当前位置:文档之家› 高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题技巧总结
高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题

技巧总结

Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

解圆锥曲线问题的常用方法大全

1、定义法

(1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。

(2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法

因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:

(1))0(122

22>>=+b a b

y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有

020

20=+k b

y a x 。 (2))0,0(122

22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02

020

=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】

例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________

(2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。

(2)B 在抛物线内,如图,作QR ⊥l 交于R ,则当B 、Q 、R 三点共线时,距离和最小。 解:(1)(2,2)

连PF ,当A 、P 、F 三点共线时,PF AP PH AP +=+最小,此时AF 的方程为

)1(13024---=

x y 即 y=22(x-1),代入y 2=4x 得P(2,22),(注:另一交点为(2,2

1

-),它为直线AF 与抛物线的另一交点,舍去)

(2)(1,4

1

过Q 作QR ⊥l 交于R ,当B 、Q 、R 三点共线时,QR BQ QF BQ +=+最小,此时Q 点的纵坐

标为1,代入y 2=4x 得x=41,∴Q(1,4

1

)

点评:这是利用定义将“点点距离”与“点线距离”互相转化的一个典型例题,请仔细体会。

例2、F 是椭圆13

422=+y x 的右焦点,A(1,1)(1)PF PA +的最小值为 (2)PF PA 2+的最小值为

分析:PF 为椭圆的一个焦半径,常需将另一焦半径F P '来考虑问题。

解:(1)4-5

设另一焦点为F ',则F '(-1,0)连A F ',P F '

当P 是F 'A 的延长线与椭圆的交点时, PF PA +取得最小值为4-5。 (2)3

作出右准线l ,作PH ⊥l 交于H ,因a 2=4,b 2=3,c 2=1, a=2,c=1,e=21

∴PH PF PH PF ==

2,2

1

即 ∴PH PA PF PA +=+2

当A 、P 、H 三点共线时,其和最小,最小值为3142

=-=-A x c

a 例3、动圆M 与圆C 1:(x+1)2+y 2=36内切,与圆C 2:(x-1)2+y 2=4外切,求圆心M 的轨迹方程。

例4、△ABC 中,B(-5,0),C(5,0),且sinC-sinB=5

3

sinA,求点A 的轨迹方程。

分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系。

解:sinC-sinB=53sinA 2RsinC-2RsinB=5

3

·2RsinA

∴BC AC AB 5

3

=

- 即6=-AC AB (*)

∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4

所求轨迹方程为

116

92

2=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支) 例5、定长为3的线段AB 的两个端点在y=x 2上移动,AB 中点为M ,求点M 到x 轴的最短距离。

分析:(1)可直接利用抛物线设点,如设A(x 1,x 12),B(x 2,X 22),又设AB 中点为M(x 0y 0)用弦长公式及中点公式得出y 0关于x 0的函数表达式,再用函数思想求出最短距离。

(2)M 到x 轴的距离是一种“点线距离”,可先考虑M 到准线的距离,想到用定义法。 解法一:设A(x 1,x 12),B(x 2,x 22),AB 中点M(x 0,y 0)

则?????=+=+=-+-0

2

2210212

2221221229)()(y x x x x x x x x x 由①得(x 1-x 2)2[1+(x 1+x 2)2]=9 即[(x 1+x 2)2-4x 1x 2]·[1+(x 1+x 2)2]=9 ④ 由②、③得2x 1x 2=(2x 0)2-2y 0=4x 02-2y 0 代入④得 [(2x 0)2-(8x 02-4y 0)]·[1+(2x 0)2]=9

∴2

2

0419

44x x y +=-, ≥,5192=- 4

50≥

y 当4x 02+1=3 即 220±

=x 时,4

5

)(min 0=y 此时)45,22(±

M 法二:如图,32222=≥+=+=AB BF AF BB AA MM

∴232≥

MM , ∴4

5

1≥MM , 当∴M 到x 点评:① ② ③

两边之和大于第三边(当三角形“压扁”时,两边之和等于第三边)的属性,简捷地求解出结果的,但此解法中有缺点,即没有验证AB 是否能经过焦点F ,而且点M 的坐标也不能直接得出。

例6、已知椭圆

)52(11

2

2≤≤=-+m m y m x 过其左焦点且斜率为1的直线与椭圆及准线从左到右依次变于A 、B 、C 、D 、设f(m)=CD AB -,(1)求f(m),(2)求f(m)的最值。

分析:此题初看很复杂,对f(m)的结构不知如何运算,因A 、B 来源于“不同系统”,A 在准线上,B 在椭圆上,同样C 在椭圆上,D 在准线上,可见直接求解较繁,将这些线段“投影”到x 轴上,立即可得防

此时问题已明朗化,只需用韦达定理即可。

解:(1)椭圆

11

2

2=-+m y m x 中,a 2=m ,b 2=m-1,c 2=1,左焦点F 1(-1,0) 则BC:y=x+1,代入椭圆方程即(m-1)x 2+my 2-m(m-1)=0 得(m-1)x 2+m(x+1)2-m 2+m=0 ∴(2m-1)x 2+2mx+2m-m 2=0

