当前位置:文档之家› 结构化学期末复习提纲

结构化学期末复习提纲

结构化学期末复习提纲
结构化学期末复习提纲

第一章 量子力学基础

1、结构化学发展的三个阶段:原子论阶段、旧量子论阶段以及量子力学理论阶段;

2、实物微粒的波粒二象性——德布罗意物质波;

3、量子力学的五条基本公设;

4、量子力学基本原理的简单应用(一维、三维)

5、量子力学处理微观体系的一般步骤。

第二章 原子结构与原子光谱

1、简单轨道的波函数表达式,几个量子数的意义和取值,并能根据波函数和量子数求某些物理量,如平均位置、势能、动能、动量等;

2、波函数和电子云的图形表示和意义;

3、理解电子运动完全波函数,多电子原子斯莱特行列式书写;

4、原子状态的表示和光谱项

5、掌握L-S 耦合同科电子 异科电子光谱项的求法

第三章 分子的对称性和点群

实物粒子 光子

1、理解分子的对称性操作与对称元素的概念;掌握分子的四种基本对称操作

2、会根据分子的对称元素判断分子所属点群,以及判断分子的旋光性与偶极矩。

第四章

1、LCAO-MO方法原理;

2、MO的类型,符号和能级顺序;

3、同核和异核分子电子的排布,电子谱项、键级和磁性;

第五章

1、杂化轨道理论和几何构型;

2、应用HMO法;求解共轭分子的能级、离域能;

3、电荷密度、键级、自由价和分子图及应用;

习题

1、已知氢原子处于基态1s 和He +处于激发态2p x ,分别求其核外电子的总能、动能、势能,角动量的大小与在z 轴方向的分量及核外电子的位置。

2、反式1,2-二氯乙烯分子中存在哪些对称元素?属于何种点群?并判断分子是否具有偶极矩和旋光性。

3、写出碳原子的基组态和碳原子的激发态(1s 22s 22p 13p 1)存在的光谱支项符号

4、按照Huckel 的简单分子轨道理论的假设,求解环丁二烯的能级和离域能,并解释其稳定性。

解:首先列出久期行列式:

0101110

011

101=χχχχ

其中βαχ/)(E -=

解之得:0)4(22=-χχ,有四根21-=χ,03,2=χ,24=χ。

所以能量βα21+=E ,α=3,2E ,βα24-=E 。

基态时,在1ψ中有两个电子,在2ψ和3ψ中各有一个电子,总能量为

βα442321+=++E E E 。如果形成两个双键,那么每个双键都可以用休克尔分子轨道方法求解能量,其久期行列式为:χχ

11,解得能级为:βα+=1E ,βα-=2E ,总能量为βα4441+=E ,与形成大π

键时相同,所以离域能为零,

说明环丁二烯是不稳定的。

5、富烯的HMO 波函数如下

φ1=0.602ψ3+0.372ψ4-0.372ψ5-0.602ψ6

φ2=0.5ψ1+0.5ψ2-0.5ψ4-0.5ψ5

φ3= 0.357ψ1-0.664ψ2+0.439ψ3-0.153ψ4-0.153ψ5+0.439ψ6

φ4= 0.749ψ1-0.190ψ2-0.351ψ3+0.280ψ4+0.280ψ5-0.351ψ6

φ5=0.372ψ3-0.602ψ4+0.602ψ5-0.372ψ6

φ6=0.247ψ1+0.523ψ2+0.429ψ3+0.385ψ4+0.385ψ5+0.429ψ6

(注:未按能级排序)

求:(1)电荷密度、键级和自由价;(2)画出分子图;(3)指出富烯与亲电试剂发生反应的位置。

解:

有机化学期末复习提纲.(优选)

有机化学期末复习提纲 本课程的学习即将结束,现将全书的重点内容按命名、结构理论、基本反应、化合物转化及合成方法、鉴别等几个专题进行总结归纳,供同学们复习时参考。 一、有机化合物的命名 命名是学习有机化学的“语言”,因此,要求学习者必须掌握。有机合物的命名包括俗名、习惯命名、系统命名等方法,要求能对常见有机化合物写出正确的名称或根据名称写出结构式或构型式。 1、俗名要求掌握一些常用俗名所代表的化合物的结构式,如:蚁酸、水杨醛、水杨酸、氯仿、草酸、苦味酸、肉桂酸、乙酐、甘氨酸、丙氨酸、谷氨酸、葡萄糖、果糖等。 2、习惯命名法要求掌握“正、异、新”、“伯、仲、叔、季”等字头的含义及用法, 掌握常见烃基的结构,如:烯丙基、丙烯基、正丙基、异丙基、异丁基、叔丁基、苄基等。 3、系统命名法系统命名法是有机化合物命名的重点,必须熟练掌握各类化合物的命名原则。其中烃类的命名是基础,几何异构体、光学异构体和多官能团化合物的命名是难点,应引起重视。要牢记命名中所遵循的“次序规则”。 (1)、几何异构体的命名烯烃几何异构体的命名包括顺、反和Z、E两种方法。 简单的化合物可以用顺反表示,也可以用Z、E表示。用顺反表示时,相同的原子或基团在双键碳原子同侧的为顺式,反之为反式。如果双键碳原子上所连四个基团都不相同时,不能用顺反表示,只能用Z、E 表示。按照“次序规则”比较两对基团的优先顺序,较优基团在双键碳原子同侧的为Z型,反之为E型。必须注意,顺、反和Z、E是两种不同的表示方法,不存在必然的内在联系。有的化合物可以用顺反表示,也可以用Z、E表示,顺式的不一定是Z型,反式的不一定是E型。例如: CH3-CH2 Br C=C (反式,Z型) H CH2-CH3 CH3-CH2 CH3 C=C (反式,E型) H CH2-CH3 脂环化合物也存在顺反异构体,两个取代基在环平面的同侧为顺式,反之为反式。 (2)、光学异构体的命名光学异构体的构型有两种表示方法D、L和R、S, D 、L标记法以甘油醛为标准,有一定的局限性,有些化合物很难确定它与甘油醛结构的对应关系,因此,更多的是应用R、S标记法,它是根据手性碳原子所连四个不同原子或基团在空间的排列顺序标记的。光学异构体一般用投影式表示,要掌握费歇尔投影式的投影原则及构型的判断方法。例如: COOH 根据投影式判断构型,首先要明确, H NH2 在投影式中,横线所连基团向前, CH2-CH3竖线所连基团向后;再根据“次序 规则”排列手性碳原子所连四个基团的优先顺序,在上式中: -NH2>-COOH>-CH2-CH3>-H ;将最小基团氢原子置于横线上,从大到小,顺时针为S,逆时针为R ;

