当前位置:文档之家› 切线长定理和三角形的内切圆练习题

切线长定理和三角形的内切圆练习题

切线长定理和三角形的内切圆练习题
切线长定理和三角形的内切圆练习题

《切线长定理及三角形的内切圆》导学案

https://www.doczj.com/doc/6d8747053.html, 《切线长定理及三角形的内切圆》导学案 广元市虎跳中学数学组 学习目标 1、了解切线长的概念.了解三角形的内切圆、三角形的内心等概念。 2、理解切线长定理,并能熟练运用切线长定理进行解题和证明(重点) 3、会作已知三角形的内切圆(重点) 教学流程 一、 知识准备: 1、 只限于演的有几种位置关系?分贝是那几种? 2、 判断直线与圆相切有几种方法?如何判断直线与圆相切? 3、 角平分线的判定和性质是什么? 二、 引入课题 过圆上一点可以作圆的一条切线,那么过圆外一点可以作圆的几条切线呢?从而引入课题。 三、 自学新知: 1自学教材自学教材P 96---P 98,思考下列问题 (1)通过自学教材P98页的探究你知道什么是切线长吗?切线长和切线有区别吗?区别在哪里? (2)通过自学教材P98页的探究可得切线长定理:从圆外一点可以引圆的两条切线,它们的_________相等,这一点和圆心的连线平分__________________. (3))通过自学教材P98页的探究你知道如何证明切线长定理吗? 如图,已知PA 、PB 是⊙O 的两条切线. 求证:PA=PB ,∠OPA=∠OPB . 证明:__________________ ____________________________________ ____________________________________ ____________________________________ ____________________________________ ____________________________________ (4)若PO 与圆相分别交于C 、D,连接AB 于PO 交于点E,图中有哪些相等的线段?有哪些相等的角,有哪些相等的弧?有哪些互相垂直的线段?有哪些全等的三角形。 (5)__________________叫做三角形的内切圆,三角形叫做圆的__________三角形,内切圆的圆心是__________的交点,内切圆的圆心叫做三角形的__________。 四.当堂检测 1、过圆外一点作圆的切线,这点和 ,叫做这点到圆的切线长。 2、从圆外一点可以引圆的两条切线,它们的_________相等,这一点和圆心的连线平分__________________. 3、与三角形各边都 ____________ 的圆叫三角形的内切圆;

切线长定理典型练习题

切线长定理典型练习题 一、填空题 1、如图AB 为⊙O 的直径,CA 切⊙O 于点A ,CD=1cm ,DB=3cm ,则AB=______cm 。 2、已知三角形的三边分别为 3、 4、5,则这个三角形的内切圆半径是 。 3、三角形的周长是12,面积是18,那么这个三角形的内切圆半径是 。 二、选择题 1、△ABC 内接于圆O ,AD ⊥BC 于D 交⊙O 于E ,若BD=8cm , CD=4cm ,DE=2cm ,则△ABC 的面积等于( ) A.248cm B.296cm C.2108cm D.232cm 2、正方形的外接圆与内切圆的周长比为( ) A. 1:2 B. 2:1 C. 4:1 D. 3:1 3、在三角形内,与三角形三条边距离相等的点,是这个三角形的 ( ) A.三条中线的交点, B.三条角平分线的交点, C.三条高的交点, D.三边的垂直平分线的交点。 4、△ABC 中,内切圆I 和边BC 、CA 、AB 分别相切于点D 、E 、F ,则∠FDE 与∠A 的关系 是 ( ) A. ∠FDE=21∠A B . ∠FDE+21∠A=180° C . ∠FDE+2 1∠A=90° D . 无法确定 三、解答题: 1、如图,AB 、CD 分别与半圆O 切于点A 、D ,BC 切⊙O 于点E ,若AB =4,CD =9,求⊙O 的半径。 2、等腰三角形的腰长为13cm ,底边长为10 cm ,求它的内切圆的半径。 3、如图,在△ABC 中,∠C=90°,以BC 上一点O 为圆心,以OB 为半径的圆交AB 于点M ,交BC 于点N 。 (1)求证:B A ·BM=BC ·BN ; (2)如果CM 是⊙O 的切线,N 为OC 的中点。当AC=3时,求AB 的值。

