当前位置:文档之家› K-means 聚类算法研究综述

K-means 聚类算法研究综述

K-means 聚类算法研究综述
K-means 聚类算法研究综述

K-means聚类算法研究综述

摘要:总结评述了K-means聚类算法的研究现状,指出K-means聚类算法是一个NP难优化问题,无法获得全局最优。介绍了K-means聚类算法的目标函数,算法流程,并列举了一个实例,指出了数据子集的数目K,初始聚类中心选取,相似性度量和距离矩阵为K-means聚类算法的3个基本参数。总结了K-means聚类算法存在的问题及其改进算法,指出了K-means 聚类的进一步研究方向。

关键词:K-means聚类算法;NP难优化问题;数据子集的数目K;初始聚类中心选取;相似性度量和距离矩阵

Review of K-means clustering algorithm

Abstract: K-means clustering algorithm is reviewed. K-means clustering algorithm is a NP hard optimal problem and global optimal result cannot be reached. The goal,main steps and example of K-means clustering algorithm are introduced. K-means algorithm requires three user-specified parameters: number of clusters K,cluster initialization,and distance metric.

Problems and improvement of K-means clustering algorithm are summarized then. Further study directions of K-means

clustering algorithm are pointed at last.

Key words: K-means clustering algorithm; NP hard optimal problem; number of clusters K; cluster initialization; distance metric

K-means聚类算法是由Steinhaus1955年、Lloyed1957年、Ball & Hall1965年、McQueen1967年分别在各自的不同的科学研究领域独立的提出。K-means聚类算法被提出来后,在不同的学科领域被广泛研究和应用,并发展出大量不同的改进算法。虽然K-means聚类算法被提出已经超过50年了,但目前仍然是应用最广泛的划分聚类算法之一[1]。容易实施、简单、高效、成功的应用案例和经验是其仍然流行的主要原因。

文中总结评述了K-means聚类算法的研究现状,指出K-means聚类算法是一个NP难优化问题,无法获得全局最优。介绍了K-means聚类算法的目标函数、算法流程,并列举了一个实例,指出了数据子集的数目K、初始聚类中心选取、相似性度量和距离矩阵为K-means聚类算法的3个基本参数。总结了K-means聚类算法存在的问题及其改进算法,指出了K-means聚类的进一步研究方向。

1经典K-means聚类算法简介

1.1K-means聚类算法的目标函数

对于给定的一个包含n个d维数据点的数据集

12

{x,x,,x,,x}

i n

X=??????,其中d

i

x R

∈,以及要生成的数据子集的数目K,K-means聚类算法将数据对象组织为

K个划分{c,i1,2,}

k

C K

==???。每个划分代表一个类c k,每个类c k有一个类别中心iμ。选取欧氏距离作为相似性和

距离判断准则,计算该类内各点到聚类中心

i

μ的距离平方和

2

(c)

i i

k i k

x C

J xμ

=-

∑(1)

聚类目标是使各类总的距离平方和

1

(C)(c)

K

k

k

J J

=

=∑最小。

22

1111

(C)(c)

i i

K K K n

k i k ki i k

k k x C k i

J J x d x

μμ

==∈==

==-=-

∑∑∑∑∑

(2)其中,

1

i i

ki

i i

x c

d

x c

?

=?

?

?

,显然,根据最小二乘

法和拉格朗日原理,聚类中心

k

μ应该取为类别

k

c类各数据点的平均值。

K-means聚类算法从一个初始的K类别划分开始,然

后将各数据点指派到各个类别中,以减小总的距离平方和。因为K -means 聚类算法中总的距离平方和随着类别个数K 的增加而趋向于减小(当K n =时,(C)0J =)。因此,总的距离平方和只能在某个确定的类别个数K 下,取得最小值。

1.2 K -means 算法的算法流程

K -means 算法是一个反复迭代过程,目的是使聚类域中所有的样品到聚类中心距离的平方和(C)J 最小,算法流程包括 4个步骤[1]

,具体流程图如图1所示。

图1 K -means 聚类算法流程图 Fig .1 Steps of K -means clustering algorithm

1.3 K -means 聚类算法实例

图2显示的是K -means 算法将一个2维数据集聚成3类的过程示意图。

2 K -means 聚类算法是一个NP 难优化问题

K -means 聚类算法是一个NP 难优化问题吗?在某个确定的类别个数K 下,在多项式时间内,最小的总距离平方和(C)J 值和对应的聚类划分能否得到?目前,不同的学者有不同的答案。

Aristidis Likas 等人[2]认为在多项式时间内最小的值和

对应的聚类划分能够得到,并于2002年提出了全局最优的K -means 聚类算法。但给出的“The global K -means clustering algorithm ”只有初始聚类中心选取的算法步骤,而缺乏理论证明。很快,pierre Hansen 等人[3]

就提出“The global K -means

clustering algorithm ” 不过是一个启发式增量算法,并不能保证得到全局最优,文章最后还给出了反例。

很多学者指出,如果数据点的维数1d

=,最小的总距

离平方和(C)J 值和对应的聚类划分能够在2(Kn)O 时间内使用动态规划获得,例如Bellman and Dreyfus [4]

。Pierre

Hansen 等人[3]

认为,K -means 聚类算法时间复杂度未知。

但是,更多的学者认为,对于一般的数据维数d 和类别个数K ,K -means 聚类算法是一个NP 难优化问题[5]

。Sanjoy

Dasgupta 等人认为即使在类别个数K =2的情况下,K -means 聚类算法也是一个NP 难优化问题。Meena Mahajan 等人[6

]

认为即使在数据点的维数2d =下,对于平面的K -means 聚类问题,也是NP 难的。本研究也认为,对于一般的数据维数d 和类别个数K ,K -means 聚类算法是一个NP 难优化问题。K -means 聚类算法是一个贪心算法,在多项式时间内,仅能获得局部最优,而不可能获得全局最优。

(a)将被分成3类的2维原始输入数据 (b) 选择3个种子数据点作为3个类的初始聚类中心

(a) two-dimensional input data with three clusters (b) Three seed points selected as cluster centers and initial assignment

of the data points to clusters

(c)更新聚类类别和类别中心的第二次迭代过程 (d)更新聚类类别和类别中心的第3次的迭代过程 (e)K-means聚类算法收敛所获得的最终聚类结果(c) step two of intermediate literations updating (d)Step three of intermediate iterations updating (e)final clustering obtained by K-means algorithm cluster labels and their centers cluster labels and their centers at convergence

图2K-means算法示意图

Fig.2Illustration of K-means algorithm

3K-means聚类算法的参数及其改进

K-means聚类算法需要用户指定3个参数:类别个数

K,初始聚类中心、相似性和距离度量。针对这3个参数,

K-means聚类算法出现了不同的改进和变种。

3.1类别个数K

K-means聚类算法最被人所诟病的是类别个数K的选择。因为缺少严格的数学准则,学者们提出了大量的启发式和贪婪准则来选择类别个数K。最有代表性的是,令K逐渐增加,如1,2,

