当前位置:文档之家› 数值建模与仿真-光伏电池

数值建模与仿真-光伏电池

数值建模与仿真-光伏电池
数值建模与仿真-光伏电池

开发新能源和可再生清洁能源是21世纪世界经济发展中最具有决定

性影响的五项技术领域之一。充分开发利用太阳能是世界各国政府可持续

发展的能源战略决策,其中太阳能发电则最受瞩目。由于目前光伏电池板

转换效率比较低,为了降低系统造价和有效地利用太阳能,该论文对光伏

发电进行最大功率跟踪显得尤为必要。

本文针对如何提高太阳能光伏发电系统的转换效率,分别从工程数学

模型、matlab建模仿真方面对外界环境影响因素就行分析,同时对具有最

大功率点跟踪(MPPT)的控制器的原理进行了研究,并分析比较各测量方

法的优缺点。

Keywords: 太阳能发电;转换效率;MPPT;matlab建模仿真

Abstract

The development of new energy and renewable clean energy is one

of the five technologies have the most decisive influence in the development of the world economy in twenty-first Century. The full development and utilization of solar energy is the energy strategy

of the governments of the world sustainable development, where the

solar power generation is the most popular. Due to the current solar photovoltaic conversion efficiency is low, in order to reduce the

cost of system and the effective use of solar energy, the pho-

tovoltaic maximum power point tracking is particularly necessary.

This article base on how to improve the conversion efficiency

of solar photovoltaic power generation system, from the aspects of MATLAB modeling and simulation calculation of measurement results

世界的节约能源概念普遍下,光伏电池绿色科技已是目前的产业新星。而这波绿色科技潮流,又首推太阳能最为行情看涨,有可能成为全球红透半边天的明日之星。面对国际油价不断飙高,第三次石油危机即将到来的危机,一股全世界重新洗牌的能源卡位战,已经响起咚咚战鼓,蓄势待发了。

当电力、煤炭、石油等不可再生能源频频告急,能源问题日益成为制约国际社会经济发展的瓶颈时,越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经济发展的新动力。

总之,随着世界能源短缺和环境污染问题的日益严重,能源和环境成为二十一世纪人类所面临的重大基本问题,清洁的可再生能源的发展和应用越来越受到世界各国的广泛关注。近二、三十年来,太阳能光伏(Photovoltaic,PV)发电技术得到了持续的发展,光伏发电已经成为利用太阳能的主要方式之一。开展太阳能光伏发电系统的研究,对于缓解能源和环境问题,开拓广阔的光伏发电市场和掌握相关领域的先进技术,具有重大的理论和现实意义。

摘要 (1)

Abstract (1)

Key Words (1)

前言 (2)

第1章概述 (3)

1.1 光伏产业的发展现状 (3)

1.1.1 国外光伏产业发展现状 (3)

1.1.3 国内光伏产业发展现状 (1)

1.2 本课题主要研究内容和意义 (4)

第2章光伏电池原理及其模型的建立 (5)

2.1 光伏电池的工作原理 (5)

2.2 光伏电池等效电路 (5)

2.3 光伏电池的特性 (7)

2.4 光伏电池模型的建立 (8)

2.3.1 工程用光伏电池的数学模型 (8)

2.3.2 光伏电池的matlab模型 (9)

第3章 MPPT控制器 (14)

3.1 开路电压法算法的具体模型 (14)

3.1.1 开路电压法算法的具体模型 (15)

3.1.2 扰动观察法算法的具体模型 (16)

3.1.3 恒压控制法算法的具体模型 (17)

3.2 波形比较 (18)

3.3 各种方法的优缺点 (20)

结论

参考文献

第1章概述

1.1 光伏产业的发展现状

1.1.1 国外光伏产业发展现状

1973年的石油危机和20世纪90年代的环境污染问题大大促进了太阳能光伏发电的发展。随着人们对能源和环境问题认识的不断提高,光伏发电越来越受到各国政府的重视,科研投入不断加大,鼓励和支持光伏产业发展的政策也不断出台。

以1997年美国总统克林顿的“百万太阳能光伏屋顶计划”为标志,日本还有欧洲的德国、丹麦、意大利、英国、西班牙等国也纷纷开始制定本国的可再生能源法案,刺激了光伏产业的高速发展。专家预测到2030年,光伏发电将占世界发电总量的50%,所以,大力发展太阳电池产业是一件有利于降低环境污染并造福人类的伟大事业,太阳电池也必将成为人类未来能源的希望之星。

1.1.2 国内光伏产业发展现状

我国于1958年开始太阳能电池的研究,1959年研制成功第一个又实用价值的太阳电池,1971年首次成功应用于东方红二号卫星上,于1973年开始用于地面。

在1973~1987年短短的几年内,先后从美国,加拿大等国引进了7条

太阳电池生产线,使我国太阳电池生产能力从1984年以前的200kW跃到1988年的4.5MW。

自2002年起我国太阳电池制造业高速发展,年均增长率达180%。据不完全统计,全国光伏产品生产企业逾500家。2006年我国光伏电池的产量369.5MW,同比增长145.0%,产量超过美国居全球第三位,占全球产量的14.8%。全国光伏企业500多家中,已在海外上市企业有10家,但产能在5MW以上的企业仅20多家,多数企业规模小、技术水平低,尚未达到经济规模,造成资源严重浪费和无序竞争。太阳能电池制造业的迅猛发展,使国内硅材料严重短缺,多晶硅供不应求,所需多晶硅90%以上需要进口。

1.2 本课题主要研究内容和意义

1.2.1研究内容

(1)建立了太阳能光伏电池的工程数学模型,并以此为基础设计一种采用多段直线和二次曲线模拟光伏电池I-V曲线的算法,该算法简化函数方程,使其满足DSP计算的要求,同时也保证了较高的模拟精度,减小了系

统误差。

(2)建立光伏电池matlab数值模型,理解光伏阵列的输出特性,了解影响光伏电池输出特性的各个环境因素。

1.2.2研究意义

通过模拟光伏电池输出的I-V曲线,从而能够代替实际的太阳能光伏电池阵列在室内进行各种光伏实验,并满足易于修改设定的要求的光伏电池模拟器。使光伏实验不再受到场地、自然气候条件等的影响,降低实验

成本,节省实验时间。

建立光伏电池仿真模型,有利于理解光伏阵列的输出特性,了解影响光伏电池输出特性的各个环境因素,并将这些影响因素置入实际使用中,提高光伏电池转换率。

第2章光伏电池原理及其模型的建立

2.1 光伏电池的工作原理

太阳能光伏电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管。太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。若在内建电场的两侧引出电极并接上负载,则负载就有“光生电流”流过,从而获得功率输出。这样,太阳的光能就变成了可以使用的电能。

由于半导体不是电的良导体,电子在通过p-n结后如果在半导体中流动,电阻非常大,损耗也就非常大。但如果在上层全部涂上金属,阳光就不能通过,电流就不能产生,因此一般用金属网格覆盖p-n结,以增加入射光的面积。光生伏打效应原理简图如图2-1

图2-1 光生伏打效应原理简图

2.2 光伏电池等效电路

根据电子学理论,太阳电池的等效电路如图2.2所示。

图2-2 太阳能电池等效电路

用公式表示太阳能电池发电状态的电流方程式为:

