当前位置:文档之家› 神经元活动的一般规律和神经元的作用方式

神经元活动的一般规律和神经元的作用方式

神经元活动的一般规律和神经元的作用方式
神经元活动的一般规律和神经元的作用方式

神经元活动的一般规律:神经系统神经元,神经纤维突触神经递质.受体学说.神经

营养性作用

神经元是神经系统的结构与功能单位。结构上大致都可分成细胞体和突起两部分,突起又分树突和轴突两种。轴突往往很长,由细胞的轴丘分出,其直径均匀,开始一段称为始段,离开细胞体若干距离后始获得髓鞘,成为神经纤维。习惯上把神经纤维分为有髓纤维与无髓纤维两种,实际上所谓无髓纤维也有一薄层髓鞘,并非完全无髓鞘。

(一)神经纤维传导的特征

神经传导是依靠局部电流来完成的。因此它要求神经纤维在结构和功能上都是完整的;如果神经纤维被切断或局部受麻醉药作用而丧失了完整性,则因局部电流不能很好通过断口或麻醉区而发生传导阻滞。一条神经干中包含着许多条神经纤维,但由于局部电流主要在一条纤维上构成回路,加上各纤维之间存在结缔组织,因此每条纤维传导冲动时基本上互不干扰,表现为传导的绝缘性。人工刺激神经纤维的任何一点引发冲动时,由于局部电流可在刺激点的两端发生,因此冲动可向两端传导,表现为传导的双向性。由于冲动传导耗能极少,比突触传递的耗以小得多,因此神经传导具有相对不疲劳性。

(二)神经纤维传导的速度

一般地说,神经纤维的直径越大,其传导速度也越大;有髓纤维的传导速度与直径成正比,其大致关系为:传导速度(m/s)=6×直径(μm)。一般据说有髓纤维的直径是指包括轴索与髓鞘在一起的总直径,而轴索直径与总直径的比例与传导速度又有密切关系,最适宜的比例为0.6左右。神经纤维的传导速度与温度有关,温度降低则传导速度减慢。

经测定,人的上肢正中神经的运动神经纤维和感觉神经纤维的传导速度分别为58m/s和65m/s。当周围神经发生病变时传导速度减慢。因此测定传导速度有助于诊断神经纤维的疾患和估计神经损伤的预后。

表10-1 神经纤维的分类(一)

表10-2 神经纤维的分类(二)

(三)神经纤维的分类

1.根据电生理学的特性分类主要是根据传导速度(复合动作电位内各波峰出现的时间)和后电位的差异,将哺乳类动物的周围神经的纤维分为A、B、C 三类(表10-1)。

A类:包括有髓鞘的躯体的传入和传出纤维,根据其平均传导速度又进一步分为α、β、γ、δ四类。

B类:有髓鞘的自主神经的节前纤维。

C类:包括无髓鞘的躯体传入纤维(drC)及自主神经节后纤维(sC)。

2.根据纤维的直径的大小及来源分类将传入纤维分为I、Ⅱ、Ⅲ、N四类(表10-2),I类纤维中包括I a和I b两类。

(四)神经纤维的轴浆运输

神经元的细胞体与轴突是一个整体,胞体和轴突之间必须经常进行物质运输和交换。实验证明,轴突内的轴浆是经常在流动的。轴浆流动是双向的,一方面部分轴浆由胞体流向轴突末梢,另一方面部分轴浆由轴突末梢反向流向胞体。胞体内具有高速度合成蛋白质的结构,其合成的物质借轴浆流动向轴突末梢运输;而反向的轴浆流动可能起着反馈控制胞体合成蛋白质的作用目前知道,自胞体向轴突末梢的轴浆运输分两类。一类是快速轴浆运输,指的是具有膜的细胞器(线粒体、递质囊泡、分泌颗粒等)的运输,另一类是慢速轴浆运输,指的是由胞体合成的蛋白质所构成的微管和微丝等结构不断向前延伸.

在缺氧、氰化物毒化等情况下,神经纤维的有氧代谢扰乱使ATP减少到50%以下时,快速轴浆运输流动即停止,说明它是一种耗能过程。

逆向流动的速度约为快速顺向运输速度的一半左右。有人认为,破伤风毒素、狂犬病病毒由外周向中枢神经系统转运的机制,可能就是逆向轴浆流动。

二、神经元间相互作用的方式

(一)经典的突触概念

神经元之间在结构上并没有原生质相连,每一神经元的轴突末梢仅与其他神经元的胞体或突起相接触,引相接触的部位称为突触。主要的突触组成可分为三类:①轴突与细胞体相接触;②轴突与树突相接触;③轴突与轴突相接触(图1 0-1)。在电子显微镜下观察到,突触的接触处有两层膜,轴突末梢的轴突膜称为突触前膜,与突触前膜相对的胞体膜或树突膜则称为突触后膜,两膜之间为突触间隙。突触前膜和后膜较一般的神经元膜稍增厚,约7.5nm左右。突触间隙约20nm左右,其间有粘多糖和糖蛋白(图10-2)。在突触小体的轴浆内,含有较多的线粒体和大量聚集的囊泡(突触小泡)。它们含有高浓度的递质(图10-3)。

不同突触内含的泡大小和形状不完全相同,突触小泡在轴浆中分布不均匀,常聚集在致密突起处。

由于突触传递功能有兴奋性和抑制性两种,因此有人认为,突触在形态上也可能存在两种类型。兴奋性突触的前膜释放兴奋性递质,它对突触后膜的作用是产生兴奋性突触后电位;抑制性突触的前膜释放抑制性递质,它对突触后膜的作用是产生抑制性突触后电位。

一个神经元的轴突末梢一般都分支形成许多突触小体,与其后的神经元构成突触,所以一个神经元能通过突触传递作用于许多其他神经元。另一方面,一个神经元的树突或胞体可以接受许多神经元的突触小体构成突触,因此一个神经元又可接受许多不同神经元的作用。据估算,一个脊椎前角的运动神经元的胞体和树突上可有2000个左右突触,而一个大脑皮层锥体细胞则约有30000个突触。

(二)电突触

神经元之间除了上述的经典突触联系外,还存在电突触。电突触的结构基础是缝隙连接,是两个神经元膜紧密接触的部位。两层膜间的间隔只有2-3nm,连接部位的神经元膜没有增厚,其旁轴浆内无突触小泡存在(图10-4)。连接部位存在在沟通两细胞胞浆的通道,带电离子可通过这些通道而传递电信号,这种电信号传递一般是双向的。因此,这种连接部位的信息传递是一种电传递,与经典突触的化学递质传递完全不同。电突触的功能可能是促进不同神经元产生同步性放电。电传递的速度快,几乎不存在潜伏期。电突触可存在于树突与树突、胞体与胞体、轴突与胞体、轴突与树突之间。