K=???,因为K-means聚类算法中总的距离平方和J随着类别个数K的增加而单调减少。最初由于K较小,类型的分裂(增加)会使J值迅速减小,但当K 增加到一定数值时,J值减小速度会减慢,直到当K等于总样本数N时,0

J=,这时意味着每类样本自成一类,每个样本就是聚类中心。如图3所示,曲线的拐点A对应着接近最优的K值,最优K值是对J值减小量、计算量以及分类效果等进行权衡得出的结果。而在实际应用中,经常对同一数据集,取不同的K值,独立运行K-means聚类算法,然后由领域专家选取最有意义的聚类划分结果。

图3J-K关系曲线

Fig.3Relationship curve between J and K

并非所有的情况都容易找到J-K关系曲线的拐点,此时K值将无法确定。对类别个数K的选择改进的算法是Ball & Hall[7]于1965年提出的迭代自组织的数据分析算法(Iterative Self-organizing Data Analysis Technique Algorithm, ISODA TA),该算法在运算的过程中聚类中心的数目不是固定不变的,而是反复进行修改,以得到较合理的类别数K,这种修改通过模式类的合并和分裂来实现,合并与分裂在一组预先选定的参数指导下进行。

3.2初始聚类中心的选取

越来越多的学者倾向于认为最小化总距离平方和(C)

J值和对应的聚类划分是一个NP难优化问题。因此,K-means聚类算法是一个贪心算法,在多项式时间内,仅能获得局部最优。而不同的初始聚类中心选取方法得到的最终局部最优结果不同。因此,大量的初始聚类中心选取方案被提出。

经典的K-means聚类算法的初始聚类中心是随机选取的。Selim S Z, Al-Sultan K S于1991

年提出的随机重启

动K -means 聚类算法是目前工程中应用最广泛的初始聚类中心选取方法,其过程如图4所示。王成等人提出使用最大最小原则来选取初始聚类中心[8]

,与其它方法不同的是,该

过程是一个确定性过程。模拟退火、生物遗传等优化搜索算法也被用于K -means 聚类算法初始聚类中心的选取。四种初始聚类中心选取方法的比较可见文献[9]

。自从 Aristidis

Likas 等人[2]

提出“The global K -means clustering algorithm ”,

对其的批评[3]

、讨论和改进就没有停止过[

10]

图4 多次重启动K -means 聚类算法流程图

Fig .4 Steps of multiple restarts K -means clustering algorithm

3.3相似性度量和距离矩阵

K -means 聚类算法使用欧式距离作为相似性度量和距离矩阵,计算各数据点到其类别中心的距离平方和。因此,K -means 聚类算法划分出来的类别店铺是类球形的。实际上,欧式距离是Minkowski 距离在2m =

的特例,即2L 距离。在采用m L 距离进行K -means 聚类时,最终类中心应是每一类的m 中心向量。Kashima 等人于2008年使用1L 距离,最终聚类中心使每一类的中位向量。对于一维数据12,{x ,x ,x ,,x }

i n X

=??????而言,中位数M 比均值x 对异常数据有较强的抗干扰性,聚类结果受数据中异常值的影响较小。Mao & Jain

[11]

于1996年提出使用Mahalanobis 距离,但计算代价

太大。在应用中,Linde 等。于1980年提出使用Itakura -Saito 距离。Banerjee 等人2004年提出,如果使用Bregman 差异作为距离度量,有许多突出优点,如克服局部最优、类别之间的线性分离、线性时间复杂度等。

4 K -means 聚类算法的其他改进

在K -means 聚类算法中,每个数据点都被唯一的划分到一个类别中,这被称为硬聚类算法,它不易处理聚类不是致密而是壳形的情形。模糊聚类算法能摆脱这些限制,这些

方法是过去20年间集中研究的课题。在模糊方法中,数据点可以同时属于多个聚类,Dunn 等人[

12]

于1973年提出了

模糊K -means 聚类算法。

5 结束语

笔者也相信K -means 聚类是一个NP 难优化问题,但这需要更加严格的数学理论证明。因此K -means 聚类算法是一个贪心算法,在多项式时间内,仅能获得局部最优,对 K -means 聚类算法的研究也将继续。但是对K -means 聚类算法的研究和改进应注意以下几点:

1)笔者感兴趣的是现实世界问题的实际解决方案,模式分析算法必须能处理非常大的数据集。所以,只在小规模的例子上运行良好是不够的;我们要求他的性能按比例延伸到大的数据集上,也就是高效算法(efficient algorithm )。

2)在现实生活应用中数据里经常混有由于人为误差而引起的噪声。 我们要求算法能够处理混有噪声的数据,并识别近似模式。只要噪声不过多地影响输出,这些算法应能容忍少量的噪声,称为算法的健壮性(robust )。相对于2L 距离,1L 距离有较强的健壮性。但相似性度量和距离矩阵的选取,不是一个理论问题,而是一个应用问题,需要根据问题和应用需要需求,假定合适的模型。例如,采用不同m L 的距离,K -means 聚类的结果一般是不同的。

3)统计稳定性即算法识别的模式确实是数据源的真实模式,而不只是出现在有限训练集内的偶然关系。如果我们在来自同一数据源的新样本上重新运行算法,它应该识别出相似的模式,从这个意义上讲,可以把这个性质看作输出在统计上的健壮性。样本读入次序不同,一些聚类算法获得的模式完全不同,而另一些聚类算法对样本读入次序不敏感。从这个角度来讲,最大最小原则比随机重启动、模拟退火、生物遗传在初始聚类中心选取上要好。

4)K-means聚类算法的很多变种引入了许多由用户指定的新参数,对这些参数又如何自动寻优确定,是一个不断深入和发展的过程。

5)K-means还存在一个类别自动合并问题[1],在聚类过程中产生某一类中无对象的情况,使得得到的类别数少于用户指定的类别数,从而产生错误,能影响分类结果。其原因需要在理论上深入探讨,但这方面的论文和研究很少。聚类的意义,这也是所有的聚类算法都面临的问题,需要在数学理论和应用两方面开展研究。

参考文献:

[1] Anil K J. Data clustering: 50 years beyond K-Means [J]. Pattern

Recognition Letters, 2010, 31(8): 651-666.

[2] Likas A, Vlassis M, Verbeek J. The global K-means clustering algorithm

[J]. Pattern Recognition,2003, 36(2): 451-461.

[3] Selim S Z,Al-Sultan K S. Analysis of global K -means,an incremental

heuristic for minimum sum-of-squares clustering [J]. Journal of

Classification,2005(2): 287-310.

[4] Bellman R, Dreyfus S. Applied dynamic programming [M]. New Jersey:

Princeton University Press, 1962.

[5] Aloise D, Deshpande A, Hansen P, et al. NP-hardness of euclidean

sum-of-squares clustering [J]. Machine Learning, 2009, 75(2): 245-248.

[6] Mahajan M, Nimbor P, Varadarajan K. The planar K-means problem is

NP-hard [J]. Lecture Notes in Computer Science, 2009(5431): 274-285.

[7] Ball G, Hall D. ISODATA, a novel method of data analysis and pattern classification[M]. California: Technical rept. NTIS AD 699616. Stanford Research Institute, 1965.

