当前位置:文档之家› 谱聚类算法综述

谱聚类算法综述

谱聚类算法综述
谱聚类算法综述

近似谱聚类算法描述

二、近似谱聚类算法描述 本节论文阐述基于相似矩阵稀疏化方法稀疏化后离群点的优化处理,并将该处理步骤应用于谱聚类算法中。基于上述分析近似谱聚类算法整体流程总结描述如表3.2所示。 表3.2 近似谱聚类算法(ASCA) 算法:近似谱聚类算法(ASCA) 输入:数据点,待聚类数目 输出:聚类 1. 使用公式,(其中,是的个最近邻按距离排序后第个邻居,同理,),构建相似矩阵; 2. 使用稀疏化矩阵获得半正定矩阵,找出矩阵对称位置不一致的相似度,并将对称元素设置为0,调整为对称半正定矩阵; 3. 使用优化公式对矩阵进行离群点调优; 4. 计算对称半正定拉普拉斯矩阵; 5. 计算的特征向量分解,找出第k个最小非零特征特征量,并按列排列k个特征向量构建特征向量矩阵; 6. 计算标准化矩阵(); 7. 使用粗糙集模型选择k-means初始化聚类中心位置并对矩阵进行k-means聚类,把其聚类成k组()。 基于近似谱聚类算法整体步骤描述,为进行近似谱聚类算法Matlab辅助实验铺垫,绘制近似谱聚类算法流程示意图如图3.1所示。Matlab辅助实验主要是将示意图3.1中的所示的算法与正交化Nystr?m低阶子矩阵抽样近似相似矩阵谱聚类算法(ONSP: Orthogonalization Nystr?m Spectral Clustering)和最近邻稀疏化近似相似矩阵谱聚类算法(tNNSC: Spectral Clustering)进行对比,并验证其聚类效果。 图3.1 近似谱聚类算法流程示意图 三、近似谱聚类算法时间复杂度分析 现对基于相似矩阵稀疏化方法离群点优化的近似谱聚类算法时间复杂度简单分析,步骤1:使用高斯函数公式构建相似矩阵的时间复杂度是,其中表示数据点数目、表示数据维数,计算数据点和之间的相似度的时间复杂度是,则计算整个数据集的时间复杂度是;步骤2:使用稀疏化矩阵获得半正定矩阵并调整为对称半正定矩阵借助于最大堆,其时间复杂度是,其中是最近邻数;步骤3:优化离群点步骤是非确定性多项式困难问题NP-hard (Non deterministic Ploynomial Hard)问题,其时间复杂度随近似相似度矩阵维数按指数增长;步骤4与步骤5:计算对称半正定拉普拉斯矩阵并找出k个最小非零特征值的特征向量的时间复杂度在论文第二章第二节中已经详细分析过,即;步骤6:计算标准化矩阵的时间复杂度是;步骤7:执行k-means聚类时间复杂度是:,其中表示k-means聚类过程迭代的次数,指待聚类数目。 第三节近似谱聚类算法实验分析 一、近似谱聚类算法辅助实验 (1)Matlab辅助实验环境描述 为验证表3.2所示近似谱聚类算法与正交化Nystr?m低阶子矩阵抽样近似相似矩阵谱聚类算法和最近邻稀疏化近似相似矩阵谱聚类算法的性能,鉴于Hadoop MapReduce并行实验对

大数据文献综述

信息资源管理文献综述 题目:大数据背景下的信息资源管理 系别:信息与工程学院 班级:2015级信本1班 姓名: 学号:1506101015 任课教师: 2017年6月 大数据背景下的信息资源管理 摘要:随着网络信息化时代的日益普遍,我们正处在一个数据爆炸性增长的“大数据”时代,在我们的各个方面都产生了深远的影响。大数据是数据分析的前沿技术。简言之,从各种各样类型的数据中,快速获得有价值信息的能力就是大数据技术,这也是一个企业所需要必备的技术。“大数据”一词越来越地别提及与使用,我们用它来描述和定义信息爆炸时代产生的海量数据。就拿百度地图来说,我们在享受它带来的便利的同时,无偿的贡献了我们的“行踪”,比如说我们的上班地点,我们的家庭住址,甚至是我们的出行方式他们也可以知道,但我们不得不接受这个现实,我们每个人在互联网进入大数据时代,都将是透明性的存在。各种数据都在迅速膨胀并变大,所以我们需要对这些数据进行有效的管理并加以合理的运用。

关键词:大数据信息资源管理与利用 目录 大数据概念.......................................................... 大数据定义...................................................... 大数据来源...................................................... 传统数据库和大数据的比较........................................ 大数据技术.......................................................... 大数据的存储与管理.............................................. 大数据隐私与安全................................................ 大数据在信息管理层面的应用.......................................... 大数据在宏观信息管理层面的应用.................................. 大数据在中观信息管理层面的应用.................................. 大数据在微观信息管理层面的应用.................................. 大数据背景下我国信息资源管理现状分析................................ 前言:大数据泛指大规模、超大规模的数据集,因可从中挖掘出有价值 的信息而倍受关注,但传统方法无法进行有效分析和处理.《华尔街日