图10-4 几种不同形式突触的模式图箭头示传递方向

(三)非突触性化学传递

由于荧光组织化学等新方法的应用,目前已明确除了经典的突触能进行化学传递外,还存在非突触性化学传递(non-synaptic chemical transmission )。关于这方面的研究,首先在交感神经肾上腺素能神经元上进行。实验观察到,肾上腺素能神经元的轴突末梢有许多分支,在分支上有大量的念珠状曲张体(varico sity)。曲线体内含有大量的小泡(图10-5),是递质释放和部位。一个神经元的轴突末梢可以具有30000个曲线体,因此一个神经元具有大量的递质释放部位。但是,曲张体并不与效应细胞形成经典的突触联系,而是处在效应细胞附近。当神经冲动抵达曲张体时,递质从曲张体释放出来,通过弥散作用到效应细胞的受体,使效应细胞发生反应。由于这种化学传递不是通过经典的突触进行的,因此称为非突触性化学传递。在中枢神经系统内,也有这种传递方式存在。例如,在大脑皮层内具有直径很细的无纤维,这种纤维是去甲肾上腺素能性的,纤维分支上具有许多曲张体,能释放去甲肾上腺素递质;这种曲张体绝大部分不与支配的神经元形成经典的突触,所以进行的是非突触性化学传递。又如在黑质中,多巴胺能纤维也有许多曲张体,且绝大多数也进行非突触性化学传递。此外,中枢内5-羟色胺能纤维也能进行非突触性化学传递。由此看来,单胺类神经纤维都能进行非突触性化学传递。已知,非突触性化学传递也能在轴突末梢以外的部位进行,轴突膜也能释放化学递质(如释放胞浆中的乙酰胆碱),树突也能释放化学递质(如黑质中、树突可释放多巴胺)。

图10-5 交感神经肾上腺能神经示意图

非突触性化学传递与突触性化学传递相比,有下列几下特点:①不存在突触前膜与后膜的特化结构;②不存在一对一的支配关系,一个曲张体能支配较多的效应细胞;③曲张体与效应细胞间的距离至少在20nm以上,距离大的可达几十微米;④递质弥散的距离大,因此传递花费的时间可大于1s;⑤递质弥散到效应细胞时,能否发生传递效应取决于效应细胞上有无相应的受体。

(完整版)食品生物化学名词解释和简答题答案

四、名词解释 1.两性离子(dipolarion) 2.米氏常数(Km值) 3.生物氧化(biological oxidation) 4.糖异生(glycogenolysis) 5.必需脂肪酸(essential fatty acid) 五、问答 1.简述蛋白质变性作用的机制。 2.DNA分子二级结构有哪些特点? 5.简述tRNA在蛋白质的生物合成中是如何起作用的? 四、名词解释 1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。 2.米氏常数(Km值):用Km值表示,是酶的一个重要参数。Km值是酶反应速度(V)达到最大反应速度(Vmax)一半时底物的浓度(单位M或mM)。米氏常数是酶的特征常数,只与酶的性质有关,不受底物浓度和酶浓度的影响。 3.生物氧化:生物体内有机物质氧化而产生大量能量的过程称为生物氧化。生物氧化在细胞内进行,氧化过程消耗氧放出二氧化碳和水,所以有时也称之为“细胞呼吸”或“细胞氧化”。生物氧化包括:有机碳氧化变成CO2;底物氧化脱氢、氢及电子通过呼吸链传递、分子氧与传递的氢结成水;在有机物被氧化成CO2和H2O的同时,释放的能量使ADP转变成ATP。 4.糖异生:非糖物质(如丙酮酸乳酸甘油生糖氨基酸等)转变为葡萄糖的过程。 5.必需脂肪酸:为人体生长所必需但有不能自身合成,必须从事物中摄取的脂肪酸。在脂肪中有三种脂肪酸是人体所必需的,即亚油酸,亚麻酸,花生四烯酸。 五、问答 1. 答: 维持蛋白质空间构象稳定的作用力是次级键,此外,二硫键也起一定的作用。当某些因素破坏了这些作用力时,蛋白质的空间构象即遭到破坏,引起变性。 2.答: 按Watson-Crick模型,DNA的结构特点有:两条反相平行的多核苷酸链围绕同一中心轴互绕;碱基位于结构的内侧,而亲水的糖磷酸主链位于螺旋的外侧,通过磷酸二酯键相连,形成核酸的骨架;碱基平面与轴垂直,糖环平面则与轴平行。两条链皆为右手螺旋;双螺旋的直径为2nm,碱基堆积距离为0.34nm,两核酸之间的夹角是36°,每对螺旋由10对碱基组成;碱基按A=T,G≡C配对互补,彼此以氢键相连系。维持DNA结构稳定的力量主要是碱基堆积力;双螺旋结构表面有两条螺形凹沟,一大一小。

经络系统的组成及结构图

经络系统的组成及结构图 发布: 2009-6-27 22:12 | 作者: 汉医艾灸 | 查看: 189次 经络系统由十二经脉、奇经八脉、和十二经别、十二经筋、十二皮部,以及十五络脉和浮络、孙络等组成. 经脉 经脉可分为正经和奇经两类。正经有十二,即手足三阴经和手足三阳经,合称“十二经脉”,是气血运行的主要通道。奇经有八条,即督、任、冲、带、阴跷、阳跷、阴维、阳维,合称“奇经八脉”,有统率、联络和调节十二经脉的作用。十二经别,是从十二经脉别出的经脉,主要是加强十二经脉中相为表里的两经之间的联系,还由于它通达某些正经未循行到的器官与形体部位,因而能补正经之不足。 经络系统结构图如下: 十二经脉 十二经脉又名十二正经,是经络系统的主体。其命名是根据其阴阳属性,所属脏腑、循行部位综合而定的。它们分别隶属于十二脏腑,各经用其所属脏腑的名称,结合循行于手足、内外、前中后的不同部位,并依据阴阳学说,给予不同的名称。十二经脉的名称为:手太阴肺经、手厥阴心包经、手少阴心经、手阳明大肠经、手少阳三焦经、手太阳小肠经、足太阴脾经、足厥阴肝经、足少阴肾经、足阳明胃经、足少阳胆经、足太阳膀胱经。 十二经脉通过手足阴阳表里经的联接而逐经相传,构成了一个周而复始、如环无端的传注系统。气血通过经脉即可内至脏腑,外达肌表,营运全身。其流注次序是:从手太阴肺经开始,依次传至手阳明