设B(x 1,y 1),C(x 2,y 2),则x 1+x 2=-

)52(1

22≤≤-m m m

(2))1

21

1(2121122

)(-+=-+-=m m m m f

∴当m=5时,9

2

10)(min =

m f 当m=2时,3

2

4)(max =

m f

点评:此题因最终需求C B x x +,而BC 斜率已知为1,故可也用“点差法”设BC 中点为M(x 0,y 0),通过将B 、C 坐标代入作差,得

01

00=?-+k m y

m x ,将y 0=x 0+1,k=1代入得01100=-++m x m x ,∴1

20--

=m m x ,可见122--=+m m

x x C B 当然,解本题的关键在于对CD AB m f -=)(的认识,通过线段在x 轴的“投影”发现

C B x x m f +=)(是解此题的要点。 【同步练习】

1、已知:F 1,F 2是双曲线122

22=-b

y a x 的左、右焦点,过F 1作直线交双曲线左支于点A 、B ,

若m AB =,△ABF 2的周长为( )

A 、4a

B 、4a+m

C 、4a+2m

D 、4a-m

2、若点P 到点F(4,0)的距离比它到直线x+5=0的距离小1,则P 点的轨迹方程是 ( )

A 、y 2=-16x

B 、y 2=-32x

C 、y 2=16x

D 、y 2=32x

3、已知△ABC 的三边AB 、BC 、AC 的长依次成等差数列,且AC AB >,点B 、C 的坐标分别为(-1,0),(1,0),则顶点A 的轨迹方程是( )

A 、

13

42

2=+y x B 、)0(13422>=+x y x C 、)0(13422<=+x y x D 、)00(13

42

2≠>=+y x y x 且 4、过原点的椭圆的一个焦点为F(1,0),其长轴长为4,则椭圆中心的轨迹方程是 ( )

A 、)1(49)21(22-≠=+-x y x

B 、)1(4

9

)21(22-≠=++x y x

C 、)1(49)21(22-≠=-+x y x

D 、)1(4

9

)21(22-≠=++x y x

5、已知双曲线

116

92

2=-y x 上一点M 的横坐标为4,则点M 到左焦点的距离是 6、抛物线y=2x 2截一组斜率为2的平行直线,所得弦中点的轨迹方程是 7、已知抛物线y 2=2x 的弦AB 所在直线过定点p(-2,0),则弦AB 中点的轨迹方程是

8、过双曲线x 2-y 2=4的焦点且平行于虚轴的弦长为

9、直线y=kx+1与双曲线x 2-y 2=1的交点个数只有一个,则k=

10、设点P 是椭圆

19

252

2=+y x 上的动点,F 1,F 2是椭圆的两个焦点,求sin ∠F 1PF 2的最大值。

11、已知椭圆的中心在原点,焦点在x 轴上,左焦点到坐标原点、右焦点、右准线的距离依次成等差数列,若直线l 与此椭圆相交于A 、B 两点,且AB 中点M 为(-2,1),34=AB ,求直线l 的方程和椭圆方程。

12、已知直线l 和双曲线)0,0(122

22>>=-b a b

y a x 及其渐近线的交点从左到右依次为A 、B 、

C 、

D 。求证:CD AB =。 【参考答案】 1、C

a BF BF a AF AF 2,21212=-=-,

∴,24,42222m a AB BF AF a AB BF AF +=++=-+选C 2、C

点P 到F 与到x+4=0等距离,P 点轨迹为抛物线 p=8开口向右,则方程为y 2=16x ,选C 3、D

∵22?=+AC AB ,且AC AB >

∵点A 的轨迹为椭圆在y 轴右方的部分、又A 、B 、C 三点不共线,即y ≠0,故选D 。 4、A

设中心为(x ,y),则另一焦点为(2x-1,2y),则原点到两焦点距离和为4得

4)2()12(122=+-+y x ,∴4

9

)21(22=+-y x

①又c

∴(x-1)2+y 2<4 ②,由①,②得x ≠-1,选A 5、

3

29

左准线为x=-59,M 到左准线距离为529

)59(4=--=d 则M 到左焦点的距离为

3

2952935=

?=

ed 6、)2

1

(21>=

y x 设弦为AB ,A(x 1,y 1),B(x 2,y 2)AB 中点为(x ,y),则y 1=2x 12,y 2=2x 22,y 1-y 2=2(x 12-x 22) ∴

)(2212121x x x x y y +=-- ∴2=2·2x ,2

1=x

将21=

x 代入y=2x 2得21=y ,轨迹方程是21=x (y>2

1

) 7、y 2=x+2(x>2)

设A(x 1,y 1),B(x 2,y 2),AB 中点M(x ,y),则 ∵20+-=

=x y k k MP AB ,∴222

=?+y x y

,即y 2=x+2 又弦中点在已知抛物线内P ,即y 2<2x ,即x+2<2x ,∴x>2 8、4

22,8,4222====c c b a ,令22=x 代入方程得8-y 2=4

∴y 2=4,y=±2,弦长为4 9、12±±或

y=kx+1代入x 2-y 2=1得x 2-(kx+1)2-1=0 ∴(1-k 2)x 2①???=?≠-00

12k ②1-k 2=0得10、解:a 2设F 1、F 2设=11,r PF 则??