聚类分析K-means算法综述

聚类分析K-means算法综述 摘要:介绍K-means聚类算法的概念,初步了解算法的基本步骤,通过对算法缺点的分析,对算法已有的优化方法进行简单分析,以及对算法的应用领域、算法未来的研究方向及应用发展趋势作恰当的介绍。 关键词:K-means聚类算法基本步骤优化方法应用领域研究方向应用发展趋势 算法概述 K-means聚类算法是一种基于质心的划分方法,输入聚类个数k,以及包含n个数据对象的数据库,输出满足方差最小标准的k个聚类。 评定标准:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算。 解释:基于质心的划分方法就是将簇中的所有对象的平均值看做簇的质心,然后根据一个数据对象与簇质心的距离,再将该对象赋予最近的簇。 k-means 算法基本步骤 (1)从n个数据对象任意选择k 个对象作为初始聚类中心 (2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分 (3)重新计算每个(有变化)聚类的均值(中心对象) (4)计算标准测度函数,当满足一定条件,如函数收敛时,则算法终止;如果条件不满足则回到步骤(2) 形式化描述 输入:数据集D,划分簇的个数k 输出:k个簇的集合 (1)从数据集D中任意选择k个对象作为初始簇的中心; (2)Repeat (3)For数据集D中每个对象P do (4)计算对象P到k个簇中心的距离 (5)将对象P指派到与其最近(距离最短)的簇;

(6)End For (7)计算每个簇中对象的均值,作为新的簇的中心; (8)Until k个簇的簇中心不再发生变化 对算法已有优化方法的分析 (1)K-means算法中聚类个数K需要预先给定 这个K值的选定是非常难以估计的,很多时候,我们事先并不知道给定的数据集应该分成多少个类别才最合适,这也是K一means算法的一个不足"有的算法是通过类的自动合并和分裂得到较为合理的类型数目k,例如Is0DAIA算法"关于K一means算法中聚类数目K 值的确定,在文献中,根据了方差分析理论,应用混合F统计量来确定最佳分类数,并应用了模糊划分嫡来验证最佳分类数的正确性。在文献中,使用了一种结合全协方差矩阵RPCL算法,并逐步删除那些只包含少量训练数据的类。文献中针对“聚类的有效性问题”提出武汉理工大学硕士学位论文了一种新的有效性指标:V(k km) = Intra(k) + Inter(k) / Inter(k max),其中k max是可聚类的最大数目,目的是选择最佳聚类个数使得有效性指标达到最小。文献中使用的是一种称为次胜者受罚的竞争学习规则来自动决定类的适当数目"它的思想是:对每个输入而言不仅竞争获胜单元的权值被修正以适应输入值,而且对次胜单元采用惩罚的方法使之远离输入值。 (2)算法对初始值的选取依赖性极大以及算法常陷入局部极小解 不同的初始值,结果往往不同。K-means算法首先随机地选取k个点作为初始聚类种子,再利用迭代的重定位技术直到算法收敛。因此,初值的不同可能导致算法聚类效果的不稳定,并且,K-means算法常采用误差平方和准则函数作为聚类准则函数(目标函数)。目标函数往往存在很多个局部极小值,只有一个属于全局最小,由于算法每次开始选取的初始聚类中心落入非凸函数曲面的“位置”往往偏离全局最优解的搜索范围,因此通过迭代运算,目标函数常常达到局部最小,得不到全局最小。对于这个问题的解决,许多算法采用遗传算法(GA),例如文献中采用遗传算法GA进行初始化,以内部聚类准则作为评价指标。 (3)从K-means算法框架可以看出,该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销是非常大 所以需要对算法的时间复杂度进行分析,改进提高算法应用范围。在文献中从该算法的时间复杂度进行分析考虑,通过一定的相似性准则来去掉聚类中心的候选集,而在文献中,使用的K-meanS算法是对样本数据进行聚类。无论是初始点的选择还是一次迭代完成时对数据的调整,都是建立在随机选取的样本数据的基础之上,这样可以提高算法的收敛速度。