《切线性质与判定》练习题

《切线性质与判定》练习题 一.选择题(共12小题) 1.如图,AB是⊙O的弦,PA是⊙O的切线,若∠PAB=40°,则∠AOB=() A.80° B.60° C.40° D.20° 2.如图,AB、AC是⊙O的两条弦,∠A=35°,过C点的切线与OB的延长线交于点D,则∠D的度数为() A.20° B.30° C.35° D.40° 第1题图第2题图第3题图 3.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于()A.20° B.30° C.40° D.50° 4.如图,PA、PB切⊙O于A、B两点,∠APB=80°,C是⊙O上不同于A、B的任一点,则∠ACB等于() A.80° B.50°或130° C.100° D.40° 第4题图第5题图第6题图 5.如图,在平面直角坐标系中,点在第一象限,⊙P与x轴相切于点Q,与y轴交于M(2,0),N(0,8)两点,则点P的坐标是() A.(5,3) B.(3,5)C.(5,4)D.(4,5) 6.如图,PC是⊙O的切线,切点为C,割线PAB过圆心O,交⊙O于点A、B,PC=2,PA=1,则PB的长为() A.5 B.4 C.3 D.2 7.如图,在同心圆中,大圆的弦AB切小圆于点C,AB=8,则圆环的面积是() A.8 B.16 C.16π D.8π 8.如图,PA、PB、CD是⊙O的切线,切点分别是A、B、E,CD分别交PA、PB于C、D两点,若∠APB=60°,则∠COD的度数() A.50° B.60° C.70° D.75° 9.如图,AB是⊙O的直径,下列条件中不能判定直线AT是⊙O的切线的是() A.AB=4,AT=3,BT=5 B.∠B=45°,AB=A T C.∠B=55°,∠TAC=55° D.∠A TC=∠B 第7题图第8题图第9题图 11.如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于点E,连接AD,则下列结论正确的个数是() ①AD⊥BC;②∠EDA=∠B;③OA=AC;④DE是⊙O的切线.

切线长定理—知识讲解

切线长定理—知识讲解 【学习目标】 1.了解切线长定义,掌握切线长定理; 2.了解圆外切四边形定义及性质; 3. 利用切线长定理解决相关的计算和证明. 【要点梳理】 要点一、切线长定理 1.切线长: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 要点诠释: 切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释: 切线长定理包含两个结论:线段相等和角相等. 要点二、圆外切四边形的性质 1.圆外切四边形 四边形的四条边都与同一个圆相切,那这个四边形叫做圆的外切四边形. 2.圆外切四边形性质 圆外切四边形的两组对边之和相等. 【典型例题】 类型一、切线长定理 1.(2015秋?湛江校级月考)已知PA、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交PA于C、交PB于D. (1)若PA=6,求△PCD的周长. (2)若∠P=50°求∠DOC. 【答案与解析】 解:(1)连接OE, ∵P A、PB与圆O相切, ∴PA=PB=6, 同理可得:AC=CE,BD=DE, △PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12;

(2)∵PA PB与圆O相切, ∴∠OAP=∠OBP=90°∠P=50°, ∴∠AOB=360°﹣90°﹣90°﹣50°=130°, 在Rt△AOC和Rt△EOC中, , ∴Rt△AOC≌Rt△EOC(HL), ∴∠AOC=∠COE, 同理:∠DOE=∠BOD, ∴∠COD=∠AOB=65°. 【总结升华】本题考查的是切线长定理和全等三角形的判定和性质,掌握切线长定理是解题的关键. 2.如图,△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于D,E为BC中点. 求证:DE是⊙O切线. 【答案与解析】 连结OD、CD,AC是直径,∴OA=OC=OD,∴∠OCD=∠ODC, ∠ADC=90°,∴△CDB是直角三角形. ∵E是BC的中点,∴DE=EB=EC,∴∠ECD=∠EDC,∠ECD+∠OCD=90°, ∴∠EDC+∠ODC=90°,即OD⊥ED, ∴DE是⊙O切线. 【总结升华】自然连接OD,可证OD⊥DE. 举一反三: 【变式】已知:如图,⊙O为ABC ?的外接圆,BC为⊙O的直径,作射线BF,使得BA平分CBF ∠,过点A作AD BF ⊥于点D.求证:DA为⊙O的切线. F C F C 【答案】连接AO. ∵ AO BO =,∴ 23 ∠=∠.

