当前位置:文档之家› 造气循环水冷却塔的优化改造与效果分析

造气循环水冷却塔的优化改造与效果分析

造气循环水冷却塔的优化改造与效果分析
造气循环水冷却塔的优化改造与效果分析

造气循环水冷却塔的优化改造与效果分析

山东华鲁恒升化工股份有限公司

张哲刘理新李洪锋

摘要:

本文介绍了一种新型循环水降温设备——水分散无填料冷却塔,详细阐述了其工作原理和应用情况,对生产中存在的问题进行了评述。

关键词:填料工作原理运行状况喷头

1. 问题的提出

机械通风填料冷却塔由于具有一次投资少、施工周期短等优点,在我国氮肥企业中得到广泛的应用。我公司是一个年产合成氨48万吨的氮肥企业,其中老系统的5台Φ3.3m造气炉循环水系统配备了三座同类型的冷却塔,处理能力分别为1#600 T/h,2#3#400 T/h。经过十几年的连续运行,降温性能呈逐年下降的趋势,表现为处理水量减小、冷却效果差、运行周期短等方面,随着操作水平的不断提高,半水煤气产量却在逐年增加,造成半水煤气温度偏高,已经成为制约夏季生产的瓶颈问题。众所周知,半水煤气温度是影响合成氨产量的重要指标的之一,因此提高冷却塔的运行效果已势在必行。

2. 解决思路

2.1 经计算,新增一台400 T/h机械通风填料冷却塔完全可以满足生

产要求。但因为场地受限、投资较大等原因未能实施。

2.2 对原有三座冷却塔进行维修,恢复其设计能力。

2.3 改造为水分散无填料冷却塔。该类型冷却塔是近几年才出现的一

种新产品,由于应用单位较少,要承担技术风险。

原样恢复冷却塔虽然不会承担技术风险,但在冷却塔的降温性能方面也不会有太大的提高。改造为水分散无填料冷却塔的情况恰恰相反。通过对两种冷却塔的工作原理、运行效果、投资大小等方面综合考虑,我们确定执行第三种方案。

考虑到我公司的某一车间曾经改造过同类型的冷却塔,但未达到设计要求。我们根据3#塔综合性能最差的现状,决定先选定改造3#塔。改造之前与厂家签订技术协议,如果达不到技术要求,厂家则无偿提供材料改为填料塔。另外通过对供货厂家的技术能力筛选,我们选择了另一家实力较强的供货单位——成都华能佳源应用技术研究所。这样改造失败的风险基本就不存在了。

3. 工作原理

3.1 机械通风填料冷却塔的工作原理,如图1所示。

循环热水由收水器下部经喷头向下喷淋,在填料层中与逆流而上的冷空气充分接触而降温。热水的降温途径主要由两个:一是接触传热过程,通过水和空气的直接接触,高温水将热量传递给低温的空气。二是蒸发传热过程,部分水由于被蒸发而带走大量的气化潜热;同时也将其它的水冷却。夏季气温较高时,冷却塔以蒸发传热的方式为主。

3.2 水分散无填料冷却塔的工作原理,如图2所示。

布水管安装在风筒下部,热水经喷头底部切向进入,高速旋转后由喷头上部呈雾状喷出,接近收水器处回落。可以看出,水与空气的

接触时间延长一倍,由于该种喷头雾化性能很好,液滴直径约为填料塔的1/3~1/4,所以换热效果明显增大。喷头结构如图3所示。

4. 施工:

为了节约改造费用、压缩施工时间,我们保留了原集水盘和风筒立柱。

4.1 新风筒组装

4.2 旧塔拆除,割开中心管、风筒下缘支撑后,整体吊下

4.3 安装布水管及喷头

4.4 安装风筒

4.5 试车

为尽量缩短施工时间对生产的影响,安排施工人员倒班作业,24小时不间断施工。从2004年9月12日7:00停车到9月13日13:00开车,共用了30小时,比厂家预计时间提前了18小时。

5. 性能对比

5.1 降温效果对比

下表为改造前后的测试数据对比

从上表可以看出,3#塔的出水温度大约下降了8℃,降温效果是明显的。由于风筒内没有布水填料,塔内空气流动阻力减小,风机电流下降了10%左右,节约电耗的同时,现场风机运行噪音也有所降低,具体数据未测。

5.2 改造费用对比

水分散无填料塔的专用喷头费用较高,但是省去了120m3PVC方格布水填料,最终与填料塔相比改造费用还是略微低一些。

6. 存在问题

6.1 操作问题

原来冷却塔在遇到需要调小水量时只要减小水阀门开度即可,随着水量的减小,出水温度呈下降趋势。改造后的情况就不同了,随着上水阀门开度的减小,出水温度却是逐渐升高的,原因是喷水高度逐渐下降、水的雾化性能随之降低所致。为解决这一问题,我们在集水盘上增加了一个溢流管。当循环水系统用水量减小时,多余的冷水就会从溢流管流回热水池,从而进一步增强了对循环水的降温效果。

