当前位置:文档之家› 相互独立事件习题课

相互独立事件习题课

相互独立事件习题课
相互独立事件习题课

b6相互独立事件概率求解

本文为自本人珍藏 版权所有 仅供参考 本文为本人珍藏,有较高的使用、参考、借鉴价值!! 本文为本人珍藏,有较高的使用、参考、借鉴价值!! 相互独立事件概率问题求解辨析 焦景会 055350 河北隆尧一中 事件A 、B 是相互独立事件,当且仅当事件A 和B 是否发生,相互之间没有影响。如果事件A 与B 相互独立,那么A 与B 、A 与B 、A 与B 也都是相互独立的。尤其在涉及“至多”或“至少”问题时,常先求此事件的对立事件的概率,再利用公式()1()P A P A =-求出所求事件的概率。这种解法,称为逆向思考方法。下面就相互独立事件概率问题举例分析如下。 一、 反面求解相互独立事件同时发生的概率 例1、加工某零件需3道工序,设第1、2、3道工序出现次品的概率分别为0.02,0.03,0.05,假设三道工序互不影响,求加工出来的零件是次品的概率。 解:由题中“三道工序互不影响”,可判定1、2、3道工序出现次品的事件是相互独立事件,可用相互独立事件的乘法公式。 设A=“加工出来的零件是次品”,i A =“第i 道工序出现次品”,则123A A A A =??, 由于三道工序互不影响,123()()()()P A p A P A P A ∴=??=(1-0.12)(1-0.03)(1-0.05)=0.90307。所以 ()1()10.903070.09693P A P A =-=-=。 点评:两个或多个相互独立事件同时发生的概率等于每个事件发生的概率积,结合“对立事件的概率和为1”,先求其对立事件的概率,然后再求原事件概率,采用这种解法可使问题变得简易。 二、用排列组合思想理解相互独立事件的概率 例2、甲乙两人各投篮3次,每次投中得分概率为0.6,0.7,求甲乙两人得分相同的概率。 解: 甲乙两人得分相同可以有;甲乙都中0、1、2、3次共四种情况。设甲投中0、1、2、3次概率分别为0123A A A A 、、、,乙投中0、1、2、3次概率分别为 0123B 、B 、B 、B , 则 0012233()()()()P P A B P A B P A B P A B =+++ 1 1 2 2 3 3 2 2 2 2 3 33 30.40.30.60.40.70.30.60.40.70.3C C C C =?+ ???+???3 30.60.70.321+?=。 点评:全面考虑各种可能性,然后利用公式()(1)k k n k n n P k p p C -=-。 三、通过分类或分步将复杂事件分解为简单事件

事件的相互独立性教案定稿

2.2.2 事件的相互独立性 一、教学目标 知识与技能:理解两个事件相互独立的概念。 过程与方法:能进行一些与事件独立有关的概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 二、教学重难点 教学重点:独立事件同时发生的概率。 教学难点:有关独立事件发生的概率计算。 三、教学过程 复习引入: 1. 事件的定义: 随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件。 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作() P A. 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;

4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形。 5. 基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件。 6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现 的可能性都相等,那么每个基本事件的概率都是1 n ,这种事件叫等可能性事件。 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率 ()m P A n =。 讲解新课: 1.相互独立事件的定义: 设A, B 为两个事件,如果 P ( AB ) = P ( A ) P ( B ) , 则称事件A 与事件B 相互独立. 事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件. 若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立. 2.相互独立事件同时发生的概率:()()()P A B P A P B ?=? 问题2中,“从这两个坛子里分别摸出1个球,它们都是白球”是一个事件,它的发生,就是事件A ,B 同时发生,记作A B ?.(简称积事件) 从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的结果于是从这两个坛子里分别摸出1个球,共有54?种等可能的结果。同时摸出白球的结果有32?种所以从这两个坛子里分别摸出1个球,它们