讲切线长定理及角形的内切圆

七.切线长定理及三角形地内切圆 一、教案目标: 1、理解切线长地定义及切线长定理,并能够利用切线长定理计算与证明 2、理解三角形地内切圆和内心地概念,注意区分三角形地内心与外心 二、教案内容 1、切线长概念及定理: <1 )切线长地概念:经过圆外一点作圆地切线,这点和切点之间地线段地长,叫做这点到圆 地切线长? 提问:经过直线外一点可以做圆地几条切线?它们地切线长有什么关系?为什么? <2 线长定理: _________________________________________ . b5E2RGbCAP 如图:P为O O外一点,PA、PB分别与O O相切,切点分别 为A、B, 贝U PA=PB,PO 平分/ APB 举例练习: (1) 如上图,连接AB,(1>写出图中所有地垂直关系;(2>写出图中所有地全等三角形 (3>如果PA=4cm,PD=2cm,求半径0A地长? <2 ) 如图,PA,PB分别为O 0地切线,切点分别为A、 B,/P=60 ° ,PA =10 cm,那么AB 地长为? (3) 如图,PA,PB分别为O O地切线,AC为直径,切点分别 为A、B,N P=70 ° ,则N C = . 2、三角形地内切圆与三角形地内心 <1)概念:与三角形各边都相切地圆叫做三角形地________________ 内切圆地圆心叫做三角形地__________ . 地交点; <2 )三角形地内心是三角形地 ________________________________ p1EanqFDPw 它到三角形三边地_____________ 相等,是内切圆地__________ ?提问:三角形地内心在三角形地 _____________ ,与三角形地形状______________

切线长定理及其应用

切线长定理及其应用 一、基础知识总结 1.内切圆和内心 定义: 与三角形各边都相切的圆叫做三角形的内切圆.内切圆的圆心是三角形三条角平分 线的交点,叫做三角形的内心. 总结:判断一个多边形是否有内切圆,就是判断能否找到一个点到各边距离都 相等。 2.直角三角形的内切圆半径与三边关系 (1)一个基本图形; (2)两个结论: 1)四边形OECF 是正方形 2)r=(a+b-c)∕2或r=ab ∕(a+b+c) (3)两个方法 代数法(方程思想);面积法 3.切线长定义:过圆外一点作圆的切线,该点和切点之间的线段长叫做切线长。 4.切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的交角。 二、典型例题解析 【例1】如图△ABC 的内切圆⊙O 与BC 、CA 、AB 分别相交于点D 、E 、F ,且AB=9 cm,BC=14 cm ,CA=13 cm ,求AF 、BD 、CE 的长 D E F O C B A 112 12902 a b c A B C A B C S s r p a b c p C r a b c ?∠∠∠==++∠=?=+-设、、分别为中、、的对边,面积为,则内切圆半径(),其中(); (),则()

【例2】如图,已知⊙O是△ABC的内切圆,切点为D、 E、F,如果AE=1, CD=2,BF=3,且△ABC的面积为6.求内切圆的半径r. 【例3】如图,以等腰ABC ?中的腰A B为直径作⊙O,交底边BC于点D.过点D作⊥,垂足为E. D E A C (I)求证:D E为⊙O的切线; (II)若⊙O的半径为5,60 ∠= ,求D E的长. B A C 【例4】如上图等边三角形的面积为S,⊙O是它的外接圆,点P是⌒BC的中点.(1)试判断过C所作的⊙O的切线与直线AB是否相交,并证明你的结论;(2)设直线 CP与AB相交于点D,过点B作BE⊥CD垂足为E,证明BE是⊙O的切线,并求△ BDE的面积.

切线长定理和内切圆

“切线长定理”教学设计 【学习目标】 1.通过动手操作、度量、猜想、验证,理解切线长的概念,掌握切线长定理 2.通过对例题的学习,培养分析问题、总结问题的习惯,提高综合运用知识和解决问题的能力,培养数形结合的思想. 情景导入生成问题 旧知回顾: 1.过⊙O内一点P可以引圆的切线吗?如果可以,有几条? 2.过⊙O上一点P可以引圆的切线吗?如果可以,有几条? 3.过⊙O外一点P可以引圆的切线吗?如果可以,有几条? 自学互研生成能力 知识模块一切线长定理 【自主探究】 认真阅读课本P99思考上面内容,完成下列问题: 阅读教材P99第一段话可以得到以下归纳: 归纳:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 如图,过圆外一点P作两条直线PA、PB与圆相切,切点分别为A、B,连接OA、OB、OP. (1)判断△PBO与△PAO的形状,并说明理由. 答:△PBO与△PAO均为直角三角形,根据切线的性质. (2)△PBO与△PAO的关系怎样?根据什么判断的? 答:△PBO与△PAO全等,根据“HL”可判断. (3)PA与PB、∠APO与∠BPO有怎样的关系?根据是什么? 答:PA=PB,∠APO=∠BPO,根据△PBO与△PAO全等的性质. 归纳:切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两切线的夹角. 范例:已知:如图,PA、PB是⊙O的切线,切点分别是A、B,Q为AB上一点,过Q点作⊙O的切线,交PA、PB于E、F点,已知PA=12cm,∠P=70o. 求(1)△PEF的周长。