[8] WANG Cheng, LI Jiao-jiao, BAI Jun-qing, et al. Max-Min K- means

Clustering Algorithm and Application in Post-processing of Scientific Computing[C]//Napoli: ISEM, 2011: 7-9.

[9] Pena J M, Lozano J A, Larranaga P. An empirical comparison of four

initialization methods for the K -means algorithm [J]. Pattern

Recognition Letters, 1999(20): 1027-1040.

[10] Lai J Z C, Tsung-Jen H. Fast global K -means clustering using cluster

membership and inequality[J]. Pattern Recognition, 2010(43):

1954-1963

[11] Mao J, Jain A K. A self-organizing network for hyper- ellipsoidal

clustering(hec)[J]. IEEE Transactions on neural net- works, 1996(7): 16-29.

[12] Dunn J C. A fuzzy relative of the isodata process and its use in

detecting compact well-separated clusters[J]. Journal of Cybernetics, 1973(3):32-57

基于划分聚类法的文献综述

基于划分聚类法的文献综述 聚类分析是一种重要的无监替学习方法,作为数据分析的工具,其重要性在各个领域都得到了广泛的认可.聚类分析的目的是寻找数据集中的“口然分组”,即所谓的“簇”.通俗地讲,簇是指相似元素的集合,聚类分析就是一个在数据集中寻找相似元素集合的无监督学习过程.來〔1不同应用领域的数据集具有不同的特点,人们对数据进行聚类分析的目的也不尽相同,聚类分析的方法因数据集而异,因使用目的而异.当前,聚类分析的新方法层岀不穷,纵观各种聚类算法,它们使用的技术互不相同,其理论背景乂彼此交义、重蒂,很难找到一个统一的标准对其进行归类。 聚类分析的方法可分为基于层次的聚类方法、基于划分的聚类方法、基于图论的聚类方法、基于密度和网格的方法等.这些方法虽然从不同角度使用不同的理论方法研究聚类分析,但对于不同的实际问题,聚类分析中的一些基本内容始终是人们关注的焦点。其中,划分法通常是指给定数据库,其中有N个元素,采用分裂法将其构造为K个组,每一个分组就代表一个聚类,K

聚类分析K-means算法综述

聚类分析K-means算法综述 摘要:介绍K-means聚类算法的概念,初步了解算法的基本步骤,通过对算法缺点的分析,对算法已有的优化方法进行简单分析,以及对算法的应用领域、算法未来的研究方向及应用发展趋势作恰当的介绍。 关键词:K-means聚类算法基本步骤优化方法应用领域研究方向应用发展趋势 算法概述 K-means聚类算法是一种基于质心的划分方法,输入聚类个数k,以及包含n个数据对象的数据库,输出满足方差最小标准的k个聚类。 评定标准:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算。 解释:基于质心的划分方法就是将簇中的所有对象的平均值看做簇的质心,然后根据一个数据对象与簇质心的距离,再将该对象赋予最近的簇。 k-means 算法基本步骤 (1)从n个数据对象任意选择k 个对象作为初始聚类中心 (2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分 (3)重新计算每个(有变化)聚类的均值(中心对象) (4)计算标准测度函数,当满足一定条件,如函数收敛时,则算法终止;如果条件不满足则回到步骤(2) 形式化描述 输入:数据集D,划分簇的个数k 输出:k个簇的集合 (1)从数据集D中任意选择k个对象作为初始簇的中心; (2)Repeat (3)For数据集D中每个对象P do (4)计算对象P到k个簇中心的距离 (5)将对象P指派到与其最近(距离最短)的簇;

(6)End For (7)计算每个簇中对象的均值,作为新的簇的中心; (8)Until k个簇的簇中心不再发生变化 对算法已有优化方法的分析 (1)K-means算法中聚类个数K需要预先给定 这个K值的选定是非常难以估计的,很多时候,我们事先并不知道给定的数据集应该分成多少个类别才最合适,这也是K一means算法的一个不足"有的算法是通过类的自动合并和分裂得到较为合理的类型数目k,例如Is0DAIA算法"关于K一means算法中聚类数目K 值的确定,在文献中,根据了方差分析理论,应用混合F统计量来确定最佳分类数,并应用了模糊划分嫡来验证最佳分类数的正确性。在文献中,使用了一种结合全协方差矩阵RPCL算法,并逐步删除那些只包含少量训练数据的类。文献中针对“聚类的有效性问题”提出武汉理工大学硕士学位论文了一种新的有效性指标:V(k km) = Intra(k) + Inter(k) / Inter(k max),其中k max是可聚类的最大数目,目的是选择最佳聚类个数使得有效性指标达到最小。文献中使用的是一种称为次胜者受罚的竞争学习规则来自动决定类的适当数目"它的思想是:对每个输入而言不仅竞争获胜单元的权值被修正以适应输入值,而且对次胜单元采用惩罚的方法使之远离输入值。 (2)算法对初始值的选取依赖性极大以及算法常陷入局部极小解 不同的初始值,结果往往不同。K-means算法首先随机地选取k个点作为初始聚类种子,再利用迭代的重定位技术直到算法收敛。因此,初值的不同可能导致算法聚类效果的不稳定,并且,K-means算法常采用误差平方和准则函数作为聚类准则函数(目标函数)。目标函数往往存在很多个局部极小值,只有一个属于全局最小,由于算法每次开始选取的初始聚类中心落入非凸函数曲面的“位置”往往偏离全局最优解的搜索范围,因此通过迭代运算,目标函数常常达到局部最小,得不到全局最小。对于这个问题的解决,许多算法采用遗传算法(GA),例如文献中采用遗传算法GA进行初始化,以内部聚类准则作为评价指标。 (3)从K-means算法框架可以看出,该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销是非常大 所以需要对算法的时间复杂度进行分析,改进提高算法应用范围。在文献中从该算法的时间复杂度进行分析考虑,通过一定的相似性准则来去掉聚类中心的候选集,而在文献中,使用的K-meanS算法是对样本数据进行聚类。无论是初始点的选择还是一次迭代完成时对数据的调整,都是建立在随机选取的样本数据的基础之上,这样可以提高算法的收敛速度。