6.2 喷头堵塞问题

由于造气循环水水质差,水中颗粒性杂质含量高,主要是煤灰、木片等。水分散无填料塔喷头的最小孔径只有13mm,比原冷却塔30mm 的喷头内经小了许多。因此,3#塔改造投运初期,喷头几乎每天都有堵塞的现象,既影响了降温效果,又增加了疏通清理的工作量。

解决这一问题只能在喷头前面安装过滤器,但考虑到购买过滤器费用高,采购时间长。因此我们在车间内自己制作了8mm的孔板式过滤器,过滤器的底部设计了反冲洗用的排污口,安装后效果非常好,冲洗也很方便。解决喷头堵塞的同时,还净化了水质,有利于防止洗气塔、细小管道等的堵塞。

7. 结束语

3#塔自2004年9月改造为水分散无填料冷却塔以来,至今已稳定运行半年多时间,实践表明,改造是成功的,循环水温度有了明显的下降,降低了半水煤气温度,为后工序合成氨的稳定生产奠定了基础,同时也降低了电耗。我们将继续对其它冷却塔进行改造。

图1布水填料喷头

收水器

图2

喷头

收水器

集水盘集水盘

溢流管欢迎您的下载,资料仅供参考!

循环水基础知识电子教案

1工业上使用循环水的意义 1.1冷却水对水质的要求 在许多工业生产中,水是直接或间接使用的重要工业原料之一,其中大量的是用来作为冷却介质,通常在选用水作为冷却介质时,需注意选用的水要能满足以下几点要求: 1) 水温要尽可能低一些 在同样设备条件下,水温愈低,日产量愈高。同时冷却水温度愈低,用水量也相应减少。2) 水质不易结垢 冷却水在使用中,要求在换热设备的传热表面上不易生成水垢,以免影响传热设备的传热效率。这对工厂安全生产是一个关键。生产实践告诉我们,由于水质不好,易结水垢而影响工厂生产的例子是屡见不鲜的。 3) 水质对金属设备不易产生腐蚀 冷却水在使用中,要求对金属设备最好不产生腐蚀,如果腐蚀不可避免,则要求腐蚀性愈小愈好,以免传热设备因腐蚀太快而迅速减少有效传热面积或过早报废。 4) 水质不易滋生菌藻 冷却水在使用过程中,要求菌藻获等微生物在水中不易滋生繁殖,这样可避免或减少因茵藻繁殖而形成大量的粘泥污垢。过多的粘泥污垢会导致管道堵塞和腐蚀。 1.2循环冷却水运行时存在的问题 对循环冷却水系统,冷却水在不断循环使用过程中,由于水的温度升高,水流速度的 变化,水的蒸发,各种无机离子和有机物质的浓缩,冷却塔和冷水池在室外受到阳光照射、风吹雨淋、灰尘杂物的飘落,以及设备结构和材料等多种因素的综合作用,会产生以下三种危害: 1) 严重的水垢附着 2) 设备腐蚀 3) 菌藻微生物的大量滋生,以及由此形成的粘泥污垢堵塞管道等 这些危害会威胁和破坏工厂长周期地安全生产,甚至造成经济损失,因此不能掉以轻心,在日常运行时,必须要选择一种经济实用的循环水处理方案,务使上述危害减轻,直至使其不发生。