大肠经,足阳明胃经,足太阴脾经,手少阴心经,手太阳小肠经,足太阳膀胱经,足少阴肾经,手厥阴心包经,手少阳三焦经,足少阳胆经,足厥阴肝经,再回到手太阴肺经(表1)。其走向和交接规律是:手之三阴经从胸走手,在手指末端交手三阳经;手之三阳经从手走头,在头面部交足三阳经;足之三阳经从头走足,在足趾末端交足三阴经;足之三阴经从足走腹,在胸腹腔交手三阴经。 表1: 手太阴肺经→手阳明大肠经→足阳明胃经→足太阴脾经→手少阴心经→手太阳小肠经↑↓ 足厥阴肝经←足少阳胆经←手少阳三焦经←手厥阴心包经←足少阴肾经←足太阳膀胱经十二经脉在体表的循行分布规律是:凡属六脏(心、肝、脾、肺、肾和心包)的阴经分布于四肢的内侧和胸腹部,其中分布于上肢内侧的为手三阴经,分布于下肢内侧的为足三阴经。凡属六腑(胆、胃、大肠、小肠、膀胱和三焦)的阳经,多循行于四肢外侧、头面和腰背部,其中分布于上肢外侧的为手三阳经,分布于下肢外侧的为足三阳经。手足三阳经的排列顺序是:“阳明”在前,“少阳”居中,“太阳”在后;手足三阴经的排列顺序是:“太阴”在前,“厥阴”在中,“少阴”在后(内踝上八寸以下为“厥阴”在前,“太阴”在中,“少阴”在后)。 十二经脉的表里关系是:手足三阴、三阳,通过经别和别络互相沟通,组成六对“表里相合”的关系。其中,足太阳与足少阴为表里,足少阳与足厥阴为表里,足阳明与足太阴为表里。手太阳与手少阴为表里,手少阳与手厥阴为表里,手阳明与手太阴为表里。 奇经八脉 奇经八脉是任脉、督脉、冲脉、带脉、阴跷脉、阳跷脉、阴维脉、阳维脉的总称。它们与十二正经不同,既不直属脏腑,又无表里配合关系,其循行别道奇行,故称奇经。其功能有:1、沟通十二经脉之间的联系;2、对十二经气血有蓄积渗灌等调节作用。 任脉,行于腹面正中线,其脉多次与手足三阴及阴维脉交会,能总任一身之阴经,故称:“阴脉之海”。任脉起于胞中,与女子妊娠有关,故有“任主胞胎”之说。 督脉,行于背部正中,其脉多次与手足三阳经及阳维脉交会,能总督一身之阳经,故称为“阳脉之海”。督脉行于脊里,上行入脑,并从脊里分出属肾,它与脑、脊髓、肾又有密切联系。 冲脉,上至于头,下至于足,贯穿全身;成为气血的要冲,能调节十二经气血故称“十二经脉之海”,又称“血海”。同妇女的月经有关。 带脉,起于季胁,斜向下行到带脉穴,绕身一周,如腰带,能约束纵行的诸脉。 阴跷脉、阳跷脉:跷,有轻健跷捷之意。有濡养眼目、司眼睑开合和下肢运动的功能。 阴维脉、阳维脉:维,有维系之意。阴维脉的功能是“维络诸阴”;阳维脉的功能是“维络诸阳”。

神经网络控制

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质,突触有两

运动生物化学(2.1.2)--磷酸原系统供能能力的评定

第九章 训练效果的生化评定 习 题 作 业 1、名词解释 1、尿肌酐系数 2、磷酸原商 3、乳酸能商 4、乳酸阈 二、填空题 5、尿肌酐是▁▁▁的代谢产物,测定尿肌酐可评定▁▁▁▁▁▁▁▁▁的供能能力。 6、通常采用尿肌酐系数来评定运动员的▁▁▁与▁▁▁素质,男性的正常值为▁▁▁▁▁▁mg/Kg.BW,女性的正常值为▁▁▁▁▁▁mg/Kg.BW。 7、运动员从事短时间激烈运动,乳酸少成绩好,说明其▁▁▁▁▁▁能力强。 8、在测定AQ时,AQ值越高,说明▁▁▁生成少,功率输出▁▁▁,▁▁▁▁▁▁能力好。 9、在测定LQ时,LQ值越高,说明▁▁▁▁▁▁素质好。 10、运动员全力跑400米后,血乳酸仍为原来水平,而运动成绩提高,这说明运动员的水平▁▁▁。 11、乳酸阈是评定▁▁▁▁▁▁供能能力的重要指标,通常认为是▁▁▁mmol/L。但 不同个体之间存在较大的个体差异,故在评定时一般都要测定▁▁▁▁▁▁来进行评定。在测定时,常采用▁▁▁负荷法。 三、A型选择题(单选题) 12、尿肌酐是( )的代谢产物。 A、血红蛋白 B、肌红蛋白 C、磷酸肌酸 D、蛋白质 13、尿肌酐系数主要是评定( )的供能能力。 A、磷酸原供能系统 B、糖酵解供能系统 C、有氧代谢供能系统 D、A+B 14、尿肌酐系数主要是评定机体的( )素质。 A、力量 B、速度 C、耐力 D、力量、速度 15、正常成年男性的尿肌酐系数值是( )mg/Kg.BW。

A、10-25 B、18-32 C、15-35 D、12-16 16、正常成年女性的尿肌酐系数值是( )mg/Kg.BW。 A、10-25 B、18-32 C、15-35 D、12-16 17、10秒的极大强度运动,乳酸生成量少,而所做的总功率增加,这是( )能力提高的表现。 A、磷酸原供能系统 B、糖酵解供能系统 C、有氧代谢供能系统 D、A+B 18、经过一段时期的训练,血乳酸最大浓度提高了,说明其( )能力提高了。 A、磷酸原供能系统 B、糖酵解供能系统 C、有氧代谢供能系统 D、A+B 19、在自行车功率计上运动45秒,所做的总功率高,而血乳酸的增加值不高,说明其速度耐力素质( )。 A、较差 B、一般 C、较好 D、无法评定 20、全力跑400米后3-9分钟所测得的血乳酸值在10mmol/L左右,说明其糖酵解供能能力( )。 A、较差 B、一般 C、较好 D、无法评定 21、100米游泳的供能能力训练时,主要是发展( )供能能力。 A、磷酸原供能系统 B、糖酵解供能系统 C、有氧代谢供能系统 D、B+C 22、乳酸阈是评定( )能力的重要指标。 A、磷酸原供能 B、糖酵解供能 C、有氧代谢供能 D、A+B 23、经过一段时期的训练乳酸阈跑速提高了,说明( )能力提高。 A、磷酸原供能 B、糖酵解供能 C、有氧代谢供能 D、A+B 24、发展有氧代谢供能能力时,可采用( )训练。 A、乳酸 B、磷酸原 C、无氧阈 D、最大强度 25、发展糖酵解供能能力时,可采用( )训练。 A、低乳酸 B、磷酸原 C、无氧阈 D、最大乳酸 四、B型选择题(多选题) 26、评定磷酸原供能供能能力的常用方法有( )。 A、LQ评定法 B、AQ评定法 C、尿肌酐评定法 D、30米冲刺法 E、10秒内快速运动评定法

十二经络的走向、分布及作用和经络养生分析

十二经络的走向、分布及作用和经络养生 提到经络,相信很多的伙伴都看过电视或者武侠小说,像什么任督二脉啊,练功时头顶冒烟啊,气沉丹田啊,什么哭穴和笑穴啊,相信这些大家都不会陌生。其实很多的武侠小说都给中医和经络披上了神秘的面纱,我们揭开后就能发现其中那些很实用、很重要的经络和穴位。人体内的经络主要由经脉和络脉组成,经,有“径”的含义,也就是路,指的是大并且深的直行主干;络,有“网”的意思,指的是分支,小并且浅的横行支脉。二者合称为经络,就像纵横交错的道路,运行着体内的气血,使人的生命得以延续。在中医看来,很多人老是头痛、腰腿痛、肩颈痛或者老觉得身体的某个地方发酸、发麻等、运动后手臂酸痛等,通过各种刺激(针法、灸法、推拿)后很快就恢复了,就是因为通过刺激穴位或者沿着经络按揉恢复了经络的畅通,使人身体的气血能正常地流通,从而各种症状也就自然而然的消失或者减弱,达到了通则不痛的目的。为了预防我们身体疾病的发生,为了及时知道身体哪儿堵住了,我们就得知道经络到底在哪里。 人体的经脉包括十二正经和奇经八脉。经络的命名是结合脏腑,手足,阴阳而定的。脏,有储藏人体内一切营养物质的作用,属阴,共有六个,即心、肝、脾、肺、肾、心包;腑,有消化、输送、排泄的功能,共有十二经脉的名称包括三部分: 手或足经、阴或阳经、脏或腑经。如手太阴肺经等。