结构化学基础习题答案_周公度_第4版

【1.15】已知在一维势箱中粒子的归一化波函数为 ( )n n x x l π?= 1,2,3n =??? 式中l 是势箱的长度,x 是粒子的坐标)x l <,求粒子的能量,以及坐标、动量的平均 值。 解:(1)将能量算符直接作用于波函数,所得常数即为粒子的能量: 222 n 222h d n πx h d n πx ?H ψ(x )-)-)8πm d x l 8πm d x l == (sin )n n n x l l l πππ=?- 22222 222()88n h n n x n h x m l l ml ππψπ=-?= 即: 22 28n h E ml = (2)由于??x ()(),x n n x c x ψψ≠无本征值,只能求粒子坐标的平均值: ()()x l x n sin l x l x n sin l x x ?x x l * l n l *n d 22d x 000??????? ?????? ??==ππψψ () x l x n cos x l dx l x n sin x l l l d 22122002??????? ??-=?? ? ??=ππ 2000122sin sin d 222l l l x l n x l n x x x l n l n l ππππ????=-+?? ?????? 2l = (3)由于() ()??p ,p x n n x x c x ψψ≠无本征值。按下式计算p x 的平均值 : ()()1 * ?d x n x n p x p x x ψψ=? 0d 2n x ih d n x x l dx l πππ?=- ?? 20sin cos d 0 l nih n x n x x l l l ππ=-=? 【1.20】若在下一离子中运动的π电子可用一维势箱近似表示其运动特征: 估计这一势箱的长度 1.3l nm =,根据能级公式222 /8n E n h ml =估算π电子跃迁时所吸收 的光的波长,并与实验值510.0nm 比较。 H 3C N C C C C C C C N CH 3 CH 3 H H H H H H H CH 3 解:该离子共有10个π电子,当离子处于基态时,这些电子填充在能级最低的前5个

厦门大学 结构化学 试卷

1、(10%)类氢离子的2s 轨道为: ()032220202, Zr a s e Zr r e a a m e ??????=?=????????h 其中 试求径向函数极大值离核的距离,并给出He +2s 轨道的极大值位置。 2、(14%) 利用Slater 规则,求Si 原子的第一、二电离能。 3、(15%)写出下列原子的基态光谱项:Si, S, Fe, Ti, Ar 。 4、(20%)a. 写出 O 22-, O 2-, O 2 和 O 2+的电子组态、键长次序和磁学性质; b. 有三个振动吸收带:1097 cm -1,1580 cm -1 和 1865 cm -1 ,它们被指定为是由 O 2, O 2+ 和 O 2-所产生的,指出哪一个谱带是属于O 2+的,为什么? 5. (10%) 以z 轴为键轴,下列原子轨道对间能否组成分子轨道?若能,写出是什么类型分子轨道,若不能,写出"不能"。 s , 2d z d xy ,d xy d yz ,d yz d yz ,d xz s ,d xy 6. (20%)指出下列分子所属的对称点群,并判断其旋光性和极性(并简要说明理由)。 (1) PF 3 (2) BF 3 (3) SO 42- (4) 二茂铁 (5) N ≡C ?C ≡N 7、 (11%)若用二维箱中粒子模型,将并四苯(tetracene C 18H 12)的π电子限制在长900pm 、宽400pm 的长方箱中,计算基态跃迁到第一激发态的波长。 tetracene 基本常数: m e =9.11 x 10-31 kg; h =6.626 x 10-34 J .S; R = 13.6 eV=1.097 x 105 cm -1;a 0 = 0.53 ? 厦门大学《结构化学》课程期中试卷(2007)____学院____系____年级____专业 主考教师:____试卷类型:(A 卷/B 卷)

结构化学基础习题及答案(结构化学总复习)

结构化学基础习题和答案 01.量子力学基础知识 【1.1】将锂在火焰上燃烧,放出红光,波长λ=670.8nm ,这是Li 原子由电子组态 (1s)2(2p)1→(1s)2(2s)1跃迁时产生的,试计算该红光的频率、波数以及以k J ·mol -1 为单位的能量。 解:81 141 2.99810m s 4.46910s 670.8m c νλ--??===? 41 71 1 1.49110cm 670.810cm νλ --= = =?? 3414123-1 -16.62610J s 4.46910 6.602310mol 178.4kJ mol A E h N s ν--==??????=? 【1.2】 实验测定金属钠的光电效应数据如下: 波长λ/nm 312.5 365.0 404.7 546.1 光电子最大动能E k /10-19J 3.41 2.56 1.95 0.75 作“动能-频率”,从图的斜率和截距计算出Plank 常数(h)值、钠的脱出功(W)和临阈频率(ν 0)。 解:将各照射光波长换算成频率v ,并将各频率与对应的光电子的最大动能E k 列于下表: λ/nm 312.5 365.0 404.7 546.1 v /1014s -1 9.59 8.21 7.41 5.49 E k /10 -19 J 3.41 2.56 1.95 0.75 由表中数据作图,示于图1.2中 E k /10-19 J ν/1014g -1 图1.2 金属的 k E ν -图 由式