(2-1)

(2-2) 式中::光生电流,A;

:流过二极管电流,A;

:输出电压,V;

:输出电流,A;

:等效并联负载,Ω;

:等效串联负载,Ω;

:反向饱和电流,A;

:电子电荷();

:二极管因子;

:玻耳兹曼常数;

:绝对温度,K ; 其中的值很大,而的值很小,因此在一般分析中为了简化分析过程可将其忽略。

上式(2-2)是基于物理原理的太阳能电池最基本的解析表达式,已被广泛应用于太阳电池的理论分析中,但由于表达式中的5个参数,包括I L 、I 0、Rs 、R sh 和A,它们不仅与电池温度和日射强度有关,而且确定十分困难,因此不便于工程应用,也不是太阳电池供应商向用户提供的技术参数

2.3光伏电池的特性

光伏电池的输出特性太阳能电池具有独特的I-V 特性,该特性由太阳能电池材料的物理特性所决定。太阳能电池组件的I-V 特性强烈地随日射强度S 和较强烈地随电池温度T 而变化,即I = f ( V , S , T) 。 S=1000W/m

太阳能电池温度

25°c 800

600

400

2001002003004005000.51.01.52.0U/V (A)常温不同日

照下I/A 2.0S=1000W/m 50°c

25°c

0°c 100200300400500600(B)相同日照不同温度下

图2-3光伏电池的I-V 特性曲线

光伏电池由于其受外界影响因素(温度、光照等) 很多,且其输出具有非线性特性,如图2-1的伏安(电压-电流) 特性。从特性曲线看,太阳能电池在不同的光照强度下和12不同的环境温度下的伏安特性曲线大致的形状是一样的,也就是说太阳能电池的伏安特性曲线可以划分三个区域,恒流源区、最大功率区以及恒压源区。

2.4 光伏电池仿真模型的建立

2.4.1 工程用光伏电池的数学模型

根据标准参考条件(标准参考日照强度ref S = 1000W/m2 ,标准参考电池温度

s =25 ℃)下光伏电池的数学模型,太阳能电池的I-V方程为:

ref

(2-3) 在最大功率点处V=Vm,I=Im,可得:

(2-4) 由于在常温条件下exp[Vm/(C2V oc)] >>1,可忽略式中的“-1”项,解出C1:

(2-5) 在开路状态下,当I=0时,V=Voc,并把(2-5)带入(2-3)得:

(2-6) 由于exp(1/C2)>>1,忽略式中的“-1”项,解出C2:

(2-7) 本模型只需要输入太阳电池通常的技术参数Isc、Voc、Im、Vm,就可以根据式(2-4)、(2-6)得出C1和C2。

而太阳电池I-V特性曲线与光照强度和电池温度有关。通常地面上光照强度S的变化范围为0-1000W/m2,太阳电池的温度变化较大,可能从10-70℃。按标准,取S ref=1000W/m2,T ref=25℃为参考光照强度和参考电池

温度。当光照强度及电池温度S()、T(℃)不是参考值时,必须考虑其对太阳电池特性的影响。设T为在任意日射强度S及任意环境温度T air下的太阳电池温度,则有:

(2-8) 对于一般情况K值可取为K=0.03()。

通过对参考日射照强度和参考电池温度下I-V特性曲线上任意点(V,I)的移动,得到新日照强度和新电池温度下的I-V特性曲线上任意点(V’,I’)为:

(2-9)

(2-10)

(2-11)

(2-12)

(2-13) 式中::参考日照强度下的电流温度系数,A/℃;

:参考日照强度下的电压温度系数,V/℃。

对于单晶硅及多晶硅太阳电池其实测值为:=0.0012Isc(A/℃) =0.005Voc(V/℃)。

2.4.2 光伏电池的matlab模型

下图2.3是根据上文中的数学模型建立的光伏电池matlab模型。

图2.3 matlab光伏电池模型

matlab提供的子系统封装功能可以大大增强matlab系统模型框图的可读性。所以为方便以后最大功率跟踪整体模型的建立,对上图光伏电池模型进行封装如下图2.4。封装之后还需针对其内部可变参数进行提取和关联以便无需打开封装子系统就可以对光伏电池模型参数进行设置。

图2.4 matlab光伏电池模型封装子系统

封装之后还需针对其内部可变参数进行提取和关联以便无需打开封装子系统就可以对光伏电池模型参数进行设置。关联好的参数设置输入窗口

如图2.5。

至此光伏电池内部建模结束,本文采用的光伏板数据如表2.1所示。针对此光伏板在环境温度为25℃光照强度为400,600,800,1000及环境温度为65℃光照强度为400,600,800,1000的条件下进行仿真,其模型如图2.6所示,仿真结果曲线如图2.7(a)、(b)所示。

标准测试条件下最大功率150W

峰值工作电流 4.95A

峰值工作电压35.2V

短路电流 5.2A

开路电压44.2V

电流温度系数 6.24 mA/℃

电压温度系数0.221 V/℃

串联电阻0.5Ω

表2.1 仿真用光伏板参数

图2.5 simulink光伏电池模型输入参数设置对话框

图2.6 光伏电池输出特性仿真模型

环境温度为25℃,65℃光照强度为400,600,800,1000

图2.7 光伏电池电压电流特性曲线

环境温度为25℃,65℃光照强度为400,600,800,1000

图2.8光伏电池电压功率特性曲线

通过对仿真曲线与光伏电池实测曲线对比证明了仿真曲线可以较为准确的反应光伏电池的物理特性。

研究光伏电池的仿真模型,有助于理解光伏阵列的输出特性,了解影响光伏电池输出特性的各个环境因素,把这些特性用于电路和系统仿真中,有助于更加充分了解和发挥光伏电池在光伏发电系统中的应用。

第三章 MPPT控制器

MPPT控制器的全称“最大功率点跟踪”(Maximum Power Point Tracking)太阳能控制器,是传统太阳能充放电控制器的升级换代产品。MPPT控制器能够实时侦测太阳能板的发电电压,并追踪最高电压电流值(VI),使系统以最大功率输出对蓄电池充电。应用于太阳能光伏系统中,协调太阳能电池板、蓄电池、负载的工作,是光伏系统的大脑。

最大功点跟踪(Maximum Power Point Tracking,简称MPPT)系统是一种通过调节电气模块的工作状态,使光伏板能够输出更多电能的电气系统能够将太阳能电池板发出的直流电有效地贮存在蓄电池中,可有效地解决常规电网不能覆盖的偏远地区及旅游地区的生活和工业用电,不产生环境污染。