?-+=+122

21

2122r r r r r θ ①2-②得2r 1r 2

∴1+cos θ=2

12

212224r r b r r b =

∵r 1+r 2212r r ≥, ∴r 1r 2的最大值为a 2 ∴1+cos θ的最小值为222a

b ,即1+cos θ2518

cos θ257-

≥, 257arccos 0-≤≤πθ则当2

π

θ=时,sin θ取值得最大值1, 即sin ∠F 1PF 2的最大值为1。

11、设椭圆方程为)0(122

22>>=+b a b

y a x

由题意:C 、2C 、c c a +2

成等差数列, ∴222

24c a c c

a c c =++=即, ∴a 2=2(a 2-

b 2),∴a 2=2b 2

椭圆方程为1222

22=+b

y b x ,设A(x 1,y 1),B(x 2,y 2)

则12221221=+b y b x ① 1222

2

222=+b y b x ② ①-②得

022

2

2

2122221=-+-b y y b x x ∴022

2=?+k b y b x m m 即

02

2

=+-k ∴k=1 直线AB 方程为y-1=x+2即y=x+3, 代入椭圆方程即x 2+2y 2-2b 2=0得x 2+2(x+3)2-2b 2=0 ∴3x 2+12x+18-2b 2=0, 342)218(12123

1

112221=--=

+-=b x x AB 解得b 2

=12, ∴椭圆方程为

112

242

2=+y x ,直线l 方程为x-y+3=0 12、证明:设A(x 1,y 1),D(x 2,y 2),AD 中点为M(x 0,y 0)直线l 的斜率为k ,则

???????=-=-112

2

22222

2

1221b y a x b y a x ①-②得0222

20=?-

k b y a x ③ 设),(),,(),,(002211

y x M BC y x C y x B '''''''中点为, ① ②

④ ⑤ 则???????=-=-002212

2

21222

112211

b y a x b y a x ④-⑤得02221

021

=?-'k b

y a x ⑥

由③、⑥知M 、M '均在直线022:

22=?-'k b

y

a x l 上,而M 、M '又在直线l 上 , 若l 过原点,则B 、C 重合于原点,命题成立 若l 与x 轴垂直,则由对称性知命题成立 若l 不过原点且与x 轴不垂直,则M 与M '重合 ∴CD AB =

椭圆与双曲线的对偶性质总结

椭 圆

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.

2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的

圆,除去长轴的两个端点.

3. 以焦点弦PQ 为直径的圆必与对应准线相离.

4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.

5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y

a b +=.

6. 若000(,)P x y 在椭圆22

221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2

的直线方程是00221x x y y

a b

+=.

7. 椭圆22

221x y a b

+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则

椭圆的焦点角形的面积为122tan

2

F PF S b γ

?=.

8. 椭圆22

221x y a b

+=(a >b >0)的焦半径公式:

10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).

9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分

别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.

10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交

于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.

11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2

2OM AB b k k a ?=-,

即020

2y a x b K AB -=。

12. 若000(,)P x y 在椭圆22

221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+.

13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y

x y a b a b

+=+.

双曲线

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.

2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径

的圆,除去长轴的两个端点.

3. 以焦点弦PQ 为直径的圆必与对应准线相交.

4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左

支)

5. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)上,则过0P 的双曲线的切线方程是

00221x x y y

a b

-=. 6. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为

P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y

a b

-=.

7. 双曲线22

221x y a b

-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点

12F PF γ∠=,则双曲线的焦点角形的面积为122t

2

F PF S b co γ

?=.

8. 双曲线22

221x y a b

-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c

当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.

当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--

9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结

AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.

10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P

和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.

11. AB 是双曲线22

221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,

则0202y a x b K K AB OM =?,即0

20

2y a x b K AB =。

12. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)内,则被Po 所平分的中点弦的方程是

22

00002222x x y y x y a b a b

-=-. 13. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是

22002222x x y y x y a b a b

-=-. 椭圆与双曲线的经典结论

椭 圆

1. 椭圆22

221x y a b

+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于

P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22

221x y a b

-=.

2. 过椭圆22

221x y a b

+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于

B,C 两点,则直线BC 有定向且20

20BC b x k a y =(常数).

3. 若P 为椭圆22

221x y a b

+=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点, 12PF F α∠=,

21PF F β∠=,则

tan t 22

a c co a c αβ

-=+. 4. 设椭圆22

221x y a b

+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一

点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有

sin sin sin c

e a

αβγ==+.

5. 若椭圆22

221x y a b

+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0<e ≤

1时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.

6. P 为椭圆22

221x y a b

+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则

2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.

7. 椭圆

22

0022

()()1x x y y a b --+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++.

8. 已知椭圆22

221x y a b

+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.

(1)2222

1111||||OP OQ a b +=+;(2)|OP|2+|OQ|2

的最大值为22224a b a b +;(3)OPQ S ?的最小值

是22

22

a b a b

+. 9. 过椭圆22

221x y a b

+=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂

直平分线交x 轴于P ,则

||||2PF e

MN =. 10. 已知椭圆22

221x y a b

+=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴

相交于点0(,0)P x , 则2222

0a b a b x a a

---<<. 11. 设P 点是椭圆22

221x y a b

+=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记

12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2) 122tan 2

PF F S b γ

?=.