北师大版高中数学选修条件概率与独立事件一教案

2.3条件概率 教学目标: 知识与技能:通过对具体情景的分析,了解条件概率的定义。 过程与方法:掌握一些简单的条件概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:条件概率定义的理解. 教学难点:概率计算公式的应用. 授课类型:新授课 . 课时安排:1课时. 教具:多媒体、实物投影仪. 教学设想:引导学生形成“自主学习”与“合作学习”等良好的学习方式。 教学过程: 一、复习引入: 探究: 三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小. 若抽到中奖奖券用“Y ”表示,没有抽到用“Y”,表示,那么三名同学的抽奖结果共有三种可能:Y Y Y,Y Y Y和Y Y Y.用B 表示事件“最后一名同学抽到中奖奖券”, 则B 仅包含一个基本事件Y Y Y.由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为1 () 3 P B=. 思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少? 因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有Y Y Y和Y Y Y.而“最后一名同学抽到中奖奖券”包含的基本事件仍是Y Y Y.由古典概型计算公式可知.最后一 名同学抽到中奖奖券的概率为1 2 ,不妨记为P(B|A ) ,其中A表示事件“第一名同学没有抽 到中奖奖券”. 已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢? 在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件A 一定会发生,导致可能出现的基本事件必然在事件A 中,从而影响事件B 发生的概率,使得P ( B|A )≠P ( B ) . 思考:对于上面的事件A和事件B,P ( B|A)与它们的概率有什么关系呢? 用Ω表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即Ω={Y Y Y, Y Y Y,Y Y Y}.既然已知事件A必然发生,那么只需在A={Y Y Y, Y Y Y}的范围内考虑问题,

人教版高中数学高二选修2-3 第二章《事件的相互独立性》教案

2.2.2事件的相互独立性 一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A . 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件 6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结 果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()m P A n = 8.等可能性事件的概率公式及一般求解方法 9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的 10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+ 一般地:如果事件12,, ,n A A A 中的任何两个都是互斥的,那么就说事件 12,,,n A A A 彼此互斥 11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=?=- 12.互斥事件的概率的求法:如果事件12,, ,n A A A 彼此互斥,那么 12()n P A A A +++=12()()()n P A P A P A +++ 探究: (1)甲、乙两人各掷一枚硬币,都是正面朝上的概率是多少? 事件A :甲掷一枚硬币,正面朝上;事件B :乙掷一枚硬币,正面朝上 (2)甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这 两个坛子里分别摸出1个球,它们都是白球的概率是多少? 事件A :从甲坛子里摸出1个球,得到白球;事件B :从乙坛子里摸出1个球, 得到白球

相互独立事件的集合关系

相互独立事件的集合关系 互斥事件交集为空,那么相互独立事件呢?有交集的事件一定是相互独立事件吗? 如果相互独立事件没有明确的集合关系,那么它们之间就没有集合图像吗? 我来帮他解答 互斥事件交集为空,那么相互独立事件呢? 独立事件的交集一般不为空,除非某一事件的概率为空. 你画一个正方形□,□内为全体事件,以面积的大小表示事件的多少. 再画一横线,变成了日,日的上面的框内为事件A, 然后画一竖线,变成了田.田的左侧两个框内为事件B, 此时,左上方为事件AB, AB为独立事件. 因为无论你如何上下移动横线,事件AB的面积除以事件A的面积始终等于事件B的面积除以全体事件的面积. 同样,无论如何移动竖线,事件AB的面积除以事件B的面积始终等于事件A的面积除以全体事件的面积. 当你把竖线换成斜线结果就不同了,或者当你把□形换成○形结果也会不同的.你试试,此时的AB就不是独立事件了. 相互独立事件可以这样理解: 在事件A的概率为P(A),事件B的概率为P(B),事件AB的概率为P(AB),则 P(AB)/P(A)=P(B),就是说在发生了A的事件中发生了B的概率的大小(这是条件概率)和所有事件中发生B的概率是相同的. 在不发生事件A的概率为P(A非),事件B的概率为P(B),不发生事件A发生B的概率为P(A非B),则 P(A非B)/P(A非)=P(B),就是说在不发生A的事件中发生了B的概率的大小(这是条件概率)和所有事件中发生B的概率是相同的. 换句话说,是否发生A与发生B的概率无关. 当然将所有的A换成B,将B换成A,上边的说法仍然成立. 有交集的事件一定是相互独立事件吗? 不是的.前面说的将竖线变成斜线后的关系就是反例,我举一个实例: 事件A:今天西安城区平均温度高于30°, 事件B:明天西安城区平均温度高于30°.

04事件的相互独立性(教案)

2. 2.2事件的相互独立性 教学目标: 知识与技能:理解两个事件相互独立的概念。 过程与方法:能进行一些与事件独立有关的概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:独立事件同时发生的概率 教学难点:有关独立事件发生的概率计算 授课类型:新授课 课时安排:4课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A . 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()P A n = 8.等可能性事件的概率公式及一般求解方法 9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的 10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+ 一般地:如果事件12,, ,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥 11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=?=- 12.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么 12()n P A A A ++ +=12()()()n P A P A P A +++