3.1 MPPT控制器的总体模型

上图所示是MPPT算法的总体模型,我们通过对MPPT模块的替换,就可以实现对不同的MPPT算法进行仿真研究。下面是几种常用算法的仿真。

其中要把负载处开路

开路电压法的MPPT跟踪曲线

扰动观察法的MPPT跟踪曲线

恒压控制法的MPPT跟踪曲线

3.2波形比较

25摄氏度下,3种方法MPPT波形图比较蓝色曲线:扰动法观擦法

黄色曲线:开路电压法

紫色曲线:恒压控制法

50摄氏度下,3种方法MPPT波形图比较蓝色曲线:扰动法观擦法

黄色曲线:开路电压法

紫色曲线:恒压控制法

3.3各种方法的优缺点

3.1恒定电压法

缺点:实现精度差,存在严重的功率振荡,温度对光伏电池开路电压的影

响较大,测量开路电压要求光伏阵列断开负载后再测量,对外界条件的适应性差,环境变化时不能自动跟踪到MPP ,造成了能量损失

优点:控制方法简单容易实现,初期投入少。

3.2开路电压法

缺点:如何选择最佳的比例常数1k 却很困难,因为1k 是由光伏阵列的物理

特性所决定的,随太阳能电池板日益老化而变化,而且由于测量开路电压oc U 需要将负载断开,导致存在瞬时功率损失问题。而且系统的功率输出并不是基于对光伏阵列输出功率计算而得,而是假设一旦开路电压oc U 确定相应的最大功率点电压MPP U 也就确定了,其功率输出也就是最大。这样如果最大功率点的选取不准确,就会导致输出功率并不是最大的功率(从图中可以看出,比最大功率略低)。 优点:方法原理简单,结构简单,价格低廉,受温度变化影响较小。

3.3扰动观察法

缺点:还是存在功率振荡的现象和受温度变化的影响。

优点:提高方法不难实现,现在被普遍使用,而且跟踪精度较高,受温度

变化的影响程度不大。

光伏发电的MATLAB仿真

一、实验过程记录 1.画出实验接线图 图1 实验接线图 图2 光伏电池板图3 实验接线实物图 2.实验过程记录与分析 (1)给出实验的详细步骤 ○1 实验前根据指导书要求完成预习报告 ○2 按预习报告设计的实习步骤,利用MATLAB建立光伏数学模型,如下图4所示。

图4 光伏电池模型其中PV Array模块里子模块如下图5所示。 图5 PV Array模型其中Iph,Uoc,Io,Vt子模块如下图6-9所示。 图6Iph子模块

图7Uoc子模块 图8 Io子模块 图9Vt子模块 ○3 在光伏电池建模的基础上,输入实际光伏电池参数值,研究不同光照强度下、不同温度下光伏电池的I-V、P-V特性曲线,并得出结论。 ○4 设计光伏电池测试平台,在不同光照、温度情况下测试光伏电池输出电压、输出电流值,对实测数据进行处理并加以分析,记录实际光伏电池的I-V、P-V 特性曲线,与仿真结果进行对比,得出有意义的结论。 ○5 确定电力变换电路拓扑结构,设计电路中的相关参数值,通过MATLAB搭 建电路并仿真分析,搭建电路如图10所示。

图10离网型光伏发电系统 ○6 确定系统MPPT控制策略,建立MPPT模块仿真模型,并仿真分析。 系统联调,调节离网型光伏发电系统的电路和控制参数值,仿真并分析最大功率跟踪控制效果。 (2)记录实验数据 m2 表1当T=290K时S=1305W/时的测试数据 I(A)0 1.03 1.25 2.65 3.79 5.97 6.287.867.98 U(V)27.326.226252421.516 1.10 P(W)026.98632.566.2590.96128.35100.488.6460 m2 表2当T=287K时S=1305W/时的测试数据 I(A)01 1.5 2.6 3.93 6.0 6.688.048.12 U(V)27.626.225.825.123.921.620.510 P(W)026.238.765.2693.93129.6136.948.040 m2 表3当T=287K时S=1278W/时的测试数据 I(A)0 1.04 1.49 2.25 3.66 6.06 6.737.98.06 U(V)26.826.22625.424.321.913.40.50 P(W)027.24838.7457.1588.94132.7190.18 3.950

光伏串并联后的数学模型

1.光伏电池数学模型 单个光伏电池的I-U曲线是随光照强度,温度变化的非线性曲线,精确的等效电路模型如下: 由图1通过基尔霍夫定律可得 其中,等式右边第一项为恒流源,第二项为流过二极管的电流,第三项为并联电阻上的电流。R s 为光伏电池的内阻;R P 为光伏电池的并联电阻;I n为流过二极管的反向饱和漏电流;I SC为光伏电池的短路电流,在一定光照和温度下为一常量。 对公式求导

由公式可见,dI/dU <0 ,即在光伏电池的正常工作范围内,输出电流I随着输出电压U的增加而单调降低,具有一一对应关系,这是后面光伏电池组串并联特性分析的基础。 2.光伏电池的串并联 一般的光伏电池板东都是通过多块光伏电池以串并联的方式组成光伏阵列而工作。例如 假定光伏列阵各光伏电池的输出特性和内特性相同,则光伏阵列可看作:先由n个光伏电池并联成一组,然后再由相同特性的m个光伏电池组串联组成。 先考虑n个光伏并联的情况。并联的光伏电池具有相同的外工作电压,每一光伏电池的输出电流也是相同的,则总的输出电流为 由公式可见,多个光伏电池并联时的数学模型与单个光伏电池的相似,通过求导也可得出其总输出电流和输出电压的一一对应关系。

当m个光伏电池光伏电池串联而成光伏阵列时,由于每个光伏电池组具有相同的工作电流,则每组上的电压也相同。设总的输出电压为V,则得到总输出电流与输出电压的关系式 由此可见,光伏电池串并联后组成的光伏阵列也具有和单个光伏电池相似的输出数学模型,令D 则公式化为 一般的太阳能电池生产厂家都会给出一定温度下的开路电压,短路电流,最大功率点输出时的电流和电压等参数,则可以计算出I OD R1 R2 B等未知量。 多个太阳能电池板串联时,仍使用。 令V1=V+I0R1,则公式可化为 此公式是串并联光伏电池组的Matlab等效模型所依据的数学基础,其对应的串并联光伏电池组的等效电路图

光伏发电并网系统Simulink仿真实验

光伏发电并网系统Simulink仿真实验 报告电气工程学院 王安20 一.光伏发电系统基本原理与框架图 基本原理为:光伏阵列接受太阳能产生直流电流电压,同时电流电压受光照和温度的影响,而后经DC\DC(BOOST升压电路)转化将电压升高,再经DC\AC逆变产生交流电压供给负载使用。在这中间需要用MPPT使光伏电池始终工作在最大功率点处。 二.光伏电池的工作原理 光伏发电的能量转换器件是太阳能电池,又叫光伏电池。光伏电池发电的原理是光生伏打效应。光伏电池应用P-N结的光伏效应(Photovoltaic Effect)将来自太阳的光能转变为电能。当太阳光照射到太阳能电池上时,电池吸收光能,产生光电子-空穴对。在电池内电场的作用下,光生电子和空穴被分离,电池两端出现异号电荷的积累,即产生“光生电压”,这就是“光生伏打效应”。若在内建电场的两侧引出电极并接上负载,则负载就有“光生电流”流过,从而获得功率输出。这样,太阳的光能就变成了可以使用的电能。 三.光伏发电系统并网Simulink仿真 利用MTALAB中的simulink软件包,可以对10KW,380V光伏发电系统进行仿真,建立仿真模型如下: 输入参数如下: Simulink提供的子系统封装功能可以大大增强simulink系统模型框图的可读性封装子模块如下: 光伏电池封装模块: 最大功率点跟踪模块:

PWM模块如下: 并网端PWM内部PI模块: 运行结果如下图所示: 光伏电池输出电压如下: 光伏电池输出电流如下: 光伏电池输出功率波形如下: 并网(220V)成功后输出电流波形: 结果分析:通过对光伏发电的matlab-simulink仿真,得到了与理论曲线基本相同的电压、电流、功率曲线,但仍有不足之处,比如产生了许多谐波。通过这次的仿真实验,让我更加深刻认识了光伏发电的工作原理和过程,对光伏发电过程中可能出现的问题也有了一定的了解。虽然自己现在没办法解决,但随着自己学习的深入,以后会有办法解决的。另外,此次试验是和几个同学一起完成过程中也遇到了很多问题,最后集思广益解决了很多的问题,这让我也明白了合作的重要性。

基于MATLAB的光伏电池通用数学模型

本文由qpadm贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 第 25 卷第 4 期 2009 年 4 月 电 力 For personal use only in study and research; not for commercial use 科 学 与 For personal use only in study and research; not for commercial use 工 程 Vol.25, No.4 Apr., 2009 11 For personal use only in study and research; not for commercial use Electric Power Science and Engineering 基于 MATLAB 的光伏电池通用数学模型 王长江 For personal use only in study and research; not for commercial use (华北电力大学电气与电子工程学院,北京 102206)摘要:针对光伏电池输出特性具有强烈的非线性,根据太阳能电池的直流物理模型,利用 MATLAB 建立了太阳能光伏阵列通用的仿真模型。利用此模型,模拟任意环境、太阳辐射强度、电池板参数、电池板串并联方式下的光伏阵列 I-V 特性。模型内部参数经过优化,较好地反应了电池实际特性。模型带有最大功率点跟踪功能,能很好地实现光伏发电系统最佳工作点的跟踪。关键词:光伏电池;MPPT;I-V 特性中图分类号:TM615 文献标识码:A 引 言 1 光伏电池特性 随着化石能源的消耗,全球都在面临能源危机,太阳能依靠其清洁、分布广泛等特点成为当今发展速度居第二位的能源 [1] 。光伏阵列由多个单体太阳能电池进行串并联封装而成,是光伏发电的能源供给中心,其 I V 特性曲线随日照强度和太阳能电池温度变化,即 I=f ( V, S, T ) 。目前而厂家通常仅为用户提供标准测试的短路电流 I sc 、开路电压 Voc、最大功率点电流 I m 、最大功率点电压 V m 值,所以如何根据已有的标准测试数据来仿真光伏阵列在不同日照、温度下的 I V,P V 特性曲线,在光伏发电系统分析研究中显得至关重要 [2] 。文献 [ 3~4 ] 介绍了一些光伏发电相关的仿真模型,但这些模型都需要已知一些特定参数,使得分析研究有一些困难。文献 [ 5 ] 介绍了经优化的光伏电池模型,但不能任意改变原始参数。文献 [ 6 ] 给出了光伏电池的原理模型,但参数选用典型值,会造成较大的误差。本文考虑工程应用因素,基于太阳能电池的物理模型,建立了适用于任何条件下的工程用光伏电池仿真模型。

2太阳能电池的数学模型

2太阳能电池的数学模型 太阳能电池的数学模型是太阳能电池模拟器系统设计的基础,本章从太阳能电池的工作原理、等效电路出发,详细介绍了太阳能电池数学模型的建模过程,给出了太阳能电池的数学模型,并且对该数学模型进行了仿真,证明了该数学模型的正确性,为下文提出六折线模型拟合太阳能电池的I-V特性曲线奠定了基础。 2.1太阳能电池的工作原理 通常所说的太阳能电池指的是太阳能电池单体,太阳能电池单体是一种能够利用光伏效应将太阳能直接转换为电能的半导体装置,它的转换效率一般可达百分之十五左右。它通常是由大量的PN结串联而成的,整体结构一般是由一个P型半导体作为底座,在上面刻入N 型薄膜,并且通过金属导线把PN结的两端引出。太阳能电池单体是最小的光电转换单位,输出电压和输电电流都很小,一般不可以直接作为电源使用。通常都是将一定数量太阳能电池单体通过串联构成太阳能电池组件来使用。太阳能电池组件的输出电压一般达到24V左右,24V的电压可用来为蓄电池充电,能够应用在各个系统和领域中。当需要进行大功率光伏发电系统时,可以把这些太阳能电池组件通过一定的形式串联或并联起来,形成太阳能电池阵列。太阳能电池阵列能够产生较大的功率,可以用在各个领域中。 太阳能电池发电的原理主要是半导体的光生伏特效应,也称为光伏效应。硅半导体结构如图2-1 a)所示,在图中,硅原子用正电荷来表示,硅原子四周的四个电子用图中的负电荷来表示。当向晶体硅中掺入其他的杂质,如硼、磷等就会形成一个个很小的PN结。当向晶体中掺入硼时,含有杂质硼的晶体硅的内部电子排列如图2-1 (b)所示。图中,硅原子用正电荷来表示,硅原子四周的四个电子用负电荷表示,而图中黄色的就表示掺入的硼原子,由于硼原子的外部只有三个电子,就会吸引硅原子的一个电子过来,这样就会产生如图中蓝色的空穴,这个空穴又会因为没有足够的电子而去吸引别的电子,这样就形成了P ( positive)型半导体。 同样的原理,如图2-1 (c),当掺入的杂质为磷时,因为磷原子的周围有五个电子,磷原子与硅原子结合时就会多出来一个电子,多出来的这一个电子通常在晶体内部是很活跃的,这样就形成了N ( negative)型半导体。 如上面的分析,P型半导体内部含有多余的电子,而同时N型半导体内部含有多余的空穴,当这两种半导体材料结合在一起时,就会在交界处的区域内形成一个特殊的薄层,这个薄层就是PN结。PN结靠近P型半导体的这侧带负电,靠近N型半导体的这侧带正电。这是因为P型半导体内部含有多余的空穴,而N型半导体内部含有多余的电子,当二者结合在一起时就会出现电子和空穴的浓度差,这样就会出现P型半导体的空穴向N型半导体的这侧扩散,而N型半导体的电子向P型半导体这侧扩散,扩散的结果是P型半导体因为