十二经脉的名称是:手太阴肺经、手厥阴心包经、手少阴心经、手阳明大肠经、手少阳三焦经、手太阳小肠经、足太阴脾经、足厥阴肝经、足少阴肾经、足阳明胃经、足少阳胆经、足太阳膀胱经。循行分布于上肢的称手经,循行分布于下肢的称足经。分布于四肢内侧的称为阴经,属脏;分布于四肢外侧的称阳经,属腑。 经脉的运行有一定的规律,具体方向:手之三阴胸走手、手之三阳手走头、足之三阳头走足、足之三阴足走胸。每一条经络都对应着每一个时辰: 1、卯时(5点至7点)大肠经旺,有利于排泄。 2.、辰时(7点至9点)胃经旺,有利于消化。 3.、巳时(9点至11点)脾经旺,有利于吸收营养、生血。 4.、午时(11点至13点)心经旺,有利于周身血液循环,心火生胃土有利于消化。 5.、未时(13点至15点)小肠经旺,有利于吸收营养。 6.、申时(15点至17点)膀胱经旺,有利于泻掉小肠下注的水液及周身的"火气。 7.、酉时(17点至19点)肾经旺,有利于贮藏一日的脏腑之精华。 8. 戌时(19点至21点)心包经旺,再一次增强心的力量,心火生胃土有利于消化。

单神经元PID控制

基于单神经元的PID控制 1神经元 单神经元作为构成神经网络的基本单位,具有自学习和自适应能力,且结构简单响应速度快。这里将单个神经元与传统PID 控制器结合起来,一定程度上解决了传统PID 调节器不易在线实时整定参数,难以对复杂过程和时变系统参数进行有效控制等问题。人工神经元模型如图1 所示,可以看出神经元是一个多输入单输出且具有阈值、权值的非线性处理元件。神经元突触可与其他神经元相连接,或反映外界环境信息,也可以反馈自身信息,通过调整权值得到新的输出。 2 单神经元PID控制 2.1 单神经元PID控制器的设计 用单个神经元实现的自适应PID 控制的结构框图如图所示。 图2 单神经元PID 控制原理图 x t i=作为神经元输入的图中Yr为设定值,Y为给定值,通过状态转换器得到()(1,2,3) i

三个状态量,通过学习调节神经元权值()(1,2,3)i w t i = 最终得到输出。神经元的输入输出关系描述为: 3 1i i i I w x ==∑ (2-1) ()y f I = (2-2) 由PID 控制器的增量算式: []()()(1)()[()2(1)(2)]P I D u k K e k e k K e k K e k e k e k ?=--++--+- (2-3) 若取123()(1),(),()2(1)(2)X e k e k X e k X e k e k e k =--==--+-,则式(2-4) 变为: 123()[()(1)]()[()2(1)(2)]u k w e k e k w e k w e k e k e k ?=--++--+- (2-4) 比较式(2-3) 和(2-4) 形式完全相同,所不同的只是式(2-4) 中的系数()(1,2,3)i w t i =可以通过神经元的自学习功能来进行自适应调整,而式(2-3) 中的参数,,P I D K K K 是预先确定好且不变的。正是由于i w 能进行自适应调整,故可大大提高控制器的鲁棒性能。与常规PID 控制器相比较,无需进行精确的系统建模,对具有不确定性因素的系统,其控制品质明显优于常规PID 控制器。从后面的仿真分析中可以验证这一结论。其中,神经元的学习功能是通过改变权系数i w 来实现的,学习算法即是如何调整i w 规则,它是神经元控制的核心,反映了学习方式与学习功能。神经网络的工作过程主要由两个阶段组成,一个阶段是工作期,此时,各连接权值固定,计算单元的状态变化,以求达到稳定状态。另一个阶段是学习期,此时可以对连接权值进行修改。 2.2 神经元PID 学习算法 神经元的学习功能是通过改变权系数w 来实现的,学习算法即是如何调整w 的规则,它是神经元控制器的核心,反映了学习方式和学习能力。如何调整w 对整个控制系统抗干扰能力和自适应性能都有很大的影响。 权值()i w k 的修改学习规则如下: 1112223 33(1)()()()()(1)()()()()(1)()()()()P I D w k w k u k e k x k w k w k u k e k x k w k w k u k e k x k ηηη+=+??+=+??+=+? (2-5) 为了保证学习算法的收敛性和控制的鲁棒性,对上述算法进行规范化处理后可得如下的

生物化学名词解释

生物化学:在分子水平研究生命体的化学本质及其生命活动过程中化学变化规律 自由能:自发过程中能用于作功的能量。 两性离子:在同一氨基酸分子中既有氨基正离子又有羧基负离子。 必需氨基酸:机体内不能合成,必需从外界摄取的氨基酸. 等电点:氨基酸氨基和羧基的解离度相等,氨基酸分子所带净电荷为零时溶液的pH值。 蛋白质的一级结构:蛋白质多肽链中氨基酸的排列顺序。 蛋白质的二级结构:多肽链沿着肽链主链规则或周期性折叠。 结构域:蛋白质多肽链在超二级结构基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 超二级结构:蛋白质分子中相邻的二级结构构象单元组合在一起成的有规则的在空间能辨认的二级结构组合体。 蛋白质的三级结构:在二级结构的基础上进一步以不规则的方式卷曲折叠形成的空间结构。 蛋白质的四级结构:由两条或两条以上的多肽链组成,多肽链之间以次级建相互作用形成的特定空间结构。 蛋白质的变性:在某些理化因素的作用下,维持蛋白质空间结构的次级键被破坏,空间结构发生改变而一级结构不变,使生物学活性丧失。 蛋白质的复性:变性了的蛋白质在一定条件下可以重建其天然构象,恢复生物学活性。 蛋白质的沉淀作用:蛋白质分子表面水膜被破坏,电荷被中和,蛋白质溶解度降低而沉淀。电泳:蛋白质分子在电场中泳动的现象。 沉降系数:一种蛋白质分子在单位离心力场里的沉降速度为恒定值,被称为沉降系数。 核酸的一级结构:四种核苷酸沿多核苷酸链的排列顺序。核酸的变性:高温、酸、碱等破坏核酸的氢键,使有规律的双螺旋变成无规律的“线团”。 核酸的复性:变性DNA经退火重新恢复双螺旋结构。 增色效应:变性核酸紫外吸收值增加。 减色效应:复性核酸紫外吸收值恢复原有水平。 Tm值:核酸热变性的温度,即紫外吸收值增加达最大增加量一半时的温度。