蚁群聚类算法综述

计算机工程与应用2006.16 引言 聚类分析是数据挖掘领域中的一个重要分支[1],是人们认 和探索事物之间内在联系的有效手段,它既可以用作独立的 据挖掘工具,来发现数据库中数据分布的一些深入信息,也 以作为其他数据挖掘算法的预处理步骤。所谓聚类(clus- ring)就是将数据对象分组成为多个类或簇(cluster),在同一 簇中的对象之间具有较高的相似度,而不同簇中的对象差别大。传统的聚类算法主要分为四类[2,3]:划分方法,层次方法, 于密度方法和基于网格方法。 受生物进化机理的启发,科学家提出许多用以解决复杂优 问题的新方法,如遗传算法、进化策略等。1991年意大利学A.Dorigo等提出蚁群算法,它是一种新型的优化方法[4]。该算不依赖于具体问题的数学描述,具有全局优化能力。随后他 其他学者[5~7]提出一系列有关蚁群的算法并应用于复杂的组优化问题的求解中,如旅行商问题(TSP)、调度问题等,取得 著的成效。后来其他科学家根据自然界真实蚂蚁群堆积尸体分工行为,提出基于蚂蚁的聚类算法[8,9],利用简单的智能体 仿蚂蚁在给定的环境中随意移动。这些算法的基本原理简单懂[10],已经应用到电路设计、文本挖掘等领域。本文详细地讨现有蚁群聚类算法的基本原理与性能,在归纳总结的基础上 出需要完善的地方,以推动蚁群聚类算法在更广阔的领域内 到应用。 2聚类概念及蚁群聚类算法 一个簇是一组数据对象的集合,在同一个簇中的对象彼此 类似,而不同簇中的对象彼此相异。将一组物理或抽象对象分组为类似对象组成的多个簇的过程被称为聚类。它根据数据的内在特性将数据对象划分到不同组(或簇)中。聚类的质量是基于对象相异度来评估的,相异度是根据描述对象的属性值来计算的,距离是经常采用的度量方式。聚类可用数学形式化描述为:设给定数据集X={x 1 ,x 2 ,…,x n },!i∈{1,2,…,n},x i ={x i1 ,x i2 , …,x

基于因子分析和聚类分析的客户偏好探究

基于因子分析和聚类分析的客户偏好探究 一文献综述 二十世纪五十年代中期,美国学者温德尔史密斯提出了顾客细分理论。该理论指出,顾客由于其文化观念、收入、消费习俗等方面的不同可以分为不同的消费群体。企业在经营中应该针对不同的顾客提供针对性的服务,这样才能够利用有限资源进行有效的市场竞争。对顾客的细分从方法上讲有根据人口特征和购买历史的细分和根据顾客对企业的价值即基于顾客的消费金额、消费频率的细分。本文的细分是基于购买历史和人口特征的聚类分析。饭店作为一个古老的服务行业,在现阶段的高度竞争市场下的发展趋势最重要的方面便是服务趋于个性化,所以针对饭店的消费群体特征的聚类可以对饭店进行定位,在此基础上通过分析目标客户群体对消费质量评价的最主要影响因素可以达到其服务个性化的目标。波特把顾客的价值定义为买方感知性与购买成本的一种权衡。对顾客的个性化服务增加了买方的感知度从而加大了他们愿意为此付出的成本,于是饭店便可以增加营业额。 聚类分析是把研究对象视作多维空间中的许多点, 并合理地分成若干类,即一种根据变量域之间的相似性而逐步归群成类的方法,它能客观地反映这些变量或区域之间的内在组合关系。1故聚类算法是对顾客进行分析的一个有效方式。在聚类分析的众多算法中因子分析是研究如何以最少的信息丢失, 将众多原始变量浓缩成少数几个因子变量, 以及如何使因子变量具有较强的可解释性的一种多元统计分析方法。2而典型的k-means算法以平方误差准则较好地实现了空间聚类,对于大数据集的处理效率较高。3在对顾客细分相关文献的研究过程中,主要运用的方法有神经网络,分层聚类,因子分析等方法。比如,在关于网络青少年用户的分类中,作者用层次聚类的方法,通过对青少年年龄,性别,民族,网络可得性,父母的观点等变量等变量定义不同的上网动机,在此基础上对其进行了分类。而在研究人寿保险持有者未来购买基金支持寿险可能性的文章中,通过灰度聚类和神经网络利用消费者的基本信息,财产地位信息,风险承受程度将消费者分为了忠实客户和非忠实客户。在对客户忠诚度的聚类中,作者用RFM的商业模型用DBI确定了Kmeans的最优K值,并最终用kmeans对客户忠诚度进行了聚类。 经过综合分析,我们选择了这两种方法处理顾客数据和饭店的基本资料。即,通过 k-means对客户进行聚类后通过因子分析分析不同类别客户的评价影响因素。 为分析每类客户倾向的饭店特征,本文根据客户聚类结果对饭店数据进行筛选。由于饭店部分属性之间具有相关性,本文采用因子分析法挖掘其“根本属性”,之后对饭店数据进 1李蓉, 李宇. 基与主成分分析与聚类分析方法的我国西部区域划分问题的研究. 科技广场, 2李新蕊.主成分分析、因子分析、聚类分析的比较与应用. 山东教育学院学报. 3杨善林.kmeans 算法中的k 值优化问题研究系统工程理论与实践

蚁群算法综述

智能控制之蚁群算法 1引言 进入21世纪以来,随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。随着计算机技术的飞速发展,智能计算方法的应用领域也越来越广泛。 智能控制技术的主要方法有模糊控制、基于知识的专家控制、神经网络控制和集成智能控制等,以及常用优化算法有:遗传算法、蚁群算法、免疫算法等。 蚁群算法是近些年来迅速发展起来的,并得到广泛应用的一种新型模拟进化优化算法。研究表明该算法具有并行性,鲁棒性等优良性质。它广泛应用于求解组合优化问题,所以本文着重介绍了这种智能计算方法,即蚁群算法,阐述了其工作原理和特点,同时对蚁群算法的前景进行了展望。 2 蚁群算法概述 1、起源 蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型技术。它由Marco Dorigo于1992年在他的博士论文中引入,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。 Deneubourg及其同事(Deneubourg et al.,1990; Goss et al.,1989)在可监控实验条件下研究了蚂蚁的觅食行为,实验结果显示这些蚂蚁可以通过使用一种称为信息素的化学物质来标记走过的路径,从而找出从蚁穴到食物源之间的最短路径。 在蚂蚁寻找食物的实验中发现,信息素的蒸发速度相对于蚁群收敛到最短路径所需的时间来说过于缓慢,因此在模型构建时,可以忽略信息素的蒸发。然而当考虑的对象是人工蚂蚁时,情况就不同了。实验结果显示,对于双桥模型和扩展双桥模型这些简单的连接图来说,同样不需要考虑信息素的蒸发。相反,在更复杂的连接图上,对于最小成本路径问题来说,信息素的蒸发可以提高算法找到好解的性能。 2、基于蚁群算法的机制原理 模拟蚂蚁群体觅食行为的蚁群算法是作为一种新的计算智能模式引入的,该算法基于如下假设: (1)蚂蚁之间通过信息素和环境进行通信。每只蚂蚁仅根据其周围的环境作出反应,也只对其周围的局部环境产生影响。 (2)蚂蚁对环境的反应由其内部模式决定。因为蚂蚁是基因生物,蚂蚁的行为实际上是其基因的自适应表现,即蚂蚁是反应型适应性主体。 (3)在个体水平上,每只蚂蚁仅根据环境作出独立选择;在群体水平上,单