相互独立事件同时发生的概率典型例题

典型例题 例1 掷三颗骰子,试求: (1)没有一颗骰子出现1点或6点的概率; (2)恰好有一颗骰子出现1点或6点的概率. 分析:我们把三颗骰子出现1点或6点分别记为事件,由已知,是相互独立事件.问题(1)没有1颗骰子出现1点或6点相当于,问题(2)恰有一颗骰子出现1点或6点可分为三类:,三个事件为互斥事件.问题(1)可以用相互独立事件的概率公式求解,问题(2)可以用互斥事件的概率公式求解. 解:记“第1颗骰子出现1点或6点”为事件,由已知是相互独立事件,且. (1)没有1颗骰子出现1点或6点,也就是事件全不发生,即事件,所以所求概率为: . (2)恰好有1颗骰子出现1点或6点,即发生不发生不发生或 不发生发生不发生或不发生不发生发生,用符号表示为事件 ,所求概率为:

说明:再加上问题:至少有1颗骰子出现1点或6点的概率是多少我们逆向思考,其对立事件为“没有一颗骰子出现1点或6点,即问题(1)中的事件, 所求概率为,在日常生活中,经常遇到几个独立事件,要求出至少有一个发生的概率,比如例1中的至少有1个人译出密码的概率,再比如:有两门高射炮,每一门炮击中飞机的概率都是,求同时发射一发炮弹,击中飞机的概率是多少把两门炮弹击中飞机分别记为事件A与B,击中飞机即 A与B至少有1个发生,所求概率为 . 例2 某工厂的产品要同时经过两名检验员检验合格方能出厂,但在检验时也可能出现差错,将合格产品不能通过检验或将不合格产品通过检验,对于两名检验员,合格品不能通过检验的概率分别为,不合格产品通过检验的概率分别为,两名检验员的工作独立.求:(1)一件合格品不能出厂的概率,(2)一件不合格产品能出厂的概率. 分析:记“一件合格品通过两名检验员检验”分别记为事件和事件,问题(1)一件合格品不能出厂相当于一件合格品至少不能通过一个检验员检验,逆向考虑,其对立事件为合格品通过两名检验,即发生,而的概率可以用相互独立事件的概率公式求解.我们把“一件不合格品通过两名检验员检验”分别记为事件和事件,则问题(2)一件不合格品能出厂相当于一件不合格品同时通过两名检验员检验,即事件发生,其概率可用相互独立事件概率公式求解. 解:(1)记“一件合格品通过第i名检验员检验”为事件,“一件合格品不能通过检验出厂”的对立事件为“一件合格品同时通过两名检验员检验”,即事件发生.

相互独立事件的概率

第79课 相互独立事件的概率 ●考试目标 主词填空 1.如果事件A (或B )是否发生的对事件B (或A )发生的概率没有影响,那么这样的事件叫做相互独 立事件.相互独立事件A 和B 同时发生,记作A ·B,其概率由相互独立事件概率的乘法公式: P (A ·B)=P(A)·P(B). 2.“互斥”事件A 与B ,要记住其判别的依据是A ∩B=;而“相互独立”事件A 与B ,是指它们中的任何一个发生与否对另一个事件发生的概率没有“影响”. 3.如果在1次试验中,某事件发生的概率为P ,那么在n 次独立重复试验中这个事件恰好发生k 次 的概率. P n (k )=k n k k n P P C --)1(. ● 题型示例 点津归纳 【例1】 甲、乙两人各进行一次射击,如果两人击中目标的概率是0.8.计算: (1)两人都击中目标的概率; (2)其中恰有1人击中目标的概率; (3)至少有1人击中目标的概率. 【解前点津】 “两人都击中目标”是事件A ·B ;“恰有1人击中目标”是A ·A B 或·B ;“至少有1人击中目标”是A ·B 或A ·A B 或·B . 【规范解答】 我们来记“甲射击一次击中目标”为事件A ,“乙射击一次击中目标”为事件B . (1)显然,“两人各射击一次,都击中目标”就是事件A ·B ,又由于事件A 与B 相互独立. ∴ P (A ·B )=P (A )·P (B )=0.8×0.8=0.64. (2)“两个各射击一次,恰好有一人击中目标”包括两种情况:一种是甲击中乙未击中(即A ·B ),另一种是甲未击中乙击中(即A ·B ),根据题意这两种情况在各射击一次时不可能同时发生,即事件A ·A B 与·B 是互斥的,所以所求概率为: P =)()()()()()(B P A P B P A P B A P B A P ?+?=?+? =0.8×(1-0.8)+(1-0.8)×0.8=0.16+0.16=0.32. (3) “两人各射击一次,至少有一人击中目标”的概率为: P =P (A ·B)+[P (A ·A P B ()+·B)]=0.64+0.32=0.96. 【解后归纳】 本题考查应用相互独立事件同时发生的概率的有关知识的正确应用. 【例2】如图,电路由电池A 、B 、C 并联组成.电池A 、B 、C 损坏的概率分别是0.3、0.2、0.2,求电路断电的概率. 【解前点津】 可规定A =“电池A 损坏”,B =“电池B 损坏”,C =“电池C 损坏”.这样,就有事

