΩ的电阻故障。用音频信号发生器向待测电缆注入音频电流,在地面上用探头沿被测电缆路径接收电磁场信号并放大,再送入耳机或指示仪表指示值的大小而定出故障点的位置。 在实测中,以上三种方法可以结合使用,大大提高电缆故障精确定点的效率。需要注意的是声磁同步检测法抗无线声波干扰能力差,这需要在实际中根据现场情况校正接收频率。 结合以上分析,我们可总结出以下查找故障的经验: 1、当电缆在运行中发生故障,可将电缆一端短接另一端用万用表可迅速判断,电缆是否开路。 2、如果故障是高阻,使用闪测法就可以粗测故障范围。 3、优先选择用脉冲法粗测低阻或开路故障电缆的故障范围。

电缆故障点的四种实用检测方法

电缆故障点的四种实用检测方法 1 电缆故障的种类与判断 无论是高压电缆或低压电缆,在施工安装、运行过程中经常因短路、过负荷运行、绝缘老化或外力作用等原因造成故障。电缆故障可概括为接地、短路、断线三类,其故障类型主要有以下几方面: ①三芯电缆一芯或两芯接地。 ②二相芯线间短路。 ③三相芯线完全短路。 ④一相芯线断线或多相断线。 对于直接短路或断线故障用万用表可直接测量判断,对于非直接短路和接地故障,用兆欧表摇测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判定故障类型。 故障类型确定后,查找故障点并不是一件容易的事情,下面根据笔者的经验,介绍几种查找故障点的方法,供参考。 2 电缆故障点的查找方法 (1) 测声法: 所谓测声法就是根据故障电缆放电的声音进行查找,该方法对于高压电缆芯线对绝缘层闪络放电较为有效。此方法所用设备为直流耐压试验机。电路接线如图1所示,其中SYB为高压试验变压器,C为高压电容器,ZL为高压整流硅堆,R为限流电阻,Q为放电球间隙,L为电缆芯线。

当电容器C充电到一定电压值时,球间隙对电缆故障芯线放电,在故障处电缆芯线对绝缘层放电产生“滋、滋”的火花放电声,对于明敷设电缆凭听觉可直接查找,若为地埋电缆,则首先要确定并标明电缆走向,再在杂噪声音最小的时候,借助耳聋助听器或医用听诊器等音频放大设备进行查找。查找时,将拾音器贴近地面,沿电缆走向慢慢移动,当听到“滋、滋”放电声最大时,该处即为故障点。使用该方法一定要注意安全,在试验设备端和电缆末端应设专人监视。 (2) 电桥法: 电桥法就是用双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算出故障点。该方法对于电缆芯线间直接短路或短路点接触电阻小于1Ω的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Ω的故障,可采用加高电压烧穿的方法使电阻降至1Ω以下,再按此方法测量。