工业循环水主要分析报告指标及方法

附页1 工业循环水主要分析方法 一、水质分析中标准溶液的配制和标定 (一)盐酸标准溶液的配制和标定 取9mL市售含HCl为37%、密度为1.19g/mL的分析纯盐酸溶液,用水稀释至1000mL,此溶液的浓度约为0.1mol/L。 准确称取于270~300℃灼烧至恒重的基准无水碳酸钠0.15g (准确至0.2mg),置于250mL锥形瓶中,加水约50mL,使之全部溶解。加1—2滴0.1%甲基橙指示剂,用0.lmol/L盐酸溶液滴定至由黄色变为橙色,剧烈振荡片刻,当橙色不变时,读取盐酸溶液消耗的体积。盐酸溶液的浓度为 c(HCl) = m×1000 / (V×53.00) mol/L 式中 m——碳酸钠的质量,g; V——滴定消耗的盐酸体积,ml; 53.00——1/2 Na2C03的摩尔质量,g/mol。 (二)EDTA标准溶液的配制和标定 称取分析纯EDTA(乙二胺四乙酸二钠)3.7g于250mL烧杯中,加水约150mL和两小片氢氧化钠,微热溶解后,转移至试剂瓶中,用水稀释至1000mL,摇匀。此溶液的浓度约为0.015mol/L。 (1)用碳酸钙标定EDTA溶液的浓度准确称取于110℃干燥至恒重的高纯碳酸钙0.6g(准确至0.2mg),置于250mL烧杯中,加水100mL,盖上表面皿,沿杯嘴加入l+1盐酸溶液10mL。加热煮沸至不再冒小气泡。冷至室温,用水冲洗表面皿和烧杯内壁,定量转移至250mL容量瓶中,用水稀释至刻度,摇匀。 移取上述溶液25.00mL于400mL烧杯中,加水约150mL,在搅拌下加入10mL 20%氢氧化钾溶液。使其pH>l2,加约10mg钙黄绿素—酚酞混合指示剂①,溶液呈现绿色荧光。立即用EDTA标准溶液滴定至绿色荧光消失并突变为紫红色时即为终点。记下消耗的EDTA溶液的体积。 (2)用锌或氧化锌标定EDTA溶液的浓度准确称取纯金属锌0.3g (或已于800℃灼烧至恒重的氧化锌0.38g),称准至0.2mg,放入250mL烧杯中,加水50mL,盖上表面皿,沿杯嘴加入10mL l+1盐酸溶液,微热。待全部溶解后,用水冲洗表面皿与烧杯内壁,冷却。转移入250mL容量瓶中,用水稀释至刻度,摇匀,备用。 用移液管移取上述溶液25.00mL于250mL锥形瓶中,加水100mL,加0.2%二甲酚橙指示剂溶液1~2滴,滴加20%六次甲基四胺溶液至呈现稳定红色,再过量5mL,加热至60℃左右,用EDTA溶液滴定至由红色突变为黄色时即为终点。记下EDTA溶液消耗的体积。 EDTA溶液的浓度用下式计算: c(EDTA) = m×1000 / (M×V×10) mol/L 式中 m——基准物质的质量,mg; M——基准物质的摩尔质量,g/mol,选用碳酸钙时为100.08,选用金属锌(或氧化锌)时为65.39(或81.39); V——滴定消耗的EDTA溶液体积,mL。 用EDTA滴定法测定水硬度时,习惯使用c (1/2 EDTA),这时 c(1/2 EDTA)=2c (EDTA) (三)硝酸银标准溶液的配制和标定 称取1.6g分析纯硝酸银,加水溶解并稀释至1000mL,贮于棕色瓶中。此溶液的浓度约为0.01mol/L。 准确称取0.6g已于500~600℃灼烧至恒重的优级纯氯化钠(准确至0.2mg)。加水溶解后,移至250mL 容量瓶中并稀释至刻度,摇匀。用移液管移取氯化钠溶液10.00mL于250mL锥形瓶中加水约100mL5%铬酸钾溶液lmL,用硝酸银溶液滴定至砖红色出现时即为终点。 记下硝酸银溶液的体积。 用100mL水作空白,记录空白消耗硝酸银溶液的体积。硝酸银溶液的浓度为 c(AgNO3) = m×1000 / [58.44×(V—V0 ) ×25] mol/L 式中 m——氯化钠的质量,g; 58.44——NaCl的摩尔质量,g/mol; V——滴定氯化钠溶液时消耗硝酸银的体积,mL; V0——滴定空白时消耗硝酸银的体积,mL。 ①1g钙黄绿素和1g酚酞与50g分析纯干燥的硝酸钾混合,磨细混匀。 (四)硝酸汞标准溶液的配制和标定