选修2-3教案2.2.2 事件的独立性

§2.2.2 事件的独立性 教学目标 (1)理解两个事件相互独立的概念; (2)能进行一些与事件独立有关的概率的计算. 教学重点,难点:理解事件的独立性,会求一些简单问题的概率. 教学过程 一.问题情境 1.情境:抛掷一枚质地均匀的硬币两次. 在第一次出现正面向上的条件下,第二次出现正面向上的概率是多少? 2.问题:第一次出现正面向上的条件,对第二次出现正面向上的概率是否产生影响. 二.学生活动 设B 表示事件“第一次正面向上”, A 表示事件“第二次正面向上”,由古典概型知 ()12P A = ,()12P B =,()1 4 P AB =, 所以() ()() 1 2 P AB P A B P B = = . 即()() P A P A B =,这说明事件B 的发生不影响事件A 发生的概率. 三.建构数学 1.两个事件的独立性 一般地,若事件A ,B 满足() ()P A B P A =,则称事件A ,B 独立. 当A ,B 独立时,若()0P A >,因为() ()()()P AB P A B P A P B = =, 所以 ()()()P AB P A P B =,反过来() ()() ()P AB P B A P B P A = =, 即B ,A 也独立.这说明A 与B 独立是相互的,此时事件A 和B 同时发生的概率等于事件A 发生的概率与事件B 发生的概率之积,即 ()()()P AB P A P B =.(*) 若我们认为任何事件与必然事件相独立,任何事件与不可能事件相独立,那么两个事件 A , B 相互独立的充要条件是()()()P AB P A P B =.今后我们将遵循此约定. 事实上,若B φ=,则()0P B =,同时就有()0P AB =,此时不论A 是什么事件,都有(*)式成立,亦即任何事件都与φ独立.同理任何事件也与必然事件Ω独立. 2. 个事件的独立性可以推广到(2)n n >个事件的独立性,且若事件12,,,n A A A 相互独立, 则这n 个事件同时发生的概率()()()()1212n n P A A A P A P A P A = .

《独立性检验》教案)

《独立性检验》教案 一、教学目标 1、知识与技能: 通过典型案例的探究,了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能利用独立性检验的基本思想来解决实际问题. 2、过程与方法: 通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题。通过列联表、等高条形图,使学生直观感觉到吸烟和患肺癌可能有关系.这一直觉来自于观测数据,即样本.问题是这种来自于样本的印象能够在多大程度上代表总体?这节课就是为了解决这个问题,让学生亲身体验直观感受的基础上,提高学生的数据分析能力. 3、情感态度价值观: 通过本节课的学习,加强数学与现实生活的联系。以科学的态度评价两个分类变量有关系的可能性。培养学生运用所学知识,解决实际问题的能力。对问题的自主探究,提高学生独立思考问题的能力;让学生对统计方法有更深刻的认识,体会统计方法应用的广泛性,进一步体会科学的严谨性。教学中适当地利用学生合作与交流,使学生在学习的同时,体会与他人合作的重要性。 二、教学重点 理解独立性检验的基本思想及实施步骤. 三、教学难点 1.了解独立性检验的基本思想; 2.了解随机变量K2的含义,K2的观测值很大,就认为两个分类变量是有关系的。 四、教学方法 以“问题串”的形式,层层设疑,诱思探究。用“讲授法”,循序渐进,引导学生,步步为营,螺蜁上升探究本节课的知识内容. 五、教学过程设计