PSIM 光伏电池板模型的使用介绍

PSIM9.0学习笔记1——光伏电池板模型的使用 今天看了看PSIM9.0里面的光伏板模型,顺带测试了一下,感觉非常简单实用,以后要做光伏这方面研究的童鞋就不用纠结怎么建光伏电池板的模型了,直接拿来用就可以了。1.光伏板模型就在PSIM9.0的elements-power-renewable energy里面,有两种,一种是物理模型的,一种是功能模块的,物理模型更接近于真实的板子,有两个输入,分别对应照度和温度,正负输出端,还有一个可以观测最大功率的接口,如下图所示 功能模块顾名思义就是只用来实现光伏板电池功能的模块了,只有正负端输出,只需要给定他的开路电压,短路电流,最大功率点电压和电流即可,那么在不要看光照温度影响的条件下可以简单的来用,如下图所示 我个人觉得要研究光伏电池特性,最大功率跟踪,以及更实际一点儿的研究的时候就用物理模块,而光伏板只是最为一个输入电压来看的话那就用功能模块应该就能满足了……当然我还没往后做,仅仅是感觉哈…… 同时PSIM9.0里面还有一个计算光伏板物理参数的工具,叫solar module,可以通过电池板的参数,也就是一般电池板所提供的最大功率,开路电压那些参数,计算出那些光伏板等效电路里面的诸如串联电阻、饱和电流,温度系数之类的值,同时能够看到该参数下的电流电压和功率电压关系曲线,方便我们使用物理模块时对参数进行设置,如上图所示 那么基于以上,我把我用的电池板参数填上去,用物理模块测试,同时光强由400-1000每200变化一次做了一下仿真,以下就是测试电路和测试波形。 输出波形 以上就是我刚对PSIM9.0里面的光伏板做的学习,当然只是很简单的学习并且用了一下,各位大侠们看了之后不要鄙视哈……如果有有错的或者理解不对的地方还请各位大侠帮忙指正!~~ 后续继续做MPPT实验和逆变器的实验,慢慢做,然后再发上来大家一起讨论学习哈

光伏电池的仿真及其模型的应用研究

光伏电池的仿真及其模型的应用研究 Study on Simulation of Solar Cell and Its Application 陶海亮夏扬张宁扬州大学能源与动力工程学院,江苏扬州225127 不论是太阳能发电系统还是风光互补发电系统,熟悉光伏电池的输出特性是设计新能源发电系统的基础和前提。根据光伏电池输出特性关系式,利用MATLAB的Simulink模块搭建了参数和工况可调的光伏电池模型,并运用该模型建立了具有最大功率跟踪(MPPT)功能的光伏发电系统的仿真模型,通过仿真结果可以更好地把握光伏电池的特性,为发电系统的设计和优化打好基础。 光伏电池;数学模型;仿真;最大功率跟踪

当电池

率比较

@@[1]苏建徽,于世杰,赵为.硅太阳电池工程用数学模型[J].太阳能学报, 2001,22(4)@@[2]王阳元.绿色微纳电子学[M].北京:科学出版社,2010@@[3]林渭勋.现代电力电子技术[M]北京:机械工业出版社,2007 @@[4]李炜,朱新坚.光伏系统最大功率点跟踪控制仿真模型[J].计算机仿 真,2006,23(6) 2011-09-21 @@[1]黄柯棣,张金槐,李剑川,等.系统仿真技术[M].长沙:国防科技大学 出版社,1998 @@[2]Joseph Nalepka,Thomas Dube,Glenn Williams et al. Transi tioning to PC-Based Simulation-One Perspective[R],2005,A IAA-2002-4863@@[3]The Mathworks Inc. Target Language Compiler Reference Guide[M].2004 @@[4]刘德贵,费景高.动力学系统数字仿真算法[M].北京:科学出版社, 2000 2011-08-25

光伏电池贴附模型

太阳能小屋设计 摘要 介绍了浙江省慈溪市天和家园住宅小区43kW.屋顶太阳能并网光伏发电系统的设计思路,以及系统的具体功能与配置,提出了设计中需要注意的问题及具体的解决方案。 包括:①光伏系统提供公用设施用电,在阴雨天时使用城市电网为公用负荷供电; ②光伏系统在小区内局部并网.不考虑将电能输入上级城市电网; ③太阳能电池组件方阵倾角确定为3O。,选用常州天合光能有限公司生产的TSM一175D型高效单晶硅电池组件。分析了组件分组串接原则,确定了布置方案;( 并网逆变器选择德国艾思玛(SMA)公司SMC6o(》0rIL型无变压器集中式逆变器和SB5o0仇1.型无变压器多组串逆变器;( 地下车库照明负荷曲线与日照曲线接近.因此选择地下车库照明和智能化设备用电为光伏系统负荷;⑥简介了防直击雷和防感应雷措施.以及选择电缆和设计支架时应考虑的因素;⑦监控系统选用SMA的Sunny Boy Control Plus产品。 关键词住宅小区并网光伏发电太阳能电池组件多组串逆变器1 项目简介 1.1天和家园住宅小区概况 浙江省慈溪市天和家园住宅小区占地面积64 788m2,总建筑面积13.4万m2。小区住宅整体布置方式为南北朝向,南北均无高大建筑物,无遮阴情况,日照充分。小区建筑住宅以多层为主,屋顶呈人字形,楼高22.2—22.86m。计划在天和家园2O号楼屋顶装设太阳能电池板,建住宅小区太阳能光伏发电示范电站。2O号楼目前处于在建状态,-屋顶可利用面积有:西侧平台,面积87m ;斜屋面,~7共7块,总面积(斜面)113.9m。;露台,厶一厶共5个,总面积233.44m 。 1-2设计要求 a.该项目有一定的公众影响力。美观与否非常重要,要求光伏电池组件的安装应保持屋顶的风格和美观,并与小区及周围环境相协调。 b.该光伏电站主要提供天和家园小区公用设施用电,包括:地下车库西区照明灯35.2kW,地下车库东区照明.灯21.4kW,智能化设备2kW等。要求在阴雨天气时,’应能使用城市电网为公用负荷供电。 c.光伏电站建设费用计入小区开发成本。建成后随小区移交物业管理,要求节省投资。维护管理方便。 2 光伏发电系统运行方式的选择 太阳能光伏发电系统的运行方式可分为两类。即:独立运行和并网运行[1]。 独立运行的光伏发电系统需要有蓄电池作为储能装置,主要用于无电网的边远地区。由于必须有蓄电池储能装置,所以整个系统的造价很高。 在有公共电网的地区。光伏发电系统一般与电网连接,即采用并网运行方式。并网型光伏发电系统的优点是可以省去蓄电池,而将电网作为自己的储能单元。由于蓄电池在存储和释放电能的过程中,伴随着能量的损失,且蓄电池的使用寿命通常仅为5~8年,报废的蓄电池又将对环境造成污染,所以,省去蓄电池后的光伏系统不仅可大幅度降低造价,还具有更高的发电效率和更好的环保性能,且维护简单、方便。在建筑密度很大的城市住宅小区中,能够安装太阳能电池板的面积有限,住宅小区屋顶光伏发电系统的容量通常远远小于其变压器的容量,即光伏系统的发电功率始终小于小区负载的功率,没有剩余电能送入上级城市电网[2】。 综合考虑,该光伏发电系统拟采用并网运行方式.并在小区内局部并网,不考虑将电能输入上级城市电网,系统原理图如图l所示。采取小区内局部并网3 系统设计

