当前位置:文档之家› 高中数学圆锥曲线椭圆专项习题

高中数学圆锥曲线椭圆专项习题

高中数学圆锥曲线椭圆专项习题
高中数学圆锥曲线椭圆专项习题

椭圆

1、已知椭圆1m 5x 22=+y 的离心率为5

10,则m 的值为( ) A 、3 B 、153

155或 C 、5 D 、3325或 2、若椭圆)0(1x 22

22>>=+b a b

y a 的离心率为0.5,右焦点为F (c ,0),方程022=++c bx ax 的两个实数根分别为21x x 和,则点P (21x x ,)到原点的距离为( )

A 、2

B 、27

C 、2

D 、4

7 3、已知椭圆的长轴长是短轴长的3倍,则椭圆的离心率等于( )

A 、31

B 、32

C 、322

D 、3

10 4、若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )

A 、54

B 、53

C 、52

D 、5

1 5、椭圆19

25x 2

2=+y 的左焦点为1F ,点P 在椭圆上,若线段1PF 的中点M 在y 轴上,则1PF = A 、541 B 、5

9 C 、6 D 、7 6、已知椭圆)019x 222>=+a y a (与双曲线13

4x 2

2=-y 有相同的焦点,则a 的值为( ) A 、2 B 、10 C 、4 D 、10

7、直线x-2y+2=0经过椭圆)0(1x 22

22>>=+b a b

y a 的一个焦点和一个顶点,则该椭圆的离心率为( )

A 、552

B 、21

C 、5

5 D 、32 8、椭圆)0(1x 22

22>>=+b a b

y a 的右焦点为F ,其右准线与x 轴的焦点为A 。在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( )

A 、???? ??

22,0, B 、??? ??210, C 、[)

1,12- D 、??????121, 9、已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且2=,则C 的离心率为___________

10、已知有公共焦点的椭圆与双曲线中心都在原点,焦点在x 轴上,左、右焦点分别为21F F 、,且它们在第一象限的交点为P ,△P 21F F 是以P 1F 为底边的等腰三角形,若1PF =10,双曲线的离心率的值为2,则该椭圆的离心率的值为___________

11、已知21F F 、是椭圆)0(1x 22

22>>=+b a b

y a 的两个焦点,P 为椭圆C 上一点,且1PF 2PF ⊥,若ΔP 21F F 的面积为9,则b=___________ 12、在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点21F F 、在x 轴上,离心率为22。过1F 的直线l 交C 于A 、B 两点,且ΔAB 2F 的周长为16,那么C 的方程为__________

13、已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为2

3,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为____________________

14、已知椭圆C 的离心率为2

3,且它的焦点与双曲线4222=-y x 的焦点重合,则椭圆C 的方程为____________________

15、已知椭圆C :)0(1x 2222>>=+b a b y a 的离心率为2

3。双曲线122=-y x 的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为_________

16、已知椭圆)01(122

2

>>=+b b y x 的左焦点为F ,左右顶点分别为A 、C ,上顶点为B ,过F ,B ,C 三点作⊙P ,其中圆心P 的坐标为(m ,n )。

(1) 若FC 是⊙P 的直径,求椭圆的离心率;

(2) 若⊙P 的圆心在直线x+y=0上,求椭圆的方程。

17、如图所示,椭圆)0(122>>=+b a b a 的离心率为5

,且A (0,2)是椭圆C 的顶点。 (1) 求椭圆C 的方程;

(2) 过点A 作斜率为1的直线L ,设以椭圆C 的右焦点F 为抛物线E :px y 22= (p ﹥0)的焦点,若点M 为抛物线E 上任意一点,求点M 到直线L 距离的最小值。

18、已知椭圆C :)0(1x 22

22>>=+b a b

y a 的长轴长是短轴长的3倍,21F F 、是它的左、右焦点。

(1)若P 的坐标;

、求,且2121,40*F F PF C ==∈ (2)在(1)的条件下,过动点Q 作以2F 为圆心、以1为半径的圆的切线QM (M 是切点),且使QM QF 21=

,求动点Q 的轨迹方程。

19、已知椭圆C :)0(122>>=+b a b a 的离心率为3

,椭圆短轴的一个端点与两个焦点构成的三角形面积为3

25。 (1)求椭圆C 的方程;