(2)∠EOF 的度数 解:略 探究提升: 切线长定理的基本图形研究 写出所有的垂直关系,相等关系 交流展示 生成新知 1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑. 2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”. 知识模块一 切线长定理 当堂检测 达成目标 【当堂检测】 1.如图,AB 是⊙O 的直径,BD ,CD 分别是过⊙O 上点B ,C 的切线,且∠BDC =110°.连接AC ,则∠A 的度数是35°. (第1题图) (第2题图) (第3题图) 2.如图,PA ,PB 分别与⊙O 相切于点A ,B ,⊙O 的切线EF 分别交PA ,PB 于点E ,F ,切点C 在AB ︵上, 若PA 长为2,则△PEF 的周长是4. 提示:根据题意得:AE =CE ,BF =CF ,PA =PB ,所以△PEF 的周长=PE +CE +CF +PF =PE +AE +BF +PF =PA +PB =4. 【课后检测】见学生用书 课后反思 查漏补缺 1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________

圆的知识点总结及典型例题.

圆的知识点总结 (一)圆的有关性质 [知识归纳] 1. 圆的有关概念: 圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高; 圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。 2. 圆的对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性。 3. 圆的确定 不在同一条直线上的三点确定一个圆。 4. 垂直于弦的直径 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧; 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就 可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径); ④平分弦所对的优弧;⑤平分弦所对的劣弧。 1

推论2圆的两条平行弦所夹的弧相等。 5. 圆心角、弧、弦、弦心距之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆 心角或两条弧所对的弦相等;④两条弦的弦心距相等。 圆心角的度数等于它所对的弧的度数。 6. 圆周角 定理一条弧所对的圆周角等于它所对的圆心角的一半; 推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等; 推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径; 推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 圆周角的度数等于它所对的弧的度数的一半。 7. 圆内接四边形的性质 圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。 ※8. 轨迹 轨迹符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。 (1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆; (2)平面内,和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线; (3)平面内,到已知角两边的距离相等的点的轨迹,是这个角的平分线。 [例题分析] 例1. 已知:如图1,在⊙O中,半径OM⊥弦AB于点N。 图1 ①若AB =,ON=1,求MN的长; ②若半径OM=R,∠AOB=120°,求MN的长。 解:①∵AB =,半径OM⊥AB,∴AN=BN = ∵ON=1,由勾股定理得OA=2 ∴MN=OM-ON=OA-ON=1 ②∵半径OM⊥AB,且∠AOB=120°∴∠AOM=60° 2

(完整)初三数学有关圆的经典例题

初三数学 有关圆的经典例题 1. 在半径为的⊙中,弦、的长分别为和,求∠的度数。132O AB AC BAC 分析:根据题意,需要自己画出图形进行解答,在画图时要注意AB 与AC 有不同的位置关系。 解:由题意画图,分AB 、AC 在圆心O 的同侧、异侧两种情况讨论, 当AB 、AC 在圆心O 的异侧时,如下图所示, 过O 作OD ⊥AB 于D ,过O 作OE ⊥AC 于E , ∵,,∴,AB AC AD AE = == = 32322 2 ∵,∴∠,OA OAD AD OA == =132 cos cos ∠OAE AE OA = = 22 ∴∠OAD=30°,∠OAE=45°,故∠BAC=75°, 当AB 、AC 在圆心O 同侧时,如下图所示, 同理可知∠OAD=30°,∠OAE=45°, ∴∠BAC=15° 点拨:本题易出现只画出一种情况,而出现漏解的错误。 例2. 如图:△ABC 的顶点A 、B 在⊙O 上,⊙O 的半径为R ,⊙O 与AC 交于D , 如果点既是的中点,又是边的中点,D AB AC ? (1)求证:△ABC 是直角三角形; ()22 求的值AD BC 分 析 : ()1由为的中点,联想到垂径定理的推论,连结交于,D AB OD AB F ? 则AF=FB ,OD ⊥AB ,可证DF 是△ABC 的中位线;

(2)延长DO 交⊙O 于E ,连接AE ,由于∠DAE=90°,DE ⊥AB ,∴△ADF ∽△,可得·,而,,故可求DAE AD DF DE DF BC DE R AD BC 2 2 122=== 解:(1)证明,作直径DE 交AB 于F ,交圆于E ∵为的中点,∴⊥,D AB AB DE AF FB ? = 又∵AD=DC ∴∥,DF BC DF BC = 12 ∴AB ⊥BC ,∴△ABC 是直角三角形。 (2)解:连结AE ∵DE 是⊙O 的直径 ∴∠DAE=90° 而AB ⊥DE ,∴△ADF ∽△EDA ∴ ,即·AD DE DF AD AD DE DF ==2 ∵,DE R DF BC ==21 2 ∴·,故AD BC R AD BC R 2 2 == 例3. 如图,在⊙O 中,AB=2CD ,那么( ) A A B CD B AB CD ..?>? ?