环 节 互动意图创 设情景、引入新课课下预习,搜集有关分类变量有无关系的一些实例。 情境引入、提出问题:1、吸烟与患肺癌有关系吗? 2、你有多大程度把握吸烟与患肺癌有关? 组织引 导学生 课下预 习问题 背景, 初步明 确定要 解决 “吸烟 与患肺 癌”之 间的关 系问 题. 好的课 堂情景 引入, 能激发 学生求 知欲, 是新问 题能够 顺利解 决的前 提条件 之一. 初步探索、展示内涵 变量有定量变量、分类变量,定量变量—回归分析;分类变 量—独立性检验,引出课题。 问题1、我们在研究“吸烟与患肺癌的关系”时,需要关注哪一些 量呢? 列联表:分类变量的汇总统计表(频数表). 一般我们只 研究每个分类变量只取两个值,这样的列联表称为2*2列联表 . 如吸烟与患肺癌的列联表: 不患肺癌患肺癌总计 不吸烟7775 42 7817 吸烟2099 49 2148 总计9874 91 9965 问题2:由以上列联表,我们估计吸烟是否对患肺癌有影响?①在 不吸烟者中患肺癌的比例为________;②在吸烟者中患肺癌的比 例为________. 1,教师 通过举 例,引 入分类 变量这 个新概 念.引 出课题 2,组织 学生填 表讨论 问题, 初步得 到问题 的结 论. 从实际 问题出 发引入 概念, 提出问 题有利 于学生 明白我 们要学 习这节 课的必 要性。。

事件的相互独立性的教案

事件的相互独立性的教 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2.2.2事件的相互独立性 一、教学目标: 1、知识与技能: ①理解事件独立性的概念 ②相互独立事件同时发生的概率公式 2、过程与方法: 通过实例探究事件独立性的过程,学会判断事件相 互独立性的方法。 3、情感态度价值观:通过本节的学习,体会数学来源于实践又服务于 实践,发现数学的应用意识。 二、教学重点:件事相互独立性的概念 三、教学难点:相互独立事件同时发生的概率公式 四,教学过程: 1、复习回顾:(1)条件概率 (2)条件概率计算公式 (3)互斥事件及和事件的概率计算公式 2、思考探究: 三张奖券只有一张可以中奖,现分别由三名同学有放回地抽取,事件A 为“第一位同学没有抽到中奖奖券”,事件B 为“最后一名同学抽到中奖奖券”。 事件A 的发生会影响事件B 发生的概率吗? 分析:事件A 的发生不会影响事件B 发生的概率。于是: 3、事件的相互独立性 设A ,B 为两个事件,如果 P(AB)=P(A)P(B),则称事件A 与事件B 相互独立。 即事件A (或B )是否发生,对事件B (或A )发生的概率没有影响,这样两个事件叫做相互独立事件。 注:①如果A 与B 相互独立,那么A 与B ,B 与A ,A 与B 都是相互独立的。(举例说明) ②推广:如果事件12,,...n A A A 相互独立,那么 1212(...)()()...()n n P A A A P A P A P A = (|)()P B A P B =()()(|)P AB P A P B A =()()() P AB P A P B ∴=

事件的独立性教案

事件的相互独立性 数学与统计学学院芮丽娟2009212085 一、教学目标: 1、知识与技能: (1)了解独立性的定义(即事件A的发生对事件B的发生没有影响); (2)掌握相互独立事件的概率乘法公式P(AB)=P(A)P(B) 2、过程与方法: 通过对现实生活中不同事件问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力 3、情感态度与价值观: 通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点. 二、重点与难点: 正确理解独立性的定义与互斥事件的差别,掌握并运用独立事件概率公式 三、教学设想: 1、创设情境:通过回顾上节课学习的条件概率,引入本节课独立性的定义 例:3张奖券中只有一张能中奖,现分别由3名同学无放回的抽取,事件A为“第一名同学没有抽到中奖奖券”,事件B为“最后一名同学抽到中奖奖券”。则问事件A的发生会影响事件B发生的概率吗?若条件改为有放回,这时又是什么情况? 解:显然无放回时,A的发生影响着B,即是条件概率。而当有放回地抽取奖券时,最后一名同学也是从原来的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事件A的发生不会影响事件B发生的概率。于是P(B|A)=P(B),代入条件概率公式得P(AB)=P(B|A)P(A)=P(A)P(B) 2、基本概念: 独立性定义:设A,B为两个事件,如果满足P(AB)=P(A)P(B),则称事件A与事件B 相互独立。 例1:分别抛掷两枚质地均匀的硬币,设A是事件“第1枚为正面”,B是事件“第2枚为正面”,C是事件“2枚结果相同”。问:A,B,C中哪两个相互独立? 分析:理解相互独立的定义,即是一事件的发生对另一事件的发生与否没有影响,由于A事件抛掷第一枚硬币为正面,对B事件第二枚硬币为正面没有影响,故A与B独立,而

2020-2021学年高中新教材人教A版数学必修第二册 10.2 事件的相互独立性 教案 (1)