(2)已知动直线y=k (x+1)与椭圆C 相交于A 、B 两点。

① 若线段AB 中点的横坐标为-0.5,求斜率k 的值;

②已知点M (3

7-

,0),求证:*为定值。

20、已知椭圆142

2

=+y x 的左、右两个顶点分别为A 、B 。曲线C 是以A 、B 两点为顶点,离心率为5的双曲线。设点P 在第一象限且在曲线C 上,直线AP 与椭圆相交于另一点T 。

(1)求曲线C 的方程;

(2)设P 、T 两点的横坐标分别为1x 、2x ,证明:1x *2x =1;

(3)设△TAB 与△POB (其中O 为坐标原点)的面积分别为1S 与2S ,且

22

21,15*S S PB PA -≤求的取值范围。

21、已知椭圆C :)0(122>>=+b a b a 的离心率为3

,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+2=0相切,A 、B 分别是椭圆的左、右两个顶点,P 为椭圆C 上的动点。

(1)求椭圆的标准方程;

(2)若P 与A ,B 均不重合,设直线PA 与PB 的斜率分别为21k k ,,证明:21*k k 为定值;

(3)M 为过P 且垂直于x 轴的直线上的点,若

λ=OM OP ,求点M 的轨迹方程,并说明轨迹是什么曲线。

高中数学圆和椭圆练习题(综合)

一、选择题(本题共12道小题,每小题5分,共60分) 1.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是( ) A .a <-2或 a > 3 2 B .- 3 2 >长轴两个端点分别为A 、B ,椭圆上点P 和A 、B 的连 线的斜率之积为1 2 - ,则椭圆C 的离心率为 (A ) 1 2 (B )22 (C )32 (D )33 10.已知椭圆C :+=1,M ,N 是坐标平面内的两点,且M 与C 的焦点不重 合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=( ) A .4 B .8 C .12 D .16

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线 22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB 的交点为Q 。 (1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112|||| PC PD PQ +=. 2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==? (1)动点N 的轨迹方程; (2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=?AB OB OA 且,求直线l 的斜率k 的取值范围. 3. 如图,椭圆13 4: 2 21=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积 相等,求直线PD 的斜率及直线CD 的倾斜角. 4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;

(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值. 5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围; (Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。 6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1)求点P 的轨迹方程; (2)若2 ·1cos PM PN MPN -∠=,求点P 的坐标. 7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线 12 2 2=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3 MON π∠= ,双曲线的焦距为4。求椭圆方程。 (II )若0OM MN ?=(O 为坐标原点),1 3 FA AN =,求椭圆的离心率e 。

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高中数学圆锥曲线详解【免费】

解圆锥曲线问题常用方法+椭圆与双曲线的经典 结论+椭圆与双曲线的对偶性质总结 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2 =2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2 =4x 上一点P 到点A(3,42) (2)抛物线C: y 2 =4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点分析:(1)A 在抛物线外,如图,连PF ,则PF PH =

高二数学圆锥曲线测试题以及详细答案

圆锥曲线测试题及详细答案 一、选择题: 1、双曲线 22 1102x y -=的焦距为( ) 2.椭圆14 22 =+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的 直线与椭圆相交,一个交点为P ,则||2PF = ( ) A . 2 3 B .3 C .27 D .4 3.已知动点M 的坐标满足方程|12512|132 2-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线 B.双曲线 C. 椭圆 D.以上都不对 4.设P 是双曲线192 22=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( ) A. 1或5 B. 1或9 C. 1 D. 9 5、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三 角形,则椭圆的离心率是( ). A. B. C. 2 D. 1 6.双曲线)0(12 2≠=-mn n y m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( ) A . 163 B .83 C .316 D .3 8 7. 若双曲线22 21613x y p -=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( ) (A)2 (B)3 (C)4 8.如果椭圆 19 362 2=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x 9、无论θ为何值,方程1sin 22 2=?+y x θ所表示的曲线必不是( ) A. 双曲线 B.抛物线 C. 椭圆 D.以上都不对

高中数学椭圆练习题(文科)

