当前位置:文档之家› 电力电子技术在新能源领域中的应用分析

电力电子技术在新能源领域中的应用分析

电力电子技术在新能源领域中的应用分析
电力电子技术在新能源领域中的应用分析

数字产ik

电力电子技术在新能源领域中的应用分析

作者/周文扬,河南省开封高级中学

文章摘要:随着科学的不断发展,社会的不断进步,污染问题也越来越严重。地球是人类的唯一的家园,如果地球的环境遭受破坏,人类 就没有了生活的家园。因此,或许应该寻求在保证不污染环境的条件下发展经济与建设。所以今天要讲的是如何做好“绿色化学”,我们 应该不断探寻的其方法。通常的化学化工行业的确给当今社会带来了许多便利和舒适,但是同时给我们的生活环境也造成了极大的破坏,所以我们应该不断探寻努力改进化学工业的方法,在最大限度保证不破坏环境的前提下带给人类的生活的带来便利以及舒适性。

关键词:绿色化学;电力电子;化学工业

引言

化学行业的发展对人类的生活,学习,工作乃至国家的 发展来说,影响是非常大的。同时它也是把双刃剑,化学行 业的发展是给人类的生活带来了极大便利与舒适空间,但是 也给我们环境造成了巨大的破坏。通常在污染都很难被看见,只有当它破坏我们周围的环境,开始影响到了人类的生活时,我们才会发现,污染地问题原来如此严重。因此,为了避免 产生污染,人类必须要懂得如何发展“绿色化学”,在保证 污染问题的条件下发展国家经济。

1?绿色化学的基本概念

何为绿色化学,通常来讲主要是运用化学的技术、原 理和方法消除对人体健康,食品安全与生态环境有毒有害 的化学物质,所以,我们也可以叫它也可以叫做环境友好 化学或洁净化学。事实上,绿色化学早已不是一门全新的 科学绿色化学课,它不但有占有着举足轻重的社会、环境 和经济效益,同时化学工业带来的负面作用可以在_定程 度上减到最小,以此来显现对化学人的能动性。绿色化学 结合了化学科学、技术与社会的用,三者之间存在着一定 的相互联系与相互作用,它也是迄今为止化学科学的高度 发展,以及社会对化学科学发展的重要产物,这对化学来 说是一个新阶段。我们作为新世纪的主人,应该要有能力 去发展全新的、对环境更和谐的化学工业,以防止化学污 染环境;同时也要让年轻的_代了解什么是绿色化学,同 时也要接受绿色化学,我们一起为绿色化学作出应有的贡 献【1]。

2.将“绿色化学”的概念引入离中课程教学

我国的化学课程教育最早是从初三开始教学的,但是 初三的化学教学相对来说比较简单,只是让初中学生对化 学学科做一个基本的概念了解,当然,这也是为高中的化 学教育进行铺垫。所以说高中的化学才是我国化学课程教 育的开始,高中生在刚接触化学这门课程的时候,在这个 时候引入“绿色化学”的概念很容易被高中生所汲取所吸 收的,如果在课堂的教学过程中可以进行举_反三的说明,30丨电子制作2017年1月并且用以往化学物质带来的环境污染作为教材,是能高中 学生更了解“绿色化学”的重要性。也会让高中生加深对“绿 色化学”的概念更加明确、更加容易被接受,让高中学生 在思考环境的问题的时候首先就能想到要保护环境的概念,只有这样才能将“绿色化学”的思想贯彻落实在高中生的 脑海中。

3.绿色化学思想在高中教学过程中的案例 分析

■ 3.1酸雨对牧渔业产生的破坏

不管是怎样的课程教学,我们都应该贴近结合实际问题 进行教育教学。特别是“化学”这门这种到处都是方式,符 号的课程,假如不运用实际案例对其进行分析教学,高中学 生对化学的了解基本就是抽象的,没有办法在生活中运用到 在化学课堂上学习到化学的知识,因此,这样的教学就没有 丝毫的意义了。所以为了能够让学生充分理解“绿色化学”的重要性,而且还能将知识运用到生活中去,在课堂上教师 们应该多举例子,让学生充分了解到化学污染对环境、对生 活的严重性[2]。

比如我国近些年来频繁降落的酸雨问题,酸雨是如何 产生的呢,就是由于化学工业的污染导致的。酸雨的产生 对于我国的牧渔业来说是及其重大自然灾害,其带来较大 的破坏不言而喻。酸雨不仅影响种子萌发、还会导致叶植 物出现看得见得伤害、同时生物量减少、生长也会受到抑 制,一般来说酸雨能够使叶绿素减少、胞膜透性增、光合 作用下降,而且酸雨能够让叶绿素减少、叶植物的细胞膜 透性增加、它的光合作用下降、而且落花落果的现象增加,从而最终导致农作物减产。而酸雨对渔业资源的破坏更为 严重,由于在酸性水体中,鱼类的繁殖能力会逐渐衰退甚 至说丧失,而酸雨酸化水体与金属离子浓度增加在酸性水 中同样会导致鱼类的性腺发生变异,所以繁殖能力大大衰 退,也是由于在酸性水中鱼类的性腺发生了变异,精卵的产 生减少了,从而导致仔稚鱼大量死亡于对鱼卵孵化的重要 破坏,直接影响了鱼类群体的数量。从鱼类死亡、繁殖能

(下转第32页)