大数据环境下的增强学习综述_仵博

大数据环境下的增强学习综述* 仵 博,冯延蓬,孟宪军,江建举,何国坤 (深圳职业技术学院 教育技术与信息中心,广东 深圳 518055) 摘 要:在大数据应用领域,如何快速地对海量数据进行挖掘是当前大数据应用基础研究的热点和难点,也是制约大数据真正应用的关键.而机器学习是解决该问题的有效途径,本文综述抽象增强学习、可分解增强学习、分层增强学习、关系增强学习和贝叶斯增强学习等五类增强学习方法的研究进展,分析了它们的优势和缺点,指出将监督学习或半监督学习与增强学习相结合是大数据机器学习的有效方法. 关键词:大数据;增强学习;维数灾 中图分类号:TP18 文献标志码:B 文章编号:1672-0318(2014)03-0071-05 增强学习(Reinforcement Learning,简称RL)是一种有效的最优控制学习方法,实现系统在模型复杂或者不确定等条件下基于数据驱动的多阶段优化学习控制,是近年来一个涉及机器学习、控制理论和运筹学等多个学科的交叉研究方向.增强学习因其具有较强的在线自适应性和对复杂系统的自学能力,使其在机器人导航、非线性控制、复杂问题求解等领域得到成功应用[1-4].经典增强学习算法按照是否基于模型分类,可分为基于模型(Model-based)和模型自由(Model-free)两类.基于模型的有TD学习、Q学习、SARSA和ACTOR-CRITIC等算法.模型自由的有DYNA-Q和优先扫除等算法.以上经典增强学习算法在理论上证明了算法的收敛性,然而,在实际的应用领域,特别是在大数据环境下,学习的参数个数很多,是一个典型的NP难问题,难以最优化探索和利用两者之间的平衡[5-8].因此,经典增强学习算法只在理论上有效. 为此,近年来的增强学习研究主要集中在减少学习参数数量、避免后验分布全采样和最小化探索次数等方面,达到算法快速收敛的目的,实现探索和利用两者之间的最优化平衡.当前现有算法按照类型可分为五类:1)抽象增强学习;2)可分解增强学习;3)分层增强学习;4)关系增强学习;5)贝叶斯增强学习. 1 抽象增强学习 抽象增强学习(Abstraction Reinforcement Learning,简称ARL)的核心思想是忽略掉状态向量中与当前决策不相关的特征,只考虑那些有关的或重要的因素,达到压缩状态空间的效果[9].该类算法可以在一定程度上缓解“维数灾”问题.状态抽象原理如图1所示. 目前,状态抽象方法有状态聚类、值函数逼近和自动状态抽象等方法.函数逼近方法难于确保增强学习算法能够收敛,采用线性拟合和神经网络等混合方法来实现函数逼近是当前的研究热点和方向.状态聚类利用智能体状态空间中存在的对称性来压缩状态空间,实现状态聚类.自动状态抽象增 深圳职业技术学院学报 2014年第3期 No.3, 2014 收稿日期:2013-10-14 *项目来源:广东省自然科学基金项目(S2011040004769)和深圳市科技研发资金项目(JCYJ20120617134831736) 作者简介:仵 博(1979-),男,河南桐柏人,副教授,博士,主要研究领域为序贯决策、机器学习和大数据. 冯延蓬(1980-),男,山东潍坊人,讲师,硕士,主要研究领域为无线传感器网络、智能决策和大数据. 孟宪军(1979-),男,北京大兴人,助理研究员,博士,主要研究领域为数据挖掘、自然语言处理和机器学习. 江建举(1976-),男,河南内乡人,高级工程师,硕士,主要研究机器人控制、群智能和大数据. 何国坤(1980-),男,广东深圳人,高级工程师,硕士,主要研究领域为软件工程、机器学习和大数据. https://www.doczj.com/doc/525471862.html,- 71 -

蚁群聚类算法综述

计算机工程与应用2006.16 引言 聚类分析是数据挖掘领域中的一个重要分支[1],是人们认 和探索事物之间内在联系的有效手段,它既可以用作独立的 据挖掘工具,来发现数据库中数据分布的一些深入信息,也 以作为其他数据挖掘算法的预处理步骤。所谓聚类(clus- ring)就是将数据对象分组成为多个类或簇(cluster),在同一 簇中的对象之间具有较高的相似度,而不同簇中的对象差别大。传统的聚类算法主要分为四类[2,3]:划分方法,层次方法, 于密度方法和基于网格方法。 受生物进化机理的启发,科学家提出许多用以解决复杂优 问题的新方法,如遗传算法、进化策略等。1991年意大利学A.Dorigo等提出蚁群算法,它是一种新型的优化方法[4]。该算不依赖于具体问题的数学描述,具有全局优化能力。随后他 其他学者[5~7]提出一系列有关蚁群的算法并应用于复杂的组优化问题的求解中,如旅行商问题(TSP)、调度问题等,取得 著的成效。后来其他科学家根据自然界真实蚂蚁群堆积尸体分工行为,提出基于蚂蚁的聚类算法[8,9],利用简单的智能体 仿蚂蚁在给定的环境中随意移动。这些算法的基本原理简单懂[10],已经应用到电路设计、文本挖掘等领域。本文详细地讨现有蚁群聚类算法的基本原理与性能,在归纳总结的基础上 出需要完善的地方,以推动蚁群聚类算法在更广阔的领域内 到应用。 2聚类概念及蚁群聚类算法 一个簇是一组数据对象的集合,在同一个簇中的对象彼此 类似,而不同簇中的对象彼此相异。将一组物理或抽象对象分组为类似对象组成的多个簇的过程被称为聚类。它根据数据的内在特性将数据对象划分到不同组(或簇)中。聚类的质量是基于对象相异度来评估的,相异度是根据描述对象的属性值来计算的,距离是经常采用的度量方式。聚类可用数学形式化描述为:设给定数据集X={x 1 ,x 2 ,…,x n },!i∈{1,2,…,n},x i ={x i1 ,x i2 , …,x