10.2 事件的相互独立性 本节《普通高中课程标准数学教科书-必修二(人教A 版)第十章《10.2 事件的相互独立性》,本节课主要事在已学互斥事件和对立事件基础上进一步了解事件之间的关系,相互独立性是另一种重要的事件关系,注意对概率思想方法的理解。发展学生的直观想象、逻辑推理、数学建模的核心素养。 课程目标 学科素养 A .理解两个事件相互独立的概念. B .能进行一些与事件独立有关的概念的计算. C. 通过对实例的分析,会进行简单的应用. 1.数学建模: 相互独立事件的判定 2.逻辑推理:相互独立事件与互斥事件的关系 3.数学运算:相互独立事件概率的计算 4.数据抽象:相互独立事件的概念 1.教学重点:理解两个事件相互独立的概念 2.教学难点:事件独立有关的概念的计算 多媒体 教学过程 教学设计意图 核心素养目标 一、 探究新知 前面我们研究过互斥事件,对立事件的概率性质,还研究过和事件的概率计算方法,对于积事件的概率,你能提出什么值得研究的问题吗? 我们知道积事件AB 就是事件A 与事件B 同时发生,因此,积 由知识回顾,提

() A A B B AB AB () ()()P A P AB P AB []()()()(()1()P AB P A P AB P P A P B P ∴=-==-=

AB 根据概率的加法公式和事件独立性定义,得 ) AB AB )() P B P ?+ ?+? 0.10.2

AB AB + AB P AB AB AB)() () +0.72 P AB AB = :由于事件“至少有一人中靶 根据对立事件的性质,得事件“至少有一人中靶 = 0.020.98

2014年人教A版选修2-3教案 2.2.2 事件的独立性

2.2.2事件的独立性 教学目标: 知识与技能:理解两个事件相互独立的概念。 过程与方法:能进行一些与事件独立有关的概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:独立事件同时发生的概率 教学难点:有关独立事件发生的概率计算 授课类型:新授课 课时安排:2课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A . 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()P A n = 8.等可能性事件的概率公式及一般求解方法 9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的 10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+ 一般地:如果事件12,, ,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥 11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=?=-

试探互斥事件与相互独立事件的区分方法

试探互斥事件与相互独立事件的区分方法 随机试验中事件的概率计算何时使用互斥事件概率的加法公式,何时使用相互独立事件概率的乘法公式,常是初学这部分知识的人难以把握的问题,引起麻烦的根源主要是无法确定事件间的关系究竟属于互斥事件还是独立事件。 判断两个事件之间的关系首先从定义入手,互斥事件发生在一次试验可能出现的不同结果中,这两个(或多个)事件不可能同时发生,而相互独立事件发生互不干涉的不同试验中,一个事件发生与否对另一个事件发生的概率不产生影响。 其次,从事件发生的结果入手判断事件间的关系,互斥事件若有一个发生,那么其他事件在试验中就不能再发生了;而相互独立事件中一个事件在试验中发生,对其它事件是否发生不产生任何影响。 再之,从事件的来源入手,即从产生事件的试验入手,互斥事件发生在同一次试验中,两个互斥事件A和B不会同时发生,但它们的概率相互影响,总有0≤P(A)+P(B)≤1相互独立事件发生于不同试验中,两个相互独立事件A和B是否发生互斥影响,产生事件的试验也相互独立互不影响,概率关系同样互不影响,总有0≤P(A)≤1、0≤P(B)≤1。 从两个概率公式入手,分析适应的事件关系也可以判断事件间的关系,对于互斥事件有一个发生的概率加法公式P(A+B)=P(A)+P(B),要求事件A、B之一发生(且只能有一个发生),具有明确的排斥性;对于相互独立事件的概率乘法公式P(A·B)=P(A)·P(B),要求事件A、B同时发生,如果满足不了同时发生的条件,那么这两个事件肯定不是相互独立事件。 从两个概率公式的适用条件看,是否能够分清事件A和B的关系(这些事件是一次试验的结果还是几次独立试验的结果)到关重要,下面举两个例子加以阐述。 例1:甲乙两人各进行一次射击,如果两人击目标的概率都是0.8计算: (1)工人都击中目标的概率 (2)其中恰有一人击中目标的概率 (3)至少有一人击中目标的概率 解(1):把甲射击目标的过程看作一次试验,记“甲射击一次击中目标”为事件A,“乙射击一次击中目标”为事件B,两人各射击一次,这两个试验相互之间互不影响,因此,A、B为两个相互独立事件,2人都击中目标是A发生且B发生,即A、B同时发生,因此求解应利用相互独立事件的乘法公式。 P(A·B)=P(A)·P(B)=0.8×0.8=0.64 即甲乙两人都击中目标的概率为0.64 (2)”其中恰有一人击中目标”这一要求是把甲乙两人各射击一次的过程看作一次试验,这次试验含有两个过程,在由这两个过程形成的每一个事件中都抱括两种同时发生的情况,“恰有一人击中”包括A击中B没有击中(事件A·B,在这里A和B又是相互独立事件),或A没有击中B击中(事件A·B,在这里A和B相互独立)两个互斥事件,所以首先要利用相互独立事件的概率乘法公式分别计算A·B和A·B,再利用互斥事件的概率加法公式求A·B+A·B,所以其中恰有一人击中目标的概率为P(A·B+A·B)