电力电子技术与新能源发电

电力电子技术与新能源发电随着人类能源危机意识的增强,21世纪无疑是新能源发展的时代,特别是以电为主的清洁能源得到极大的发展,作为一名将来投身于电力行业的大学生,对于能源的利用与发展就应该尤为关注。特别是作为强电专业的自己,当自己接触专业核心课程时,这种感觉,意识尤为强烈,就此,想通过自己的一门专业核心课程----电力电子技术,来了解,关注其与新能源发电领域的联系,以及这门课程在新能源发电领域的应用。 1新能源概述 社会的发展离不开能源,经济的进步也与能源的使用息息相关。能源支撑着社会经济的发展。我国能源生产总量和消费总量均排在全球前三位。新能源因其具有清洁、少污染或无污染、蕴藏量大的特点越来越受到人们的重视。由于我国现阶段以煤炭为主要使用资源,煤炭资源占到所有能源的67%,石油约占22,%,而美国能源消耗中,煤炭只占约12%,我国煤炭的能源消耗率大大超出了美国及欧洲发达国家,所以我国废气污染的排放也一直排在全球首位。当前,我国启动了发展新能源的战略规划与部署。太阳能、水能、风能、生物质能、热泵、绿色建筑等成为了新能源发展的关键领域l2]。 2电子电力技术在新能源领域中的应用 2.1在风能发电中的应用 近几年来,全球风电机组容量每年的增长率都在35%左右。我国对全国装机容量也提出了明确的要求,截止2013年底,我国风电并网容量已达到7700万千瓦l3]。对风电系统的研发中,尤其是在以下系统中均使用了电力电子技术:MW级直驱式 风电机组变流器及双馈式风电机组变流器;风力发电机组控制系统;利用电力电子变换装置实现的变速恒频风力发电系统;利用电子电力变换装置实现的风力发电机无功控制系统;风电交流并网控制;风电直流输电;风电电能储存。 2.2在光能发电中的应用 光能发电是新能源的重要组成部分,光能发电技术可以用于所有场合,从家用电器到航空航天器,从玩具电源到兆瓦级电站,光能电源可以用在任何有需要的场所。到21世纪末,太阳能发电将占到能源结构的50%以上。光能发电具有良好的发展前景,且逐渐会在能源领域中占据重要地位。光能发电系统主要是由太阳能电池、蓄电池、充放电控制器、并网控制、电控柜及太阳跟踪系统等组成。除了太阳能电池方阵不需要电力电子技术的支持,其他设备和系统均需要电力电子技术提供相应的支撑。 2.3在新能源汽车领域中的应用 新能源汽车指的是纯电动汽车、燃料电池汽车、太阳能汽车等高效储能汽车。在这些新能源汽车中,都将采用一定的电力电子技术如电动机制动控制、电能转换及电能管理系统。新能源汽车的发展和普及将会极大地改善大气环境污染状况,是未来汽车的发展趋势4l]。 2.4在地热发电中的应用 地热系统利用浅层地能来提供能量,是一种新能源利用技术。由于不可再生能源的不断枯竭以及为了达到减排的目的,地热系统的开发和利用被提上日程。地热系统中需要对压缩机进行控制,还需要对提水泵进行控制,这些都需要电力电子技术的支持,另外,对于热源、冷源的循环控制也需要电力电子技术的支撑。 2.5在生物能中的应用 植物能是对地球上的植物如秸秆、木材和海水里的海藻等生物质材料的利用,通过将这些生物质材料进行干燥、压缩、成形等一系列处理,再将处理后的材料送入锅炉进行加热,可将产

电力电子技术的发展史

电力电子技术的发展史 电子技术是根据电子学的原理,运用电子器件设计和制造某种特定功能的电路以解决实际问题的科学,包括信息电子技术和电力电子技术两大分支。信息电子技术包括 Analog (模拟) 电子技术和 Digital (数字) 电子技术。电子技术是对电子信号进行处理的技术,处理的方式主要有:信号的发生、放大、滤波、转换。 目录 电力电子技术 现代电力电子技术 高频开关电源的发展趋势 半导体器件基础 电路发展 1.电力电子技术发展 现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 整流器时代 大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。 逆变器时代 七十年代出现了世界范围的能源危机,交流电机变频调速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。 变频器时代 进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能

电力电子技术的实际应用(读书笔记)

电力电子技术的实际应用 摘要 随着科技的飞速进步,时代的高速发展,电力电子技术作为一个新兴的学科诞生并被迅速应用于电力电子领域中,已在国民经济中发挥着巨大作用,已对输变电系统性能将产生巨大影响。目前电力电子技术的应用已涉及电力系统的各个方面,包括发电环节、输配电系统、储能系统等等。电力电子技术是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术,其发展在优化电能使用、改造传统产业和发展机电一体化等新兴产业、扩大电网规模和功能等方面起到了重要作用。本文将重点介绍电力电子技术在电 理网络中的应用。 关键字:电力电子技术、输配电系统、晶闸管、电力网络。 在电气工程领域,电力电子技术作为一个新兴的学科,因其在电力领域中起到的巨大作用,越来越受到重视。随着晶闸管等电力器件的发明并被应用于电力领域,正式标志着电力电子技术被应用于电力系统,其在全球电力领域的发展中,有着里程碑的意义。 电力电子技术主要应用于电力领域中的电力系统中。电力系统由发电、输电、变电、配电和用电等环节组成的电能生产与消费系统。其功能就是产生电能,再经输电系统、变电系统和配电系统将电能供应到用户。为了实现此功能,电力电子技术的应用起到了举足轻重的作用。保证了用户能够获得安全、经济、优质的电能。 电力电子技术最初应用到电力领域的历史最早是在20世纪50年代利用不可控器件二极管构成的整流器来替代直流发电机对同步发电机进行励磁调节。随后出现的利用半控器件晶闸管构成的可控整流器更是为发电机的励磁提供里一个快捷有效的控制手段,从根本上改变了发电机的动态和静态性能,有效的改善了系统的稳定性。 在当前大范围使用的电力系统中,通常都是以固定的电压和频率来向用户提供交流电能的(例如我国使用220V、50Hz的交流电),但是最终的用户需要的电能可能形式会有着各式各样的差别,可能是不同频率的交流电、可能是同频率但电压不同的交流电也可能是直流电等等、如果这些要由普通的常规电力系统器件来完成,例如使用变频器,变压器和整流器等,这就需要大量的此类设备,且还要根据不同用户的要求而使用不同的器件,这是很不经济的,也不可能实现。而电力电气器件可以作为电力系统和用户之间的接口,通过受控的开关作用对系统输送到用户的电能进行不同的变换来满足用户不同的需求。故而自其问世以来,就被广泛的应用在电力领域的各个角落。 在电力领域中,实现常规电流变换的装置包括:整流器、逆变器、交流变换器和斩波器四种基本类型。整流器是利用电力电子器件的单向导电性和可控性将交流电能转换为可控的直流电能的变流装置;逆变器是将直流电能转换为交流电能的装置;交流变换器是把一种交流电能变换为另一种交流电能的装置;斩波器是把一种直流电脑变为另一种直流电能的装置。