人体十二经络各穴位的功能

人体十二经络各穴位的功能 人体十二经络各穴位的功能 正确认识和理解人体经络图,是经络养生、经络保健、经络疗法的先决条件,不明经络,开头动手就错,古往今来的注明中医学家都对人体经络有着很深的研究,比如鼎鼎大名的李时珍除了编写出了中医药学巨著本草纲目,在经络研究方面也有着很深的造诣,奇经八脉考就是其对经络研究的总结。人体经络图由十二经络图和奇经八脉图组成,十二经络图包括手三阴经(手太阴肺经图、手厥阴心包经图、手少阴心经图)、手三阳经(手阳明大肠经图、手少阳三焦经图、手太阳小肠经图)、足三阳经(足阳明胃经图、足少阳胆经图、足太阳膀胱经图)、足三阴经(足太阴脾经图、足厥阴肝经图、足少阴肾经图)。奇经八脉包括督脉图、任脉图、冲脉图、带脉图、阴维脉图、阳维脉图、阴蹻脉图、阳蹻脉图共8条。十二经脉是经络系统的主体,也称为“正经”。奇经八脉的“奇”有“异”的意思,是指与十二经脉不同而“别道奇行”的八条经脉。 1、肺经:天府:鼻尖触手臂处。治疗过敏性鼻炎。尺泽:肘横纹外侧。补肾。治高血压、哮喘。孔最:腕横纹上七寸。治鼻出血,治痔疮的要穴,对感冒汗不出可起到发汗的

作用。治急性咳鏉、急性咽喉痛列缺:合谷相对食指下的凹陷处。治疗小儿遗尿,偏头痛,外感风寒引起的偏头痛。头项寻列缺。 经渠:铙骨头叫铙骨茎突,顶着它往外推。治疗咳鏉的要穴,不管是虚寒引起的还是肺热引起的。太渊:用大指关节往下咯它,或者来回挫搓。(在大拇指下)肺经的原穴,大补穴,补气。脉之会穴,可治静脉曲张。鱼际:治疗咳鏉,喘促,心中烦热,小儿疳积。少商:大拇指甲外侧,治疗咽喉痛的要穴,用三棱针轻轻点刺挤出一滴血来,就会感到嗓子轻松了。2、大肠经:功效:1.有效防止皮肤病,刮痧大肠经可治痘疹和湿疹。 2.可帮助人体增强阳气或把多余火气去掉。 3.有很强的通便效果。推二、三间到商阳通便。商阳:食指指甲内侧,调节便秘,要用指甲掐它。合谷:强壮穴,可以止痛,如面部的疼痛,牙痛等。温溜:在合谷之上。有补阳气的作用,体质虚寒的人可以艾灸。也可用刮痧法泄火。按揉此穴可治痘初起。曲池:曲手臂时肘横纹的端点处。降血压,治皮肤病,通便。是一个排毒的穴位,要经常柔一揉。肩隃:手臂伸直肩膀凹陷处。是人体最容易受风寒的穴位,防止进风寒,睡觉时穿上短袖。迎香:鼻翼旁。通鼻窍的功效,治鼻炎,闻不到气味,鼻出血。经常按摩点揉。3、胃经:功效:胃为后天之本,四白:在眼袋下。治眼袋,黑眼圈,给眼供血。

细胞生物学 名词解释

膜内在蛋白(整合蛋白):部分或全部镶嵌在细胞膜中或内外两侧的蛋白质(两性分子,水不溶性蛋白,其跨膜结构域与脂双层分子的疏水核心的相互作用,与膜结合紧密)。2010 外周膜蛋白(外在蛋白):为水溶性;靠离子键或其它弱键与膜内外表面的蛋白质分子或脂分子极性头部非共价结合,连接较松散。只要改变溶液的离子强度甚至提高温度就可以将周边蛋白分离下来。 通道蛋白:是一种带有中央水相通道的内在膜蛋白,通道蛋白所介导的被动运输不需要与溶质分子结合,横跨膜形成亲水通道,允许适宜大小的分子和带电荷的离子通过。 被动运输:物质顺浓度梯度,从高浓度一侧通过细胞膜转运到低浓度一侧,转运的动力来自于膜两侧的浓度梯度,因此不需要消耗能量。包括简单扩散和协助扩散。 主动运输active transport:物质逆浓度梯度从低浓度一侧转运到高浓度一侧的运输方式,需要载体蛋白的帮助及能量的供应。2008、2011 2017 简单扩散(自由扩散):物质顺浓度梯度自由穿越脂双层的运输方式,既不耗能也不需要膜蛋白的协助。2013 协助扩散(易化扩散):非脂溶性或亲水性分子借助细胞膜上特殊膜蛋白介导,顺浓度梯度进行的、不消耗能量的运输方式。 胞吞作用:当细胞摄取大分子或颗粒物时,首先附着于细胞表面,然后质膜内陷,从胞膜上分离下来形成细胞内小泡,其中含有被摄入物质的过程。2009 受体介导的胞吞作用:细胞通过膜上的受体介导摄入特定大分子的过程。2004 配体:即胞外信号分子,能与细胞表面受体进行特异性结合,然后经过信号转导机制变为胞内信号,从而引起一系列生物学效应。这些信号分子有化学的、物理的还有生物大分子。 受体:指位于细胞表面或细胞亚结构中一种糖蛋白或糖脂分子,能够与配体结合,从而激活一系列生化反应,产生特定的生物学效应。2004、2008、2011 受体病:由于膜受体数量增减或结构上的缺陷所引起的疾病。2005 细胞表面抗原:是镶嵌在细胞膜中的糖蛋白或糖脂,具有特定的抗原性。细胞免疫是细胞表面抗原与抗体相互识别并产生免疫应答的过程。机体通过免疫作用达到排除异己,保护自己以维持正常的生命活动。2010 细胞连接和细胞外基质 细胞连接:各种组织的细胞之间按一定的排列方式彼此接触,在相邻细胞表面形成各种连接装置,以加强细胞间的机械联系和组织牢固性,同时协调细胞间的代谢活动,这种连接结构称为细胞连接。2011 紧密连接:是一种封闭连接,主要存在于上皮细胞和内皮细胞间。主要功能是封闭上皮细胞的间隙,形成一道与外界隔离的封闭带。防止胞外物质无选择的通过间隙进入组织,或组织中物质回流到腔中,维持内环境的稳定性。 锚定连接:主要存在于上皮细胞,也存在于非上皮细胞连接处,如:皮肤、心肌等细胞之间。是一个细胞中的骨架系统成分与另一个细胞中的骨架系统成分相互连接或与胞外基质连接,根据连接的骨架成分不同可分为黏着连接和桥粒连接。14 桥粒连接:桥粒连接主要存在于上皮细胞中,也存在于心肌和脑表面的一些细胞中,形成细胞间一种坚实的连接结构,有较强抗张抗压作用。 半桥粒:是上皮细胞和基膜的连接装置,因其结构为桥粒的一半而得名。 通讯连接:是一种在相邻细胞间形成连接通道的细胞连接,能实现胞间在电信号和化学信号的通讯联系,从而完成群体细胞的合作协调。广泛存在于胚胎和成体的多种细胞之间。根据结构和功能可分为间隙连接和化学突触。 细胞外基质:是机体发育过程中,有细胞分泌到细胞外的蛋白质和多糖。他们组装形成高度水合的凝胶和纤维状网络结构。是动态对细胞产生全方位影响和控制的成分。主要包括:胶原蛋白、弹性蛋白、纤黏连蛋白、层黏连蛋白、氨基聚糖、蛋白聚糖等。2010 2017 核糖体 多聚核糖体polyribosome:当进行蛋白质生物合成时,数个单核糖体被一条mRNA分子串联在一起,成为合成蛋白质的功能团,称为多聚核糖体。2008、2013 游离核糖体:游离在细胞质中的核糖体,游离的多聚核糖体为螺旋状和花簇状的集合体,主要合成结构蛋白。 反密码子anticodon:tRNA分子反密码环上的三联体核苷酸残基序列,在翻译过程中与mRNA相应密码子互补结合。