相互独立事件教案

相互独立事件同时发生的概率 数学组 焦婵女 教学目标 1知识目标:相互独立事件的定义,相互独立事件的概率的计算 2能力目标:会计算相互独立事件的概率 3情感目标:培养学生的数学概率思维,团结互助的精神。 教学重点 相互独立事件的定义及计算同时发生的概率 教学难点 相互独立事件的定义及计算同时发生的概率 对简单事件的表述及间接法(“正繁则反”)的解题思想 教学方法 启发式教学 教学过程 一、创设情境,故事引入 大家都听过三个臭皮匠赛过诸葛亮这个俗语吧?今天我们将来用概率计算的手段给大家一个圆满的解释。 问题: 已知诸葛亮解决某个问题的把握为0.8,臭皮匠老大、老二解决的把握分别为0.55,0.5。假如臭皮匠老三解出的把握只有0.4,那么规定三个臭皮匠中至少有一人解决的把握真的能赛过诸葛亮吗? 为了解决这个问题我们还是先来学个新知识点——相互独立事件 二、探索新知 阅读课本,回答问题: 1、相互独立事件定义? 事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件交相互独立事件。 请大家来判断下面两个事件是否相互独立: (1)、“明天北京地区有小雨”和“明天香港地区有小雨” (是) (2)、射击比赛中,“甲命中9环”和“乙命中8环” (是) 2、相互独立事件同时发生的概率? 两个相互独立事件同时发生的概率,等于每个事件发生的概率的乘积,即)()()(B P A P AB P ?= 放松一下,做个游戏,规则:摸出一个球为白球则中奖 (1) 甲坛子中有3个白球,2个黑球,中奖的概率是多少? 5 3)(=A P 中奖率很高 (2)乙坛子中有2个白球,2个黑球,中奖的概率是多少?

人教版选修第二章离散型随机变量教案事件的相互独立性

数学:人教版选修2-3第二章离散型随机变量教案(2.2.2事件的相互独立性) 2.2.2事件的相互独立性 教学目标: 知识与技能:理解两个事件相互独立的概念。 过程与方法:能进行一些与事件独立有关的概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:独立事件同时发生的概率 教学难点:有关独立事件发生的概率计算 授课类型:新授课 课时安排:2课时 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不 发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件发生的频率总是接近某个常数,在它附近摆动,这时就

把这个常数叫做事件的概率,记作. 3.概率的确定方法:通过进行大量的重复试验,用这个事件 发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为,不可能事件的概率为,随机事件的概率为,必然事件和不可能事件看作随机事件的 两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件)称为一个基本事件 6.等可能性事件:如果一次试验中可能出现的结果有个, 而且所有结果出现的可能性都相等,那么每个基本事件的概 率都是,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果 有个,而且所有结果都是等可能的,如果事件包含个结果, 那么事件的概率 8.等可能性事件的概率公式及一般求解方法 9.事件的和的意义:对于事件A和事件B是可以进行加法运算的 10 互斥事件:不可能同时发生的两个事件. 一般地:如果事件中的任何两个都是互斥的,那么就说事件 彼此互斥 11.对立事件:必然有一个发生的互斥事件. 12.互斥事件的概率的求法:如果事件彼此互斥,那么=

独立性检验教学案

独立性检验教学案 班级:_______ 姓名:_________ 学号: 面批时间:________ 课前预习案 【学习目标】通过案例,了解独立性检验及它们的初步应用. 【教学重点与难点】独立性检验的基本思想与初步应用. 【自主学习】 1.事件A 与B 相互独立: (1)定义:一般地,对于两个事件A,B,若满足 ,则称事件A 与B_________,简称A 与B 独立. (2)性质:一般情况下,当事件A 与B 独立时,事件 、 、 也独立. 2.独立性检验:(即判断是否相关) 设两个变量A,B,每一个变量都可以取两个值,统计数据如下列22?列联表: 1B 2B 合计 1A a b a b + 2A c d c d + 合计 a c + b d + n a b c d =+++ 则进行检验变量A 与B 是否相关的步骤如下: (1)由公式2 2 () ()()()() n ad bc a b c d a c b d χ-= ++++计算2χ的值; (2)判断2χ与两个临界值(即 与 )的大小,即当2 6.635χ>时, 有 的把握说事件A 与B 有关;当2 3.841χ>时,有 的把握说事件A 与B 有关;当2χ≤ 时,认为事件A 与B 无关. 【预习自测】