电力电子技术在新能源的应用

电力电子技术在新能源的应用 摘要:随着科技的不断发展和人们要求的不断提高,电力电子技术的应用越来越广泛。电力电子技术作为信息产业和传统产业之间的桥梁,它将在国民经济中占有很重要的作用。 关键词:电力电子技术;新能源;应用 引言 电力电子技术自上个世纪中期诞生以来得到了迅速的发展,在国民经济中已经具有十分重要的地位,目前约75%以上的电能须经电力电子处理以后才能投入使用,面临的环境和能源问题也需要高效的发电、电力变换和控制技术来解决,因此电力电子技术作为一项基础技术越来越重要。 1.电力电子器件的发展 一代器件造就一代电力电子装置与应用,新的装置与应用又促进着电力电子器件的发展,让我们来简要回顾一下常用的几类电力电子器件: 1.1功率二极管 大功率的工业用电由工频(50 Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解、牵引和直流传动等领域。功率二极管是上世纪六十年代开始发展起来的;今天,在现代电力电子装置中仍然扮演着重要的角色,除了大功率工频整流的基本功能之外,功率二极管还日益肩负着高频整流、续流、隔离、箝位、吸收等越来越多的功能。 1.2晶闸管 在大功率和特大功率的工业应用中,晶闸管以其耐压高、电流大、通态压降小、通态功耗低等优势被广泛应用,是这一领域的主力器件,英杰电气在高压大功率晶闸管的应用方面有十几年的应用案例与经验积累。 1.3绝缘栅双极晶体管(IGBT)与功率场效应管(MOSFET) 上世纪八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础,将集成电路的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率MOSFET的问世,导致了中小功率电源向高频化发展,而后绝缘栅双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。 电气紧随时代潮流,一直致力于IGBT和MOSFET的工业应用,依靠该类

电力电子技术在我国的发展现状及对策

龙源期刊网 https://www.doczj.com/doc/6e1751274.html, 电力电子技术在我国的发展现状及对策 作者:冯茂娥 来源:《商场现代化》2009年第28期 [摘要] 文章阐述了电力电子的含义和任务,分析了电力电子技术目前在我国的发展、应用现状和存在的问题,指出在我国建立一个自主创新的、强大的、达到世界先进水平的电力电子 产业是十分迫切和重要的,并提出了相应的对策。 [关键词] 电力电子技术现状对策 一、引言 我国是一个发展中的国家,目前尚处于前工业化阶段,传统产业仍然是我国国民经济的主力军,因此在近期或在较长一段时期内,传统产业的改造和发展将在很大程度上决定着我国经济的发展。电力、机械、冶金、石油、化工、交通运输是传统产业的重要支柱,这些产业技术水平 的高低直接关系到我国工业基础的强弱。特别是,近年来随着经济的稳步发展,巨大的电力缺口与人们对电力的强烈需求之间的矛盾越来越明显。由于我国常规能源资源的有限性和环保的巨大压力,能源建设必须走节电和开发利用可再生能源之路,这就决定了在今后相当长的一段时期内,我国国民经济的发展和巨大的用户市场对电力电子技术具有巨大的、持久的需求,这就意味着我国电力电子和电力传动产业面临着良好的机遇。 今后世界市场的竞争主要表现为高新技术的竞争,谁拥有电力电子这种先进的高新科技产品,谁就掌握竞争的优势。面临我国已加入世贸组织和必须适应国际大循环的形势,我们面临着严峻的挑战,因为总体说来我国当前电力电子技术的水平落后于国际先进水平,远远跟不上我国国民经济发展的需要,特别是还面临着国外产品严重冲击,因此,我们必需清醒地认识到这一挑战并且要勇敢地面对。 二、电力电子的含义和任务 从学科的角度讲,电力电子的主要任务是研究电力电子(功率半导体)器件、变流器拓扑及其控制和电力电子应用系统,实现对电、磁能量的变换、控制、传输和存贮,以达到合理、高效地使用各种形式的电能,为人类提供高质量电、磁能量。电力电子的研究范围与研究内容主要包括:(1)电力电子元、器件及功率集成电路。(2)电力电子变流技术,其研究内容主要包括新型的或适用于电源、节能及电力电子新能源利用、军用和太空等特种应用中的电力电子变流技术;电力电子变流器智能化技术;电力电子系统中的控制和计算机仿真、建模等。(3)电力电子应用技术,其研究内容主要包括超大功率变流器在节能、可再生能源发电、钢铁、冶金、电力、电力 牵引、舰船推进中的应用;电力电子系统信息与网络化;电力电子系统故障分析和可靠性;复杂电