椭圆练习题(文科) 1.椭圆22 11625 x y +=的焦点坐标为_______________________ 2.已知a =4, b =1,焦点在x 轴上的椭圆方程是_______________________ 3.已知焦点坐标为(0, -4), (0, 4),且a =6的椭圆方程是_______________________ 4.若椭圆22 110036 x y +=上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是_____ 5.已知F 1, F 2是定点,| F 1 F 2|=8, 动点M 满足|M F 1|+|M F 2|=8,则点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段 6.过点(3, -2)且与椭圆4x 2+9y 2 =36有相同焦点的椭圆的方程是 (A )2211510x y += (B )221510x y += (C )22 11015 x y += (D )2212510x y += 7.点P 为椭圆22 154 x y +=上一点,以点P 以及焦点F 1, F 2为顶点的三角形的面积为1,则点P 的坐标是(A )(± , 1) (B ), ±1) (C )(D )(, ±1) 8=10为不含根式的形式是 (A )2212516x y += (B )221259x y += (C )2211625x y += (D )22 1925 x y += 9.椭圆22 125 x y m m +=-+的焦点坐标是 (A )(±7, 0) (B )(0, ±7) (C )(±7,0) (D )(0, ±7) 10.过椭圆4x 2+2y 2 =1的一个焦点F 1的弦AB 与另一个焦点F 2围成的三角形△ABF 2的周长是 . 11.已知椭圆方程为22 1499 x y +=中,F 1, F 2分别为它的两个焦点,则下列说法正确的有_____ ①焦点在x 轴上,其坐标为(±7, 0);② 若椭圆上有一点P 到F 1的距离为10,则P 到F 2的距离为4;③焦点在y 轴上,其坐标为(0, ±210);④ a =49, b =9, c =40, 12.如果椭圆的焦距、短轴长、长轴长成等差数列,则其离心率为 (A )53 (B )312 (C )43 (D )910 13.设椭圆的标准方程为22 135x y k k +=--,若其焦点在x 轴上,则k 的取值范围是_____ 14.椭圆的对称轴为坐标轴,若长、短轴之和为18,焦距为6,那么椭圆的方程为

(完整word版)高中数学圆锥曲线结论(最完美版本)

椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦 点在直线PT 上的射影H 点的轨迹是以 长轴为直径的圆,除去长轴的两个端 点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0 P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过 Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是 00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点 分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为1 2 2tan 2 F PF S b γ ?=. 8. 椭圆 22 22 1x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、 Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于 两点P 、Q, A 1、A 2为椭圆长轴上的顶 点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴 的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22 221x y a b -=(a >

圆锥曲线练习题(附答案)

) 圆锥曲线 一、填空题 1、对于曲线C ∶1 42 2-+-k y k x =1,给出下面四个命题: ①由线C 不可能表示椭圆; ②当1<k <4时,曲线C 表示椭圆; ③若曲线C 表示双曲线,则k <1或k >4; ④若曲线C 表示焦点在x 轴上的椭圆,则1<k <2 5 其中所有正确命题的序号为_____________. ? 2、已知椭圆)0(122 22>>=+b a b y a x 的两个焦点分别为21,F F ,点P 在椭圆上,且满 足021=?PF PF ,2tan 21=∠F PF ,则该椭圆的离心率为 3.若0>m ,点?? ? ??25,m P 在双曲线15422=-y x 上,则点P 到该双曲线左焦点的距离为 . 4、已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 . 5、已知点P 是抛物线24y x =上的动点,点P 在y 轴上的射影是M ,点A 的坐标是 (4,a ),则当||a >4时,||||PA PM +的最小值是 . 6. 在ABC 中,7 ,cos 18 AB BC B ==- .若以A ,B 为焦点的椭圆经过点C ,则该椭圆的离心率e = . 7.已知ABC ?的顶点B ()-3,0、C ()3,0,E 、F 分别为AB 、AC 的中点,AB 和AC 边上的中线交于G ,且5|GF |+|GE |=,则点G 的轨迹方程为 8.离心率3 5 = e ,一条准线为x =3的椭圆的标准方程是 .