单神经元自适应PID控制算法

单神经元自适应PID 控制算法 一、单神经元PID 算法思想 神经元网络是智能控制的一个重要分支,神经元网络是以大脑生理研究成果为基础,模拟大脑的某些机理与机制,由人工建立的以有向图为拓扑结构的网络,它通过对连续或断续的输入做状态响应而进行信息处理;神经元网络是本质性的并行结构,并且可以用硬件实现,它在处理对实时性要求很高的自动控制问题显示出很大的优越性;神经元网络是本质性的非线性系统,多层神经元网络具有逼近任意函数的能力,它给非线性系统的描述带来了统一的模型;神经元网络具有很强的信息综合能力,它能同时处理大量不同类型的输入信息,能很好地解决输入信息之间的冗余问题,能恰当地协调互相矛盾的输入信息,可以处理那些难以用模型或规则描述的系统信息。神经元网络在复杂系统的控制方面具有明显的优势,神经元网络控制和辨识的研究已经成为智能控制研究的主流。单神经元自适应PID 控制算法在总体上优于传统的PID 控制算法,它有利于控制系统控制品质的提高,受环境的影响较小,具有较强的控制鲁棒性,是一种很有发展前景的控制器。 二、单神经元自适应PID 算法模型 单神经元作为构成神经网络的基本单位,具有自学习和自适应能力,且结构简单而易于计算。传统的PID 则具有结构简单、调整方便和参数整定与工程指标联系紧密等特点。将二者结合,可以在一定程度上解决传统PID 调节器不易在线实时整定参数,难以对一些复杂过程和参数时变、非线性、强耦合系统进行有效控制的不足。 2.1单神经元模型 对人脑神经元进行抽象简化后得到一种称为McCulloch-Pitts 模型的人工神经元,如图2-1所示。对于第i 个神经元,12N x x x 、、……、是神经元接收到的信息,12i i iN ωωω、、……、为连接强度,称之为权。利用某种运算把输入信号的作用结合起来,给它们的总效果,称之为“净输入”,用i net 来表示。根据不同的运算

运动生物化学 名词解释

运动生物化学:运动生物化学是生物化学的一个分支学科。是用生物化学的理论及方法,研究人体运动时体内的化学变化即物质代谢及其调节的特点与规律,研究运动引起体内分子水平适应性变化及其机理的一门学科。 1、新陈代谢:新陈代谢是生物体生命活动的基本特征之一,是生物体内物质不断地进行着的化学变化,同时伴有能量的释放和利用。包括合成代谢和分解代谢或分为物质代谢和能量代谢。 2、酶:酶是由生物细胞产生的、具有催化功能和高度专一性的蛋白质。酶具有蛋白质的所有属性,但蛋白质不都具有催化功能。 3、限速酶:限速酶是指在物质代谢过程中,某一代谢体系常需要一系列酶共同催化完成,其中某一个或几个酶活性较低,又易受某些特殊因素如激素、底物、代谢产物等调控,造成整个代谢系统受影响,因此把这些酶称为限速酶。 4、同工酶:同工酶是指催化相同反应,而催化特性、理化性质及生物学性质不同的一类酶。 5、维生素:维生素是维持人体生长发育和代谢所必需的一类小分子有机物,人体不能自身合成,必须由食物供给。 6、生物氧化:生物氧化是指物质在体内氧化生成二氧化碳和水,并释放出能量的过程。实际上是需氧细胞呼吸作用中的一系列氧化-还原反应,又称为细胞呼吸。 7、氧化磷酸化:将代谢物脱下的氢,经呼吸链传递最终生成水,同时伴有ADP磷酸化合成ATP的过程。 8、底物水平磷酸化:将代谢物分子高能磷酸基团直接转移给ADP生成ATP的方式。 9、呼吸链:线粒体内膜上的一系列递氢、递电子体按一定顺序排列,形成一个连续反应的生物氧化体系结构,称为呼吸链 。1、糖酵解:糖在氧气供应不足的情况下,经细胞液中一系列酶催化作用,最后生成乳酸的过程称为糖酵解。 2、糖的有氧氧化:葡萄糖或糖原在有氧条件下氧化分解,生成二氧化碳和水,同时释放出大量的能量,该过程称为糖的有氧氧化。 3、三羧酸循环:在线粒体中,乙酰辅酶A与草酰乙酸缩合成柠檬酸,再经过一系列酶促反应,最后生成草酰乙酸;接着再重复上述过程,形成一个连续、不可逆的循环反应,消耗的是乙酰辅酶A,最终生成二氧化碳和水。因此循环首先生成的是具3个羧基的柠檬酸,故称为三羧酸循环。 4、糖异生作用:人体中丙酮酸、乳酸、甘油和生糖氨基酸等非糖物质在肝脏中能生成葡萄糖或糖原,这种由非糖物质转变为葡萄糖或糖原的过程称为糖异生。 1、脂肪:脂肪是由3分子脂肪酸和1分子甘油缩合形成的化合物。 2、必需脂肪酸:人体不能自身合成,必须从外界摄取以完成营养需要的脂肪酸。如亚麻酸、亚油酸等。 3、脂肪动员:脂肪细胞内储存的脂肪经脂肪酶的催化水解释放出脂肪酸,并进入血液循环供给全身各组织摄取利用的过程,称为脂肪动员。 4、β-氧化:脂肪酸在一系列酶的催化作用下,β-碳原子被氧化成羧基,生成含2个碳原子的乙酰辅酶A和比原来少2个碳原子的脂肪酸的过程。 5、酮体:在肝脏中,脂肪酸氧化不完全,生成的乙酰辅酶A有一部分生成乙酰乙酸、β-羟丁酸、丙酮,这三种产物统称酮体。 1、氧化脱氨基作用:通过氧化脱氨酶的作用,氨基酸转变为亚氨基酸,再水解为α-酮酸和氨的过程。

身体各条经络穴位作用

健康身体 人体各条经络穴位的位置和作用简介

目录 1足阳明胃经 (3) 2足太阴脾经 (4) 3手少阴心经 (5) 4手太阳小肠经 (6) 5足太阳膀胱经: (7) 6足少阴肾经 (8) 7手厥阴心包经 (9) 8手少阳三焦经 (10) 9足少阳胆经 (11) 10足厥阴肝经 (12) 11手太阴肺经 (13) 12手阳明大肠经 (14) 附:十二条经络的时辰表 (15)