0k hv hv E =+ 推知 0k k E E h v v v ?= =-? 即Planck 常数等于k E v -图的斜率。选取两合适点,将k E 和v 值带入上式,即可求出h 。 例如: ()()1934141 2.70 1.0510 6.60108.5060010J h J s s ---?==?-? 图中直线与横坐标的交点所代表的v 即金属的临界频率0v ,由图可知, 141 0 4.3610v s -=?。因此,金属钠的脱出功为: 341410196.6010 4.36102.8810W hv J s s J ---==???=? 【1.3】金属钾的临阈频率为5.464×10-14s -1 ,如用它作为光电极的阴极当用波长为300nm 的紫外光照射该电池时,发射光电子的最大速度是多少? 解:2 01 2hv hv mv =+ ()1 2 018 1 2 341419 312 2.998102 6.62610 5.46410300109.10910h v v m m s J s s m kg υ------??=? ??? ???????-??? ?????? =?????? ? 1 34 141 2 31512 6.62610 4.529109.109108.1210J s s kg m s ----??????=?????=? 【1.4】计算下列粒子的德布罗意波的波长: (a ) 质量为10-10kg ,运动速度为0.01m ·s -1 的尘埃; (b ) 动能为0.1eV 的中子; (c ) 动能为300eV 的自由电子。 解:根据关系式: (1)3422101 6.62610J s 6.62610m 10kg 0.01m s h mv λ----??===???