电缆故障点查找方法

电缆故障点查找方法 一、电缆故障的种类与判断 无论是高压电缆或低压电缆,在施工安装、运行过程中经常因短路、过负荷运行、绝缘老化或外力损坏等原因造成故障。电缆故障分为接地、短路、断线三类。三芯电缆故障类型主要有以下几方面:一芯或两芯接触;二相芯线间短路;三相芯线完全短路;一相芯线断线或多相断线。对于直接短路或断线故障用万用表可直接测量判断,对于非直接短路和接池故障,用兆欧表遥测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判定故障类型。 二、电缆故障点的查找方法 1、测声法所谓测声法就是根据故障电缆放电的声音进行查找,该方法对于高压电缆芯线对绝缘层闪络放电较为有效。此方法所用设备为直流耐压试验机。电路接线如图1所示,其中SYB为高压试验变压器,C为高压电容器,ZL为高压整流硅堆,R为限流电阻,Q为放电球间隙,L为电缆芯线。当电容器C充电到一定电压值时,球间隙对电缆故障芯线放电,在故障处电缆芯线对绝缘层放电产生"滋、滋"的火花放电声,再在杂噪声音最小的时候,借助耳聋助听器或医用听诊器等音频放大设备进行查找。查找时,将拾音器贴近地面,沿电缆走向慢慢移动,当听到"滋、滋"放电声最大时,该处即为故障点。使用该方法一定要注意安全,在试验设备端和电缆末端应设专人监视。 2、电桥法电桥法就是双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算的故障点。该方法对于电缆芯线间直接短路或短路点接触电阻小于1Ω的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Ω的故障,可采用加高电压烧穿的方法使电阻降至1Ω以下,再按此方法测量。 测量电路首先测出芯线a与b之间的电阻R1,则R1=2RX+R,其中R为a相或b相至故障点的一相电阻值,R为短接点的接触电阻。再就电缆的另一端测出a’和b’芯线间的直流电阻值R2,则R2=2R(L-X)+R,式中R(L-X)为a’相和b’相芯线至故障点的一相电阻值。测完R1与R2后,再按图3所示电路将b’与C’短接,测出b、c两相芯线间的直流电阻值,则该阻值的1/2为每相芯线的电阻值,用RL表示。RL=RX+R(L-X),由此可得出故障点的接触电阻值:R=R1+R2-2RL。因此,故障点两侧芯线的电阻值可用下式表示:RX=(R1-R)/2,R(L-X)=(R2-R)/2。RX、R(L-X)、RL三个数值确定后,按比例公式即可求出故障点距电缆端头的距离X或(L-X):X=(RX/RL)L,(L-X)=(R(L-X)/RL)L,式中L为电缆的总长度。采用电桥法时应保证测量精度,电桥连接线要尽量短,经径要足够大,与电缆芯线连接要采用压接或焊搂,计算过程中小数位要全部保留。 3、电容电流测定法电缆在运行中,芯线之间、芯线对地都存在电容,该电容是均匀分布的,电容量与电缆长度呈线性比例关系,电容电流测定法就是根据这一原理进行测定的,对于电缆芯线断线故障的测定非常准确。测量电路如图4所示,使用设备为1~2kV A单相调压器一台,0~30V、0.5级交流电压表一只,0~100mA、0.5级交流毫安表一只。 测量步骤 (1)首先在电缆首端分别测出每芯线的电容电流(应保持施加电压相等)Ia、Ib、Ic的数值。(2)在电缆的末端再测量每相芯线的电容电流Ia’、Ib’、Ic’的数值,以核对完好芯线与断线芯线的比容之比,初步可判断出断线距离近似点。 (3)根据电容量计算公式C=1/2πfU可知,在电压U、频率f不变时C与I成正比;因为工频电压的f(频率)不变,测量时只要保证施加电压不变,电容电流之比即为电容量之比。设电缆全长L,芯线断线点距离为x,则Ia/Ic=L/x,x=(Ic/Ia)L。测量过程中,只要保证电压不变,电流表读数准确,电缆总长度测量精确,其测定误差比较小。 4、零电位法零电位法也就是电位比较法,它适应于长度较短的电缆芯线对地故障,应用此方法测量简便精确,不需要精密仪器和复杂计算,其接线如图5所示。测量原理如下:将电缆故障芯线与等长的比较导线并联,在两端加压E时,相当于在两个并联的均匀电阻丝两端