大数据时代的空间数据挖掘综述

第37卷第7期测绘与空间地理信息 GEOMATICS &SPATIAL INFORMATION TECHNOLOGY Vol.37,No.7收稿日期:2014-01-22 作者简介:马宏斌(1982-),男,甘肃天水人,作战环境学专业博士研究生,主要研究方向为地理空间信息服务。 大数据时代的空间数据挖掘综述 马宏斌1 ,王 柯1,马团学 2(1.信息工程大学地理空间信息学院,河南郑州450000;2.空降兵研究所,湖北孝感432000) 摘 要:随着大数据时代的到来,数据挖掘技术再度受到人们关注。本文回顾了传统空间数据挖掘面临的问题, 介绍了国内外研究中利用大数据处理工具和云计算技术,在空间数据的存储、管理和挖掘算法等方面的做法,并指出了该类研究存在的不足。最后,探讨了空间数据挖掘的发展趋势。关键词:大数据;空间数据挖掘;云计算中图分类号:P208 文献标识码:B 文章编号:1672-5867(2014)07-0019-04 Spatial Data Mining Big Data Era Review MA Hong -bin 1,WANG Ke 1,MA Tuan -xue 2 (1.Geospatial Information Institute ,Information Engineering University ,Zhengzhou 450000,China ; 2.Airborne Institute ,Xiaogan 432000,China ) Abstract :In the era of Big Data ,more and more researchers begin to show interest in data mining techniques again.The paper review most unresolved problems left by traditional spatial data mining at first.And ,some progress made by researches using Big Data and Cloud Computing technology is introduced.Also ,their drawbacks are mentioned.Finally ,future trend of spatial data mining is dis-cussed. Key words :big data ;spatial data mining ;cloud computing 0引言 随着地理空间信息技术的飞速发展,获取数据的手 段和途径都得到极大丰富,传感器的精度得到提高和时空覆盖范围得以扩大,数据量也随之激增。用于采集空间数据的可能是雷达、红外、光电、卫星、多光谱仪、数码相机、成像光谱仪、全站仪、天文望远镜、电视摄像、电子 显微镜、CT 成像等各种宏观与微观传感器或设备,也可能是常规的野外测量、人口普查、土地资源调查、地图扫描、 地图数字化、统计图表等空间数据获取手段,还可能是来自计算机、 网络、GPS ,RS 和GIS 等技术应用和分析空间数据。特别是近些年来,个人使用的、携带的各种传感器(重力感应器、电子罗盘、三轴陀螺仪、光线距离感应器、温度传感器、红外线传感器等),具备定位功能电子设备的普及,如智能手机、平板电脑、可穿戴设备(GOOGLE GLASS 和智能手表等),使人们在日常生活中产生了大量具有位置信息的数据。随着志愿者地理信息(Volunteer Geographic Information )的出现,使这些普通民众也加入到了提供数据者的行列。 以上各种获取手段和途径的汇集,就使每天获取的 数据增长量达到GB 级、 TB 级乃至PB 级。如中国遥感卫星地面站现在保存的对地观测卫星数据资料达260TB ,并以每年15TB 的数据量增长。比如2011年退役的Landsat5卫星在其29年的在轨工作期间,平均每年获取8.6万景影像,每天获取67GB 的观测数据。而2012年发射的资源三号(ZY3)卫星,每天的观测数据获取量可以达到10TB 以上。类似的传感器现在已经大量部署在卫 星、 飞机等飞行平台上,未来10年,全球天空、地空间部署的百万计传感器每天获取的观测数据将超过10PB 。这预示着一个时代的到来,那就是大数据时代。大数据具有 “4V ”特性,即数据体量大(Volume )、数据来源和类型繁多(Variety )、数据的真实性难以保证(Veracity )、数据增加和变化的速度快(Velocity )。对地观测的系统如图1所示。 在这些数据中,与空间位置相关的数据占了绝大多数。传统的空间知识发现的科研模式在大数据情境下已经不再适用,原因是传统的科研模型不具有普适性且支持的数据量受限, 受到数据传输、存储及时效性需求的制约等。为了从存储在分布方式、虚拟化的数据中心获取信息或知识,这就需要利用强有力的数据分析工具来将