结构化学基础习题答案_周公度_第版

【1.3】金属钾的临阈频率为5.464×10-14s -1 ,如用它作为 光电极的阴极当用波长为300nm 的紫外光照射该电池时, 发射光电子的最大速度是多少? 解:2 01 2hv hv mv =+ ()1 2 01 81234 1419312 2.998102 6.62610 5.46410300109.10910h v v m m s J s s m kg υ------??=?? ?? ???????-??? ??????=??????? 1 34141231512 6.62610 4.529109.109108.1210J s s kg m s ----??????=????? =? 【1.4】计算下列粒子的德布罗意波的波长: (a ) 质量为10-10kg ,运动速度为0.01m ·s -1的尘埃; (b ) 动能为0.1eV 的中子; (c ) 动能为300eV 的自由电子。 解:根据关系式: (1) 34221016.62610J s 6.62610m 10kg 0.01m s h mv λ----??= ==??? 34-11 (2) 9.40310m h p λ-==? 34(3) 7.0810m h p λ-==? 【1.7】子弹(质量0.01kg ,速度1000m ·s -1 ),尘埃(质量10-9kg ,速度10m ·s -1)、作布郎运动的花粉(质量10-13kg ,速度1m ·s -1)、原子中电子(速度1000 m ·s -1)等,其速度的不确定度均为原速度的10%,判断在确定这些质点位置时,不确定度关系是否有实际意义? 解:按测不准关系,诸粒子的坐标的不确定度分别为: 子 弹 : 343416.2610 6.63100.01100010%h J s x m m v kg m s ---???===?????? 尘 埃 : 3425916.62610 6.6310101010%h J s x m m v kg m s ----???= ==?????? 花 粉 : 34 201316.62610 6.631010110%h J s x m m v kg m s ----???===?????? 电 子 : 3463116.626107.27109.10910100010%h J s x m m v kg m s ----???===??????? 【1.9】用不确定度关系说明光学光栅(周期约6 10m -)观察不到电子衍射(用100000V 电压加速电子)。 解:解法一:根据不确定度关系,电子位置的不确定 度为: 9911 1.22610/1.2261010000 1.22610x h h x m p h V m m λ---= ==?=?=? 这不确定度约为光学光栅周期的10- 5倍,即在此加速电压条件下电子波的波长约为光学光栅周期的10- 5倍,用光学光栅观察不到电子衍射。 解法二:若电子位置的不确定度为10-6 m ,则由不确定关 系决定的动量不确定度为: 34628 16.62610106.62610x h J s p x m J s m ----??= =?=? 在104 V 的加速电压下,电子的动量为: 5.40210x x p m J s m υ==? 由Δp x 和p x 估算出现第一衍射极小值的偏离角为: 28 12315 arcsin arcsin 6.62610arcsin 5.40210arcsin100x x o p p J s m J s m θθ-----?==??? ? ???≈ 这说明电子通过光栅狭缝后沿直线前进,落到同一个点上。因此,用光学光栅观察不到电子衍射。 【1.11】2 ax xe ? -=是算符22224d a x dx ?? - ?? ?的本征函数,求其本征值。 解:应用量子力学基本假设Ⅱ(算符)和Ⅲ(本征函数,本征值和本征方程)得: 2 2222222244ax d d a x a x xe dx dx ψ-????-=- ? ????? () 2222224ax ax d xe a x xe dx --=- () 2222222 2232323242444ax ax ax ax ax ax ax d e ax e a x e dx axe axe a x e a x e -------=--=--+- 2 66ax axe a ψ -=-=- 因此,本征值为6a -。 【1.13】im e φ 和cos m φ对算符d i d φ是否为本征函数?若 是,求出本征值。 解:im im d i e ie d φ φ φ=,im im me φ =- 所以,im e φ是算符d i d φ的本征函数,本征值为 m -。 而 ()cos sin sin cos d i m i m m im m c m d φφφφφ=-=-≠ 所以cos m φ不是算符d i d φ的本征函数。 【1.14】证明在一维势箱中运动的粒子的各个波函数互相正交。 证:在长度为l 的一维势箱中运动的粒子的波函数为: ()n x ψ01x << n =1,2,3,…… 令n 和n ’表示不同的量子数,积分: ()()()()()()()()()()()()()()000 2sin 2sin sin sin sin 222sin sin sin sin l n n l l l x n x x x d dx l l n x n x dx l l l n n n n x x l l l n n n n l l n n n n x x l l n n n n n n n n n n n n πψψτππππππππ πππ π π π==??-+????=-??-+???? ????-+????=- ??-+????-+= - -+?? n 和n 皆为正整数,因而()n n -和()n n +皆为正整数, 所以积分: ()()0 l n n x x d ψψτ=? 根据定义,()n x ψ和()n x ψ互相正交。 【1.15】已知在一维势箱中粒子的归一化波函数为 ()n n x x l π? 1,2,3n =??? 式中l 是势箱的长度,x 是粒子的坐标( )0x l <<,求粒 子的能量,以及坐标、动量的平均值。 解:(1)将能量算符直接作用于波函数,所得常数即为粒子的能量: n n πx ?H ψ(x )cos )l = =)x = 即: 228n E ml = (2)由于 ??x ()(),x n n x c x ψψ≠无本征值,只能求粒子坐标的平均值: ()()x l x n sin l x l x n sin l x x ?x x l * l n l *n d 22d x 000??????? ?????? ??==ππψψ () x l x n cos x l dx l x n sin x l l l d 22122002??????? ??-=?? ? ??=ππ 2000122sin sin d 222l l l x l n x l n x x x l n l n l ππππ????=-+?? ?????? 2l = (3)由于()()??p ,p x n n x x c x ψψ≠无本征值。按下式计算 p x 的平均值: ()()1 * 0?d x n x n p x p x x ψψ=? d 2n x ih d n x x l dx l πππ?=- ?? 20sin cos d 0 l n x n x x l l l ππ=-=? 【1.19】若在下一离子中运动的 π 电子可用一维势箱近 似表示其运动特征: 估计这一势箱的长度 1.3l nm =,根据能级公式 2 2 2 /8n E n h ml =估算 π电子跃迁时所吸收的光的波长,并与实验值510.0 nm 比较。 H 3N C C C C C C C N CH 3 3 H H H H 3 解:该离子共有10个 π电子,当离子处于基态时, 这些电子填充在能级最低的前5个 π 型分子轨道上。离 子受到光的照射, π 电子将从低能级跃迁到高能级,跃 迁所需要的最低能量即第5和第6两个分子轨道的的能级差。此能级差对应于棘手光谱的最大波长。应用一维势箱粒子的能级表达式即可求出该波长: 22222 652226511888hc h h h E E E ml ml ml λ ?= =-= -= () 22 318193481189.109510 2.997910 1.31011 6.626210506.6mcl h kg m s m J s nm λ----= ??????= ??= 实验值为510.0nm ,计算值与实验值的相对误差为-0.67%。 【1.20】已知封闭的圆环中粒子的能级为: 22 228n n h E mR π= 0,1,2,3,n =±±±??? 式中n 为量子数,R 是圆环的半径,若将此能级公式近似 地用于苯分子中6 6π离域 π键,取R=140pm ,试求其 电子从基态跃迁到第一激发态所吸收的光的波长。

结构化学复习提纲(精心整理)

结构化学复习提纲 第一章量子力学基础 了解量子力学的产生背景?黑体辐射、光电效应、玻尔氢原子理论与德布罗意物质波假设以及海森堡测不准原理,掌握微观粒子的运动规律、量子力学的基本假设与一维势阱中粒子的Schr?dinger方程及其解。 重点:微观粒子的运动特征和量子力学的基本假设。一维势阱中粒子的 Schr?dinger方程及其解。 1. 微观粒子的运动特征 a. 波粒二象性:能量动量与物质波波长频率的关系 ε = hνp = h/λ b. 物质波的几率解释:空间任何一点物质波的强度(即振幅绝对值的平方)正比于粒子在该点出现的几率. c. 量子化(quantization):微观粒子的某些物理量不能任意连续取值, 只能取分离值。如能量,角动量等。 d. 定态:微观粒子有确定能量的状态 玻尔频率规则:微观粒子在两个定态之间跃迁时,吸收或发射光子的频率正比于两个定态之间的能量差。即 e. 测不准原理: 不可能同时精确地测定一个粒子的坐标和动量(速度).坐标测定越精确(?x =0),动量测定就越不精确(?px = ∞),反之动量测定越精确(?px =0),坐标测定就越不精确 (?x = ∞) f. 微观粒子与宏观物体的区别: (1). 宏观物体的物理量连续取值;微观粒子的物理可观测量如能量等取分离值,是量子化的。(2). 微观粒子具有波粒二象性,宏观物体的波性可忽略。(3). 微观粒子适用测不准原理,宏观物体不必。(4). 宏观物体的坐标和动量可以同时精确测量,因此有确定的运动轨迹,其运动状态用坐标与动量描述;微观粒子的坐标和动量不能同时精确地测量,其运动没有确定的轨迹,运动状态用波函数描述。(5). 宏观物体遵循经典力学;微观粒子遵循量子力学。(6). 宏观物体可以区分;等同的微观粒子不可区分。