电力电子技术期末复习考卷综合

一、填空题: 1、电力电子技术的两个分支是电力电子器件制造技术和 变流技术 。 2、举例说明一个电力电子技术的应用实例 变频器、 调光台灯等 。 3、电力电子承担电能的变换或控制任务,主要为①交流变直流(AC —DC )、②直流变交流(DC —AC )、③直流变直流(DC —DC )、④交流变交流(AC —AC )四种。 4、为了减小电力电子器件本身的损耗提高效率,电力电子器件一般都工作在 开关状态,但是其自身的功率损耗(开通损耗、关断损耗)通常任远大于信息电子器件,在其工作是一般都需要安装 散热器 。 5、电力电子技术的一个重要特征是为避免功率损耗过大,电力电子器件总是工作在开关状态,其损耗包括 三个方面:通态损耗、断态损耗和 开关损耗 。 6、通常取晶闸管的断态重复峰值电压UDRM 和反向重复峰值电压URRM 中较 小 标值作为该器件的额电电压。选用时,额定电压要留有一定的裕量,一般取额定电压为正常工作时晶闸管所承受峰值电压的2~3倍。 7、只有当阳极电流小于 维持 电流时,晶闸管才会由导通转为截止。导通:正向电压、触发电流 (移相触发方式) 8、半控桥整流带大电感负载不加续流二极管电路中,电路可能会出现 失控 现象,为了避免单相桥式 半控整流电路的失控,可以在加入 续流二极管 来防止失控。 9、整流电路中,变压器的漏抗会产生换相重叠角,使整流输出的直流电压平均值 降低 。 10、从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度称为 触发角 。 ☆从晶闸管导通到关断称为导通角。 ☆单相全控带电阻性负载触发角为180度 ☆三相全控带阻感性负载触发角为90度 11、单相全波可控整流电路中,晶闸管承受的最大反向电压为 2√2U1 。(电源相电压为U1) 三相半波可控整流电路中,晶闸管承受的最大反向电压为 。(电源相电压为U 2) 12、四种换流方式分别为 器件换流 、电网换流 、 负载换流 、 强迫换流 。 13、强迫换流需要设置附加的换流电路,给与欲关断的晶闸管强迫施加反压或反电流而关断。 14、直流—直流变流电路,包括 直接直流变流电路 电路和 间接直流变流电路 。(是否有交流环节) 15、直流斩波电路只能实现直流 电压大小 或者极性反转的作用。 ☆6种斩波电路:电压大小变换:降压斩波电路(buck 变换器)、升压斩波电路、 Cuk 斩波电路、Sepic 斩波电路、Zeta 斩波电路 升压斩波电路输出电压的计算公式 U= 1E β=1- ɑ 。 降压斩波电路输出电压计算公式: U=ɑE ɑ=占空比,E=电源电压 ☆直流斩波电路的三种控制方式是PWM 、 频率调制型 、 混合型 。 16、交流电力控制电路包括 交流调压电路 ,即在没半个周波内通过对晶闸管开通相位的控制,调节输出电压有效值的电路, 调功电路 即以交流电的周期为单位控制晶闸管的通断,改变通态周期数和断态周期数的比,调节输出功率平均值的电路, 交流电力电子开关即控制串入电路中晶闸管根据需要接通或断开的电路。

现代电力电子技术的发展、现状与未来展望综述上课讲义

现代电力电子技术的发展、现状与未来展 望综述

课程报告 现代电力电子技术的发展、现状与 未来展望综述 学院:电气工程学院 姓名: ********* 学号: 14********* 专业: ***************** 指导教师: *******老师 0 引言

电力电子技术就是使用电力半导体器件对电能进行变换和控制的技术,它是综合了电子技术、控制技术和电力技术而发展起来的应用性很强的新兴学科。随着经济技术水平的不断提高,电能的应用已经普及到社会生产和生活的方方面面,现代电力电子技术无论对传统工业的改造还是对高新技术产业的发展都有着至关重要的作用,它涉及的应用领域包括国民经济的各个工业部门。毫无疑问,电力电子技术将成为21世纪的重要关键技术之一。 1 电力电子技术的发展[1] 电力电子技术包含电力电子器件制造技术和变流技术两个分支,电力电子器件的制造技术是电力电子技术的基础。电力电子器件的发展对电力电子技术的发展起着决定性的作用,电力电子技术的发展史是以电力电子器件的发展史为纲的。 1.1半控型器件(第一代电力电子器件) 上世纪50年代,美国通用电气公司发明了世界上第一只硅晶闸管(SCR),标志着电力电子技术的诞生。此后,晶闸管得到了迅速发展,器件容量越来越大,性能得到不断提高,并产生了各种晶闸管派生器件,如快速晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等。但是,晶闸管作为半控型器件,只能通过门极控制器开通,不能控制其关断,要关断器件必须通过强迫换相电路,从而使整个装置体积增加,复杂程度提高,效率降低。另外,晶闸管为双极型器件,有少子存储效应,所以工作频率低,一般低于400 Hz。由于以上这些原因,使得晶闸管的应用受到很大限制。 1.2全控型器件(第二代电力电气器件) 随着半导体技术的不断突破及实际需求的发展,从上世纪70年代后期开始,以门极可关断晶闸管(GTO)、电力双极晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。此外,这些器件的开关速度普遍高于晶闸管,可用于开关频率较高的电路。这些优点使电力电子技术的面貌焕然一新,把电力电子技术推进到一个新的发展阶段。 1.3电力电子器件的新发展 为了解决MSOFET在高压下存在的导通电阻大的问题,RCA公司和GE公司于1982年开发出了绝缘栅双极晶体管(IGBT),并于1986年开始正式生产并逐渐系列化。IGBT是MOS?FET和BJT得复合,它把MOSFET驱动功率小、开关速度快的优点和BJT通态压降小、载流能力大的优点集于一身,性能十分优越,使之很快成为现代电力电子技术的主导器件。与IGBT 相对应,MOS 控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)都是MOSFET和GTO的复合,它们都综合