基于聚类的图像分割方法综述

信息疼术2018年第6期文章编号=1009 -2552 (2018)06 -0092 -03 DOI:10.13274/https://www.doczj.com/doc/525471862.html,ki.hdzj.2018. 06.019 基于聚类的图像分割方法综述 赵祥宇\陈沫涵2 (1.上海理工大学光电信息与计算机学院,上海200093; 2.上海西南位育中学,上海200093) 摘要:图像分割是图像识别和机器视觉领域中关键的预处理操作。分割理论算法众多,文中 具体介绍基于聚类的分割算法的思想和原理,并将包含的典型算法的优缺点进行介绍和分析。经过比较后,归纳了在具体应用中如何对图像分割算法的抉择问题。近年来传统分割算法不断 被科研工作者优化和组合,相信会有更多的分割新算法井喷而出。 关键词:聚类算法;图像分割;分类 中图分类号:TP391.41 文献标识码:A A survey of image segmentation based on clustering ZHAO Xiang-yu1,CHEN Mo-han2 (1.School of Optical Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai200093,China;2.Shanghai Southwest Weiyu Middle School,Shanghai200093,China) Abstract:Image segmentation is a key preprocessing operation in image recognition and machine vision. There are many existing theoretical methods,and this paper introduces the working principle ol image segmentation algorithm based on clustering.Firstly,the advantages and disadvantages ol several typical algorithms are introduced and analyzed.Alter comparison,the paper summarizes the problem ol the selection ol image segmentation algorithm in practical work.In recent years,the traditional segmentation algorithms were improved and combined by the researchers,it believes that more new algorithms are blown out. Key words:clustering algorithm;image segmentation;classilication 0引百 近年来科学技术的不断发展,计算机视觉和图像 识别发挥着至关重要的作用。在实际应用和科学研 究中图像处理必不可少,进行图像处理必然用到图像 分割方法,根据检测图像中像素不重叠子区域,将感 兴趣目标区域分离出来。传统的图像分割方法:阈值 法[1]、区域法[2]、边缘法[3]等。近年来传统分割算法 不断被研究人员改进和结合,出现了基于超像素的分 割方法[4],本文主要介绍超像素方法中基于聚类的经 典方法,如Mean Shift算法、K-m eans 算法、Fuzzy C-mean算法、Medoidshilt算法、Turbopixels算法和 SLIC 算法。简要分析各算法的基本思想和分割效果。 1聚类算法 1.1 Mean Shil't算法 1975年,Fukunaga[5]提出一种快速统计迭代算法,即Mean Shilt算法(均值漂移算法)。直到1995 年,Cheng[6]对其进行改进,定义了核函数和权值系 数,在全局优化和聚类等方面的应用,扩大了 Mean shil't算法适用范围。1997至2003年间,Co-maniciu[7-9]提出了基于核密度梯度估计的迭代式 搜索算法,并将该方法应用在图像平滑、分割和视频 跟踪等领域。均值漂移算法的基本思想是通过反复 迭代计算当前点的偏移均值,并挪动被计算点,经过 反复迭代计算和多次挪动,循环判断是否满足条件, 达到后则终止迭代过程[10]。Mean shil't的基本形 式为: 收稿日期:2017-06 -13 基金项目:国家自然科学基金资助项目(81101116) 作者简介:赵祥宇(1992-),男,硕士研究生,研究方向为数字图像处理。 —92 —

谱聚类Clustering -

聚类分析 1.聚类分析定义: 2.聚类方法: 3.谱聚类: 3.1 常见矩阵变换 3.2 谱聚类流程 3.3 谱聚类理论前提、证明 3.4 图像分割实例结果 4.总结:

聚类分析: ?聚类分析(Cluster analysis,亦称为群集分析)是对于静态数据分析的一门技术,在许多领域受到广泛应用,包括机器学习,数据挖掘,模式识别,图像分析以及生物信息。

算法分类: ?数据聚类算法可以分为结构性或者分散性。 ?结构性算法以前成功使用过的聚类器进行分类。结构性算法可以从上至下或者从下至上双向进行计算。从下至上算法从每个对象作为单独分类开始,不断融合其中相近的对象。而从上至下算法则是把所有对象作为一个整体分类,然后逐渐分小。 ?分散型算法是一次确定所有分类。K-均值法及衍生算法。 ?谱聚类(spectral clustering)

结构型:层次聚类的一个例子:

分散型:K-均值算法:

分散型k-means 及其衍生算法的比较:K-means K-Medoids K-Means算法: 1. 将数据分为k个非空子集 2. 计算每个类中心点(k-means中心点是所有点的average),记为seed point 3. 将每个object聚类到最近seed point 4. 返回2,当聚类结果不再变化的时候stop K-Medoids算法: 1.任意选取K个对象作为medoids(O1,O2,…Oi…Ok)。 2.将余下的对象分到各个类中去(根据与medoid最相近的原则); 3.对于每个类(Oi)中,顺序选取一个Or,计算用Or代替Oi后的消耗E(Or)。选择E最小的那个Or来代替Oi。转到2。 4.这样循环直到K个medoids固定下来。 这种算法对于脏数据和异常数据不敏感,但计算量显然要比K均值要大,一般只适合小数据量。