10kV电力电缆故障测寻技术与波形分析

10kV电力电缆故障测寻技术与波形分析 摘要:随着城市电网建设持续快速发展,为了整洁明快的城市市容市貌,地下电力电缆输配电线路逐步取代架空线路。由于电力电缆敷设隐蔽,很难发现故障位置,这给迅速排除故障恢复供电带来困难。文章介绍了采用脉冲反射法(即闪测法)波形分析进行电缆故障点的测寻,它可以减少测距误差,从而迅速精准地确定电缆故障位置,便于维修,以确保正常供电。 关键词:供电系统电力电缆故障测寻波形检测分析 1 前言 随着我国城市化的快速推进,电力电缆以其安全、可靠、隐蔽性好等优点在城市配电网中得到了越来越广泛的应用。配电网的供电方式已逐渐由电缆供电取代架空线供电,尽管电缆供电有着显而易见的优点。由于电缆数量的急剧增加。故障频率也相应加大,且电缆地下隐蔽性,在故障排查等问题上难以像架空线路那样直观,给电缆运行维护带来了许多麻烦,对电网持续可靠供电带来了困难,所以如何快速准确查找电力电缆故障点,提高城市电缆供电的可靠率、提升优质服务水平,是供电企业迫需解决的问题。本文现对电缆故障发生的原因及测寻方法与原理进行分析探讨。 2 电缆故障主要原因分析 2.1机械损伤。机械损伤是电缆故障中较为常见的,所占比例也是最大的,主要由于安装时损伤、外力直接破坏和自然损坏等。 2.2绝缘受潮。这种情况也很常见,一般发生在直埋或排管里的电缆接头处。如果电缆接头制作不合格和在潮湿的气候条件下做接头,会使接头进水或混入水蒸气枝,逐渐损害电缆的绝缘强度而造成故障。 2.3长期过负荷运行。超负荷运行,由于电流的热效应,负载电流通过电缆时必然导致导体发热,同时电荷的集肤效应以及钢铠的涡流损耗、绝缘介质损耗也会产乍附加热量,从而使电缆温度升高。长期超负荷运行时,过高的温度会加速绝缘的老化,以至绝缘被击穿。尤其在炎热的夏季,电缆的温升常常导致电缆绝缘薄弱处首先被击穿,因此在夏季,电缆的故障也就特别多。 2.4电缆接头故障。电缆接头是电缆线路中最薄弱的环节,由人员直接过失(施工不良)引发的电缆接头故障时常发生。施工人员在制作电缆接头过程中,如果有接头压接不紧、加热不充分等原网,都会导致电缆头绝缘降低,从而引发事故。 2.5化学腐蚀。电缆直接埋在有酸碱作用的地区,往往会造成电缆的铠装、铅皮或外护层被腐蚀,保护层因长期遭受化学腐蚀或电解腐蚀,致使保护层失效,绝缘降低,也会导致电缆故障。

怎样电缆查找故障点

电缆故障点的查找方法 1.电缆故障的种类与判断 电缆故障可概括为接地、短路、断线三类,其故障类型主要有以下几方面: ①三芯电缆一芯或两芯接地。②二相芯线间短路。③三相芯线完全短路。④一相芯线断线或多相断线。 对于直接短路或断线故障用万用表可直接测量判断,对于非直接短路和接地故障,用兆欧表遥测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判断故障类型。 2.电缆故障点的查找方法 故障类型确定后,查找故障点并不是一件容易的事情,下面介绍几种查找故障点的方法。 (1)零电位法 零电位法也就是电位比较法,它适应于长度较短的电缆芯线对地故障,应用此方法测量简便精确,不需要精密仪器和复杂计算,其接地如图1所示。测量原理如下:将电缆故障芯线与等长的比较导线并联,在b、c两端加电压VE时,相当于在两个并联的均匀电阻丝两端接了电源,此时,一条电阻丝上的任何一点和另一条电阻丝上的对应点之间的电位差必然为零,反之,电位差为零的两点必然是对应点。因为微伏表的负极接地,与电缆故障点等电位,所以,当微伏表的正极在比较导线上移动至指示值为零时的点与故障点等电位,即故障点的对应点。 S为单相闸刀开关,E为6E蓄电池或4节1号干电池,G为直流微伏表,测量步骤如下: 1)先在b和c相芯线上接上电池E,再在地面上敷设一根与故障电缆长度相等的比较导线S,该导线要用裸铜线或裸铝线,其截面应相等,不能有中间接头。 2)将微伏表的负极接地,正极接一根较长的软导线,导线另一端要求在敷设的比较导线上滑动时能充分接触。 3)合上闸刀开关S,将软导线的端头在比较导线上滑动,当微伏表指示为零时的位置即为电缆故障点的位置。 (2)电桥法 电桥法就是用双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算出故障点。该方法对于电缆芯线间直接短路或短路点接触电阻小于1Ω的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Ω的故障,可采用加高电压烧穿的方法使电阻降至1Ω以下,再按此方法测量。 测量电路如图2所示,首先测出芯线a与b之间的电阻R1,R1=2RX+R其中RX为a相或b相至故障点的一相电阻值,只为短接点的接触电阻。再就电桥移到电缆的另一端,测出a1与b1芯线间的直流电阻值R2,则R2=2R(L-X)+R,R(L-X)为a1相或b1相芯线至故障点的一相电阻值。测完R1与R2后,再按图3所示电路将b1与c1短路,测出b、c两相芯线间的直流电阻值,则该组织的1/2为每相芯线的电阻值,用RL 表示,RL=RX+R(L-X),由此可得出故障点的接触电阻值:R=R1+R2-2RL表,因此,故障点两侧芯线的电阻值可用下式表示:RX=(R1-R)/2,R(L-X)=(R2-R)/2。RX、R(L-X)、RL三个数值确定后,按比例公式即可求出故障点距电缆端头的距离X或(L-X):X=(RX/RL)L,(L-X)=(R(L-X)/RL)L,式中L为电缆的总长度。 采用电桥法时应保证测量精度,电桥连接线要尽量短,线径要足够大,与电缆芯线连接要采用压接或焊接,