9.抛物线)0(42<=a ax y 的焦点坐标是_____________; 10将抛物线)0()3(42≠-=+a y a x 按向量v =(4,-3)平移后所得抛物线的焦点坐标为 . ^ 11、抛物线)0(12 <=m x m y 的焦点坐标是 . 12.已知F 1、F 2是椭圆2 2 22)10(a y a x -+=1(5<a <10=的两个焦点,B 是短轴的一个端 点,则△F 1BF 2的面积的最大值是 13.设O 是坐标原点,F 是抛物线)0(22>=p px y 的焦点,A 是抛物线上的一点, 与x 轴正向的夹角为60°,则||为 . 14.在ABC △中,AB BC =,7 cos 18 B =-.若以A B ,为焦点的椭圆经过点 C ,则该椭圆的离心率e = . 二.解答题 15、已知动点P 与平面上两定点(A B 连线的斜率的积为定值1 2 -. . (Ⅰ)试求动点P 的轨迹方程C. (Ⅱ)设直线1:+=kx y l 与曲线C 交于M 、N 两点,当|MN |=3 2 4时,求直线l 的方程.

人教版高中数学选修1-1椭圆练习题

1、若方程 22153x y k k +=---表示焦点在x 轴的椭圆,则实数k 的取值范围是_______ 2、椭圆5522=+ky x 的一个焦点是)2,0(,则_____________=k 3、若椭圆 2215x y m +=的离心率5e =,则m 的值是_________ 4、直线143 x y +=与椭圆221169x y +=相交于,A B 两点,该椭圆上点P 使PAB ?的面积等于6,这样的点P 共有_______个 5、椭圆22 193 x y +=的焦点为21,F F ,点P 在椭圆上,如果线段1||PF 的中点在y 轴上,那么1||PF 是2||PF 的________倍 6、已知椭圆22 1259 x y +=的两焦点12,F F ,过2F 的直线交椭圆于点,A B ,若||8AB =,则11||||_________AF BF += 7、与椭圆22 143 x y +=具有相同的离心率且过点(2,的椭圆的标准方程是_______ 8、P 是椭圆14 92 2=+y x 上的点,12,F F 是两个焦点,则12||||PF PF ?的最大值_______=最小值_________= 9、椭圆36942 2=+y x 内有一点(1,1)P ,过P 的弦恰被P 平分,则这条弦所在的直线方程是____________ 10、要使直线)(1R k kx y ∈+=与焦点在x 轴上的椭圆172 2=+a y x 总有公共点,则a 的取值范围是____________

11、点00(,)P x y 在椭圆14 92 2=+y x 上,焦点12,F F ,当12F PF ∠为钝角时,0______x ∈ 12、椭圆22 1mx ny +=与直线10x y +-=相交于,A B 两点,过AB 中点M 与坐标原点的直线的斜率为 2,则___________m n = 13、椭圆22221(0)x y a b a b +=>>的离心率为12 e =,右焦点(0)F c ,,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,与圆22 2x y +=的位置关系是______ 14、已知(1,1)A 为椭圆22 195 x y +=内一点,1F 为椭圆左焦点,P 为椭圆上一动点.求1||||PF PA +的最大值和最小值 15、若x =2u x y =+的取值范围: 16、设b a b a b a +=+∈则,62,,2 2R 的最小值是: 17、已知椭圆)0(122 22>>=+b a b y a x 的两个焦点分别为21,F F ,点P 在椭圆上,且满足021=?PF PF ,2tan 21=∠F PF ,则该椭圆的离心率为 18、已知ABC ?的顶点B ()-3,0、C ()3,0,E 、F 分别为AB 、AC 的中点,AB 和AC 边上的中线交 于G ,且5|GF |+|GE |=,则点G 的轨迹方程为 19、已知12,F F 是椭圆22 221(510)(10) x y a a a +=<<-的两个焦点,B 是短轴的一个端点,则△12F BF 的面积的最大值是 20、过椭圆22 13625 x y +=的焦点1F 作直线交椭圆于A 、B 二点,2F 是此椭圆的另一焦点,则?ABF 2的周长为 .