电力电子实训心得体会

电力电子技术实验总结 随着大功率半导体开关器件的发明和变流电路的进步和发展,产生了利用这类器件和电路实现电能变换与控制的技术——电力电子技术。电力电子技术横跨电力、电子和控制三个领域,是现代电子技术的基础之一,是弱电子对强电力实现控制的桥梁和纽带,已被广泛应用于工农业生产、国防、交通、能源和人民生活的各个领域,有着极其广阔的应用前景,成为电气工程中的基础电子技术。 本学期实验课程共进行了四个实验。包括单结晶体管触发电路实验,单相半波整流电路实验,三相半波有源逆变电路实验,单相交流调压电路实验. 单结晶体管触发电路实验 实验目的 (1)熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。 (2)掌握单结晶体管触发电路的基本调试步骤。 实验线路及原理单结晶体管触发电路利用单结晶体管(又称双基极二极管)的负阻特性和rc充放电特性,可组成频率可调的自激振荡电路。v6为单结晶体管,其常用型号有 bt33和bt35两种,由等效电阻v5和c1组成rc充电回路,由c1-v6-脉冲变压器原边组成电容放电回路,调节rp1电位器即可改变c1充电回路中的等效电阻,即改变电路的充电时间。由同步变压器副边输出60v的交流同步电压,经vd1半波整流,再由稳压管v1、v2 进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过r7及等效可变电阻v5向电容c1充电,当充电电压达到单结晶体管的峰值电压up时,v6导通,电容通过脉冲变压器原边迅速放电,同时脉冲变压器副边输出触发脉冲;同时由于放电时间常数很小,c1两端的电压很快下降到单结晶体管的谷点电压uv,使得v6重新关断,c1再次被充电,周而复始,就会在电容c1两端呈现锯齿波形,在每次v6导通的时刻,均在脉冲变压器副边输出触发脉冲;在一个梯形波周期内,v6可能导通、关断多次,但对晶闸管而言只有第一个输出脉冲起作用。电容c1的充电时间常数由等效电阻等决定,调节rp1电位器改变c1的充电时间,控制第一个有效触发脉冲的出现时刻,从而实现移相控制。 实验内容 (1)单结晶体管触发电路的调试。 (2)单结晶体管触发电路各点电压波形的观察。 单相半波整流电路实验 实验目的 1、熟悉强电实验的操作规程; 2、进一步了解晶闸管的工作原理; 3、掌握单相半波可控整流电路的工作原理。 4、了解不同负载下单相半波可控整流电路的工作情况。 实验原理 1、晶闸管的工作原理晶闸管的双晶体管模型和内部结构如下:晶闸管在正常工作时,承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。当承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。晶闸管一旦导通,门极就失去控制作用。要使晶闸管关断,只能使晶闸管的电流降 到接近于零的某一数值一下。 2.单相半波可控整流电路(电阻性负载) 2.1电路结构若用晶闸管t替代单相半波整流电路中的二极管d,就可以得到单相半波可控整流电路的主电路。变压器副边电压u2为50hz正弦波,负载 rl为电阻性负载。 三相半波有源逆变电路实验 实验目的 1、掌握三相半波有源逆变电路的工作原理,验证可控整流电路在有源逆变时的工作条件,并比较与整流工作时的区别。

电力电子技术的发展趋势及应用

电力电子的现代运用 半导体的出现成为20世纪现代物理学的一项最重大的突破,标志着电子技术的诞生。而由于不同领域的实际需要,促使半导体器件自此分别向两个分支快速发展,其中一个分支即是以集成电路为代表的微电子器件,而另一类就是电力电子器件,特点是功率大、快速化。自20世纪五十年代末第一只晶闸管问世以来,电力电子技术开始登上现代电气传动技术舞台,以此为基础开发的可控硅整流装置,是电气传动领域的一次革命,使电能的变换和控制从旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子的诞生。 电子电力技术包括电力电子器件、变流电路和控制电路3部分,是以电力为处理对象并集电力、电子、控制三大电气工程技术领域之间的综合性学科。电力技术涉及发电、输电、配电及电力应用,电子技术涉及电子器件和由各种电子电路所组成的电子设备和系统,控制技术是指利用外加的设备或装置使机器设备或生产过程的某个工作状态或参数按照预定的规律运行。电力电子器件是电力电子技术的基础,电力电子器件对电能进行控制和转换就是电子电力技术的利用。在21世纪已经成为一种高新技术,影响着人们生活的各种领域,因此对对电子电力技术的研究具有时代意义。 传统电力电子技术是以低频技术处理的,现代电力电子的发展向着高频技术处理发展。其发展先后经历了整流器时代、逆变器时代和变频器时代,在不断的发展中促进了现代电力电子技术的广泛应用。电力电子技术在1947年晶体管诞生开始形成,接着1956的晶闸管的出现标志电力电子技术逐渐形成一门学科开始发展,以功率MOS-FET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件的出现,表明已经进入现代电子电力技术发展时代。 1.整流器时代 在60年代到70年代被称为电力电子技术的整流时代。该期间主要是大功率硅整流管和晶闸管的开发与应用。1948年的晶体管的出现引发了电子工业革命,半导体器件开始应用与通信领域,1957年,晶闸管的诞生扩展了半导体器件功率控制范围,属于第一代电力电子器件。大功率硅整流器能够高效率地把工频交流电转变为直流电,当地办硅整流器厂逐渐增多,大功率的工业用电由工频50Hz)交流发电机提供,其中电解、牵引、和直流传动是以直流形式消费。 2.逆变器时代 20世纪70年到80年代期间成为逆变器时代,该期间的电力电子技术已经能够实现逆变,但是仅局限在中低频范围内。当时变频调速装置因为能节能大量普及,巨型功率晶体管(GTR)、门极可关断晶闸管(GTO)和大功率逆变用的晶闸管成为当时电力电子器件的主流。它们属于第二代电力电子器件。 3.变频器时代 进入80年代,功率MOSFET和绝缘栅极双极晶体管(IGBT)的问世,电力电子技术开始向高频化发展,高压、高频和大电流的功率半导体复合器件为第三代电器元件的大规模集成电路技术迅速发展,他们的性能更进一步得到了完善,具有小、轻和高效节能的特点。 4.现代电力时代 20世纪以来,电力电子作为自动化、节材、节能、机电一体化、智能化的基础,正朝着应用技术高频化、产品性能绿色化、硬件结构模块化的现代化方向发展。在1995年,功率MOSFET和GTR在功率半导体器件出现并广泛被人们应用,功率器件和电源单元的模块