利用K-Means聚类进行航空公司客户价值分析

利用K-Means聚类进行航空公司客户价值分析 1.背景与挖掘目标 1.1背景航空公司业务竞争激烈,从 产品中心转化为客户中心。针对不同类型客户,进行精准营 销,实现利润最大化。建立客户价值评估模型,进行客户分 类,是解决问题的办法 1.2挖掘目标借助航空公司客户数据, 对客户进行分类。对不同的客户类别进行特征分析,比较不 同类客户的客户价值对不同价值的客户类别提供个性化服 务,制定相应的营销策略。详情数据见数据集内容中的 air_data.csv和客户信息属性说明 2.分析方法与过程 2.1分析方法首先,明确目标是客户价值识别。识别客户价值,应用 最广泛的模型是三个指标(消费时间间隔(Recency),消费频率(Frequency),消费金额(Monetary))以上指标简称RFM 模型,作用是识别高价值的客户消费金额,一般表示一段时 间内,消费的总额。但是,因为航空票价收到距离和舱位等 级的影响,同样金额对航空公司价值不同。因此,需要修改 指标。选定变量,舱位因素=舱位所对应的折扣系数的平均 值=C,距离因素=一定时间内积累的飞行里程=M。再考虑到,航空公司的会员系统,用户的入会时间长短能在一定程度上 影响客户价值,所以增加指标L=入会时间长度=客户关系长度总共确定了五个指标,消费时间间隔R,客户关系长度L,消费频率F,飞行里程M和折扣系数的平均值C以上指标,

作为航空公司识别客户价值指标,记为LRFMC模型如果采用传统的RFM模型,如下图。它是依据,各个属性的平均 值进行划分,但是,细分的客户群太多,精准营销的成本太 高。 综上,这次案例,采用聚类的办法进行识别客户价值,以LRFMC模型为基础本案例,总体流程如下图 2.2挖掘步骤从航空公司,选择性抽取与新增数据抽取,形 成历史数据和增量数据对步骤一的两个数据,进行数据探索 性分析和预处理,主要有缺失值与异常值的分析处理,属性 规约、清洗和变换利用步骤2中的已处理数据作为建模数据,基于旅客价值的LRFMC模型进行客户分群,对各个客户群 再进行特征分析,识别有价值客户。针对模型结果得到不同 价值的客户,采用不同的营销手段,指定定制化的营销服务,或者针对性的优惠与关怀。(重点维护老客户) 2.3数据抽取选取,2014-03-31为结束时间,选取宽度为两年的时间段, 作为观测窗口,抽取观测窗口内所有客户的详细数据,形成 历史数据对于后续新增的客户信息,采用目前的时间作为重 点,形成新增数据 2.4探索性分析本案例的探索分析,主要 对数据进行缺失值和异常值分析。发现,存在票价为控制, 折扣率为0,飞行公里数为0。票价为空值,可能是不存在 飞行记录,其他空值可能是,飞机票来自于积分兑换等渠道,查找每列属性观测值中空值的个数、最大值、最小值的代码

文献综述--例子

成绩: 西安建筑科技大学 毕业设计 (论文)文献综述 院(系):信息与控制工程学院 专业班级: 毕业设计论文方向:空间数据挖掘方法的研究与应用 综述题目:空间数据挖掘方法的研究与应用 学生姓名: 学号: 100620114 指导教师:刘培奇 2014年 3 月 21 日

空间数据挖据方法的研究与应用 摘要:空间数据库含有空间数据和非空间数据, 空间数据主要是地表在GIS 中的二维投影, 非空间数据则是除空间数据以外的一切数据。随着对地观测、获取设备的迅速发展, 空间数据资源日益丰富。然而, 数据资源中蕴含的知识远远没有得到充分的挖掘和利用, 导致“数据爆炸但知识贫乏”;同时,要求用户详细分析这些数据并提取感兴趣的知识或特征是不现实的。因此, 从空间数据库中自动地挖掘知识, 寻找数据库中不明确的、隐含的知识、空间关系或其它模式, 即空间数据挖掘技术(Spatial DataMining ,SDM) 越来越重要。空间数据挖掘是在空间数据库的基础上, 综合利用统计学方法、模式识别技术、人工智能方法、神经网络技术、模糊数学、机器学习、专家系统和相关信息技术等, 按照一定的度量值和临界值抽取空间知识及与之相关的预处理、空间抽样和数据变换的一个多步骤相互链接、反复进行的人机交互过程。可以归纳为数据准备(了解应用领域的先验知识、生成目标数据集、数据清理、数据简化与投影) 、数据挖掘和知识发现(数据挖掘功能和算法的选取, 在空间的关联、特征、分类、回归、聚类、函数依赖等特定的规则中搜索感兴趣的知识)以及数据挖掘后处理(知识的解释、评价和应用)。 关键词:数据挖掘,知识发现,关联规则,空间数据库。 1.前言 空间数据挖掘(spatial data mining)是在数据挖掘的基础之上,结合地理信息系统(GIS)、遥感图像处理、全球定位系统(GPS)、模式识别、可视化等相关的研究领域而形成的一个分支学科,也称为空间数据挖掘和知识发现(spatial data mining and knowledge discovery 简称为SDMKD)。 自20世纪60年代数据库系统诞生以来,数据库技术已经得到了飞速的发展,并且己经深入到社会生活的各个方面。现在,数据无处不在,可以存放在不同类型的数据库中,数据仓库技术可以将异构的数据库集成起来进行综合管理,从而提供更好的服务。

K-means-聚类算法研究综述

K-means聚类算法研究综述 摘要:总结评述了K-means聚类算法的研究现状,指出K-means聚类算法是一个NP难优化问题,无法获得全局最优。介绍了K-means聚类算法的目标函数,算法流程,并列举了一个实例,指出了数据子集的数目K,初始聚类中心选取,相似性度量和距离矩阵为K-means聚类算法的3个基本参数。总结了K-means聚类算法存在的问题及其改进算法,指出了K-means 聚类的进一步研究方向。 关键词:K-means聚类算法;NP难优化问题;数据子集的数目K;初始聚类中心选取;相似性度量和距离矩阵 Review of K-means clustering algorithm Abstract: K-means clustering algorithm is reviewed. K-means clustering algorithm is a NP hard optimal problem and global optimal result cannot be reached. The goal,main steps and example of K-means clustering algorithm are introduced. K-means algorithm requires three user-specified parameters: number of clusters K,cluster initialization,and distance metric. Problems and improvement of K-means clustering algorithm are summarized then. Further study directions of K-means clustering algorithm are pointed at last. Key words: K-means clustering algorithm; NP hard optimal problem; number of clusters K; cluster initialization; distance metric K-means聚类算法是由Steinhaus1955年、Lloyed1957年、Ball & Hall1965年、McQueen1967年分别在各自的不同的科学研究领域独立的提出。K-means聚类算法被提出来后,在不同的学科领域被广泛研究和应用,并发展出大量不同的改进算法。虽然K-means聚类算法被提出已经超过50年了,但目前仍然是应用最广泛的划分聚类算法之一[1]。容易实施、简单、高效、成功的应用案例和经验是其仍然流行的主要原因。 文中总结评述了K-means聚类算法的研究现状,指出K-means聚类算法是一个NP难优化问题,无法获得全局最优。介绍了K-means聚类算法的目标函数、算法流程,并列举了一个实例,指出了数据子集的数目K、初始聚类中心选取、相似性度量和距离矩阵为K-means聚类算法的3个基本参数。总结了K-means聚类算法存在的问题及其改进算法,指出了K-means聚类的进一步研究方向。 1经典K-means聚类算法简介 1.1K-means聚类算法的目标函数 对于给定的一个包含n个d维数据点的数据集 12 {x,x,,x,,x} i n X=??????,其中d i x R ∈,以及要生成的数据子集的数目K,K-means聚类算法将数据对象组织为 K个划分{c,i1,2,} k C K ==???。每个划分代表一个类c k,每个类c k有一个类别中心iμ。选取欧氏距离作为相似性和 距离判断准则,计算该类内各点到聚类中心 i μ的距离平方和 2 (c) i i k i k x C J xμ ∈ =- ∑(1) 聚类目标是使各类总的距离平方和 1 (C)(c) K k k J J = =∑最小。 22 1111 (C)(c) i i K K K n k i k ki i k k k x C k i J J x d x μμ ==∈== ==-=- ∑∑∑∑∑ (2)其中, 1 i i ki i i x c d x c ∈ ? =? ? ? 若 若 ,显然,根据最小二乘 法和拉格朗日原理,聚类中心 k μ应该取为类别 k c类各数据点的平均值。 K-means聚类算法从一个初始的K类别划分开始,然