高中数学备课资料 圆锥曲线基础练习题(1)

圆锥曲线基础题训练 一、选择题: 1. 已知椭圆116252 2=+y x 上的一点P 到椭圆一个 焦点的距离为3,则P 到另一焦点距离为 ( ) A .2 B .3 C .5 D .7 2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 ( ) A .11692 2 =+y x B .116252 2 =+y x C .116252 2 =+y x 或125 162 2 =+y x D .以上都不对 3.动点P 到点)0,1(M 及点)0,3(N 的距离之差为 2 ,则点P 的轨迹是 ( ) A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线 4.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( ) A .椭圆 B .线段 C .双曲线 D .两条射

线 5.方程1112 2=-++k y k x 表示双曲线,则k 的取值范 围是 ( ) A .11<<-k B .0>k C .0 ≥k D .1>k 或1 -

椭圆的性质练习题

1.已知两椭圆2 28ax y +=和22925100x y +=的焦距相等,则a 的值为( ) A. 9917或 B. 3342或 C. 39217或 D. 394 或 2. 下列关于椭圆 22 1259 x y +=的说法正确的是( ) A.该椭圆的短轴长大于焦距. B.该椭圆只有两个顶点()()5,0,5,0- C.该椭圆上的点在直线5,3x y =±=±所围成的矩形框里. D.若点 (),x y 在这个椭圆上,则点(),y x 也在椭圆上. 3. 已知点() ,m n 在椭圆 228324 x y +=上,则 24 m +的取值范围是( ) A.4?-+? B.4?? C.4?-+? D. 4?-+? 4.已知点(),P x y 在椭圆2221x y += ) A. B. 1 C. 2 D. 12 5.从椭圆短轴的一个端点看长轴两端点的视角为0 120,则此椭圆的离心率是( ) A. B. C. 12 D. 6.若焦点在x 轴上的椭圆 22 12x y m +=的离心率为12,则m 等于( ) A. B. 3 2 C. 83 D. 23 7.椭圆22221x y a b +=与椭圆22 22(01)x y k k k a b +=>≠且具有相同的( ) A.长轴长 B.离心率 C.顶点 D.焦点 8.若椭圆 22 149 x y k +=+的离心率为12e =,则k 的值是( ) A. 1 2 B. 8 C. 1142或 D. 1184 或 9. 椭圆22143x y +=的右焦点到直线y x =的距离是________

10.已知1F ,2F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交于椭圆于A ,B 两点,若Δ2ABF 是 等腰直角三角形,则这个椭圆的离心率是( ) A. B. 2 C. 1- D. 11.若点P 和点F 分别为椭圆22 143 x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP 的最大值为( ) A. 2 B. 3 C. 6 D. 8 12..如图,1F ,2F 分别为椭圆 22 221x y a b +=的左、右焦点,点P 在椭圆上,Δ2POF ___________ 13..已知椭圆22 195 x y +=内有一点()1,1A ,1F ,2F 分别椭圆的左、右焦点,点P 是椭圆上的一点,求 1PA PF +的最大值和最小值是_______________和_______________ 14.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点1F ,2F 在x 轴上,离心率为2 .经过点1 F 的直线l 交C 于A ,B 两点,且Δ 2ABF 的周长为16,那么C 的方程式为___________ 15..已知点P 在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为3 和3 ,过点P 作长轴的的垂线,恰好过椭圆的一个焦点,求椭圆的方程。 16. 椭圆()222210x y a b a b +=>> 的离心率e = ,焦点到椭圆上的点的最短距离为2-圆的标准方程。 17. 求经过点()1,2M ,且与椭圆 22 1126 x y +=有相同的离心率的椭圆的标准方程。

高考数学圆锥曲线综合题型归纳解析

圆锥曲线综合题型归纳解析 【知识点精讲】 一、定值问题 解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量——函数——定值”,具体操作程序如下: (1)变量——选择适当的量为变量; (2)函数——把要证明为定值的量表示成变量的函数; (3)定值——化简得到函数的解析式,消去变量得到定值。 求定值问题常见的方法有两种: (1)从特殊情况入手,求出定值,在证明定值与变量无关; (2)直接推理、计算,并在计算过程中消去变量,从而得到定值。 二、求最值问题常用的两种方法 (1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形的性质来解决。 (2)代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,在求该函数的最值。求函数的最值常见的方法有基本不等式法、单调性法、导数法、和三角换元等,这是代数法。 三、求定值、最值等圆锥曲线综合问题的“三重视” (1)重视定义在解题中的应用(优先考虑); (2)重视曲线的几何特征特别是平面几何的性质与方程的代数特征在解题中的作用; (3)重视根与系数的关系(韦达定理)在解题中的应用(涉及弦长、中点要用)。 四、求参数的取值范围 根据已知条件及题目要求建立等量或不等量关系,再求参数的范围。 题型一、平面向量在解析几何中的应用 【思路提示】解决平面向量在解析几何中的应用问题要把几何特征转化为向量关系,并把向量用坐标表示。常见的应用有如下两个: (1)用向量的数量积解决有关角的问题: ①直角12120a b x x y y ?=+=r r g ; ②钝角10||||a b a b ?-<= == r r r r g r r g 。