电力电子技术和开关电源的发展历程

电力电子技术和开关电源的发展历程 1. 电力电子技术的发展 现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 1.1 整流器时代 大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。 1.2 逆变器时代 七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。 1.3 变频器时代 进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT 的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。 2. 现代电力电子的应用领域 2.1 计算机高效率绿色电源 高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。 计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的外围设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。 2.2 通信用高频开关电源

电力电子技术的重要作用

1 电力电子技术的重要作用 电力电子是国民经济和国家安全领域的重要支撑技术。它是工业化和信息化融合的重要手段,它将各种能源高效率地变换成为高质量的电能,将电子信息技术和传统产业相融合的有效技术途径。同时,还是实现节能环保和提高人民生活质量的重要技术手段,在执行当前国家节能减排、发展新能源、实现低碳经济的基本国策中起着重要的作用。 电力电子器件在电力电子技术领域的应用和市场中起着决定性的作用,是节能减排、可再生能源产业的“绿色的芯”。电力电子半导体器件是伴随着以硅为基础的微电子技术一起发展的。在上世纪五十到六十年代,微电子的基本技术得到了完善,而功率晶体管和晶闸管则主导了电能变换的应用。从七十年代到八十年代,功率MOS技术得到了迅速发展并在很大程度上取代了功率晶体管。基于MOS技术的IGBT器件开始出现,并研发出CoolMOS。九十年代初以后,主要的研发力量集中在对IGBT器件性能的提高和完善。到了本世纪初,经过了若干代的连续发展,以德国英飞凌、瑞士ABB、美国国际整流器公司(IR)、日本东芝和富士等大公司为代表的电力电子器件产业已经拥有了趋于完美的IGBT技术,产品的电压覆盖300V到6.5kV范围。 电力电子器件与相关技术包括: (1)功率二极管; (2)晶闸管; (3)电力晶体管; (4)功率场效应晶体管(MOSFET); (5)绝缘栅双极型晶体管(IGBT); (6)复合型电力电子器件; (7)电力电子智能模块(IPM)和功率集成芯片(Power IC); (8)碳化硅和氮化镓功率器件; (9)功率无源元件; (10)功率模块的封装技术、热管技术; (11)串并联、驱动、保护技术。 2 电力电子技术发展现状和趋势 2.1电力电子器件发展现状和趋势 电力电子器件产业发展的主要方向: (1)高频化、集成化、标准模块化、智能化、大功率化; (2)新型电力电子器件结构:CoolMOS,新型IGBT ; (3)新型半导体材料的电力电子器件:碳化硅、氮化镓电力电子器件。 2.2 电力电子装置、应用的现状和趋势 (1)在新能源和电力系统中的应用 电力系统是电力电子技术应用中最重要和最有潜力的市场领域,电力电子技术在电能的发生、输送、分配和使用的全过程都得到了广泛而重要的应用。从用电角度来说,要利用电力电子技术进行节能技术改造,提高用电效率;从发、输配电角度来说,必须利用电力电子技术提高发电效率和提高输配电质量。 (2)在轨道交通和电动汽车中的应用 电力电子技术在轨道交通牵引系统中的应用主要分为三个方面:主传动系统、辅助传动系统、控制与辅助系统中的稳压电源。在电力电子技术的带动下,电传动系统由直流传动走向现代交流传动。电力电子器件容量和性能的提高、封装形式

电气工程的发展现状与发展趋势

电气工程的发展现状与发展 趋势 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

电气工程的发展现状与发展趋势 班级:电气1302 学号:08 姓名:储厚成 一.电气工程的发展现状: 概论:我国电力工业正以“大机组,大电网,高电压,高参数,高度自动化”等“三大三高”的现代电力系统的模式超长规模的建设与发展,因此对工程技术员的素质和能力提出了更新和更高的要求。未来的几十年,我国电力系统和电气工程会依然保持较快发展趋势,核能和其他可再生资源将得到快速发展新的电力电子技术,电工材料,计算机及网络技术,控制与管理手段具有巨大影响潜力。 1.电机的驱动及控制: 一个多世纪以前电动机的发明使其成为工业革命以后的主要驱动力之一。它在各种机械运动中的广泛应用使生活变得简单并最终推动了人类的进步。逆变器的出现推动了交流电机速度和转矩控制的发展,这使得电机在仅仅30年就应用到了不可思议的领域。功率半导体元件和数字控制技术的进步使得电机驱动具有了鲁棒性并且能够实现高精度的位置和速度控制。交流驱动技术的应用也带来了能源节约和系统效率的提高。 电机本体及其控制技术在近几年取得相当大的进步。这要归功于半导体技术的空前发展带来的电力电子学领域的显著进步。电机驱动产业发展的利处已经触及各种各样的设备,从大型工业设备像钢铁制造厂、造纸厂的轧钢机等,到机床和半导体制造机中使用的机电一体化设备。交流电机控制器包括异步电机控制器和永磁电机控制器,这两者在电机驱动业的全过程中起着关键性作用。:目前,异步电动机矢量控制技术、直接转矩控制技术乃至无传感器的直接转矩控制技术已实用化,人工神经网络、自适应控制状态观测器等方法已得到广泛采用。 2.电力电子技术的应用: 半导体的出现成为20世纪现代物理学的一项最重大的突破,标志着电子技术的诞生。而由于不同领域的实际需要,促使半导体器件自此分别向两个分支快速发展,其中一个分支即是以集成电路为代表的微电子器件,而另一类就