12. 设A 、B 是椭圆22

221x y a b

+=( a >b >0)的长轴两端点,P 是椭圆上的一点,PAB α∠=,

PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)2222

2|cos |

||s ab PA a c co αγ

=-.(2) 2

tan tan 1e αβ=-.(3) 22222cot PAB

a b S b a

γ?=-. 13. 已知椭圆22

221x y a b

+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线

与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.

14. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的

连线必与切线垂直.

15. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互

相垂直.

16. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)

17. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e. 18. 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.

双曲线

1. 双曲线22

221x y a b

-=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线

交双曲线于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22

221x y a b

+=.

2. 过双曲线22

221x y a b

-=(a >0,b >o )上任一点00(,)A x y 任意作两条倾斜角互补的直线交

双曲线于B,C 两点,则直线BC 有定向且20

20BC b x k a y =-(常数).

3. 若P 为双曲线22

221x y a b

-=(a >0,b >0)右(或左)支上除顶点外的任一点,F 1, F 2是焦

点, 12PF F α∠=, 21PF F β∠=,则

tan t 22c a co c a αβ-=+(或tan t 22

c a co c a βα

-=+). 4. 设双曲线22

221x y a b

-=(a >0,b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为双曲线

上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有

sin (sin sin )c

e a

αγβ==±-.

5. 若双曲线22

221x y a b

-=(a >0,b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当1

<e 1时,可在双曲线上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.

6. P 为双曲线22

221x y a b

-=(a >0,b >0)上任一点,F 1,F 2为二焦点,A 为双曲线内一定点,

则21||2||||AF a PA PF -≤+,当且仅当2,,A F P 三点共线且P 和2,A F 在y 轴同侧时,等号成立.

7. 双曲线22

221x y a b

-=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是

22222A a B b C -≤.

8. 已知双曲线22

221x y a b

-=(b >a >0),O 为坐标原点,P 、Q 为双曲线上两动点,且

OP OQ ⊥.

(1)22221111||||OP OQ a b +=-;(2)|OP|2+|OQ|2

的最小值为22224a b b a -;(3)OPQ S ?的最小值

是22

22

a b b a -. 9. 过双曲线22

221x y a b

-=(a >0,b >0)的右焦点F 作直线交该双曲线的右支于M,N 两点,

弦MN 的垂直平分线交x 轴于P ,则

||||2PF e

MN =. 10. 已知双曲线22

221x y a b

-=(a >0,b >0),A 、B 是双曲线上的两点,线段AB 的垂直平分

线与x 轴相交于点0(,0)P x , 则22

0a b x a

+≥或220a b x a +≤-.

11. 设P 点是双曲线22

221x y a b

-=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点记

12F PF θ∠=,则(1)2122||||1cos b PF PF θ=-.(2) 122cot 2

PF F S b γ

?=.

12. 设A 、B 是双曲线22

221x y a b

-=(a >0,b >0)的长轴两端点,P 是双曲线上的一点,

PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是双曲线的半焦距离心率,则有

(1)22222|cos |

|||s |

ab PA a c co αγ=-.

(2) 2

tan tan 1e αβ=-.(3) 22222cot PAB

a b S b a

γ?=+. 13. 已知双曲线22

221x y a b

-=(a >0,b >0)的右准线l 与x 轴相交于点E ,过双曲线右焦点

F 的直线与双曲线相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.

14. 过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相

应焦点的连线必与切线垂直.

15. 过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与

焦半径互相垂直.

16. 双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离

心率).

(注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点). 17. 双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e.

18.双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

高一数学老师工作总结5篇

高一数学老师工作总结5篇 工作总结,以年终总结、半年总结和季度总结最为常见和多用。就其内容而言,工作总结就是把一个时间段的工作进行一次全面系统的总检查、总评价、总分析、总研究,并分析成绩的不足,从而得出引以为戒的经验。下面是小编收集整理的高一数学老师工作总结5篇范文,欢迎借鉴参考。 高一数学老师工作总结5篇(一) 人生倏忽兮如白驹之过隙,本学期,我担任高一(11)的数学,我内心深处时时充盈着感动。是领导的关怀,同事间的互助,师生间的灵犀,让我感到了生活的意义,感到了生命的美好,也给了我在单调机械的工作中坚持下去的理由和信念。我感动着这一切,所以我也努力工作着,回报着。 转眼间,一年过去了,在这一年的工作有成功与失败、有欢笑与泪水。这一年是我人生中最亮丽的一年,是几年教学中收获最多的一年,虽然这一年的工作还有缺憾、还有不足,但绝对是我成长最快的一年,是我经验积累最多的一年。现就这一年的工作总结如下:

一、收获 1、备课:这学期的备课在去年的基础上去繁就简,简化了知识上的抄写,强调教学过程的设计、教学语言的组织、教学环节的过渡;依据中考要求、学校招生考试试题难度要求,简化了去年过繁、过深的知识传授,尽量将教学难度降到合适的要求,并充分注重基础知识的掌握与记忆;根据学生实际,简化了过多、过细的教学内容,重点强化重点知识的讲解,让学生学会举一反 三、由此及彼的学习方法,从而减轻了学生的记忆负担。 2、教学方法 今年,我积极参加省教育厅组织的“课内比教学”活动,另外在与教学不相冲突的情况下,尽量多听课,多听有经验教师的评课,多总结别人的优点,并根据自己的教学实际加以借用。在教学中,我还十分注意向有经验的教师请教,学习他们管理学生的方法、学习课堂教学的语言、学习教学过程的组织、学习各种课型的的授课方法、学习课件制作的经验,努力使自己的教学逐渐成熟。 3、课堂管理 通过一年的带班,自己最深刻的体会学生管理真是一门博大精深的艺术,怎样使自己管理学生严而有度、活而不乱,怎样使课堂教学轻松的氛围中进行,都是自己今后还应努力的地方。

圆锥曲线的定义方程和性质知识点总结

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =± 参数方程与普通方程 22 22 1x y a b +=的参数方程为 ()cos sin x a y b θ θθ=?? =?为参数 22 22 1y x a b +=的参数方程为 ()cos sin y a x b θ θθ =?? =?为参数

(新)高中数学圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程 1. 椭圆方程的第一定义:平面内与两个定点F 1,F 2的距离的和等于定长(定长通常等于2a ,且2a >F 1F 2) 的点的轨迹叫椭圆。 为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ (1)①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 22 2 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . 注:A.以上方程中,a b 的大小0a b >>,其中2 2 2 b a c =-; B.在22221x y a b +=和22221y x a b +=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2 x 和 2y 的分母的大小。 ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:12 22 2=+ b y a x 的参数方程为???==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵椭圆的性质 ①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e = .【∵0a c >>,∴01e <<,且e 越接近1,c 就越接近a ,从而b 就越小,对应的椭圆越扁;反之,e 越接近于0,c 就越接近于0,从而b 越接近于a ,这时椭圆越接近于圆。当且仅当a b =时,0c =,两焦点重合,图形变为圆,方程为2 2 2 x y a +=。】 ⑦焦(点)半径: i. 设),(00y x P 为椭圆)0(12222 b a b y a x =+上的一点,21,F F 为左、右焦点,则 ii.设),(00y x P 为椭圆 )0(12 22 2 b a a y b x =+上的一点,21,F F 为上、下焦点,则 ?-=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

高中数学圆锥曲线详解【免费】

解圆锥曲线问题常用方法+椭圆与双曲线的经典 结论+椭圆与双曲线的对偶性质总结 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2 =2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2 =4x 上一点P 到点A(3,42) (2)抛物线C: y 2 =4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点分析:(1)A 在抛物线外,如图,连PF ,则PF PH =

高一数学工作总结

高一数学工作总结 一名优秀的教师应充分利用班会,做好思想工作,积极学习教育理论知识,注重学生学习兴趣的培养。《高一数学工作总结》是教学工作总结栏目为您精心准备的,更多精彩内容请收藏本站(ctrl+D即可)! 我****年毕业于**大学, ****年8月进入**市第一中学,现在已是我在**市第一中学工作的第六个年头了.参加工作以来,我认真学习马列主义,毛泽东思想,邓小平理论和江泽民同志”三个代表”的论述,使自己的政治理论水平和思想素质有了一个较大的提高.严格遵守学校各种规章制度,积极参加学校各种活动,加强师德修养,严格约束自己,教书育人,为人师表,服从领导安排,与同事,学生关系融洽.在日常工作中虚心向老教师学习.现就我的工作总结如下: 一,思想政治方面 本人能积极参加政治学习,关心国家大事,拥护以吴锦涛同志为核心的党中央的正确领导,坚持四项基本原则,拥护党的各项方针政策,遵守劳动纪律,团结同志,热心帮助同志;教育目的明确,态度端正,钻研业务,勤奋刻苦;班主任工作认真负责,关心学生,爱护学生,为人师表,有

奉献精神. 二,教学工作方面 在这六年的教学工作中,我担任学校数学教学工作.认真备课,上课,听课,评课,做好课后辅导工作,挖掘教材,思索教法,研究学生.平时上课严格要求学生,尊重学生,发扬教学民主,使学生学有所得,不断提高自己的教学水平和思想觉悟,顺利的完成了教育教学任务. 1.备课深入细致,平时认真研究教材,多方参阅各种资料,力求深入理解教材,准确把握难重点.在制定教学目标时,非常注意学生的实际情况.教案编写认真,并不断归纳总结经验教训. 2.注重课堂教学效果,针对学生特点,以互动教学为主,不搞满堂灌,坚持学生为主体,教师为主导,教学为主线,注重讲练结合.在教学中注意抓住重点,突破难点.在整个课堂教学中,充分调动每一个学生的积极性,不忽略每一个细节,力图在45分钟掌握本节课的所有知识点. 3.课后作业人正挑选,精选精炼,不搞题海战术.并且注意学生实际情况,实行分层作业,即在基本作业的情况下,有能力的同学布置提高题.在第一年担任高一7班教学工作中,组织班级内优秀学生有计划的做