最新医用有机化学复习提纲

医用有机化学复习提纲 一、题型 : 命名或写出结构式 2、完成反应式 3、选择及填空 4、鉴别5、推断6、合成 二、重点 1.多原子分子:键能≠离解能,为同一类的共价键的离解能的平均值 2.体积大、电负性小,键的极化度大 3.烷烃的优势构象 4.常见的烷基:甲基、乙基、正丙基、异丙基、叔丁基 5.次序规则: -I>-Br>-Cl>-SO3H>-F>-OCOR>-OR >-OH>-NO2>-NR2>-NHR>-NH2 -CCl3>-CHCl2>COCl>-CH2Cl> -COOR>-COOH>-CONH2>-COR>-CHO>-CR2OH>-CHROH>-CH2OH>-CR3>-C6H5>-CHR2> -CH2R>-CH3>-D>-H 6.Z/E命名法: 优先基团在双键的同侧,Z- 优先基团在双键的异侧,E- 7.顺反异构: (1)分子中存在限制碳原子自由旋转的因素,如双键或环 (2)不能自由旋转的碳原子,各连有两个不同的原子或基团时,即a≠b 且d≠e 8.共轭二烯烃:键长的平均化 9.顺序规则:HC≡C->CH2=CH->CH3CH2- -COOH >-CHO >- CH2OH 10.某烯炔 11.沸点: 同碳数,直链比异构烷烃的沸点高,支链数增加,沸点减小;同碳数,相同支 链数,对称性增加,沸点略有增加(比直链的低) 12.熔点: 分子对称性高的在晶格中排列比较整齐、紧密,分子间力大,对熔点影响较 大 13. 14.烯烃:能溶于浓硫酸;中性或碱性,冷稀的高锰酸钾溶液,有MnO2沉淀的生成, 一般不用来鉴别,实验室制备邻二醇的方法;酸性高锰酸钾溶液,重铬酸钾溶液,C= C断裂氧化成C=O,C上的H氧化成-OH;臭氧氧化,无氢的(= C RR ' )生成酮,含一个氢的(= CHR)生成醛,含二个氢的(= CH2)生成甲醛

重庆大学化学期末复习要点

题型及其分值(自带计算器)(可以适当调整文字大小) 一.判断题(10分,+、-)二.不定项选择题(20分,混选)三.填空题(30分)四. 计算题(40分,5小题) 第一章化学热力学基础 一.基本概念 1.体系的三种类型; 2.体系的性质(会判断广度、强度性质); 3.状态函数(会判断)及其重要特 征(2点); 二.热力学第一定律及其三个变量(1.△U=Q-W;2.各自含义;3.Q、W正负取值;) 三.焓与热效应 1.H及其性质(广度、状态、焓大小); 2.△H及其与热效应的关系(表达式;Q p、Q v;)(几种△H (定义);盖斯定律) 四.熵及其初步概念(S定义;S及其比较;△S计算(注意单位)) 五.△G(含义;定义式;自发性判据;计算)H=U+pV G=H-TS 1 物理意义Q p= ΔH 混乱度的量度提供有用功的能力 2 基本性质 都是状态函数是体系的容量性质与物质的聚集态、所处的温度有关 3表示Δr Hθ kJ)与Δr Hθm(kJ·mol-1);S m(T) (J·K-1)与S mθ(T) (J·K-1·mol-1;Δr Gθm(kJ)与Δr Gθm(kJ·mol-1)注意点:标态的规定(对温度无规定)H,G的绝对值不知道,S的绝对值能够确定(热力学第三定律) 反应进度,1mol反应(与方程式写法有关) 计算Δr S mθ(T) (298.15K) (J·K-1·mol-1 )S mθ(298.15K)Δr Hθm(298.15K)(kJ·mol-1)Δr Gθm (298.15K ) (kJ·mol-1) 参考态单质: 1 参考态单质的Δf Hθm=0 Δf Gθm=0 S mθ(T) ≠0 2. Δf Hθm,Δf Gθm单位是kJ·mol-1,S mθ(T)的单位是J·K-1·mol-1。 对于化学反应aA+bB=dD+gG Δr Sθm (298.15K) ={d S mθ(D) +g S mθ(G)}-{a S mθ(A)+b S mθ(B)} Δr Hθm (298.15K)={dΔf Hθm(D) +gΔf Hθm(G) }- {aΔf Hθm(A)+bΔf Hθm(B)} Δr Gθm (298.15K)={gΔf Gθm(G)+dΔf Gθm(D)}-{aΔf Gθm(A)+bΔf Gθm(B)} 在等温、等压只做体积功的条件下,体系由状态1变到状态2,吉布斯自由能变化△G与过程自发性的关系如下:△G<0 自发过程△G=0 体系处于平衡态△G>0 非自发过程吉布斯-赫姆霍兹公式Δr Gθm (T) =Δr Hθm (298.15K) -TΔr Sθm (298.15K) 如何计算Δr Gθm?在标准状态、温度为298.15K时,由Δf Gθm (298.15K)计算Δr Gθm (298.15K) ?在标准状态,指定温度下可由G-H公式计算Δr Gθm (T) T转= Δr Hθm (298.15K)/ Δr Sθm(298.15K) (上下单位要一致) 第二章化学反应速率 用下式表示化学反应速率:v = νB-1dC B/dt 单位:mol?m-3?s-1 (1)数值的大小与选择的物质种类无关,对同一反应,只有一个值; (2)对于反应物, v B与ΔC B 均为负值; 反应速率理论:碰撞理论和过渡状态理论