光伏电池的建模与仿真

龙源期刊网 https://www.doczj.com/doc/af1386688.html, 光伏电池的建模与仿真 作者:吴洋张嫒嫒侯奎 来源:《科技视界》2017年第09期 【摘要】本文在光伏电池的等效电路模型的基础之上,推导了光伏电池的数学模型,在 工程允许条件下,简化数学模型,建立了光伏电池的简化模型,基于MATLAB/Simulink仿真平台,搭建光伏电池的仿真模型,完成了在不光照条件和不同温度条件下的仿真实验,结果验证了光伏电池简化数学模型正确性和有效性。 【关键词】光伏电池;数学模型;Simulink仿真 【Abstract】Based on the equivalent circuit model of photovoltaic cells, this paper deduces the mathematical model of photovoltaic cells, simplifies the mathematical model under engineering allowable conditions, establishes a simplified model of photovoltaic cells. Based on MATLAB/Simulink simulation platform, The simulation model of the battery is completed and the simulation experiment under the condition of non-illumination and different temperature is completed. The results verify the correctness and validity of the simplified mathematical model of the photovoltaic cell. 【Key words】Photovoltaic cells; Mathematical model; Simulink simulation 0 前言 随着全球的能源问题的日益严峻,人们必须走一条可持续发展的道路[1]。一方面保护环 境使其不被破坏,避免温室效益带来的灾难,而另一方面又要满足人类对化石能源的需求,这俨然已经成为了摆在人们面前的一道难题,因此,大力研究和发展新型清洁能源和可再生能源成为了当今世界能源研究的热门,也是能源发展的必经之路。而太阳能光伏发电具有发电过程简单、没有机械转动部件、不消耗燃料,不排放包括温室气体在内的任何物质、无噪声和无污染的优点。因此,光伏发电成为了国内外的研究热点。其中光伏电池作为太阳能光伏发电的核心,研究光电池的建模具有重要的意义。 1 光伏电池的等效电路模型 通常基于光伏电池的简化电路模型来推导其数学模型,并依照其数学模型搭建仿真模型,光伏电池的等效电路如图1所示。其中Iph为光生电流。而光伏电池面积大小和太阳光的辐照度会影响着Iph值。但当光照强度为零的情况下,光伏电池类似于一个二极管。Id为暗电流。光伏电池输出电流为IL,Voc为开路电压,但需注意的是,开路电压与光照强度有关而与电池面积无关。RL为负载电阻,Rs为等效串联电阻,Rsh为等效旁路电阻。它们均为光伏电池固有内阻,在理想光伏电池参数的计算时可以忽略不计。

太阳能电池建模matlab

1.太阳能电池建模 1.1太阳能电池的等效电路图 1.2太阳能电池模型仿真图 sc I 为短路电流,oc U 为开路电压,mp I 、mp U 为最大功率点电流和电压,则当太阳能电池电 压为U ,其对应点电流为I :

21=1-(1))r oc U c U sc I I c e I -+?( 其中 21(1)m p oc U m p c U sc I c e I - =-, 2( 1)ln(1)m p m p oc sc U I c U I =--, ()r ref s U U T T R I β=+-+?, ()()ref sc ref I S T T I S S α?=-+-。 ref S 、ref T —太阳辐射和太阳能电池温度参考值,一般取为1kW/m 2 、25℃;α—在参考 日照下,电流变化温度系数(A mps /℃);β—在参考温度下,电压变化温度系数(V/℃);s R —太阳能电池的串联电阻(Ω),它由下面式子决定: ref m ref oc ref m ref sc ref m ref p ref s p s I V V I I A N N R N N R ,,,,,,/1ln ???? ??+-??? ? ??-== , 3 -+-= Lref cref Isc s ocref V cref ref I T N V T A oc μεμ。 其中,ε为材料带能,eV 12.1=ε。 r e f m I ,,ref m V ,:参考条件下,光伏阵列最大功率点电流跟电压; r e f sc I ,,ref oc V ,:参考条件下,光伏阵列短路电流与开路电压; sc I μ,oc V μ:参考条件下,光伏阵列短路电流与开路电压温度系数; s N :光伏阵列各模块的单元串联数; N :光伏阵列模块的串联数; p N :光伏阵列模块的并联数; cref T :参考条件下,光伏电池温度,一般设定为25℃。

光伏发电并网系统Simulink仿真实验报告

光伏发电并网系统Simulink仿真实验报告 电气工程学院 王安 20 一.光伏发电系统基本原理与框架图 基本原理为:光伏阵列接受太阳能产生直流电流电压,同时电流电压受光照和温度的影响,而后经DC\DC(BOOST升压电路)转化将电压升高,再经DC\AC 逆变产生交流电压供给负载使用。在这中间需要用MPPT使光伏电池始终工作在最大功率点处。 二.光伏电池的工作原理 光伏发电的能量转换器件是太阳能电池,又叫光伏电池。光伏电池发电的原理是光生伏打效应。光伏电池应用P-N结的光伏效应(Photovoltaic Effect)将来自太阳的光能转变为电能。当太阳光照射到太阳能电池上时,电池吸收光能,产生光电子-空穴对。在电池内电场的作用下,光生电子和空穴被分离,电池两端出现异号电荷的积累,即产生“光生电压”,这就是“光生伏打效应”。若在内建电场的两侧引出电极并接上负载,则负载就有“光生电流”流过,从而获得功率输出。这样,太阳的光能就变成了可以使用的电能。 三.光伏发电系统并网Simulink仿真 利用MTALAB中的simulink软件包,可以对10KW,380V光伏发电系统进行仿真,建立仿真模型如下: 输入参数如下: Simulink提供的子系统封装功能可以大大增强simulink系统模型框图的可读性封装子模块如下: 光伏电池封装模块:

最大功率点跟踪模块: PWM模块如下: 并网端PWM内部PI模块: 运行结果如下图所示: 光伏电池输出电压如下: 光伏电池输出电流如下: 光伏电池输出功率波形如下: 并网(220V)成功后输出电流波形: 结果分析:通过对光伏发电的matlab-simulink仿真,得到了与理论曲线基本相同的电压、电流、功率曲线,但仍有不足之处,比如产生了许多谐波。通过这次的仿真实验,让我更加深刻认识了光伏发电的工作原理和过程,对光伏发电过程中可能出现的问题也有了一定的了解。虽然自己现在没办法解决,但随着自己学习的深入,以后会有办法解决的。另外,此次试验是和几个同学一起完成过程中也遇到了很多问题,最后集思广益解决了很多的