高中数学圆锥曲线解题技巧方法总结

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数 2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝 对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|, 则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如方 程8=表示的曲线是_____(答:双曲线的左支) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时1 22 22=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1 (0a b >>)。方程22 Ax By C +=表示椭圆的充要条 件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 若R y x ∈,,且62322=+y x ,则y x +的最大值是____,2 2 y x +的最小值是___ ) (2)双曲线:焦点在x 轴上: 2 2 22b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22 Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 如设中心在坐标原点O ,焦点1F 、2F 在坐标轴 上,离心率2= e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=) (3)抛物线:开口向右时2 2(0)y px p =>,开 口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在 分母大的坐标轴上。 如已知方程1212 2=-+-m y m x 表示焦点在y 轴 上的椭圆,则m 的取值范围是__(答:)2 3 ,1()1,( --∞) (2)双曲线:由x 2,y 2 项系数的正负决定,焦 点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例): ①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长 为2a ,短轴长为2b ;④准线:两条准线2 a x c =± ; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆 越圆;e 越大,椭圆越扁。 如(1)若椭圆152 2 =+m y x 的离心率510 = e ,则m 的值是__(答:3或 3 25); (2)以椭圆上一点和椭圆两焦点为顶点的三角 形的面积最大值为1时,则椭圆长轴的最小值为__(答: 22) (2)双曲线(以22 22 1x y a b -=(0,0a b >>)为 例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等 时,称为等轴双曲线,其方程可设为 2 2 ,0x y k k -=≠;④准线:两条准线2 a x c =±; ⑤ 离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大; ⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围: 0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几 何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);④准线: 一条准线2 p x =-; ⑤离心率:c e a =,抛物线 ?1e =。 如设R a a ∈≠,0,则抛物线2 4ax y =的焦点坐标为 ________(答:)161 , 0(a ); 5、点00(,)P x y 和椭圆122 22=+b y a x (0a b >>)的 关系:(1)点00(,)P x y 在椭圆外?2200 221x y a b +>;(2) 点00(,)P x y 在椭圆上?220 220b y a x +=1;(3)点 00(,)P x y 在椭圆内?2200 221x y a b +< 6.直线与圆锥曲线的位置关系: (1)相交:0?>?直线与椭圆相交; 0?>?直线与双曲线相交,但直线与双曲线相交不一定有0?>,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0?>是直线与双曲线相交的充分条件,但不是必要条件;0?>?直线与抛物线相交,但直线与抛物线相交不一定有0?>,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故0?>也仅是直线与抛物线相交的充分条件,但不是必要条件。 (2)相切:0?=?直线与椭圆相切;0?=?直线与双曲线相切;0?=?直线与抛物线相切; (3)相离:0?中, 以00(,)P x y 为中点的弦所在直线的斜率k=0 p y 。 提醒:因为0?>是直线与圆锥曲线相交于两点的必要 条件,故在求解有关弦长、对称问题时,务必别忘了检验0?>! 11.了解下列结论 (1)双曲线1 2 222 =-b y a x 的渐近线方程为0=±b y a x ; (2)以x a b y ±=为渐近线(即与双曲线 12222=-b y a x 共渐近线)的双曲线方程为λ λ(22 22=-b y a x 为参数,λ≠0)。 (3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为2 2 1mx ny +=; (4)椭圆、双曲线的通径(过焦点且垂直于对称 轴的弦)为2 2b a ,焦准距(焦点到相应准线的距离) 为2b c ,抛物线的通径为2p ,焦准距为p ; (5)通径是所有焦点弦(过焦点的弦)中最短的弦; (6)若抛物线2 2(0)y px p =>的焦点弦为AB , 1122(,),(,)A x y B x y ,则①12||AB x x p =++; ②2 21212,4 p x x y y p ==- (7)若OA 、OB 是过抛物线2 2(0)y px p =>顶点O 的两条互相垂直的弦,则直线AB 恒经过定点(2,0)p 12.圆锥曲线中线段的最值问题: 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高中数学教师年度工作总结

高中数学教师年度工作总结 高中数学教师年度工作总结3篇 总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,他能够提升我们的书面表达能力,因此,让我们写一份总结吧。那么你真的懂得怎么写总结吗?以下是小编帮大家整理的高中数学教师年度工作总结3篇,希望对大家有所帮助。 高中数学教师年度工作总结篇1 时间过得真快,一转眼踏上工作岗位已经两年了,从初出茅庐的大学生到现在,我成长了许多,无论在教学和学生管理方面都积累了不少经验。一学期来,本人认真备课、上课、听课、评课,及时批改作业、讲评作业,做好课后辅导工作,广泛涉猎各种知识,形成比较完整的知识结构,严格要求学生,尊重学生,个人发扬教学民主,使学生学有所得,从而不断提高自己的教学水平和思想觉悟,并顺利完成教育教学任务。下面是本人的教学经验及体会: 1、要提高教学质量,关键是上好课。为了上好课,我做了下面的工作: (1)课前准备:备好课。 ①认真钻研教材,对教材的基本思想、基本概念,