第9章rapidminer_k_means聚类.辨别分析v1

第9章K-Means 聚类、辨别分析 9.1理解聚类分析 餐饮企业经常会碰到这样的问题: 1)如何通过餐饮客户消费行为的测量,进一步评判餐饮客户的价值和对餐饮客户进行细分,找到有价值的客户群和需关注的客户群? 2)如何合理对菜品进行分析,以便区分哪些菜品畅销毛利又高,哪些菜品滞销毛利又低? 餐饮企业遇到的这些问题,可以通过聚类分析解决。 9.1.1常用聚类分析算法 与分类不同,聚类分析是在没有给定划分类别的情况下,根据数据相似度进行样本分组的一种方法。与分类模型需要使用有类标记样本构成的训练数据不同,聚类模型可以建立在无类标记的数据上,是一种非监督的学习算法。聚类的输入是一组未被标记的样本,聚类根据数据自身的距离或相似度将他们划分为若干组,划分的原则是组样本最小化而组间(外部)距离最大化,如图9-1所示。 图9-1 聚类分析建模原理 常用聚类方法见表9-1。 表9-1常用聚类方法 类别包括的主要算法

常用聚类算法见图9-2。 表9-2常用聚类分析算法 9.1.2K-Means聚类算法 K-Means算法是典型的基于距离的非层次聚类算法,在最小化误差函数的基础上将数据划分为预定的类数K,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。 1.算法过程 1)从N个样本数据中随机选取K个对象作为初始的聚类中心; 2)分别计算每个样本到各个聚类中心的距离,将对象分配到距离最近的聚类中; 3)所有对象分配完成后,重新计算K个聚类的中心; 4)与前一次计算得到的K个聚类中心比较,如果聚类中心发生变化,转2),否则转 5); 5)当质心不发生变化时停止并输出聚类结果。 聚类的结果可能依赖于初始聚类中心的随机选择,可能使得结果严重偏离全局最优分类。实践中,为了得到较好的结果,通常以不同的初始聚类中心,多次运行K-Means算法。在所有对象分配完成后,重新计算K个聚类的中心时,对于连续数据,聚类中心取该簇的均值,但是当样本的某些属性是分类变量时,均值可能无定义,可以使用K-众数方

关于聚类分析在股票投资中的应用开题报告

毕业设计(论文)材料之二(2) 本科毕业设计(论文)开题报告题目:聚类分析在股票投资中的应用 课题类型:设计□实验研究□论文√ 学生姓名: 学号: 专业班级: 学院: 指导教师: 开题时间:2012 年03 月17 日 2012 年3月08日

开题报告内容与要求 一、毕业设计(论文)内容及研究意义 主要内容: 聚类分析又称群分析,是根据“物以类聚”的道理,对样品或指标进行分类的一类多元统计方法。本文主要是采用SPSS或SAS统计软件中的聚类分析方法,对于股票市场中某一行业的多个样本股票进行聚类分析,得出结果并对结果进行分析。首先,介绍关于聚类分析的思想以及发展状况。其次,收集相关样本股票的数据,包括总资产,主营业收入,每股净资产,净资产收益率等指标。再次,用SAS软件对数据进行处理,并得出结果,将样本股票进行分类。最后,对结果进行分析,为投资者作出建议。 研究意义: 聚类源于很多领域,包括数学,计算机科学,统计学,生物学和经济学。在不同的应用领域,很多聚类技术都得到了发展,在股票投资中也发挥着这关重要的作用,这些技术方法被用作描述数据,衡量不同数据源间的相似性,以及把数据源分类到不同的簇中。在股市中,对于广大投资者来说,可以开拓投资渠道,扩大投资的选择范围,适应了投资者多样性的投资动机、交易动机和利益的需求,一般来说能为投资者提供较高收益的可能性。但是由于股票价格受到政治,经济,市场等因素的影响,也受到技术和投资者行为因素的影响,因此股票价格经常处于频繁的变动之中,股票价格的频繁变动扩大了股票市场的投机性活动,使股票市场的风险性增大。因此,对股票市场的的股票进行聚类分析显得意义更大。

基于数据库的应用研究【文献综述】

毕业论文文献综述 信息与计算科学 基于数据库的应用研究 一般来说,一个真正的、完整的站点是离不开数据库的,因为实际应用中,需要保存的数据很多,而且这些数据之间往往还有关联,利用数据库来管理这些数据,可以很方便的查询和更新。数据库在网站编辑中占有很大的比重,几乎没有一个网站能脱离数据库的参与。 高等数学是高校很多专业必修的一门基础课程, 对该门课程的学习不仅可以使学生掌握高等数学的基本概念、理论和方法, 而且还能提高学生的抽象思维能力、逻辑推理能力、空间想象能力、运算能力和综合运用所学知识分析问题、解决问题的能力. 但在传统的教学过程中, 学生普遍反应, 高等数学中的许多概念和基本理论非常抽象, 理解和掌握起来很困难, 这极大地影响了学生学习的效果. 而随着计算机及其应用软件技术的发展, 通过建立数学虚拟实验模型来使学生获得对基本概念的感性认识, 以便帮助学生理解高等数学中的基本概念和理论的方法不仅可行, 而且也取得了很好的效果.。 数学实验的概念可以界定为: 为获得某种数学理论, 检验某个数学猜想, 解决某类问题, 实验者运用一定的物质手段, 在数学思维活动的参与下, 在特定的实验环境下进行的探索、研究活动。建立网上数学实验室可以很好的完成数学实验,而不是抽象的去思考问题,更为直观的看待数学问题。 现如今,抽象的数学教学方法即粉笔+黑板的教学方法已经适应不了现在学生的需求,不管是应用方面突出的工科学院或者纯理论的理学院。过去认为数学课是纯理论课,没有实践性教学环节的观念已经被打破,把计算机引入数学课程教学已是不争的事实。对于突出应用和动手能力的高工专学校,利用数学软件进行数学实验不仅是对数学课程改革、对专业课程的改革的要求,也是时代的发展的必然趋势。 想要建立一个完整的网上数学实验室站点,是需要服务器,数据库,网站设计,网站代码编辑等许多方面的配合。数据库知识是网站建设的基础,网站设计是网站建设的设计图,代码编辑就是实现网站能够面向客户的基本。 数据库知识,在文献1中,讲述了数据库在WEB站点中关于存储和更新时间的长短处理以及如何处理存储更新慢的情况,列举的是电子商务系统里用户对店铺的取舍是由点击转的速度来决定的,而点击后转的速度由数据库来决定的。文中提供了多种解决办法,主要是通过缓存和CachePortal加速方法来解决的。该文献1为我们提供了如何解决点击反映慢的问题,加快网页的反应速度,给用户一个更好的体验。