电力电子技术题解实例与习题复习资料

第一章绪论 1.1题解实例 一、填空题: 1、电力电子技术是一门交叉学科,其内容涉及、 和三大学科。 答:电气工程、电子科学与技术、控制理论 2、电力电子技术是依靠电力电子器件组成各种电力变换电路,实现电能的高效率转换与控制的一门学科,它包括、和三个组成部分。 答:电力电子器件、电力电子电路、控制技术 3、电力电子电路的根本任务是实现电能变换和控制。电能变换的基本形式有:变换、变换、变换、变换四种。 答:AC/DC、DC/AC、DC/DC、 AC/AC 4、硅晶闸管派生器件双向晶闸管常用于交流和电路中。 答:调压、调功 5、光控晶闸管是通过光信号控制晶闸管导通的器件,它具有很强的、良好的和较高的瞬时承受能力,因而被应用于高压直流输电、静止无功功率补偿等领域。 答:光信号、抗干扰能力、高压绝缘性能、过电压

6、第二代电力电子器件以具有自关断能力的全控型器件、和 为代表。 答:GTR、MOSFET、IGBT 7、IGBT器件是一种复合器件。它兼有和的开关速度快、安全工作区宽、驱动功率小、耐高压、载流能力大等优点。 答:功率MOSFET、双极型器件 8、直流电动机变速传动控制是利用或获得可变的直流电源,对直流电动机电枢或励磁绕组供电,实现直流电动机的变速传动控制。 答:整流器、斩波器 9、交流电动机变速传动控制则是利用或对交流电动机供电,通过改变的供电电源的频率和电压等来达到交流电动机的变速传动。 答:逆变器、交-交直接变频器 10、太阳能电池板获得的原始直流电压是与太阳光强度等因素有关的,它需要通过一个变换器来稳定直流电压,再通过变换器变为所要求的交流电供负载使用或将电能馈入市电。 答: DC-DC、DC-AC 二、问答题: 1、什么是电力电子技术?它有几个组成部分?

新能源汽车电力电子技术-新能源汽车电力电子技术-习题答案

新能源汽车电力电子技术-答案集 项目一新能源汽车电路基础 任务1 电流对人体的伤害 课前学习 1 √; 2 √; 3 √; 4 √; 5 × 任务实施 1、实训设备认知 实训板

3、识读电路图 串联 4、电路搭建与验证 (1)略;电压大小不变的情况下,人体接触电极的面积越大,人体的电阻越小,流经人体的电流越大 (2)略;电压大小不变的情况下,电流流经人体的距离越长,流经人体的电流越小 (3)略 (4)在没有构成回路;在没有构成回路 课后习题 1、选择题(1)D;(2)B;(3)D;(4)A;(5)B 2、判断题(1)×;(2)×;(3)×;(4)√;(5)√ 任务2 欧姆定律 课前学习

1 √; 2 √; 3 ×; 4 ×; 5 √任务实施 2、实训设备认知 实训板 实训板 实训板

3、识读电路图 电流表;电阻;串联;并联 5、电路搭建与验证 (1)115;204;300;略;略;电阻大小不变的情况下,电阻两端的电压越大,流过电阻的电流越大 (2);大;正比 (3)略;115,17;204,19.6;300,20;略;略;电阻两端电压大小与相应电流大小的比值等于电阻大小 课习题后 1、选择题(1)A;(2)B;(3)B;(4)A;(5)A 2、判断题(1)√;(2)√;(3)×;(4)×;(5)√ 项目二新能源汽车电力电子元件 任务1 超级电容原理与应用 课前学习 1 √; 2 ×; 3 √; 4 √; 5 × 任务实施

3、实训设备认知 实训板 3、识读电路图 (1)电容;(2)开关S1,电机;(4)串联;(5)并联;(6)S1 4、电路搭建与验证 (1)0.33,0.166;1.68,0.166;2.44,0.166;2.85,0.165; 3.36,0.165;3.72,0.165; 4.00,0.165;4.28,0.165;4.53,0.165; 4.70,0.159;4.81,0.146;4.81,0.130;4.82,0.118 画图略;负载,低,高,慢,4.85;高,低,快,0.3 (2)4.66,0.044;4.47,0.030;4.39,0.019;4.33,0.019;4.28,0.018;4.22,0.019;4.19,0.021;4.14,0.018;4.11,0.018; 4.07,0.018;4.05,0.006;4.01,0.017;3.98,0.018 (3)画图略;电源,高,低,慢,1;高,低,慢,0.005 课后习题 1、选择题(1)A;(2)A;(3)B;(4)A;(5)D