结构化学基础第五版周公度答案

结构化学基础第五版周公度答案 【1.3】金属钾的临阈频率为 5.464×10-14s -1 ,如用它作为光电极的阴极当用波长为300nm 的紫外光照射该电池时,发射光电子的最大速度是多少? 解: 2 01 2 hv hv mv =+ ()1 2 01812 34141 9 312 2.998102 6.62610 5.46410300109.10910h v v m m s J s s m kg υ------?? =? ??? ???????-??? ??? ???=?? ???? ? 1 3414123151 2 6.62610 4.529109.109108.1210J s s kg m s ----??????=?????=? 【1.4】计算下列粒子的德布罗意波的波长: (a ) 质量为10 -10 kg ,运动 速度为0.01m ·s -1 的尘埃; (b ) 动能为0.1eV 的中 子; (c ) 动能为300eV 的自由 电子。 解:根据关系式: (1) 3422101 6.62610J s 6.62610m 10kg 0.01m s h mv λ----??= ==? ?? 34-11 (2) 9.40310m h p λ-==?34(3) 7.0810m h p λ-==?【1.7】子弹(质量0.01kg , 速度1000m ·s -1 ),尘埃(质 量10-9kg ,速度10m ·s -1 )、作布郎运动的花粉(质量10-13kg ,速度1m ·s -1 )、原 子中电子(速度1000 m ·s -1 )等,其速度的不确定度均为 原速度的10%,判断在确定这些质点位置时,不确定度关系是否有实际意义? 解:按测不准关系,诸粒子的坐标的不确定度分别为: 子弹: 34341 6.2610 6.63100.01100010%h J s x m m v kg m s ---???===?????? 尘 埃 :34 2591 6.62610 6.6310101010%h J s x m m v kg m s ----???= ==?????? 花 粉 :34 20131 6.62610 6.631010110%h J s x m m v kg m s ----???= ==?????? 电 子 : 34 6311 6.62610 7.27109.10910100010%h J s x m m v kg m s ----???= ==??????? 【 1.9】用不确定度关系说明光学光栅(周期约6 10m -)观察不到电子衍射(用100000V 电压加速电子)。 解:解一:根据不确定度关系,电子位置的不确定度为: 9911 1.22610/1.2261010000 1.22610x h h x m p h V m m λ---===?=?=? 这不确定度约为光学光 栅周期的10 -5 倍,即在此加速电压条件下电子波的波长 约为光学光栅周期的10-5 倍,用光学光栅观察不到电子衍射。 解二:若电子位置的不确定 度为10-6 m ,则由不确定关系决定的动量不确定度为: 34628 16.62610106.62610x h J s p x m J s m ----??= =?=? 在104 V 的加速电压下,电子的动量为: 231 5.40210p m J s m υ--==?由Δp x 和p x 估算出现第一衍射极小值的偏离角为: 2812315 arcsin arcsin 6.62610arcsin 5.40210arcsin100x x o p p J s m J s m θθ-----?==??? ? ???≈ 这说明电子通过光栅狭缝后沿直线前进,落到同一个点上。因此,用光学光栅观察不到电子衍射。 【1.11】2 ax xe ?-=是算符 22224d a x dx ??- ??? 的本征函数,求其本 征值。 解:应用量子力学基本假设Ⅱ(算符)和Ⅲ(本征函数,本征值和本征方程)得: 22222222244ax d d a x a x xe dx dx ψ-????-=- ? ????? ( )2222224ax ax d xe a x xe dx --=- () 2 222 2 22 2232323242444ax ax ax ax ax ax ax d e ax e a x e dx axe axe a x e a x e -------=--=--+- 2 66ax axe a ψ -=-=- 因此,本征值为6a -。 【1.13】im e φ 和 cos m φ 对算符d i d φ 是否为本征函数?若是,求出本征值。 解: im im d i e ie d φ φφ =,im im me φ =- 所以,im e φ 是算符d i d φ 的本征函数,本征值为m -。 而 ()cos sin sin cos d i m i m m im m c m d φφφφφ =-=-≠ 所以cos m φ不是算符d i d φ 的本征函数。 【1.15】已知在一维势箱中粒子的归一化波函数为 ()n n x x l π? 1,2,3n =??? 式中l 是势箱的长度, x 是粒子的坐标()0x l <<,求粒子的能量,以及坐标、动量的平均值。 解:(1)将能量算符 直接作用于波函数,所得常数即为粒子的能量: n n πx ?H ψ(x ))l = () n x 即:2 8n h E ml = (2)由于??x ()(),x n n x c x ψψ≠无本征值,只能求粒子坐标的平均值: ()()x l x n sin l x l x n sin l x x ?x x l * l n l *n d 22d x 000?????? ? ?????? ??==ππψψ () x l x n cos x l dx l x n sin x l l l d 22122002?????? ? ??-=?? ? ??=ππ 2000122sin sin d 222l l l x l n x l n x x x l n l n l ππππ????=-+?? ????? ? 2 l =

结构化学复习提纲 ()

结构化学复习提纲第一章量子力学基础 了解量子力学的产生背景?黑体辐射、光电效应、玻尔氢原子理论与德布罗意物质波假设 以及海森堡测不准原理,掌握微观粒子的运动规律、量子力学的基本假设与一维势阱中 粒子的Schr?dinger方程及其解。 重点:微观粒子的运动特征和量子力学的基本假设。一维势阱中粒子的Schr?dinger方程及其解。 1. 微观粒子的运动特征 a. 波粒二象性:能量动量与物质波波长频率的关系 ? = h?p = h/? b. 物质波的几率解释:空间任何一点物质波的强度(即振幅绝对值的平方)正比于粒子 在该点出现的几率. c. 量子化(quantization):微观粒子的某些物理量不能任意连续取值, 只能取分离值。 如能量,角动量等。 d. 定态:微观粒子有确定能量的状态 玻尔频率规则:微观粒子在两个定态之间跃迁时,吸收或发射光子的频率正比于两个定 态之间的能量差。即 e. 测不准原理: 不可能同时精确地测定一个粒子的坐标和动量(速度).坐标测定越精确 (?x =0),动量测定就越不精确(?px = ?),反之动量测定越精确(?px =0),坐标测定就 越不精确 (?x = ?)