每句话、每个字都弄清楚,了解教材的结构,重点与难点,掌握知识的逻辑,能运用自如,知道应补充哪些资料,怎样才能教好。 ②了解学生原有的知识技能的质量,他们的兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的预防措施。 ③考虑教法,解决如何把已掌握的教材传授给学生,包括如何组织教材、如何安排每节课的活动。 (2)课堂上的情况。 组织好课堂教学,关注全体学生,注意信息反馈,调动学生的有意注意,使其保持相对稳定性,同时,激发学生的情感,使他们产生愉悦的心境,创造良好的课堂气氛,课堂语言简洁明了,克服了以前重复的毛病,课堂提问面向全体学生,注意引发学生学数学的兴趣,课堂上讲练结合,布置好家庭作业,作业少而精,减轻学生的负担。 2、要提高教学质量,还要做好课后辅导工作。 我现在带两个班的数学教学工作,而数学每个班中的后进生肯定存在,给我的课后辅导工作带来了很大的难度。因此我在班级中设置“小组帮”的活动:将一个班级的学生分为八个大组,一个大组长和一个小组长,这两个人齐心协力管理好六个组员的各方面,每个小组中分配一个后进生,进行重点帮助。一个学期下来,效果还是不错的。当然

高中数学圆锥曲线小结论

椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为 直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交.

高中数学圆锥曲线解题技巧方法总结7558

圆锥曲线 1、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。 在椭圆122 22=+b y a x 中,以00(,)P x y 为中点的弦所在直线的斜率k=-0 202y a x b ; 在双曲线22 221x y a b -=中,以00(,)P x y 为中点的弦所在直线的斜率k=0 202y a x b ;在抛物线 22(0)y px p =>中,以00(,)P x y 为中点的弦所在直线的斜率k=0 p y 。 提醒:因为0?>是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验0?>! 2.了解下列结论 (1)双曲线1222 2=-b y a x 的渐近线方程为02222 =-b y a x ; (2)以x a b y ±=为渐近线(即与双曲线12222=-b y a x 共渐近线)的双曲线方程为λλ(2222 =-b y a x 为参数,λ≠0)。 (3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为22 1mx ny +=; (4)椭圆、双曲线的通径(过焦点且垂直于对称轴的弦)为2 2b a ,焦准距(焦点到相应准线 的距离)为2 b c ,抛物线的通径为2p ,焦准距为p ; (5)通径是所有焦点弦(过焦点的弦)中最短的弦; (6)若抛物线2 2(0)y px p =>的焦点弦为AB ,1122(,),(,)A x y B x y ,则①12||AB x x p =++; ②2 21212,4 p x x y y p ==- (7)若OA 、OB 是过抛物线2 2(0)y px p =>顶点O 的两条互相垂直的弦,则直线AB 恒经过定点(2,0)p 3、解析几何与向量综合时可能出现的向量内容: (1)在ABC ?中,给出() 12 AD AB AC =+u u u r u u u r u u u r ,等于已知AD 是ABC ?中BC 边的中线; (2)在ABC ?中,给出2 22OC OB OA ==,等于已知O 是ABC ?的外心(三角形外接圆的圆心,三角形的外心是三角形三边垂直平分线的交点); (3)在ABC ?中,给出=++,等于已知O 是ABC ?的重心(三角形的重心是三角形三条中线的交点); (4)在ABC ?中,给出?=?=?,等于已知O 是ABC ?的垂心(三角形的垂心是三角形三条高的交点); (5) 给出以下情形之一:①AC AB //;②存在实数,AB AC λλ=r r 使;③若存在实数 ,,1,OC OA OB αβαβαβ+==+u u u r u u u r u u u r 且使,等于已知C B A ,,三点共线. (6) 给出0=?,等于已知MB MA ⊥,即AMB ∠是直角,给出0<=?m ,等于已 知AMB ∠是钝角, 给出0>=?m ,等于已知AMB ∠是锐角,