K-means-聚类算法研究综述

K-means聚类算法研究综述 摘要:总结评述了K-means聚类算法的研究现状,指出K-means聚类算法是一个NP难优化问题,无法获得全局最优。介绍了K-means聚类算法的目标函数,算法流程,并列举了一个实例,指出了数据子集的数目K,初始聚类中心选取,相似性度量和距离矩阵为K-means聚类算法的3个基本参数。总结了K-means聚类算法存在的问题及其改进算法,指出了K-means 聚类的进一步研究方向。 关键词:K-means聚类算法;NP难优化问题;数据子集的数目K;初始聚类中心选取;相似性度量和距离矩阵 Review of K-means clustering algorithm Abstract: K-means clustering algorithm is reviewed. K-means clustering algorithm is a NP hard optimal problem and global optimal result cannot be reached. The goal,main steps and example of K-means clustering algorithm are introduced. K-means algorithm requires three user-specified parameters: number of clusters K,cluster initialization,and distance metric. Problems and improvement of K-means clustering algorithm are summarized then. Further study directions of K-means clustering algorithm are pointed at last. Key words: K-means clustering algorithm; NP hard optimal problem; number of clusters K; cluster initialization; distance metric K-means聚类算法是由Steinhaus1955年、Lloyed1957年、Ball & Hall1965年、McQueen1967年分别在各自的不同的科学研究领域独立的提出。K-means聚类算法被提出来后,在不同的学科领域被广泛研究和应用,并发展出大量不同的改进算法。虽然K-means聚类算法被提出已经超过50年了,但目前仍然是应用最广泛的划分聚类算法之一[1]。容易实施、简单、高效、成功的应用案例和经验是其仍然流行的主要原因。 文中总结评述了K-means聚类算法的研究现状,指出K-means聚类算法是一个NP难优化问题,无法获得全局最优。介绍了K-means聚类算法的目标函数、算法流程,并列举了一个实例,指出了数据子集的数目K、初始聚类中心选取、相似性度量和距离矩阵为K-means聚类算法的3个基本参数。总结了K-means聚类算法存在的问题及其改进算法,指出了K-means聚类的进一步研究方向。 1经典K-means聚类算法简介 1.1K-means聚类算法的目标函数 对于给定的一个包含n个d维数据点的数据集 12 {x,x,,x,,x} i n X=??????,其中d i x R ∈,以及要生成的数据子集的数目K,K-means聚类算法将数据对象组织为 K个划分{c,i1,2,} k C K ==???。每个划分代表一个类c k,每个类c k有一个类别中心iμ。选取欧氏距离作为相似性和 距离判断准则,计算该类内各点到聚类中心 i μ的距离平方和 2 (c) i i k i k x C J xμ ∈ =- ∑(1) 聚类目标是使各类总的距离平方和 1 (C)(c) K k k J J = =∑最小。 22 1111 (C)(c) i i K K K n k i k ki i k k k x C k i J J x d x μμ ==∈== ==-=- ∑∑∑∑∑ (2)其中, 1 i i ki i i x c d x c ∈ ? =? ? ? 若 若 ,显然,根据最小二乘 法和拉格朗日原理,聚类中心 k μ应该取为类别 k c类各数据点的平均值。 K-means聚类算法从一个初始的K类别划分开始,然

工业大数据分析综述:模型与算法

摘要:随着条形码、二维码、RFID、工业传感器、自动控制系统、工业互联网、ERP、CAD/CAM/CAE等信息技术在工业领域的广泛应用,大量与工业生产活动相关的数据被实时采集并存储到企业的信息系统中。对这些数据进行分析,有助于改进生产工艺、提高生产效率、降低生产成本,为实现智能制造奠定基础。因此,工业大数据分析引起了工业界和学术界的广泛关注。模型和算法是大数据分析理论和技术中的两个核心问题。介绍了工业大数据分析的基本概念,综述了几种流行的工业大数据分析模型在工业大数据分析领域的应用情况以及相应求解算法方面的研究成果,并探索了大数据分析模型和算法的未来研究方向。 关键词:工业大数据; 大数据分析; 模型; 算法; 智能制造 1 引言 当今时代,信息化和工业化的融合已经成为发展趋势,《中国制造2025》指出:“新一代信息技术与制造业深度融合,正在引发影响深远的产业变革,形成新的生产方式、产业形态、商业模式和经济增长点”。工业大数据在两化融合过程中起着至关重要的作用,国务院颁发的《促进大数据发展行动纲要》把发展工业大数据列为主要任务之一:“推动大数据在工业研发设计、生产制造、经营管理、市场营销、售后服务等产品全生命周期、产业链全流程各环节的应用,分析感知用户需求,提升产品附加价值,打造智能工厂。建立面向不同行业、不同环节的工业大数据资源聚合和分析应用平台”。工业大数据是指在工业领域中产生的大数据。随着信息化与工业化的深度融合,信息技术渗透到了工业企业产业链的各个环节,条形码、二维码、射频识别(radio frequency identification,RFID)、工业传感器、工业自动控制系统、工业互联网、企业资源计划(enterprise resource planning,ERP)、计算机辅助设计(computer