切线长定理与三角形内切圆

切线长定理与三角形内切圆 【知能点分类训练】 知能点1 切线长定理 1.如图所示,PA切⊙O于A,PB切⊙O于B,OP交⊙O于C,下列结论中错误的是(). A.∠1=∠2 B.PA=PB C.AB⊥OC D.∠PAB=∠APB (第1题) (第2题) (第3题) 2.如图所示,PA,PB是⊙O的两条切线,A,B为切点,直线OP交⊙O于D,?E,?交AB 于C,图中互相垂直的线段有______.(只需写出一对线段) 3.如图所示,过半径为6cm的⊙O外一点P引圆的切线PA,PB,连接PO交⊙O于F,过F 作⊙O的切线,交PA,PB分不于D,E,假如PO=10cm,∠APB=40°.求: (1)△PED的周长;(2)∠DOE的度数. 4.如图所示,PA,PB是⊙O的两条切线,A,B为切点,连接PO,交⊙O于点D,交AB于点C,依照以上条件,请写出三个你认为正确的结论,并对其中的一个结论给予证明.

知能点2 三角形内切圆 5.如图所示,⊙O内切于Rt△ABC,∠C=90°,D,E,F为切点,若∠BOC=105°,则∠A=________,∠ABC=________. (第5题) (第6题) (第7题) 6.如图所示,等边△ABC的内切圆面积为9 ,则△ABC的周长为__________. 7.如图所示,△ABC中,内切圆I和边BC,CA,AB分不相切于点D,?E,?F,若∠FDE=70°,求∠A的度数. 8.如图所示,已知△ABC的内心为I,外心为O. (1)试找出∠A与∠BOC,∠A与∠BIC的数量关系. (2)由(1)题的结论写出∠BOC与∠BIC的关系. 【综合应用提高】 9.如图所示,⊙O分不切△ABC的三边AB,BC,CA于点D,E,F,若BC=a,AC=?b,AB=c.求:(1)AD,DE,CF的长;(2)当∠C=90°时,内切圆的半径长为多少?

切线长定理、弦切角定理、切割线定理、相交弦定理

切线长定理、弦切角定理、切割线定理、相交弦定理 以及与圆有关的比例线段 [学习目标] 1.切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。(PA 长) 2.切线长定理 对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。 3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。 直线AB 切⊙O 于P ,PC 、PD 为弦,图中几个弦切角呢?(四个) 4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。 5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。 6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。 7.与圆有关的比例线段 定理 图形 已知 结论 证法 相交弦定理 ⊙O 中,AB 、CD 为弦,交于P. PA·PB=PC·PD . 连结AC 、BD ,证:△APC∽△DPB . 相交弦定理的推论 ⊙O 中,AB 为直径,CD⊥AB 于P. PC 2 =PA·PB . (特殊情况) 用相交弦定理.

切割线定理 ⊙O 中,PT 切⊙O 于T ,割线PB 交⊙O 于A PT 2 =PA·PB 连结TA 、TB ,证:△PTB∽△PAT 切割线定理推论 PB 、PD 为⊙O 的两条割线,交⊙O 于A 、C PA·PB=PC·PD 过P 作PT 切⊙O 于T ,用两次切割线定理 (记忆的方法方法) 圆幂定理 ⊙O 中,割线PB 交⊙O 于A ,CD 为弦 P'C·P'D =r 2 -OP'2 PA·PB=OP 2-r 2 r 为⊙O 的半径 延长P'O 交⊙O 于M ,延 长OP'交⊙O 于N ,用相交 弦定理证;过P 作切线用切割线定理勾股定理证 8.圆幂定理:过一定点P 向⊙O 作任一直线,交⊙O 于两点,则自定点P 到两交点的两条线段之积为常数||(R 为圆半径),因为叫做点对于⊙O 的幂,所以将上述定理统称为圆幂定理。 【典型例题】 例1.如图1,正方形ABCD 的边长为1,以BC 为直径。在正方形内作半圆O ,过A 作半圆切线,切点为F ,交CD 于E ,求DE :AE 的值。 图1 解:由切线长定理知:AF =AB =1,EF =CE 设CE 为x ,在Rt△ADE 中,由勾股定理 ∴, ,

切线长定理和三角形地内切圆练习题

第3课时切线长定理和三角形的切圆 知识点 1 切线长定理 1.如图24-2-34,PA切⊙O于点A,PB切⊙O于点B,OP交⊙O于点C,下列结论中,错误的是( ) 图24-2-34 A.∠1=∠2 B.PA=PB C.AB⊥OP D.∠PAB=2∠1 2.如图24-2-35所示,从⊙O外一点P引⊙O的两条切线PA,PB,切点分别为A,B.如果∠APB=60°,PA=8,那么弦AB的长是( ) 图24-2-35 A.4 B.8 C.4 3 D.8 3 3.如图24-2-36,PA,PB分别与⊙O相切于A,B两点,若∠C=65°,则∠P的度数为( ) 图24-2-36 A.50° B.65° C.100° D.130°