基于Matlab的光伏电池板的建模与仿真

基于Matlab的光伏电池板的建模与仿真 【摘要】对光伏电池板的工作原理进行简要分析并给出了其等效电路,建立了光伏池板的数学模型,在matlab/simulink仿真环境下搭建新的光伏池板的仿真模型。基于该新仿真模型模拟了不同太阳光照强度、不同环境温度下的电流—电压(I-V)、功率—电压(P-V)特性曲线。仿真结果与理论上的I-V、P-V曲线完全吻合,证明了新仿真模型的合理性与实用性。对于光伏电池板在现实中的应用具有重要实际意义并对利用恒压法实现光伏电池板的最大功率点跟踪提供理论依据。 【关键词】光伏;电池板;数学模型;仿真 随着人类社会的发展与进步,全球对能源的需求量越来越大,然而石油、煤炭等能源都是非可再生的,并且大量的化石燃料的使用给人类的生存环境造成的巨大的损耗,如全球变暖、环境污染。因此寻求新的清洁能源以代替上述非可再生能源迫在眉睫,近年来,太阳能作为取之不尽,用之不竭且清洁无污染的能源得到了广泛关注与显现了很好的发展前景[1]。光伏电池板是光伏并网系统中关键部件,但是光伏电池板造价昂贵,对太阳光照强度、环境温度、气候条件等外界条件依赖性较强,而光伏池板的I-V、P-V曲线是随着光照强度、环境温度变化并且此变化时非线性的,所以建立光伏池板的数学模型并在Matlab/simulink 仿真环境下搭建仿真模型,模拟电池板I-V、P-V曲线有重要的实际意义,对于光伏电池板的最大功率点跟踪提供理论依据。 1.光伏电池板的工作原理与等效电路 光伏电池板是利用半导体材料的光伏效应的原理制造的,光伏效应就是半导体在接受光照后,激发出电子空穴对分离从而产生电动势的一种现象。光伏池板是将太阳辐射能转换为电能的器件,当光照射在P-N结时,半导体吸收光能后其内部的原子获得光能后产生电子空穴对,并发生漂移运动而分离,电子进入N 区,空穴进入P区,从而在P-N结附近形成电场,N区因电子带负点,P区因空穴带正电。 由光伏池板的工作原理我们可以得出,光伏电池板实际上是一块面积比较的二极管。在光照不变的情况下,光生电流不变,可以看成恒流源。为了方便等效电路的建立,我们做如下等效:用串联电阻Rs等效池板材料呈现的电阻特性(通常为几Ω)、Cj表示PN结本身的电容特性,用Rsh表示电池板的并联电阻(数量级在103Ω),综上所述光伏池板的等效电路如图1.1所示: 图1.1 光伏池板的等效电路 图中,IL为光生电流(恒流源),I为太阳能电池板输出电流(A),U为电池板的输出电压(V),Id是流过二极管的电流(A),I0为反向饱和电流,Ish 为太阳能电池板的漏电流(A)。

光伏电池simulink仿真 毕设

摘要 太阳能作为一种新兴的绿色能源,以其取之不竭、用之不尽、无污染等优点,受到人们越来越多的重视。光伏发电是充分利用太阳能的一种有效方式之一。由于目前光伏电池板的价格比较高,转换效率比较低,为了降低系统造价和有效地利用太阳能,该论文光伏发电进行最大功率跟踪显得尤为必要。本文针对如何提高太阳能光伏发电系统的转换效率,从建模仿真方面对具有最大功率点跟踪的控制器进行了研究,提出了一种新的最大功率点跟踪方案。 本文主要任务如下: 首先,本文介绍了论文的相关研究背景、选题意义、以及论文的主要工作。 其次,分析了太阳能电池板的工作原理,利用MATLAB/simulink模块对不同环境及不同日照强度下的太阳能电池输出特性进行了建模、仿真。 再次,介绍并分析了最大功率点跟踪原理,以及常用的几种跟踪方法。介绍了三种常用的DC/DC变换器的工作原理。 紧接着,对干扰观察法和电导增量法进行了建模和仿真,针对电导增量法提出了一种适合车用的改进方案。仿真结果表明新的方案在一定条件下可以显著减小最大功率跟踪系统响应时间。 而后,用CATIA软件对第一代太阳能车进行了设计,建立了蓄电池驱动电机和蓄电池充电系统电路。 最后,针对充电系统的电流、电压开发了一个简单的检测分析软件。关键词:太阳能;最大功率跟踪; MATLAB仿真; DC/DC变换器

Abstract Solar power is a new green power. It is regarded as clean, pollution-free, and inexhaustible. Photovoltaic conversion is an effective way to use solar power. Because the price of photovoltaic cell is expensive and conversion effi-ciency is low presently, the Maximum Power Point Tracking is absolutely ne-cessary, in order to decrease system cost and increase efficiency. Aims at how to increase the efficiency of conversion for the photovoltaic energy system, this paper researches the solar controller with maximum power point tracking (MPPT) and presents a novel MPPT method from the simulation. The main work of this paper is as follows: First, introduces the background, significance, work. Second, analyzing the principle of the solar panel and using the MATLAB software to build the simulation of the output characteristic for the solar cell under different temperature and isolation. Third, introduces the MPPT principle, comparing several common MPPT methods and find out their advantage and disadvantage. Then analysis three DC/DC converters?principles. Forth, using the MATLAB software simulink toolbox to build the simula-tion of the Perturbation And Observation method, Incremental Conductance method and improved the Incremental Conductance method. The result of the simulation demonstrates that the new strategy can reduce the responding time of the system. Fifth,using the CATIA software to build the first generation solar car 3D

数值建模与仿真-光伏电池

开发新能源和可再生清洁能源是21世纪世界经济发展中最具有决定 性影响的五项技术领域之一。充分开发利用太阳能是世界各国政府可持续 发展的能源战略决策,其中太阳能发电则最受瞩目。由于目前光伏电池板 转换效率比较低,为了降低系统造价和有效地利用太阳能,该论文对光伏 发电进行最大功率跟踪显得尤为必要。 本文针对如何提高太阳能光伏发电系统的转换效率,分别从工程数学 模型、matlab建模仿真方面对外界环境影响因素就行分析,同时对具有最 大功率点跟踪(MPPT)的控制器的原理进行了研究,并分析比较各测量方 法的优缺点。 Keywords: 太阳能发电;转换效率;MPPT;matlab建模仿真 Abstract The development of new energy and renewable clean energy is one of the five technologies have the most decisive influence in the development of the world economy in twenty-first Century. The full development and utilization of solar energy is the energy strategy of the governments of the world sustainable development, where the solar power generation is the most popular. Due to the current solar photovoltaic conversion efficiency is low, in order to reduce the cost of system and the effective use of solar energy, the pho- tovoltaic maximum power point tracking is particularly necessary. This article base on how to improve the conversion efficiency of solar photovoltaic power generation system, from the aspects of MATLAB modeling and simulation calculation of measurement results