谱聚类报告

机器学习报告 一.绪论 聚类是探索性数据分析中广泛采用的一种技术,其应用范围包括统计学、计算机科学、生物学、社会科学和心理学等等。在处理经验数据的时候,我们可能倾向于根据数据的“近似表现”将数据确定到一定的类别。而本次我们小组的实验主要是基于聚类算法中的谱聚类方法,通过对两种谱聚类方法的实验和一些应用,验证算法的效果,加深对该方法的理解。 由于谱聚类的数值实现很简单,利用简单的线性代数学方法就能有效解决,而且相比传统的K 均值方法等聚类方法有很多优点,所以谱聚类方法称为了很流行的现代聚类算法之一。 以K 均值方法为例,正如我们所知,该方法主要存在这样一些问题:首先,其只适用于凸球形的样本空间,如果样本空间非凸,则会陷入局部最优,导致聚类效果不佳;再有,由于该方法计算使用的是欧氏空间中的原始数据向量,所以在样本维数很大的时候,K 均值算法的计算量会很大,导致了计算的困难;聚类数K 难以确定等等。而谱聚类则能很好地解决这些问题。 在本次实验中,我们小组根据相关文献,认真学习和讨论了谱聚类的先关概念。首先,我们研究了一般的谱聚类和标准化谱聚类的概念和它们的异同,并通过实验对比,验证了谱聚类的效果,其中标准化谱聚类有显著的优势。接下来,将谱聚类应用于图像分割问题,显示出谱聚类良好的应用价值。最后,我们查阅相关文献,尝试从另外一个角度去理解谱聚类方法。通过这次学习,我们对谱聚类的理解得到了大大加深,对于很多疑难的地方也通过查看有关文献和小组讨论得到了解决,并通过小组合作锻炼了自身的团队意识和配合工作的能力。 二.谱聚类基本思想 谱聚类是一种基于图论的聚类方法,把样本看作图的顶点,样本间的相似度对应带权值的边(其中相似度可以通过高斯核函数等方法构造),根据类间相似度最小,类内相似度最大的原则,便可以将样本聚类问题变成了图的分割问题:分割使得连接不同类之间的边的权值尽可能小,而类内点之间的边的权值尽可能高。虽然这样对应的最小化图分割问题是一个NP-HARD 问题,但是我们可以将其转化为最小化图的Laplace 矩阵的特征值问题。 具体地,给定样本特征之后,我们首先要计算样本两两之间的相似度值,并通过这些值构造出近邻矩阵。以高斯核函数为例,计算公式如下: 22||||(2)i j x x ij w e σ--= 作为第i 个样本和第j 个样本之间相似度的度量。而近邻矩阵如下: ()ij W w =。