4.如图24-2-37,PA,PB是⊙O的两条切线,A,B是切点,若∠APB=60°,PO=2,则⊙O的半径等于________. 图24-2-37 知识点 2 三角形的切圆 5.2017·如图24-2-38,⊙O是△ABC的切圆,则点O是△ABC的( ) 图24-2-38 A.三条边的垂直平分线的交点 B.三条角平分线的交点 C.三条中线的交点 D.三条高的交点 6.如图24-2-39,点O是△ABC的切圆的圆心,若∠BAC=80°,则∠BOC的度数为( ) 图24-2-39 A.130° B.120° C.100° D.90° 7.如图24-2-40,△ABC的切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=18 cm,BC=28 cm,CA=26 cm,求AF,BD,CE的长.

图24-2-40 8.如图24-2-41所示,O是△ABC的心,过点O作EF∥AB,与AC,BC分别交于点E,F,则( ) 图24-2-41 A.EF>AE+BF B.EF<AE+BF C.EF=AE+BF D.EF≤AE+BF 9.2016·《九章算术》是数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形切圆的直径是多少步.”该问题的答案是________步. 10.如图24-2-42,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为________.

数学学案:切线长定理和内切圆

切线长定理和内切圆 学习目标 1、了解切线长的概念.了解三角形的内切圆、三角形的内心等概念。 2、理解切线长定理,并能熟练运用切线长定理进行解题和证明(重点) 3、会作已知三角形的内切圆(重点) 学习的重、难点: 重点:切线长定理及其运用.难点:切线长定理的导出及其证明和运用切线长定理解决问题。 一、复习巩固 1、 直线和圆有几种位置关系?分别是那几种?_______________________________________ 2、 如何判断直线与圆相切?_______________________________________________________ 3、 角平分线的判定和性质是什么?_________________________________________________ 二、问题探索 问题1:如图,纸上有一⊙O ,PA 为⊙O 的一条切线,沿着直线PO 将纸对折,设圆上与点A 重合的点为B ,这时,OB 是⊙O 的一条半径吗?PB 是⊙O 的切线吗?利用图形的轴对称性,说明图中的PA 与PB ,∠APO 与∠BPO 有说明关系? 得出结论:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的 证明:∵PA 、PB 是⊙O 的两条切线, ∴OA ⊥AP, OB ⊥BP. 在Rt △AOP 和Rt △BOP 中 ∴Rt △AOP ≌Rt △BOP ( ) ∴PA=PB, ∠OPA=∠OPB.( ) P A O P A O B B A

B C E D O O B C A O B C A P O B A P B O A 切线长定理:从圆外一点可以引圆的两条 ,它们的切线 , 这一点和圆心的连线 两条切线的 . 思考2:如图,是一张三角形的铁皮,如何在它上面截下 一块圆形的用料,并且使圆的面积尽可能大呢? (提示:假设符合条件的圆已经做出,那么它应当与三角形的三条边都相切,这个圆的圆心到三角形的三条边的距离都等于半径。如何找到这个圆心呢?). 并得出结论:与三角形各边都 的圆叫做三角形的内切圆, 内切圆的圆心是三角形三条 的交点,叫做三角形的内心。 三、例题评讲 例1 PA ,PB 是⊙O 的切线,A ,B 为切点,∠OAB=30°. (1)求∠APB 的度数; (2)当OA=3时,求AP 的长. 例2 如图,已知⊙O 是△ABC 的内切圆,切点为D 、E 、F ,如果AE=2, CF=1,BF=3.求△ABC 的面积和内切圆的半径r . 解: 四、当堂练习: 1如图1,从圆外一点P 引⊙O 的两条切线PA ,PB ,切点分别为A ,B ,如果∠APB=60°,PA=10,则弦AB 的长( )A .5 B. 35 C.10 D. 310 2. 如图2,点O 是△ABC 的内切圆的圆心,若∠BAC=80°, 则∠BOC 等于( ) A. 130° B. 100° C 50° D 65° 3. 如图3, ⊙O 与∠ACB 两边都相切,切点分别为A,B,且∠ACB=90°, 那么四边形ABCD 是 4..如图4,PA ,PB 是⊙O 的切线,A ,B 为切点,∠OAB=30°,则∠APB =________。 图1 图2 图3 图4 作业:

新人教版九年级上册数学[切线长定理—知识点整理及重点题型梳理](提高)