基于聚类的图像分割方法综述

信息疼术2018年第6期文章编号=1009 -2552 (2018)06 -0092 -03 DOI:10.13274/https://www.doczj.com/doc/6f16749968.html,ki.hdzj.2018. 06.019 基于聚类的图像分割方法综述 赵祥宇\陈沫涵2 (1.上海理工大学光电信息与计算机学院,上海200093; 2.上海西南位育中学,上海200093) 摘要:图像分割是图像识别和机器视觉领域中关键的预处理操作。分割理论算法众多,文中 具体介绍基于聚类的分割算法的思想和原理,并将包含的典型算法的优缺点进行介绍和分析。经过比较后,归纳了在具体应用中如何对图像分割算法的抉择问题。近年来传统分割算法不断 被科研工作者优化和组合,相信会有更多的分割新算法井喷而出。 关键词:聚类算法;图像分割;分类 中图分类号:TP391.41 文献标识码:A A survey of image segmentation based on clustering ZHAO Xiang-yu1,CHEN Mo-han2 (1.School of Optical Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai200093,China;2.Shanghai Southwest Weiyu Middle School,Shanghai200093,China) Abstract:Image segmentation is a key preprocessing operation in image recognition and machine vision. There are many existing theoretical methods,and this paper introduces the working principle ol image segmentation algorithm based on clustering.Firstly,the advantages and disadvantages ol several typical algorithms are introduced and analyzed.Alter comparison,the paper summarizes the problem ol the selection ol image segmentation algorithm in practical work.In recent years,the traditional segmentation algorithms were improved and combined by the researchers,it believes that more new algorithms are blown out. Key words:clustering algorithm;image segmentation;classilication 0引百 近年来科学技术的不断发展,计算机视觉和图像 识别发挥着至关重要的作用。在实际应用和科学研 究中图像处理必不可少,进行图像处理必然用到图像 分割方法,根据检测图像中像素不重叠子区域,将感 兴趣目标区域分离出来。传统的图像分割方法:阈值 法[1]、区域法[2]、边缘法[3]等。近年来传统分割算法 不断被研究人员改进和结合,出现了基于超像素的分 割方法[4],本文主要介绍超像素方法中基于聚类的经 典方法,如Mean Shift算法、K-m eans 算法、Fuzzy C-mean算法、Medoidshilt算法、Turbopixels算法和 SLIC 算法。简要分析各算法的基本思想和分割效果。 1聚类算法 1.1 Mean Shil't算法 1975年,Fukunaga[5]提出一种快速统计迭代算法,即Mean Shilt算法(均值漂移算法)。直到1995 年,Cheng[6]对其进行改进,定义了核函数和权值系 数,在全局优化和聚类等方面的应用,扩大了 Mean shil't算法适用范围。1997至2003年间,Co-maniciu[7-9]提出了基于核密度梯度估计的迭代式 搜索算法,并将该方法应用在图像平滑、分割和视频 跟踪等领域。均值漂移算法的基本思想是通过反复 迭代计算当前点的偏移均值,并挪动被计算点,经过 反复迭代计算和多次挪动,循环判断是否满足条件, 达到后则终止迭代过程[10]。Mean shil't的基本形 式为: 收稿日期:2017-06 -13 基金项目:国家自然科学基金资助项目(81101116) 作者简介:赵祥宇(1992-),男,硕士研究生,研究方向为数字图像处理。 —92 —

蚁群算法研究综述

蚁群算法综述 控制理论与控制工程09104046 吕坤一、蚁群算法的研究背景 蚂蚁是一种最古老的社会性昆虫,数以百万亿计的蚂蚁几乎占据了地球上每一片适于居住的土地,它们的个体结构和行为虽然很简单,但由这些个体所构成的蚁群却表现出高度结构化的社会组织,作为这种组织的结果表现出它们所构成的群体能完成远远超越其单只蚂蚁能力的复杂任务。就是他们这看似简单,其实有着高度协调、分工、合作的行为,打开了仿生优化领域的新局面。 从蚁群群体寻找最短路径觅食行为受到启发,根据模拟蚂蚁的觅食、任务分配和构造墓地等群体智能行为,意大利学者M.Dorigo等人1991年提出了一种模拟自然界蚁群行为的模拟进化算法——人工蚁群算法,简称蚁群算法(Ant Colony Algorithm,ACA)。 二、蚁群算法的研究发展现状 国内对蚁群算法的研究直到上世纪末才拉开序幕,目前国内学者对蚁群算法的研究主要是集中在算法的改进和应用上。吴庆洪和张纪会等通过向基本蚁群算法中引入变异机制,充分利用2-交换法简洁高效的特点,提出了具有变异特征的蚊群算法。吴斌和史忠植首先在蚊群算法的基础上提出了相遇算法,提高了蚂蚁一次周游的质量,然后将相遇算法与采用并行策略的分段算法相结合。提出一种基于蚁群算法的TSP问题分段求解算法。王颖和谢剑英通过自适应的改变算法的挥发度等系数,提出一种自适应的蚁群算法以克服陷于局部最小的缺点。覃刚力和杨家本根据人工蚂蚁所获得的解的情况,动态地调整路径上的信息素,提出了自适应调整信息素的蚁群算法。熊伟清和余舜杰等从改进蚂蚁路径的选择策略以及全局修正蚁群信息量入手,引入变异保持种群多样性,引入蚁群分工的思想,构成一种具有分工的自适应蚁群算法。张徐亮、张晋斌和庄昌文等将协同机制引入基本蚁群算法中,分别构成了一种基于协同学习机制的蚁群算法和一种基于协同学习机制的增强蚊群算法。 随着人们对蚁群算法研究的不断深入,近年来M.Dorigo等人提出了蚁群优化元启发式(Ant-Colony optimization Meta Heuristic,简称ACO-MA)这一求解复杂问题的通用框架。ACO-MH为蚁群算法的理论研究和算法设计提供了技术上的保障。在蚁群优化的收敛性方面,W.J.Gutjahr做了开创性的工作,提出了基于图的蚂蚁系统元启发式(Graph-Based Ant System Metaheuristic)这一通用的蚁群优化 的模型,该模型在一定的条件下能以任意接近l的概率收敛到最优解。T.StBtzle 和M.Dorigo对一类ACO算法的收敛性进行了证明,其结论可以直接用到两类实验上,证明是最成功的蚁群算法——MMAs和ACS。N.Meuleau和M.Dorigo研究了