f. 微观粒子与宏观物体的区别: (1). 宏观物体的物理量连续取值;微观粒子的物理可观测量如能量等取分离值,是量子化的。(2). 微观粒子具有波粒二象性,宏观物体的波性可忽略。(3). 微观粒子适用测不准原理,宏观物体不必。(4). 宏观物体的坐标和动量可以同时精确测量,因此有确定的运动轨迹,其运动状态用坐标与动量描述;微观粒子的坐标和动量不能同时精确地测量,其运动没有确定的轨迹,运动状态用波函数描述。 (5). 宏观物体遵循经典力学;微观粒子遵循量子力学。(6). 宏观物体可以区分;等同的微观粒子不可区分。 2. 微观粒子运动状态的描述 a. 品优波函数的三个要求: 单值连续平方可积 波函数exp(i m?) m的取值? b. 将波函数归一化? = 0?2? c. 波函数的物理意义??(x, y, z, t)?2d x d y d z表示在t时刻在空间小体积元(x?x+d x, y?y+d y, z?z+d z)中找到粒子的几率 d. 波函数的单位* 3. 物理量与厄米算符 每个物理可观测量都可以用一个厄米算符表示 a. 线性算符与厄米算符 b. 证明id/dx是厄米算符* c. 写出坐标,动量,能量,动能,势能与角动量的算符

大学有机化学总复习

有机化学复习资料 一、命名下列化合物 (CH 3)2CH-CH=CHCHO ;CH 3C O C CH 2CH 3 O O ;C C CH 2CH 3 CH(CH 3)2H 3C H ;N H CH 3; H 3C C O O C CH 3O ;CH 3CH 2CH 2CCH 3 O ; N NO 2 ;(CH 3)2CH-C-CH 2CH 3OH CH 3 ; H 3C C CH 2COOH O ; CH 3O 二、写出下列化合物的结构式 1-甲基-4-氯环己烷; (E)-3,4-二甲基-3-庚烯;2-戊醇;乙酰胺;二苯醚;苯甲醚; 3-苯基丙酸;N -甲基-N -乙基苯胺;3-苯基-2-丙烯醛;4-甲基苯酚 三、单项选择填空 CHO CH 3 H Cl H Br 的构型应为( )。 (A )(2S ,3R );(B )(2R ,3S );(C )(2R ,3R );(D )(2S ,3S ) OH CH 3H Cl 的名称是( ) 。 (A ) (R )-氯乙醇; (B ) (S )-氯乙醇; (C ) (R )-2-羟基氯乙烷; (D ) (S )-氯乙烷 等量的一组对映体组成的混合物称为( )。 (A )内消旋体 (B )外消旋体 (C )非对映体 (D )旋光异构体 D -(-)-乳酸括号中的“-”表示( )。 (A )负离子 (B )左旋 (C )右旋 (D )R 以下各化合物,互为一对同分异构体的是( )。 A )淀粉与纤维素;B )乙醇和乙醚;C )胱氨酸和半胱氨酸;D )葡萄糖和果糖 和D-果糖生成相同糖脎的是( )。 (A )麦芽糖; (B )D-甘露糖; (C )D-核糖; (D )D-半乳糖 下列级别的醇与Na 反应的活性次序是( )。 A )1°>2°>3°;B )3°>2°>1°;C )2°>1°>3°;D )2°>3°>1° 制备格氏试剂需用下述( )化合物作为溶剂. (A )乙醇; (B )干燥乙醚; (C )无水乙醇; (D )乙醚 乙烯分子中碳原子的杂化方式是( )。 (A )sp (B ) sp 2 (C ) sp 3 (D )不杂化 按原子轨道重叠的方式不同,共价键有两种:σ键和π键。下列不属于σ键的性质的描述是( )。 A ) 重叠程度大,比较稳定; B ) 可以绕键轴自由旋转; C ) 原子轨道以“肩并肩”方式重叠; D ) 电子流动性小。 根据英果尔-凯恩提出的立体化学次序规则,下列原子或基团中,优先的是( )。 (A ) –NO 2;(B ) –CHO ;(C ) -Br ;(D ) –CH=CH 2 根据英果尔-凯恩次序规则,下列基团优先的是( )。 (A )丙基 (B ) 异丙基 (C ) 甲基 (D )H 下述化合物中( )能与三氯化铁反应显色。 (A )邻二甲苯 (B )邻硝基甲苯 (C )对硝基甲苯 (D )邻甲基苯酚 下列化合物中能形成分子内氢键的是( )。 OH NO 2 OH CH 3 OH NO 2 OH NO 2A B C D 和D-葡萄糖生成相同糖脎的是( )。 (A )麦芽糖; (B )D-果糖; (C )D-核糖; (D )L-甘露糖 反应CH 3-CH=CH 2 + Br 2 → CH 3-CH(Br)-CH 2Br 是属于( )。 (A )亲核加成 (B )亲电加成 (C )亲核取代 (D )亲电取代 已知丙氨酸(pI=6.00)、精氨酸(pI=10.76)、谷氨酸(pI=3.22)的混合液pH 为6.00,将此混合液置于电场中,其中( )不移动。 (A )丙氨酸(B )精氨酸(C )谷氨酸 (D )无法判断 谷氨酸的等电点pI=3.2,它在pH=3.2的溶液中主要呈( )。 (A )正离子; (B )负离子; (C )偶极离子; (D )无法判断