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题 技巧总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

解圆锥曲线问题的常用方法大全 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。

16全国高中数学竞赛讲义-直线和圆、圆锥曲线(练习题)

最新高中数学奥数竞赛试题直线和圆,圆锥曲线 课后练习 1.已知点A 为双曲线122=-y x 的左顶点,点B 和点C 在双曲线的右支上,ABC ?是等边三角形,则ABC ?的面积是 (A ) 33 (B )2 33 (C )33 (D )36 2.平面上整点(纵、横坐标都是整数的点)到直线5 4 35+=x y 的距离中的最小值是 (A )17034 (B )8534 (C )201 (D )30 1 3.若实数x, y 满足(x + 5)2+(y – 12)2=142,则x 2+y 2的最小值为 (A) 2 (B) 1 (C) 3 (D) 2 4.直线13 4=+y x 椭圆191622=+y x 相交于A ,B 两点,该圆上点P ,使得⊿PAB 面积等于3,这样的点P 共有 (A) 1个 (B) 2个 (C) 3个 (D) 4个 5.设a ,b ∈R ,ab ≠0,那么直线ax -y +b =0和曲线bx 2+ay 2=ab 的图形是 A B 6.过抛物线y 2=8(x +2)的焦点F 作倾斜角为60o 的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于P 点,则线段PF 的长等于 A . 3 16 B . 3 8 C . 3 3 16 D .38 7.方程 13 cos 2cos 3sin 2sin 2 2=-+-y x 表示的曲线是 A. 焦点在x 轴上的椭圆 B. 焦点在x 轴上的双曲线 C. 焦点在y 轴上的椭圆 D. 焦点在y 轴上的双曲线 8.在椭圆)0(122 22>>=+b a b y a x 中,记左焦点为F ,右顶点为A ,短轴上方的端点为B 。 若该椭圆的离心率是 2 1 5-,则ABF ∠= 。 9.设F 1,F 2是椭圆14 92 2=+y x 的两个焦点,P 是椭圆上的点,且|PF 1| : |PF 2|=2 : 1,则 三角形?PF 1F 2的面积等于______________.

高中数学-椭圆经典练习题-配答案

椭圆练习题 一.选择题: 1.已知椭圆 上的一点P ,到椭圆一个焦点的距离为3,则P 到另一焦点距离为( D ) A .2 B .3 C .5 D .7 2.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是( C ) A. B. C. D. 3.与椭圆9x 2 +4y 2 =36有相同焦点,且短轴长为4的椭圆方程是( B ) A 4.椭圆的一个焦点是,那么等于( A ) A. B. C. D. 5.若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于( B ) A. B. C. D. 6.椭圆两焦点为 , ,P 在椭圆上,若 △的面积的最大值为12,则椭圆方程为( B ) A. B . C . D . 7.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2| 的等差中项,则该椭圆方程是( C )。 A +=1 B +=1 C +=1 D +=1 8.椭圆的两个焦点和中心,将两准线间的距离四等分,则它的焦点与短轴端点连线的夹角为( C ) (A)450 (B)600 (C)900 (D)120 9.椭圆 上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为( A ) A. 4 B . 2 C. 8 D . 116 252 2=+y x 22143x y +=22134x y +=2214x y +=22 14 y x +=5185 8014520125201 20 252222222 2=+=+=+=+y x D y x C y x B y x 2 2 55x ky -=(0,2)k 1-1512 21(4,0)F -2(4,0)F 12PF F 221169x y +=221259x y +=2212516x y +=22 1254 x y +=16x 29y 216x 212y 24x 23y 23x 24 y 222 1259 x y +=2 3