某防疫站对屠宰场及肉食零售点的猪肉检查沙门氏菌情况,结果如下表,试检验屠宰场与零售点猪肉带菌率有无差异. 带菌头数不带菌头数合计 屠宰场 6 24 30 零售点10 12 22 合计16 36 52

独立性检验教学案 班级:_______ 姓名:_________ 学号:面批时间:________ 课内探究案 【精讲点拨】 题型一:相互独立事件的概率求解 ,例1.三人独立破译同一份密码,已知三人各自破译出密码的概率分别为111 ,, 543且他们是否破译出密码互不影响.求:(1)他们都破译出密码的概率;(2)至少有一人破译出密码的概率;(3)恰有二人破译出密码的概率. 变式训练:(2010年高考江西卷文科第9题)有n位同学参加某项选拔测试,每位同学能通过测试的概率都是(01) <<,假设每位同学能否通过测试是相互 p p 独立的,则至少有一位同学能通过测试的概率为( ) A.(1)n -- p p -C.n p D.1(1)n -B.1n p 题型二:独立性检验(即判断两个变量是否相关,把握性有多大)

2.2.2事件的相互独立性(教学设计)

2.2.2事件的相互独立性(教学设计) 教学目标: 知识与技能:理解两个事件相互独立的概念。 过程与方法:能进行一些与事件独立有关的概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:独立事件同时发生的概率 教学难点:有关独立事件发生的概率计算 教学过程: 一、复习引入: 1.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 2.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()P A n = 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+ 一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥 4.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=?=- 5.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么 12()n P A A A +++ =12()()()n P A P A P A +++ 6.条件概率:在事件A 发生的条件下,事件B 发生的条件概率:()(|)() P AB P B A P A = 乘法公式:()(|)()P AB P B A P A =?. 二、师生互动,新课讲解: 思考:三张奖券中只有一张能中奖,现分别由三名同学有放回地抽取,事件A 为“第一名同学没有抽到中奖奖券”, 事件B 为“最后一名同学抽到中奖奖券”. 事件A 的发生会影响事件B 发生的概率吗? 显然,有放回地抽取奖券时,最后一名同学也是从原来的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事件A 的发生不会影响事件B 发生的概率.于是 P (B| A )=P(B ), P (AB )=P( A ) P ( B |A )=P (A )P(B).

相互独立事件与概率的乘法公式

相互独立事件与概率的乘法公式 说课人:董新森 工作单位:东平县职业中专 时间:2007年5月22日

“相互独立事件与概率的乘法公式”说课稿 一、教材分析 1、教材所处的地位和作用 本节课是概率的第三个计算公式,是在学习了互斥事件和概率的加法公式后而引入的,是对概率计算公式的进一步研究,同时又为下一步学习独立重复试验概率的计算奠定了知识和方法基础。 2、教学目标 (1)能正确区分互斥事件和相互独立事件,会用乘法公式解决简单问题。 (2)在归纳总结乘法公式过程中,进一步提高由特殊推测一般的合情推理能力。 (3)通过教师指导下的学生探索归纳活动,激发学生学习的兴趣,使学生经历数学思维过程,获得成功的体验。 3、教学重点与难点 教学重点:概率的乘法公式的应用 教学难点:区分互斥事件和相互独立事件 二、教学和学法 本节课采用启发探究式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、归纳、总结的学习方法,让学生经历数学知识的应用过程。

三、教学过程设计 1、从数学问题引入探究主题 若事件A={甲同学的生日是5月份},B={乙同学的生日是5月份},则A∩B={甲和乙的生日都是5月份} 问题:(1)说出事件A和事件B是否为互斥事件,为什么? (引出相互独立事件的概念) (2)试计算P(A)、P(B)、P(A∩B)。 (3)试分析P(A)、P(B)、P(A∩B)三者之间关系。 (4)试举出几个相互独立事件的例子。 2、发现规律 从以上事例中引导学生观察、分析、归纳 P(A∩B)=P(A)×P(B) 一般地说,如果事件A1,A2,…A n相互独立,那么这几个事件

相关主题
文本预览
相关文档 最新文档