信号电缆故障快速处理方法

既有线信号电缆故障快速处理方法 中铁二十局集团电气化工程公司王振 【摘要】信号电缆是铁路信号设备的控制通道,是机车运行神经系统的延伸,通过它控制信号机的显示、道岔的动作、轨道电缆的占用和空闲,而且还为机车提供了可靠的监控信息,信号电缆中断会导致机车自动运行系统的瘫痪,本文从信号电缆的故障判断出发,快速找到故障点,然后快速、简捷的方法,迅速恢复设备使用确保列车安全运行,对施工及维修具有很好的借鉴作用。 【关键词】信号电缆故障处理施工方法 1前言 铁路信号电缆是信号设备的重要组成部分,担负着轨道电路、机车信号的信息传递同时担负着信号机控制电源和转辙机控制电源的传输。无论因自然灾害或人为的原因,造成电缆中断,直接造成信号设备不能正常运行,列车不能实现自动控制,干扰了正常的铁路运输秩序,影响了铁路运输效率。一是既有线施工,由于时间长久或者站场改造变化较大,标识不明确导致施工单位将信号电缆挖断的事故常有发生;二是设备运行时间长了,由于自然灾害或者原来电缆本身的事故隐患,日积月累,突然间爆发,导致电缆故障。事故发生后,如何迅速找到事故点并立即处理故障,是我们研究的主要课题。 我项目先后承担了浙赣线技术改造工程、西康线技术改造工程、沈阳北环技术改造工程等大型既有线改造工程,积累了丰富的现场施工经验,总结了先进的信号电缆故处理方法,最大限度地降低了因电缆故障造成的行车影响,提高了设备运行效率,确保了行车安全。 2故障分析 电缆故障的形式 我们国内现在电缆施工的主要方式有两种,一种是直埋,第二种是电缆槽。前一种主要应用在普通铁路,后一种主要应用在高速铁路。 电缆故障按照故障性能分为短路故障和短路故障;按照故障后果分为隐形故障和事故故障。我们结合故障的各种现象,将故障分为:绝缘故障、短路故障和断路故障。 绝缘故障表现为电缆芯线绝缘层破损导致电缆芯线对地或者与其他电缆芯线之间绝缘达不到要求而导致的隐形故障;

电缆故障测试检测查找仪器使用方法

HL-2132电缆寻迹 及故障定位仪 使用说明书 武汉华力通达电力设备有限公司 Wuhan HuaLiTongDa Power Euqipment Co., Ltd. 地址:武汉市东湖高新技术开发区水蓝路3号 电话:86-27-87775951 传真:86-27-87775851 https://www.doczj.com/doc/6e77715.html,