模式识别文献综述

模式识别基础概念文献综述 一.前言 模式识别诞生于20世纪20年代。随着20世纪40年代计算机的出现,20世纪50年代人工智能的兴起,模式识别在20世纪60年代迅速发展成为一门学科。在20世纪60年代以前,模式识别主要限于统计学领域的理论研究,计算机的出现增加了对模式识别实际应用的需求,也推动了模式识别理论的发展。经过几十年的研究,取得了丰硕的成果,已经形成了一个比较完善的理论体系,主要包括统计模式识别、结构模式识别、模糊模式识别、神经网络模式识别和多分类器融合等研究内容。 模式识别就是研究用计算机实现人类的模式识别能力的一门学科,目的是利用计算机将对象进行分类。这些对象与应用领域有关,它们可以是图像、信号,或者任何可测量且需要分类的对象,对象的专业术语就是模式(pattern)。按照广义的定义,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或相似,都可以成为模式。 二.模式识别基本概念 <一>.模式识别系统 模式识别的本质是根据模式的特征表达和模式类的划分方法,利用计算机将模式判属特定的类。因此,模式识别需要解决五个问题:模式的数字化表达、模式特性的选择、特征表达方法的确定、模式类的表达和判决方法的确定。一般地,模式识别

系统由信息获取、预处理、特征提取和选择、分类判决等4部 分组成,如图1-1所示。 观察对象→→→→→→→→→类→类别号信息获取预处理特征提取和选择分类判决 图1-1模式识别系统的组成框图 <二>.线性分类器 对一个判别函数来说,应该被确定的是两个内容:其一为方程 的形式;其二为方程所带的系数。对于线性判别函数来说方程 的形式是线性的,方程的维数为特征向量的维数,方程组的数 量则决定于待判别对象的类数。对M类问题就应该有M个线 性判别函数;对两类问题如果采用“+”“-”判别,则判别函数 可以只有一个。既然方程组的数量、维数和形式已定,则对判 别函数的设计就是确定函数的各系数,也就是线性方程的各权 值。在计算机上确定各权值时采用的是“训练”或“学习”的 方法,这就是待识别的模式集中挑选一批有代表的样本,它们 经过人工判读成为已知类别的样本,把这批样本逐个输入到计 算机的“训练”程序(或算法)中去,通过一次一次的迭代最 后得到正确的线性判别函数,这样一个迭代的运算的过程成为 训练过程。由于样本的分类首先经过人工判读,因而这样的构 成分类器也称为有人监督或有教师的分类器。 <三>.特征选择和提取 <1>、特征选择 特征的获取是依赖于具体的问题和相关专业的知识的,无法进

数据挖掘中的聚类算法综述

收稿日期:2006201204;修返日期:2006203219基金项目:国家自然科学基金资助项目(60473117) 数据挖掘中的聚类算法综述 3 贺 玲,吴玲达,蔡益朝 (国防科学技术大学信息系统与管理学院,湖南长沙410073) 摘 要:聚类是数据挖掘中用来发现数据分布和隐含模式的一项重要技术。全面总结了数据挖掘中聚类算法的研究现状,分析比较了它们的性能差异和各自存在的优点及问题,并结合多媒体领域的应用需求指出了其今后的发展趋势。 关键词:数据挖掘;聚类;聚类算法 中图法分类号:TP391 文献标识码:A 文章编号:100123695(2007)0120010204 Survey of Clustering A lgorith m s in Data M ining HE L ing,WU L ing 2da,CA I Yi 2chao (College of Infor m ation Syste m &M anage m ent,N ational U niversity of D efense Technology,Changsha Hunan 410073,China ) Abstract:Clustering is an i m portant technique in Data M ining (DM )f or the discovery of data distributi on and latent data pattern .This paper p r ovides a detailed survey of current clustering algorith m s in DM at first,then it makes a comparis on a mong the m,illustrates the merits existing in the m,and identifies the p r oblem s t o be s olved and the ne w directi ons in the fu 2ture according t o the app licati on require ments in multi m edia domain .Key works:Data M ining;Clustering;Clustering A lgorith m 1 引言 随着信息技术和计算机技术的迅猛发展,人们面临着越来越多的文本、图像、视频以及音频数据,为帮助用户从这些大量数据中分析出其间所蕴涵的有价值的知识,数据挖掘(Data M ining,DM )技术应运而生。所谓数据挖掘,就是从大量无序 的数据中发现隐含的、有效的、有价值的、可理解的模式,进而发现有用的知识,并得出时间的趋向和关联,为用户提供问题求解层次的决策支持能力。与此同时,聚类作为数据挖掘的主要方法之一,也越来越引起人们的关注。 本文比较了数据挖掘中现有聚类算法的性能,分析了它们各自的优缺点并指出了其今后的发展趋势。 2 DM 中现有的聚类算法 聚类是一种常见的数据分析工具,其目的是把大量数据点的集合分成若干类,使得每个类中的数据之间最大程度地相似,而不同类中的数据最大程度地不同。在多媒体信息检索及数据挖掘的过程中,聚类处理对于建立高效的数据库索引、实现快速准确的信息检索具有重要的理论和现实意义。 本文以聚类算法所采用的基本思想为依据将它们分为五类,即层次聚类算法、分割聚类算法、基于约束的聚类算法、机器学习中的聚类算法以及用于高维数据的聚类算法,如图1所示。 聚类 层次聚类算法 聚合聚类:Single 2L ink,Comp lete 2L ink,Average 2L ink 分解聚类 分割聚类算法基于密度的聚类基于网格的聚类 基于图论的聚类 基于平方误差的迭代重分配聚类:概率聚类、最近邻 聚类、K 2medoids 、K 2means 基于约束的聚类算法 机器学习中的聚类算法 人工神经网络方法 基于进化理论的方法:模拟退火、遗传算法用于高维数据的聚类算法 子空间聚类 联合聚类 图1 聚类算法分类示意图 211 层次聚类算法 层次聚类算法通过将数据组织成若干组并形成一个相应的树状图来进行聚类,它又可以分为两类,即自底向上的聚合层次聚类和自顶向下的分解层次聚类。聚合聚类的策略是先将每个对象各自作为一个原子聚类,然后对这些原子聚类逐层进行聚合,直至满足一定的终止条件;后者则与前者相反,它先将所有的对象都看成一个聚类,然后将其不断分解直至满足终止条件。 对于聚合聚类算法来讲,根据度量两个子类的相似度时所依据的距离不同,又可将其分为基于Single 2L ink,Comp lete 2L ink 和Average 2L ink 的聚合聚类。Single 2L ink 在这三者中应用最为广泛,它根据两个聚类中相隔最近的两个点之间的距离来评价这两个类之间的相似程度,而后两者则分别依据两类中数据点之间的最远距离和平均距离来进行相似度评价。 CURE,ROCK 和CHAME LE ON 算法是聚合聚类中最具代 表性的三个方法。 Guha 等人在1998年提出了C URE 算法 [1] 。该方法不用 单个中心或对象来代表一个聚类,而是选择数据空间中固定数目的、具有代表性的一些点共同来代表相应的类,这样就可以

相关主题
相关文档 最新文档