新人教版九年级上册初中数学 重难点有效突破 知识点梳理及重点题型巩固练习 切线长定理—知识讲解(提高) 【学习目标】 1.了解切线长定义;理解切线的判定和性质;理解三角形的内切圆及内心的定义; 2.掌握切线长定理;利用切线长定理解决相关的计算和证明. 【要点梳理】 要点一、切线的判定定理和性质定理 1.切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线. 要点诠释: 切线的判定方法: (1)定义:直线和圆有唯一公共点时,这条直线就是圆的切线; (2)定理:和圆心的距离等于半径的直线是圆的切线; (3)判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.(切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可). 2.切线的性质定理: 圆的切线垂直于过切点的半径. 要点诠释: 切线的性质: (1)切线和圆只有一个公共点; (2)切线和圆心的距离等于圆的半径; (3)切线垂直于过切点的半径; (4)经过圆心垂直于切线的直线必过切点; (5)经过切点垂直于切线的直线必过圆心. 要点二、切线长定理 1.切线长: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 要点诠释: 切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释: 切线长定理包含两个结论:线段相等和角相等. 3.圆外切四边形的性质:

圆外切四边形的两组对边之和相等. 要点三、三角形的内切圆 1.三角形的内切圆: 与三角形各边都相切的圆叫做三角形的内切圆. 2.三角形的内心: 三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 要点诠释: (1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形; (2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径). 【典型例题】 类型一、切线长定理 1.如图,等腰三角形ABC中,6 AC BC ==,8 AB=.以BC为直径作⊙O交AB于点D,交AC 于点G,DF AC ⊥,垂足为F,交CB的延长线于点E.求证:直线EF是⊙O的切线. 【答案与解析】 如图,连结OD、CD,则90 BDC ∠=?. ∴CD AB ⊥. ∵ AC BC =,∴AD BD =. ∴D是AB的中点. ∵O是BC的中点,

中考专题――切线长定理及弦切角定理

中考复习专题——切线长定理与弦切角定理 【知识要点】 切线长定理:过圆外一点P做该圆的两条切线,切点为A、B。AB交PO于点C,则有如下结论: PA=PB PO⊥AB,且PO平分AB APO BPO OAC OBC ∠=∠=∠=∠;AOP BOP CAP CBP ∠=∠=∠=∠ 弦切角定理:弦切角(切线与圆的夹角)等于它所夹的弧所对的圆周角 推论:若两弦切角所夹的弧相等,则这两个弦切角也相等 【典型例题】 【例1】如图1,AB,AC是⊙O的两条切线,切点分别为B、C、D是优弧BC上的点,已知∠BAC=800,那么∠BDC =______. 图1 图2 图3 举一反三: 1.如图2,AB是⊙ O的弦,AD是⊙ O的切线,C为AB上任一点,∠ACB=1080,那么∠BAD =______. 2.如图3,PA,PB切⊙ O于A,B两点,AC⊥PB,且与⊙ O相交于D,若∠DBC=220,则∠APB=________.【例2】如图,已知圆上的弧AC BD =,过C点的圆的切线与BA的延长线交于E点,证明: (1)∠ACE=∠BCD; (2)BC2=BE×CD. 举一反三: 1.如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交 AB的延长线于点C,若DA=DC,求证:AB=2BC. C B O A D C B A D P O

P B A O 【例3】已知:如图 7-149,PA ,PB 切⊙O 于A ,B 两点,AC 为直径,则图中与∠PAB 相等的角的个数为 A . 1 个; B .2个; C .4个; D .5个. 【例4】如图,AE 、AD 、BC 分别切⊙O 于点E 、D 、F ,若AD=20,求△ABC 的周长. 举一反三: 1. 如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =30°. (1)求∠APB 的度数; (2)当OA =3时,求AP 的长. 2.已知:如图,⊙O 内切于△ABC ,∠BOC=105°,∠ACB=90°,AB=20cm .求BC 、AC 的长. 3.已知:如图,△ABC 三边BC=a ,CA=b ,AB=c ,它的内切圆O 的半径长为r .求△ABC 的面积S .

切线长定理—知识讲解(提高)

切线长定理—知识讲解(提高) 责编:康红梅 【学习目标】 1.了解切线长定义;理解三角形的内切圆及内心的定义; 2.掌握切线长定理;利用切线长定理解决相关的计算和证明. 【要点梳理】 要点一、切线长定理 1.切线长: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 要点诠释: 切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释: 切线长定理包含两个结论:线段相等和角相等. 3.圆外切四边形的性质: 圆外切四边形的两组对边之和相等. 要点二、三角形的内切圆 1.三角形的内切圆: 与三角形各边都相切的圆叫做三角形的内切圆. 这个三角形叫作圆的外切三角形. 2.三角形的内心: 三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.三角形的内心是这个三角形的三条角平分线的交点. 要点诠释: (1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形; (2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).