太阳能电池数学模型的仿真与研究

太阳能电池数学模型的仿真与研究 发表时间:2019-10-24T14:44:41.537Z 来源:《基层建设》2019年第22期作者:朱志文 [导读] 摘要:近年来,我国对电能的需求不断增加,太阳能电池的应用也越来越广泛。 海南英利新能源有限公司海南省海口市 570100 摘要:近年来,我国对电能的需求不断增加,太阳能电池的应用也越来越广泛。太阳能电池是一种通过光电转换效应直接把太阳光转化成电能的装置,现在得到了人们越来越多的关注和应用。但是,由于太阳能电池的数学模型是非线性超越方程,人们求解不方便。针对这一问题,本文提出了一种不需要迭代算法的太阳能电池数学模型的求解方法,并通过实际仿真实验对本文算法的有效性进行了验证。结果表明,本文算法求解直接、有效,能满足工程求解的精度要求。 关键词:光伏电池;数学模型;输出特性;光照强度;温度 引言 太阳能电池的输出特性不仅与其内部参数有关,而且随外界温度和光照的改变而实时变化,因此建立通用的太阳能电池模型,研究光照强度和环境温度对太阳能电池输出特性的影响很有必要;此外,精确的光伏电池工程数学模型有利于对整个光伏发电系统进行优化设计,为微网的进一步研究提供一定的参考。 1电池样品的外观检查 电池上表面颜色应均匀一致,无机械损伤,焊点无氧化斑。电池上电极、电池底电极不应脱落。减反射膜不应脱落或变色。用游标卡尺及千分尺测量电池样品的外形尺寸及厚度。环境实验和光老炼实验前后均需要进行外观检查,并做相应的记录。 2太阳能电池数学模型及求解 由于太阳能电池具有半导体二极管特性,并且其输出电流I是方向相反的光生电流Iph和暗电流Id的叠加,因此其等效电路如图1所示(汪石农,陈其工,高文根,太阳电池最大功率点参数求解方法研究:太阳能学报,2018)。等效电路对应的太阳能电池I-V特性表达式如式(1)所示: 式中,V是太阳能电池的输出电压;Io是半导体二极管的反向饱和电流;q是电子电荷量;n是太阳能电池的理想因数;Ns是串联电池片个数;k是玻尔兹曼常数;T是太阳能电池温度;Rs是串行电阻,用来表征电极电阻及硅和电极表面之间的接触电阻;Rsh是并行电阻,用来表征PN结的漏电流。 图1太阳能电池的等效电路模型 从式(1)可以看出,等式两边都含有I,并且等式右边含有较为复杂的指数函数,因此式(1)为典型的非线性超越方程。目前,式(1)的求解大多数是通过牛顿迭代法或者引入LambertW函数的数值求解方法,其求解过程都较为复杂、不好理解。另外,图1中虚线框里面的电路为太阳能电池的理想电路模型,其中Iid和Vid是理想模型的输出电流和输出电压。则Iid和Vid之间的特性表达式如式(2)所示: 可以看出,式(2)仅是一般的指数方程,其求解通过一般的数学软件就可完成。另外,对图1应用基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL),还可以写出Iid、Vid和I、V之间的关系,如式(3)和(4)所示: 因此,对太阳能电池数学模型的求解,可以先用数学软件对式(2)进行求解,得出Iid和Vid之间的关系曲线,然后通过式(3)和(4)就可以得到I和V之间的关系曲线,从而达到对太阳能电池数学模型求解的目的。这种求解方法避开了对式(1)的直接求解,也就避开了复杂的牛顿迭代算法或LambertW函数的数值求解。 3考虑光强和温度影响的工程模型 太阳能电池I-V特性曲线与日射强度和电池温度有关。通常地面上日射强度S的变化范围为(0~1000)W/m2,太阳电池的温度变化较大,可能从(10~70)℃。按标准,取Sref=1000W/m2,Tref=25℃为参考日射强度和参考电池温度。当日射强度及电池温度S (W/m2)、T(℃)不是参考日射强度和参考电池温度时,必须考虑环境温度条件对太阳电池特性的影响。设T为在任意日射强度S及任意 环境温度Tair下的太阳电池温度,根据大量实验数据拟合后,下式被证明具有工程意义上足够的精度 (5)式中K可由实验测定之T(S)直线的斜率确定。对于常见的太阳电池阵列支架,可取 通过对参考日照强度和参考电池温度下I-V特性曲线上任意点(V,I)的移动,得到新日照强度和新电池温度下的I-V特性曲线上任意点(V′,I′)

带MPPT功能的光伏电池建模

光伏电池的仿真建模 1、simulink模型 图1 光伏电池铭牌 图2 光伏阵列simulink仿真封装模型 如图2,“T”代表外界环境温度,“S”代表太阳辐射强度,“Vpv”代表光伏电池板的实际工作电压,“Iout”代表光伏电池板的实际工作电流,“Vm”代表光伏电池板在最大功率点时的输出电压。

图3 光伏阵列仿真模型用户参数设置界面 如图3所示,根据系统是否带有MPPT功能,输出电流可以是最大功率点时的Im(此时Iout即为Im)或者是对应Vpv的实际电流Iout。 2、光伏电池的特性曲线 仿真所用参数如图1所示,不进行最大功率跟踪(图3“最大功率跟踪”前 面的对号去掉)。

图4 光伏电池特性仿真模型 0.0.0.0.1.1.光伏电池板的输出电压(V ) 光伏电池板的输出电流(A ) 图5 温度变化时的光伏电池I-V 变化曲线

0.0.0.0.1.1.光伏电池板的输出电压(V ) 光伏电池板的输出电流(A ) 图6 辐射强度变化时的光伏电池I-V 变化曲线 光伏电池板的输出电压(V ) 光伏电池板的输出功率(W ) 图7 温度变化时的光伏电池P-V 变化曲线

光伏电池板的输出电压(V ) 光伏电池板的输出功率(W ) 图8 辐射强度变化时的光伏电池P-V 变化曲线 3、带有MPPT 功能的光伏电池仿真 图9 T 、S 变化时的光伏电池仿真 如图9所示,通过“Singal ”模块实现不同温度T1和T2、不同辐射强度S1和S2的选择。本次仿真取值T1 =25~30℃,T2=20~25℃,S1=800~1000w/m 2,S2=600~800w/m 2,

光伏电池模型

一、 光子在光伏电池中激发的电流I SC )]([ ref TMP ref ref SC SC T T J G G I I -+= SCref I ref T ref G TMP J G T 标准测试环境下光伏电池的短路电流 标准测试环境温度,取 25 ℃ 环境温度为ref T 时的辐照度,取1000 W/m 2; I SC 的温度系 数 辐照度, W/m 2 本体温度, ℃ 二、通过 pn 结的总扩散电流 I d ]1)[exp(0-+=T S d nV IR V I I I 0 V T n 二极管饱和电流,A 热势差,V 二极管理想因子 V T 表达式为: C T N q K T V )273 (+= K q N C 玻尔兹曼常数,1.38×10-23J/K 单位电荷,1.6×10-19C 光伏组件中光伏电池的数量,个

则 }1])273 () ({e x p [ *0-++=T nK N IR V q I I C S d 三、通过电阻R sh 的电流I sh sh S sh R IR V I += 最后光伏电池理论计算模型为 sh S T S SC sh d SC R IR V nV IR V I I I I I I +- -+-=--=}1]{exp[*0 (1) A 、工程计算 工程计算方法以出厂参数为依据通过对上式作两个近似假设,即并联电阻Rsh 很大,串联电阻Rs 很小,将式(1)改写成 )]1)(exp( 1[21--=OC SC V C V C I I 其中参数C1、C2的求解利用最大功率点 V=Vm ,I=Im 和开路状态I=0,V=V oc 两个条件,及 1)exp(2>>OC V C V ,简化计算过程,得: OC m U U SC m I I I C ) (1-= 12)]1)[ln(1( ---=SC m OC m I I U U C 注:光伏电池的工程计算模型是描述标准测试条件下的特性曲线,一般工况需加补偿系数。 B 、理论模型计算方法 理论模型参数计算方法以上图为依据,对式(1)的参数不做理想假设,因此需要求出 I 0,R S ,R sh 三个未知参数的值。由式(1)可知三个未知参数无法用已知参数求解,因此采用迭代的算法。

相关主题
文本预览
相关文档 最新文档