高中数学圆锥曲线综合--求轨迹方程

圆锥曲线综合--求轨迹方程 教学任务 教学流程说明 教学过程设计 圆锥曲线综合--求轨迹方程 求轨迹的常用方法: (1)定义法:如果能够确定动点的轨迹满足某已知曲线的定义,则可由曲线的定义直接写出方程; (2)代入求轨法(坐标平移法或转移法):若动点P(x,y)依赖于另一动点Q(x 1,y 1)的变化而变化,并且Q(x 1,y 1) 又在某已知曲线上,则可先用x 、y 的代数式表示x 1、y 1,再将x 1、y 1带入已知曲线得要求的轨迹方程; (3)直接法:直接通过建立x 、y 之间的关系,构成F(x,y)=0,是求轨迹的最基本的方法; (4)待定系数法:所求曲线是所学过的曲线:如直线,圆锥曲线等,可先根据条件列出所求曲线的方程, 再由条件确定其待定系数,代回所列的方程即可 (5)参数法:当动点P (x,y )坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x 、y 均 用一中间变量(参数)表示,得参数方程,再消去参数得普通方程。 1、(1)一动圆过定点)0,1(A 且与定圆16)1(2 2 =++y x 相切,求动圆圆心的轨迹方程; (2)又若定点)0,2(A 定圆为4)2(22 =++y x 呢? 2、△ABC 中,B (-3,8)、C (-1,-6),另一个顶点A 在抛物线y 2=4x 上移动,求此三角形重心G 的轨迹方程.

3、在平面直角坐标系中,若}2,{},2,{-=+=y x y x 8=+。求动点),(y x M 的轨迹C 的方程; 一、填空: 1.平面内到点A (0,1)、B (1,0)距离之和为2的点的轨迹为 2.已知M (-2,0)、N (2,0),动点P 满足|PM |-|PN |=4,则动点P 的轨迹方程是____________ 3.已知lg(2),lg |2|,lg(16)x y x -成等差数列,则点(,)P x y 的轨迹方程 __ 4.P 是椭圆15 92 2=+y x 上一点,过P 作其长轴垂线,M 是垂足,则PM 中点轨迹方程为______ 5.点M 到F (3,0)的距离比它到直线x+4=0 的距离小1,则点M 的轨迹方程是 6.动点p 与定点A(-1,0), B(1,0)的连线的斜率之积为-1,则p 点的轨迹方程是 。 7、动圆与x 轴相切,且被直线y=x 所截得的弦长为2,则动圆圆心的轨迹方程为 。 8、倾斜角为 4 π 的直线交椭圆42 x +y 2=1于A 、B 两点,则线段AB 中点的轨迹方程是 9、理)两条直线ax+y+1=0和x -ay -1=0(a ≠±1)的交点的轨迹方程是 二、选择: 10、,a b 为任意实数,若(,)a b 在曲线(,)0f x y =上,则(,)b a 也在曲线(,)0f x y =上,那么曲线(,)0f x y =的几何特征是( ) (A )关于x 轴对(B )关于y 轴对称 (C )关于原点对称 (D )关于直线x -y =0对称 11、方程2 2 2 2 (1)0x x y ++-=的图象是( ) (A )y 轴或圆(B )两点(0,1)与(0,-1)(C )y 轴或直线y =1±(D )答案均不对 12、若一动圆与两圆x 2+y 2=1, x 2+y 2-8x+12=0都外切,则动圆圆心的轨迹为: ( ) A 、抛物线 B 、圆 C 、双曲线的一支 D 、椭圆 三、解答 17、已知动点p 到定点F (1,0)和直线x=3的距离之和等于4,求p 点的轨迹方程。 18、抛物线y 2=x +1,定点A (3,1),B 是抛物线上任意一点,点P 在AB 上满足 BP :P A =1:2,当点B 在抛物线上运动时,求点P 的轨迹方程并指出轨迹是什么曲线? 19、理)过原点作直线l 和抛物线642 +-=x x y 交于A 、B 两点,求线段AB 中点M 的轨迹方程。

高中数学圆锥曲线问题常用方法经典例题(含答案)

专题:解圆锥曲线问题常用方法(一) 【学习要点】 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则 有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)

相关主题
文本预览
相关文档 最新文档