尊敬的客户: 感谢您选用武汉华力通达电力设备有限的产品!我们将竭诚为您提供全面周到的服务和技术支持。为了您能安全有效的使用本仪器,充分发挥本仪器的各项功能,在使用本公司仪器之前,请仔细阅读本使用说明书,以便您能更好更全面的体验本公司产品给您带来的便利和高效。 本使用说明书手册将向您提供电缆寻迹及故障定位仪的性能、设置方法、测试方法、安装注意事项和操作使用的其他须知。 欢迎您随时向我们反馈您在使用本产品过程中对我们产品的意见和建议,我们将热忱为您服务! 本手册版权归属武汉华力通达电力设备有限公司所有,未经许可,不得转印、发布和扩散,及将本手册内容用于其他用途。 武汉华力通达电力设备有限公司 Wuhan HuaLiTongDa Power Euqipment Co., Ltd. 地址:武汉市东湖高新技术开发区水蓝路3号 电话:86-27-87775951 传真:86-27-87775851 https://www.doczj.com/doc/6e77715.html,

目录 1 概述 3 2 主要特点 3 3 主要技术参数 3 4 仪器工作原理 3 4.1寻迹原理 3 4.2定位原理 5 5 仪器组成 6 5.1 HL-2132路径仪 6 5.1.1面板结构 6 5.1.2作用说明 6 5.2 HL-2132定位仪 7 5.2.1面板结构 7 5.2.2作用说明 8 6仪器操作使用 9 6.1路径探测 9 6.1.1路径仪接线图 9 6.1.2定位仪接线图 9 6.1.3操作步骤 9 6.2用差分电位法定位故障 10 6.2.1路径仪接线图 10 6.2.2定位仪接线图 10 6.2.3操作步骤 10 6.2.4注意事项 11 7充电 11 8装箱清单 12 9产品保证 12

电缆故障定位系统使用说明书

DPD-2003 电缆故障定位系统 使 用 说 明 书 上海蓝波高电压技术设备有限公司

!安全警告 ●使用局部放电检测分析系统进行局部放电试验的工作人员必须是 具有“高压试验上岗证”的专业人员。 ●使用本仪器请用户必须按《电力安规》168条规定,并在工作电 源进入试验系统前加装两个明显断开点。 ●在局放试验过程中,必须遵守有关高电压试验的安全操做规定。 ●非专业人员请勿私自拆开该设备,以免由于对该设备不熟悉而造 成不必要的人身伤害。

目录 第一章电缆故障定位系统概述。 第二章电缆故障定位的基本原理。 第三章电缆故障定位系统使用操做说明。 第四章电缆故障定位系统使用中应该注意的问题。第五章设备维护及保养注意事项。

第一章电缆故障定位系统概述。 一.概述 随着交联电缆生产线及相应的局部放电测试设备的引进,为交联电缆的生产和检测提供了基本条件,但由于目前国内电缆生产工艺、原材料及管理方面都可能存在一定的问题。生产的产品在一定程度上仍会存在缺陷。因此有必要采用一种简单而可靠的定位方法,找出电缆的故障点,加以解剖分析,改进生产工艺,可大大地节省人力物力,保证电缆的正常生产。PDSL(Partial Discharge Site Lacation)局放定位是电缆局放测试时,一旦发现局放超过标准规定数值后,为减少工厂经济损失、分析电缆生产工艺缺陷所进行的一项工作。 本系统采用高通五阶采样线路进行局放信号采入,利用行波原理进行故障定位,因此不是所有的局放超标的电缆均能利用这套系统进行定位。只能对那些脉冲式放电进行故障定位,对连续式放电或多点放电定位比较困难。 第二章电缆故障定位的基本原理。 一.基本原理 电缆中的局部放电均出现在第一和第三象限,每次放电时间约持续十几个纳秒。由于采样线路的积分和整形,最后在示波器上得到的每个脉冲的持续时间约100ns左右。放电脉冲在电缆中是以电磁波的速度传输的,每个微秒约运行160~170米。我们利用电缆故障点的一次放电,采用行波法就可以定出故障点的位置,其简单原理如下:如图(1)所示,有一根长为L的电缆,我们称测量端为近端,相应电缆的另一端为远端。

相关主题
文本预览
相关文档 最新文档