功效:胃为后天之本。从头到脚四白、厉悦穴腿的外侧美容的经:面部气色、皮肤松弛、长豆豆、面白气血不足调胃经。 【四白】:在眼袋下。治眼袋,黑眼圈,给眼供血。敲打胃经可美容。 【天枢】:肚脐旁开两寸,治疗大肠功能不好,腹泻便秘双向调节。 【梁丘】:膝盖上两寸最敏感的位置。点按治急性胃痛。 【足三里】:膝眼下三寸旁开一横指。是一个非常好的强壮穴,长寿穴。治疗慢性胃痛,增强免疫力,补益人体虚弱。也是一个胃肠的消气穴。 小贴士:肠胃先揉左腿,肝胆经先从右边揉。 【上巨墟】:足三里下三横指。治疗大肠疾患。 【下巨墟】:上巨墟下3指。治疗小肠疾病,小腹痛。(肚子痛的位置不在胃脘,靠近肚脐眼位置,就揉下巨墟) 【丰隆】:外踝尖上八寸旁开一指。注意不要找到胆经上了。去除高血脂,去痰湿。下巨墟旁边。外踝上8寸旁开一指。(向后)离穴不离经。去处高血脂,是一个化痰穴。痰湿重适合。可化有形之痰和无形之痰。是非常重要的化痰穴。 小贴士:敲打面部、脖子、胸前、腿正面外侧及小腿胫骨外侧的整个胃经。 小结:胃肠道疾病:小儿腹泻、胃下垂、胃痛、胃胀。头面疾患:头痛、眼痛、牙痛、面神经麻癖。其他:白细胞减少症、中风偏瘫后遗症。

单神经元自适应PID控制器实验报告

单神经元自适应PID控制器仿真实验报告 一、实验目的 1、熟悉单神经元PID控制器的原理。 2、通过实验进一步掌握有监督的Hebb学习规则及其算法仿真。 二、实验内容 利用单神经元实现自适应PID控制器,对二阶对象和正弦对象进行控制,在MATLAB环境中进行仿真。 被控对象为y(k)=0.3y(k-1)+0.2y(k-2)+0.1u(k-1)+0.6u(k-2) 三、实验原理 1、单神经元模型: 图1 人工神经元模型图 图2 Sigmoid人工神经元活化函数 单神经元的McCulloch—Pitts模型如图1,图2所示。x1,x2,x3…xn是神经元接收的信息,w1,w2,…为连接权值。利用简单的线性加权求和运算把输入信号的作

用结合起来构成净输入input=w j x j?θ。此作用引起神经元的状态变化,而神经元的输出v是其当前状态的激活函数。 2、神经经网络的有监督Hebb学习规则 学习规则是修改神经元之间连接强度或加权系数的算法,使获得的知识结构适应周围环境的变化。两个神经元同时处于兴奋状态或同时处理抑制状态时,它们之间的连接强度将得到加强,当一个神经元兴奋而另一个抑制时,它们之间的连接强度就应该减弱。这一论述的数学描述被称为Hebb学习规则。在学习过程中,网络根据实际输出与期望输出的比较,进行联接权系数的调整,将期望输出称导师信号是评价学习的标准。这样,就得到了有监督的Hebb学习规则如果用oi表示单元i的输出,oj表示单元j的输出Wij表示单元j到单元i的连接加权系数,di表示网络期望目标输出,η为学习速率,则神经网络有监督的Hebb学习规则下式所示。 ?w ij k=η[di k?oi(k)]oi(k)oj(k)(1) 3.基于单神经元的PID控制 单神经元控制系统的结构如图3所示。图中转换器的输人为设定值r(k)和输出y(k),转换器的输出为神经元学习所需要的状态量x1,x2,x3,K为神经元的比例系数。 图3 单神经元自适应控制器结构图 单神经元自适应控制器是通过对加权系数的调整来实现自适应、自组织功能的,权系数的调整是按有监督的Hebb规则实现的。 控制及其学习算法如下:

生物化学实验A 名词解释

生物化学实验A----名词解释 1.电泳带电颗粒在作用下,向着与其电性相反的电极移动 2.聚酰胺薄膜层析各种被分离化合物在展层剂中的溶解速度及其与聚酰胺形成氢键能力的大小不同,决定他们在展层过程当中迁移的速度差异,从而分离(聚酰胺对极性物质的吸附作用是由于它能和被分离物之间形成氢键。这种氢键的强弱就决定了被分离物与聚酰胺薄膜之间吸附能力的大小) 3.浓缩效应在进行SDS-PAGE(SDS-)中由于凝胶孔径的不连续性(2种孔径)、缓冲液离子成分的不连续性(2种缓冲体系)、PH值(3种PH)和电位梯度的不连续性使得分子在浓缩胶和分离胶的界面处浓缩成一条狭小的缝带,成为浓缩效应 4.酶的专一性酶对所作用的底物有严格的选择性。一种酶仅能作用于一种物质,或一类分子结构相似的物质,促其进行一定的化学反应,产生一定的反应产物,这种选择性作用称为酶的专一性 5.酶的高效性在常温常压及中性pH条件下,酶比一般催化剂的催化效率高107 ~1013 倍。 6.限制性内切酶生物体内能识别并切割特异的双链DNA序列的一种 7.Benedict反应Benedict试剂是碱性硫酸铜溶液,具有一定的氧化性,与还原性糖的半缩醛羟基发生氧化还原反应,生成Cu2O转红色沉淀(Fehling试剂的改良,利用柠檬酸作为Cu2+的络合剂。常用于糖的检验。) 8.比活力用每毫克蛋白所含的酶活力单位数(u/mg) 9.增色反应核酸在变性过程中摩尔吸光系数增加的现象(分子由具有一定刚性变为无规则线团,DNA溶液的黏度降低,沉降速度加快;藏在内部的碱基全部暴露出来,DNA的 A260增大) 10.等点聚焦是一种高分辨率的蛋白质分离技术,可用于测定蛋白质的等电点(在电泳槽中放入载体两性电解质,当通以直流电时,两性电解质即形成一个由阳极到阴极逐步增加的pH梯度,当蛋白质放进此体系时,不同的蛋白质即移动到或聚焦于与其等电点相当的pH 位置上) 11.分子筛效应一个含有各种分子的样品溶液缓慢地流经凝胶色谱柱时,各分子在柱内同时进行着两种不同的运动:垂直向下的移动和无定向的扩散运动。如此不断地进入和扩散,小分子物质的下移速度落后于大分子物质,从而使样品中大的分子先流出色谱柱,中等的分子后流出,小分子最后流出 12.PEGE连续系统和不连续系统PAGE根据其有无浓缩效应,分为连续系统和不连续系统两大类,连续系统电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和。不连续系统中由于离子成分,pH,凝胶浓度及电位梯度的,带电颗粒在中泳动不仅有效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳13.Western免疫印迹将到膜上,然后利用抗体进行检测(采用的是聚丙烯酰胺凝胶,被检测物是蛋白质,“探针”是抗体,“显色”用标记的二抗) 14.PCR 聚合酶链式反应,在模板DNA,引物和4中脱氧核苷酸存在的条件下,依赖于DNA聚合酶的酶促和反应 15.两性电解质载体造成环境由酸至碱逐渐变化的物质,具有一次递变相差不大的等电点有足够的电解能力,不与被分离物质反应或使之变性,分子变小(就是既能当酸又能当碱用的电解质。两性电解质通常为两性元素的氧化物的水合物、氨基酸等。) 16.电荷效应分离胶中,被分离物中各组分所带电荷不同,而又不同的迁移率。故被分离物按电荷多少,分子量及形状,以及顺序排列