数据挖掘中的聚类算法综述

收稿日期:2006201204;修返日期:2006203219基金项目:国家自然科学基金资助项目(60473117) 数据挖掘中的聚类算法综述 3 贺 玲,吴玲达,蔡益朝 (国防科学技术大学信息系统与管理学院,湖南长沙410073) 摘 要:聚类是数据挖掘中用来发现数据分布和隐含模式的一项重要技术。全面总结了数据挖掘中聚类算法的研究现状,分析比较了它们的性能差异和各自存在的优点及问题,并结合多媒体领域的应用需求指出了其今后的发展趋势。 关键词:数据挖掘;聚类;聚类算法 中图法分类号:TP391 文献标识码:A 文章编号:100123695(2007)0120010204 Survey of Clustering A lgorith m s in Data M ining HE L ing,WU L ing 2da,CA I Yi 2chao (College of Infor m ation Syste m &M anage m ent,N ational U niversity of D efense Technology,Changsha Hunan 410073,China ) Abstract:Clustering is an i m portant technique in Data M ining (DM )f or the discovery of data distributi on and latent data pattern .This paper p r ovides a detailed survey of current clustering algorith m s in DM at first,then it makes a comparis on a mong the m,illustrates the merits existing in the m,and identifies the p r oblem s t o be s olved and the ne w directi ons in the fu 2ture according t o the app licati on require ments in multi m edia domain .Key works:Data M ining;Clustering;Clustering A lgorith m 1 引言 随着信息技术和计算机技术的迅猛发展,人们面临着越来越多的文本、图像、视频以及音频数据,为帮助用户从这些大量数据中分析出其间所蕴涵的有价值的知识,数据挖掘(Data M ining,DM )技术应运而生。所谓数据挖掘,就是从大量无序 的数据中发现隐含的、有效的、有价值的、可理解的模式,进而发现有用的知识,并得出时间的趋向和关联,为用户提供问题求解层次的决策支持能力。与此同时,聚类作为数据挖掘的主要方法之一,也越来越引起人们的关注。 本文比较了数据挖掘中现有聚类算法的性能,分析了它们各自的优缺点并指出了其今后的发展趋势。 2 DM 中现有的聚类算法 聚类是一种常见的数据分析工具,其目的是把大量数据点的集合分成若干类,使得每个类中的数据之间最大程度地相似,而不同类中的数据最大程度地不同。在多媒体信息检索及数据挖掘的过程中,聚类处理对于建立高效的数据库索引、实现快速准确的信息检索具有重要的理论和现实意义。 本文以聚类算法所采用的基本思想为依据将它们分为五类,即层次聚类算法、分割聚类算法、基于约束的聚类算法、机器学习中的聚类算法以及用于高维数据的聚类算法,如图1所示。 聚类 层次聚类算法 聚合聚类:Single 2L ink,Comp lete 2L ink,Average 2L ink 分解聚类 分割聚类算法基于密度的聚类基于网格的聚类 基于图论的聚类 基于平方误差的迭代重分配聚类:概率聚类、最近邻 聚类、K 2medoids 、K 2means 基于约束的聚类算法 机器学习中的聚类算法 人工神经网络方法 基于进化理论的方法:模拟退火、遗传算法用于高维数据的聚类算法 子空间聚类 联合聚类 图1 聚类算法分类示意图 211 层次聚类算法 层次聚类算法通过将数据组织成若干组并形成一个相应的树状图来进行聚类,它又可以分为两类,即自底向上的聚合层次聚类和自顶向下的分解层次聚类。聚合聚类的策略是先将每个对象各自作为一个原子聚类,然后对这些原子聚类逐层进行聚合,直至满足一定的终止条件;后者则与前者相反,它先将所有的对象都看成一个聚类,然后将其不断分解直至满足终止条件。 对于聚合聚类算法来讲,根据度量两个子类的相似度时所依据的距离不同,又可将其分为基于Single 2L ink,Comp lete 2L ink 和Average 2L ink 的聚合聚类。Single 2L ink 在这三者中应用最为广泛,它根据两个聚类中相隔最近的两个点之间的距离来评价这两个类之间的相似程度,而后两者则分别依据两类中数据点之间的最远距离和平均距离来进行相似度评价。 CURE,ROCK 和CHAME LE ON 算法是聚合聚类中最具代 表性的三个方法。 Guha 等人在1998年提出了C URE 算法 [1] 。该方法不用 单个中心或对象来代表一个聚类,而是选择数据空间中固定数目的、具有代表性的一些点共同来代表相应的类,这样就可以

谱聚类算法(Spectral Clustering)原理分析

谱聚类算法(Spectral Clustering) 谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目的。其中的最优是指最优目标函数不同,可以是割边最小分割——如图1的Smallest cut(如后文的Min cut),也可以是分割规模差不多且割边最小的分割——如图1的Best cut(如后文的Normalized cut)。 图1 谱聚类无向图划分——Smallest cut和Best cut 这样,谱聚类能够识别任意形状的样本空间且收敛于全局最优解,其基本思想是利用样本数据的相似矩阵(拉普拉斯矩阵)进行特征分解后得到的特征向量进行聚类。 1 理论基础 对于如下空间向量item-user matrix: 如果要将item做聚类,常常想到k-means聚类方法,复杂度为o(tknm),t为迭代次数,k为类的个数、n为item个数、m为空间向量特征数: 1 如果M足够大呢? 2 K的选取? 3 类的假设是凸球形的? 4 如果item是不同的实体呢? 5 Kmeans无可避免的局部最优收敛? …… 这些都使常见的聚类问题变得相当复杂。 1.1 图的表示

如果我们计算出item与item之间的相似度,便可以得到一个只有item的相似矩阵,进一步,将item看成了Graph(G)中Vertex(V),歌曲之间的相似度看成G中的Edge(E),这样便得到我们常见的图的概念。 对于图的表示(如图2),常用的有: 邻接矩阵:E,e ij表示v i和v i的边的权值,E为对称矩阵,对角线上元素为0,如图2-2。 Laplacian矩阵:L = D – E,其中d i (行或列元素的和),如图2-3。 图2 图的表示 1.2 特征值与L矩阵 先考虑一种最优化图像分割方法,以二分为例,将图cut为S和T两部分,等价于如下损失函数cut(S, T),如公式1所示,即最小(砍掉的边的加权和)。 假设二分成两类,S和T,用q(如公式2所示)表示分类情况,且q满足公式3的关系,用于类标识。 那么:

相关主题
文本预览
相关文档 最新文档