结构化学基础知识点总结

结构化学基础 第一章量子力学基础: 经典物理学是由Newton(牛顿)的力学,Maxwell(麦克斯韦)的电磁场理论,Gibbs(吉布斯)的热力学和Boltzmann(玻耳兹曼)的统计物理学等组成,而经典物理学却无法解释黑体辐射,光电效应,电子波性等微观的现象。 黑体:是一种可以全部吸收照射到它上面的各种波长辐射的物体,带一个微孔的空心金属球,非常接近黑体,进入金属球小孔的辐射,经多次吸收,反射使射入的辐射实际全被吸收,当空腔受热,空腔壁会发出辐射,极少数从小孔逸出,它是理想的吸收体也是理想的放射体,若把几种金属物体加热到同一温度,黑体放热最多,用棱镜把黑体发出的辐射分开就可测出指定狭窄的频率范围的黑体的能量。 规律:频率相同下黑体的能量随温度的升高而增大, 温度相同下黑体的能量呈峰型,峰植大致出现在频率范围是0.6-1.0/10-14S-1。 且随着温度的升高,能量最大值向高频移动. 加热金属块时,开始发红光,后依次为橙,白,蓝白。 黑体辐射频率为v的能量是hv的整数倍. 光电效应和光子学说: Planck能量量子化提出标志量子理论的诞生。 光电效应是光照在金属表面上使金属放出电子的现象,实验证实: 1.只有当照射光的频率超过金属最小频率(临阈频率)时,金属才能发出电子,不同金属的最小频率不同,大多金属的最小频率位于紫外区。 2.增强光照而不改变照射光频率,则只能使发射的光电子数增多,不影响动能。 3.照射光的频率增强,逸出电子动能增强。 光是一束光子流,每一种频率的光的能量都有一个最小单位光子,其能量和光子的频率成正比,即E=hv 光子还有质量,但是光子的静止质量是0,按相对论质能定律光子的质量是 m=hv/c2 光子的动量:p=mc=hv/c=h/波长 光的强度取决于单位体积内光子的数目,即光子密度。 光电效应方程:hv(照射光频率)=W(逸出功)+E(逸出电子动能) 实物微粒的波粒二象性: 由de Broglie(德布罗意)提出:p=h/波长 电子具有粒性,在化合物中可以作为带电的微粒独立存在(电子自身独立存在,不是依附在其他原子或分子上的电子) M.Born(玻恩)认为在空间任何一点上波的强度(即振幅绝对值平方)和粒子出现的概率成正比,电子的波性是和微粒的统计联系在一起,对大量的粒子而言衍射强度(波强)大的地方粒子出现的数目就多概率就大,反之则相反。 不确定度关系: Schrodinger(薛定谔)方程的提出标志量子力学的诞生. 不确定关系又称测不准关系或测不准原理,它是微观粒子本质特性决定的物理量间相互关系原理,反映了微粒波特性。而一个粒子不可能同时拥有确定坐标和动量(也不可以将时间和能量同时确定)[这是由W.Heisenberg(海森伯)提出的] 微观粒子与宏观粒子的比较: 1.宏观物体同时具有确定的坐标和动量可用牛顿力学描述(经典力学),微观粒子不同时具

最新高考化学题型复习提纲

一、高考化学题型归纳 1、 单项选择题1-6 2、 主观题(7-10) 元素无机综合、化学平衡综合、实验综合、有机综合 二、选择题考点归纳 基本化学用语化学基本概念化学反应与能量 氧化还原反应的概念及计算三、元素无机综合题考点归纳 1、 常出现的元素:H 、C 、N 、O 、F 、Na 、Mg 、Al 、Si 、S 、Cl 、Fe 、Cu 2、 常出现的气体:H 2、O 2、N 2、Cl 2、CO 2、NH 3、HCl 、SO 2、CH 4、NO 2、CO 、NO 3、 常出现的信息:物质状态、颜色、用途、来源、工业生产、物质类型、原子结构 4、 常出现的条件:点燃、加热、高温、电解、催化剂 5、 常出现的反应: 2Na + 2H 2O = 2NaOH + H 2↑ 2Na 2O 2 + 2H 2O = 4NaOH + O 2↑ 2Na 2O 2 + 2CO 2 = 2Na 2CO 3 + O 2↑ 2NaCl + 2H 2O 2NaOH + H 2↑ + Cl 2↑ 2NaOH + Cl 2 = NaCl +NaClO + H 2O 2NaOH + Ca(HCO 3)2 = Na 2CO 3 + CaCO 3↓ + 2H 2O NaOH + Ca(HCO 3)2 = NaHCO 3 + CaCO 3↓+ H 2O 2NaHCO 3 + Ca(OH)2 = Na 2CO 3 + CaCO 3↓ + 2H 2O NaHCO 3 + Ca(OH)2 =NaOH + CaCO 3↓ + H 2O 2Mg + CO 2 2MgO + C 3Mg + N 2 Mg 3N 2 2Al + 2NaOH + 2H 2O = 2NaAlO 2 + H 2↑ Al 2O 3 + 2NaOH = 2NaAlO 2 + H 2O Al(OH)3 + NaOH = NaAlO 2 + 2H 2O

相关主题
文本预览
相关文档 最新文档