【典型例题】 类型一、切线长定理 1.(2015?常德)已知如图,以Rt△ABC 的AC 边为直径作⊙O 交斜边AB 于点E ,连接EO 并延长交BC 的延长线于点D ,点F 为BC 的中点,连接EF . (1 )求证:EF 是⊙O 的切线; (2)若⊙O 的半径为3,∠EAC=60°,求AD 的长. 【答案与解析】 证明:(1)如图1,连接FO , ∵F 为BC 的中点,AO=CO , ∴OF∥AB, ∵AC 是⊙O 的直径, ∴CE⊥AE, ∵OF∥AB, ∴OF⊥CE, ∴OF 所在直线垂直平分CE , ∴FC=FE,OE=OC , ∴∠FEC=∠FCE,∠0EC=∠0CE, ∵∠ACB=90°, 即:∠0CE+∠FCE=90°, ∴∠0EC+∠FEC=90°, 即:∠FEO=90°, ∴FE 为⊙O 的切线; (2)如图2,∵⊙O 的半径为3, ∴AO=CO=EO=3, ∵∠EAC=60°,OA=OE , ∴∠EOA=60°, ∴∠COD=∠EOA=60°, ∵在Rt△OCD 中,∠COD=60°,OC=3, ∴CD=, ∵在Rt△ACD 中,∠ACD=90°,

24.2.2切线长定理及三角形的内切圆教案

24.2.2切线长定理及三角形的内切圆 [学习目标] 1.理解切线长的概念,掌握切线长定理,会应用切线长定理解决问题;(学习重点、难点)2.理解三角形的内切圆及内心的概念,掌握内心的性质,会作三角形的内切圆. [学法指导](怎么学!) 学习中注重动手操作、观察、发现、总结等活动去发现相关结论,并注意切线与切线长、切线的性质与切线长定理、三角形外接圆和内切圆、外心与内心等之间的对比,在解决问题中培养分析问题和解决问题的能力. [学习流程] 一、导学自习(教材P96-98) (一)知识链接 ⒈切线的定义是什么?切线有哪些性质? 2. 角平分线的判定和性质是什么? (二)自主学习 阅读教材p97:经过圆外一点作圆的,这点和切点之间的,叫做这点到圆的. 如图1,是⊙O 外一点,,是⊙O 的两条切线,点,为切点,把线段 ,的长叫做点到⊙O的线. 注意:切线和切线长的区别:切线是线,不可度量,而切线长是线段,度量. 二、研习展评 活动1:(1)阅读教材p96的“探究”,动手做一做:如图2,你能得到什么结论?为什么?切线长定理:从圆外一点可以引圆的两条切线,它们的_________相等,这一点和圆心的连线平分__________________. 几何语言:是⊙O的两条切线 . (2)如何证明切线长定理呢? 已知:如图2,已知PA、PB是⊙O的两条切线. 求证:PA=PB,∠OPA=∠OPB. 证明: (3)若PO与圆相分别交于C、D,连接AB于PO交于点E,图中有哪些相等的线段?有哪些相等的角,有哪些相等的弧?有哪些互相垂直的线段?有哪些全等的三角形. 活动2: (1)阅读教材p97的“思考”:想一想,圆与三角形的三边应该满足什么条件?(2)怎样作圆呢?怎样找圆心和半径?假设符合条件的圆已经作出,圆应当与三角形的三边. 那么圆心到三边的距离都等于什么?圆心在三个内角的什么线上?

切线长定理及三角形的内切圆—知识讲解(提高)

切线长定理及三角形的内切圆—知识讲解(提高) 责编:常春芳 【学习目标】 1.了解切线长定义;理解三角形的内切圆及内心的定义; 2.掌握切线长定理;利用切线长定理解决相关的计算和证明. 【要点梳理】 要点一、切线长定理 1.切线长: 经过圆外一点能够作圆的两条切线,切线上这一点到切点间的线段长叫做这点到圆的切线长. 要点诠释: 切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理: 从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角. 要点诠释: 切线长定理包含两个结论:线段相等和角相等. 要点二、三角形的内切圆 1.三角形的内切圆: 与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫作圆的外切三角形.三角形的内心到三角形的三边距离相等. 2.三角形的内心: 三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心是这个三角形的三条角平分线的交点. 要点诠释: (1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形; (2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径). 名称确定方法图形性质 外心(三角形外接圆的圆心) 三角形三边中垂线的 交点 (1)OA=OB=OC;(2)外心不一 定在三角形内部 内心(三角形内切圆的圆心) 三角形三条角平分线 的交点 (1)到三角形三边距离相等; (2)OA、OB、OC分别平分 ∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.

相关主题
文本预览
相关文档 最新文档