电力电子技术应用实例MATLAB仿真

目录 摘要 (1) 关键词 (1) 1.引言 (1) 2.单相半波可控整流电路 (1) 2.1实验目的 (1) 2.2实验原理 (1) 2.3实验仿真 (2) 3.单相桥式全控整流电路 (8) 3.1实验目的 (8) 3.2实验原理 (8) 3.3实验仿真 (9) 4.三相半波可控整流电路 (10) 4.1实验目的 (10) 4.2实验原理 (11) 4.3实验仿真 (12) 5. 三相半波有源逆变电路 (14) 5.1实验目的 (14) 5.2实验原理 (14) 5.3实验仿真 (15) 6.三相桥式半控整流电路 (17) 6.1 实验目的 (17) 6.2实验原理 (17) `6.3 实验仿真 (17) 7.小结 (19) 致谢 (19)

电力电子技术应用实例的MATLAB 仿真 摘 要 本文是用MATLAB/SIMULINK 实现电力电子有关电路的计算机仿真的毕业设计。论文给出了单相半波可控整流电路、单相桥式全控整流电路、三相半波可控整流电路、三相半波有源逆变电路、三相桥式全控整流电路的实验原理图、 MATLAB 系统模型图、及仿真结果图。实验过程和结果都表明:MATLAB 在电力电子有关电路计算机仿真上的应用是十分广泛的。尤其是电力系统工具箱-Power System Blockset (PSB )使得电力系统的仿真更加方便。 关键词 MATLAB SIMULINK PSB 电力电子相关电路 1.引言 MATLAB 是由Math Works 公司出版发行的数学计算软件,为了准确建立系统模型和进行仿真分析,Math Works 在MATLAB 中提供了系统模型图形输入与仿真工具一SIMULINK 。其有两个明显功能:仿真与连接,即通过鼠标在模型窗口画出所系统的模型,然后可直接对系统仿真。这种做法使一个复杂系统模型建立和仿真变得十分容易。[4][2] 在1998年,MathWoIks 推出了电力系统仿真的电力系统工具箱-Power System Blockset (PSB )。其中包括了电路仿真所需的各种元件模型,包括有电源模块、基础电路模块、电力电子模块、电机模块、连线器模块、检测模块以及附加功率模块等七种模块库。每个模块库中包含各种基本元件模型,如电源模块中有直流电压、电流源,交流电压源、电流源,受控电压源、电流源等五种电源模型。电力电子模块库包含了理想开关元件、晶闸管、功率场效应管、可关断晶闸管等多种功率开关元件模型;电机模块库中包含了各种电机模型。如异步电动机、同步电动机、永磁同步电动机等。只需将模块中的元件拖到SIMULINK 窗口中,通过参数设置对话框设置参数就可以实现电路和电力系统的仿真了。[4][5] 由于本文是对基本电路一个个进行仿真,采用实验报告的方式会比较简单,明了,所以格式会和一般的论文有所不同。 2.单相半波可控整流电路 2.1实验目的:掌握单相半波可控整流电路MATLAB 仿真方法,会设置各模块的参数。 2.2实验原理:图为单相半波可控整流器原理图及接电阻性负载和电感性负载时的原理图。电阻性负载的特点是电压和电流成正比,波形相同并且同相位,电流可以突变。 负载端电压d U =0.452U (1+cos α)/2.[1] 式中,2U 为变压器二次侧相电压,α为晶闸管出发控制角。

新能源汽车电力电子技术课程标准

《新能源汽车电力电子技术》课程标准 课程名称:新能源汽车电力电子技术 适用专业:新能源汽车专业、汽车检测与维修专业、汽车服务专业 一、课程性质与任务 以学生就业为导向,以全面提高学生综合素质为基础,以具有新能源汽车维修技能为本位,加强学生动手能力为前提,努力造就汽车行业迫切需要的高素质技能型、德才兼备的企业需要人才为目的,兼顾教学相长的综合方向,来设计本课程建设方案。 本课程是新能源汽车专业的专业核心课程之一。是本专业学生必修的理论实践一体化课程。新能源汽车电力电子技术包含八个任务,目的是使学生掌握新能源汽车电力电子技术。新能源汽车电力电子技术专业核心模块包含九大学习项目:任务一、新能源汽车电力电子检修基础;任务二、整流电路的检修;任务三、逆变电路检修;任务四、直流-直流变流电路检修;任务五、交流-交流变流电路检修;任务六、PWM控制技术;任务七、软开关技术;任务八、电力电子技术的应用。通过本课程的学习和典型工作任务的训练,使学生对新能源汽车电力电子有较全面的认识,为学生在学习后续新能源汽车维修类课程打下基础,培养具有一定理论基础和熟练维修作业能力的社会企业所需要的急需人才。 二、课程教学目标 本课程的主要目的是通过对课程的学习,训练学生新能源汽车电力电子技术的安全操作规程;具备使用各种维修工具和选择合适的专业工具独立进行新能源汽车电力电子零部件维修的能力。 职业能力目标:

1.知识目标 (1)会查阅新能源汽车电力电子技术资料。 (2)了解新能源汽车电力电子各零部件结构、分类、原理等。 (3)熟悉新能源汽车电力电子功能要求及工艺流程。 2.能力目标 (1)能按正确规范的工艺流程独立完成新能源汽车电力电子零部件检修工作。 (2)掌握新能源汽车电力电子的合理使用方法。 (3)具有对新能源汽车电力电子使用性能、日常合理使用、使用安全进行一般评价的能力。 3.素质目标 (1)具有良好的工作作风和精益求精的工作态度。 (2)具有文明生产的习惯。 (3)能够按照企业5S要求和安全生产规范进行操作。 (4)培养科学严谨、操作规范的工作作风及成本控制意识。 (5)培养学生的安全意识和环保理念。 三、参考学时 48学时

相关主题
文本预览
相关文档 最新文档