PID神经元网络解耦控制算法-多变量系统控制

%% 清空环境变量 clc clear %% 网络结构初始化 rate1=0.006;rate2=0.001; %学习率 k=0.3;K=3; y_1=zeros(3,1);y_2=y_1;y_3=y_2; %输出值 u_1=zeros(3,1);u_2=u_1;u_3=u_2; %控制率 h1i=zeros(3,1);h1i_1=h1i; %第一个控制量 h2i=zeros(3,1);h2i_1=h2i; %第二控制量 h3i=zeros(3,1);h3i_1=h3i; %第三个空置量 x1i=zeros(3,1);x2i=x1i;x3i=x2i;x1i_1=x1i;x2i_1=x2i;x3i_1=x3i; %隐含层输出 %权值初始化 k0=0.03; %第一层权值 w11=k0*rand(3,2); w12=k0*rand(3,2); w13=k0*rand(3,2); %第二层权值 w21=k0*rand(1,9); w22=k0*rand(1,9); w23=k0*rand(1,9); %值限定 ynmax=1;ynmin=-1; %系统输出值限定 xpmax=1;xpmin=-1; %P节点输出限定 qimax=1;qimin=-1; %I节点输出限定 qdmax=1;qdmin=-1; %D节点输出限定 uhmax=1;uhmin=-1; %输出结果限定 %% 网络迭代优化 for k=1:1:200 %% 控制量输出计算 %--------------------------------网络前向计算-------------------------- %系统输出 y1(k)=(0.4*y_1(1)+u_1(1)/(1+u_1(1)^2)+0.2*u_1(1)^3+0.5*u_1(2))+0.3*y_1(2); y2(k)=(0.2*y_1(2)+u_1(2)/(1+u_1(2)^2)+0.4*u_1(2)^3+0.2*u_1(1))+0.3*y_1(3); y3(k)=(0.3*y_1(3)+u_1(3)/(1+u_1(3)^2)+0.4*u_1(3)^3+0.4*u_1(2))+0.3*y_1(1);

生物化学的名词解释

19 新陈代谢——指生物体内一些化学变化的总称,是生物体表现其生命活动的重要特征之一。是由多种酶协同作用的化学反应网络。 从物质代谢来说,新陈代谢包括分解代谢和合成代谢。 分解代谢——生物大分子通过一系列的酶促反应步骤,转变为较小的、较简单的物质的过程。 合成代谢——生物体利用小分子或大分子的结构元件合成自身生物大分子的过程。 能量代谢——在生物体内,以物质代谢为基础,与物质代谢过程相伴随发生的,是蕴藏在化学物质中的能量转化,统称为能量代谢 20 机体内许多磷酸化合物,当其磷酰基水解时,释放出大量的自由能(一般水解时能释放出5kcal/mol以上的自由能)。这类化合物称为高能磷酸化合物。其释放高能量的化学键叫“高能键”,有符号“~”表示。 磷酸肌酸和磷酸精氨酸以高能磷酸基团的转移作为贮能物质统称为磷酸原 21 生物膜是构成细胞所有膜的总称,包括围在细胞质外围的质膜和细胞器的内膜系统。 被动运输 指物质从高浓度的一侧,通过膜运输到低浓度的一侧,物质顺浓度梯度的方向跨膜运输的过程。不需要消耗代谢能的穿膜运输。 特点:物质的运送速率既依赖于膜两侧运送物质的浓度差;又与被运送物质的分予大小,电荷和在脂双层中的溶解性有关。 主动运输 指物质逆浓度梯度的穿膜运输过程。需消耗代谢能,并需专一性的载体蛋白。特点:①专一性。有的细胞膜能主动运输某些氨基酸,但不能运送葡萄糖。有的则相反。②运送速度可以达到“饱利“状态。③方向性。如细胞为了保持其内、外的K+、Na+的浓度梯度差以维持其正常的生理活动,细胞主动地向外运送Na+ ,而向内运送K+ 。④选择性抑制。各种物质的运送有其专一的抑制剂阻遏这种运送。⑤需要提供能量。 如果一种物质的运输与另一种物质的运输相关而且方向相同,称为同向运输。方向相反则称为反向运输,这二者又统称为协同运输。 Na+、K+-泵实际是分布在膜上的Na+、K+-ATP酶。通过水解ATP提供的能量主动向外运输Na+,而向内运输K+ 。

运动生物化学复习题111

运动生物化学复习题 一、判断题 1、运动时酮体可作为大脑和肌肉组织的重要补充能源。() 2、运动训练时血清GPT增高即可判断肝脏损伤。() 3、尿素是蛋白质分解代谢的终产物之一,运动时,当蛋白质代谢加强时,血液尿素浓度上升。() 4、400米跑是属于糖酵解代谢类型的运动项目。() 5、肌肉增粗是肌力增大的主要原因。() 6、维生素与运动能力关系密切,超量摄取维生素可提高运动能力。() 7、长时间运动的后期,糖异生合成的葡萄糖逐渐成为血糖的主要来源。 () 8、糖贮备的多少是限制极限强度运动能力的主要原因。() 9、被动脱水达体重2%左右时,就会影响长时间的运动能力。()10.三羧酸循环是糖、脂肪和蛋白质分解代谢的最终共同途径。() 11、人体内的物质组成不包括维生素。() 12、尽管运动项目不同,但运动时的供能特点是相同的。() 13、耐力性运动时,脂肪氧化供能起着节省糖的作用。() 14、长时间运动时,血糖下降是运动性疲劳的重要因素之一。() 15、能使蛋白质变性的因素,均可使酶活性失活。() 16、激素和酶极为相似,它们都是蛋白质,都能传递信息。() 17、尽管NADH +H+和FADH2要分别经NDAH和FAD氧化呼吸链进行氧化, 但他们释放的能量合成的ATP数是一样的。() 18、丙酮酸、乙酰乙酸、 —羟丁酸总称为酮体。() 19、同等重量的脂肪和糖在体内完全氧化时,释放的能量相同。 三羧酸循环是糖、脂肪和蛋白质分解代谢的最终共同途径。()21、人体的化学组成是相对稳定的,在运动影响下,一般不发生相应的变化。() 22、运动时的供能系统可分为磷酸原系统、糖酵解系统和有氧氧化系统三个供能系统。()23、蔬菜、水果中含有的葡萄糖、果糖、蔗糖属于糖类,淀粉、纤维素不属于糖类。() 24、常见的低聚糖是麦芽糖、半乳糖和蔗糖。() 25、蛋白质是体内含量和种类最多的物质,它承担着生命过程中几乎所有重要的生物功能。() 26、运动创伤时血清酶活性出现明显升高。() 27、由于运动训练时代谢加强,运动员对维生素的需要量比非运动员要多。 () 28、以最大速度进行短跑至力竭时,运动肌糖原接近耗尽。() 29、人体内各种能量物质都能以有氧分解和无氧分解两种代谢方式氧化供能。() 耐力性运动时,脂肪氧化起着节省糖的作用。() 二. 名词解释 微量元素;血浆脂蛋白;肉毒碱;必需氨基酸;SGOT;血脂;缺铁性贫血;糖异生作用;维生素;血尿素氮;宏量元素;水平衡;糖的有氧氧化;呼吸链;酶;超量恢复;乳酸能商;缺铁性贫血;半时反应;乳酸阈训练;运动性外周疲劳;运动性蛋白尿

相关主题
文本预览
相关文档 最新文档