高中数学组工作总结

2015年秋期数学组工作总结 一. 课程标准走进教师的心 我们怎样教数学,《普通高中数学课程标准(试验)》对数学的教学内容,教学方式,教学评估,教育理念等都提出了许多新的要求.我们每位数学教师置身其中去迎接这种挑战,是我们必须重新思考的问题. 二. 集体备课体现大智慧 数学组作为一个强有力的整体,也体现在日常备课之中.本着“一切为了学生,为了一切学生,为了学生一切”的教学理念,在平时的备课活动中不但注重备教材,备教法,更注重备学生.根据学生具体情况结合新教材实际,科研处拿出指导性意,提出“八字”教学模式,数学组认真学习新的教学模式,并圆满地完成了新模式教学任务。对“八字”模式,全组教师积极讨论,并结合自已的见解各抒己见,提出建设性的意见以及更加合理的建议.尽量做到每一份教案都尽善尽美,更有利于课堂教学. 紧扣新课程标准,在有限的时间吃透教材,分组讨论定稿,每个人根据本班学生情况说课、主讲、自评;积极利用各种教学资源,创造性地使用教材公开轮讲,反复听评,从研、讲、听、评中推敲完善出精彩的案例.实践表明,这种备课方式,既照顾到各班实际情况,又有利于教师之间的优势互补,从而整体提高备课水平. 三.课堂教学,交往互动、共同发展 为保证新课程标准的落实,我们把课堂教学营造成学生主动探索的学习环境,学生在获得知识和技能的同时,在过程方法、情感态度价值观等方面都得到了充分发展,把数学教学变成了师生之间、学生之间交往互动,共同发展的过程. 在平时的教学实践中,我们还注意记下学生学习中的闪光点或困惑,记下自已的所感、所思、所得,积累宝贵的第一手资料.教学经验的积累和教训的吸取,对今后改进课堂教学和提高教学水平十分有用. 课前准备不流于形式,变成一种实实在在的研究,教师的集体智慧得到充分发挥,课后的反思为以后的教学积累了许多有益的经验与启示。“学生是教学活动的主体,教师成为教学活动的组织者、指导者、参与者.”这一观念的确立,满堂灌的教法就没有了市场.无论是问题的提出,还是已有数据处理、数学结论的获得等环节,都体现学生自主探索研究.突出过程性,注重学习结果更注重学习过程以及学生在学习过程中的感受和体验.学生的智慧、能力、情感、信念水乳交融,心灵受到震撼,心理得到满足,学生成了学习的主人,学习成了他们的需求,学中有发现,学中有乐趣,学中有收获.实践证明:营造情境,培养学生的主动探究精神是探究性学习的新空间、新途径. 四.加快新教师的培养,做学者型教师 通过新老教师结对子等活动,数学组新教师在两位老教师的悉心指导下,通过自身努力,半年时间内在课堂教学的各个方面都取得了长足进步,现在已经能够胜任正常的教育教学工作.新教师的汇报课得到了上级主管领导及校领导的高度评价和充分肯定,每位教师在做好正常教育教学工作的同时,通过多种途径不断学习提高,争做研究性、学者型教师. 一份耕耘,一份收获,教学工作苦乐相伴.我们将本着“勤学、善思、实干”的准则,一如既往,再接再厉,把教学工作搞得更出色.

高二数学教学工作总结

高二数学教学工作总结 高二二部张艳华 临近期末,回顾这段教学,我有种沉重的感觉。本学年我担任高二年级14、16班的数学教育教学工作。学生学习数学突出问题:有的根本不学,有的一讲又听得懂,一到自己做就不会,常找不到解题思路,眼高手低。学期即将结束,做本学期个人教学工作总结如下一、学情分析: 高二数学学期学必修二与选修1-1两本教材,课时吃紧,教学进度较快,增加了教与学难度,不可避免造成学生不适应高中数学学习,影响成绩的提高。概念抽象,定理严谨,逻辑性强,教材叙述比较严谨、规范,抽象思维明显提高,知识难度加大。基础知识掌握不好,更没有查漏补缺,及时衔接,导致新旧知识的断链,形成学生在“空中楼阁”的基础上学数学,造成基础知识的破网。 现在的学生,好高骛远,空中建楼,目中无人,急功近利。现在的学生思想品德意识淡漠,懂得诸多大道理,爱国、民族、团结、友爱,讲起来头头是道,但是做人的最其码的道理却不懂。学生处于青春期,自主性差,往往是课上听课,课后完成作业了事。大多数学生被动学习,习惯听老师讲课,做题时习惯认为把题做完就是完成学习任务,缺乏主动思考能力,大部分的数学知识可以说都是老师的、课本的。不会科学地安排时间,缺乏自学、阅读、动手能力。 二、具体措施:

每个班里几乎有五分之二学生根本不学,针对上述问题,我采取如下措施: 1、建立数学信心。 师生协作尽自己所能,让每一名学生在数学上都有发展,每个人都学到属于自己的数学,确保打好基础。要相信,成绩越低,提升的空间越大,建立学好数学的信心。 2、把握学生的心理特征,有效指导学习策略。 在高二所形成的心理态势、学习方式、思维习惯和知识结构将会对高中三年的发展产生重大的甚至是决定性的影响。要正视“转折点”,引导学生自觉地实现“转轨”。向学生讲清高中数学的特点,激励他们与时俱进,认真的学习、领悟数学学习的科学理念与以理论型抽象思维水平为主导的数学学习方法,自觉地、尽快地按照“数学学习的基本结构”高质量地完成从初中到高中学习的转轨,形成良好的数学学习习惯与方法。 3.搞好初高中数学知识衔接教学。 在教学中必须采用“低起点,小步子”的指导思想,帮助学生温习旧知识,恰当地进行铺垫,以减缓坡度。分解教学过程,分散教学难点,让学生在已有的水平上,通过努力,能够理解和掌握知识。4.加强学法指导,培养良好学习习惯。 良好的学习习惯,有利于激发学生学习的积极性和主动性,形成学习策略,提高学习效率,培养自主学习能力,培养学生的创新精神和创造能力,使学生终身受益。

高考的数学中圆锥曲线重要结论地最全的总结

高考数学圆锥曲线重要结论 一、定义:第一定义:平面内到两定点F1(-c,0),F2(c,0)的距离和为定值(大于两定点间的距离|F1F2|)2a的点的轨迹叫椭圆,两定点叫椭圆的焦点,两焦点间的距离叫焦距,与坐标轴的交点叫顶点。 第二定义:平面内到一个定点F的距离与到定直线1的距离比为常数e(0

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题 技巧总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

解圆锥曲线问题的常用方法大全 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。

相关主题
文本预览
相关文档 最新文档