循环水冷却塔蒸汽回收除雾技术

间冷开式循环水冷却塔上应用CRECT蒸发水汽回收系统探讨 我国是一个水资源十分贫乏的国家,一些地区水资源已成为制约经济发展的主要因素之一。石油化工、发电等行业是工业耗水大户,苴中循环水冷却塔的耗水量约占整个耗水量的45% 以上。冷却塔内水量散失主要是因蒸发散热使部分水相变为水蒸气散入空气中,不但造成水的流失,有时因水雾大还造成很多环境问题。因此回收降低冷却塔的蒸发水耗,意义重大。 多年来,人们采取了很多技术措施,实现冷却塔的肖水。目前有冷却塔内加设高效收水器、髙压静电收水和水轮式旋转布水器消除飘水现象等收水措施。但大多只是收回空气中携带的水滴,高压静电收水也是只收集粒径小于200?300 Pm的小水滴。CRECT蒸发水汽回收系统工业试验装置可实现对饱和空气中的水蒸气进行回收,这部分蒸发水汽水量大,同时达到了蒸锚水的水质标准。 1.CRECT蒸汽回收技术原理 1.1冷却塔蒸发水汽回收原理介绍 冷却塔主要靠从塔底抽进的塔外冷空气与冷却热水通过接触进行热屋的交换。塔外冷空气是低度水蒸气和干空气的混合物,进塔前冷空气中的水蒸气含量较少。在冷却塔运行过程中,水经过冷却塔填料层时,气水充分接触混合,气中水的分压达到了当时温度所对应的饱和压力,进入冷却塔的冷空气便成为了饱和热湿空气。在冷却塔内除水器上部基本上是以饱和热湿空气的形式存在的。 在冷却塔内除水器上部,饱和热湿空气在塔内逐渐上升,与塔外进入的冷空气进行接触,热湿空气温度逐渐下降,并逐步呈过饱和状态,形成小水滴,开始凝结成水雾;至塔顶处,水汽凝结达到最大程度,这便是通常在塔顶看到的雾气团。当具备了充足的水汽,上升过程中遇到凝结核以后,形成的小水滴会凝结形成大水滴。在蒸发水汽出塔前,采用一泄的设备,就可以回收冷却塔饱和蒸发水汽,达到节水和保护环境的双重目的。 CRECT蒸发水汽回收装宜是利用环境大气与冷却塔塔顶饱和蒸发水汽的温差,核心部件冷凝

国内外水污染实例分析

国内外水污染实例分析 精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

国内外水污染实例分析 摘要本报告简要分析了国内外水污染事件,包括泰晤士河水污染事件和首尔清溪川水污染事件等五大国外水污染实例。简要描述了其污染原因和治理方法等。有的事件是突发性水污染事件,具有典型代表性,通过分析该事件来得出处理突发性水污染事件的方法。有的事件是水污染长期积累而爆发的污染事件,通过分析该事件来得出治理国内水污染的方式,增强国家治理水污染的信心。 引言联合国于1997年向全世界发出警告:“地区性的水危机预示全球性危机的到来。”全世界水环境污染异常严重,全球污水排放量已达1-2×1012m3/a,每年有500-1000万人死于与水有关的疾病。至今距1997年的警告已接近20年,而随着工业化的发展,水污染是难以避免的,由此我们可以看出控制水污染的紧迫性和必要性。下面几个经典案例将告诉我们,只要人们认真负责的对待这些问题,水污染是可以得到控制和改善的。 一、英国伦敦泰晤士河 (一)水环境问题分析 泰晤士河全长402公里,流经伦敦市区,是英国的母亲河。19世纪以来,随着工业革命的兴起,河流两岸人口激增,大量的工业废水、生活污水未经处理直排入河,沿岸垃圾随意堆放。1858年,伦敦发生“大恶臭”事件,政府开始治理河流污染。 (二)治理思路及措施 一是通过立法严格控制污染物排放。20世纪60年代初,政府对入河排污做出了严格规定,企业废水必须达标排放,或纳入城市污水处理管网。企业必须申

请排污许可,并定期进行审核,未经许可不得排污。定期检查,起诉、处罚违法违规排放等行为。 二是修建污水处理厂及配套管网。1859年,伦敦启动污水管网建设,在南北两岸共修建七条支线管网并接入排污干渠,减轻了主城区河流污染,但并未进行处理,只是将污水转移到海洋。19世纪末以来,伦敦市建设了数百座小型污水处理厂,并最终合并为几座大型污水处理厂。1955年到1980年,流域污染物排污总量减少约90%,河水溶解氧浓度提升约10%。 三是从分散管理到综合管理。自1955年起,逐步实施流域水资源水环境综合管理。1963颁布了《水资源法》,成立了河流管理局,实施取用水许可制度,统一水资源配置。1973年《水资源法》修订后,全流域200多个涉水管理单位合并成泰晤士河水务管理局,统一管理水处理、水产养殖、灌溉、畜牧、航运、防洪等工作,形成流域综合管理模式。1989年,随着公共事业民营化改革,水务局转变为泰晤士河水务公司,承担供水、排水职能,不再承担防洪、排涝和污染控制职能;政府建立了专业化的监管体系,负责财务、水质监管等,实现了经营者和监管者的分离。 四是加大新技术的研究与利用。早期的污水处理厂主要采用沉淀、消毒工艺,处理效果不明显。20世纪五六十年代,研发采用了活性污泥法处理工艺,并对尾水进行深度处理,出水生化需氧量为5-10毫克/升,处理效果显着,成为水质改善的根本原因之一。泰晤士水务公司近20%的员工从事研究工作,为治理技术研发、水环境容量确定等提供了技术支持。 五是充分利用市场机制。泰晤士河水务公司经济独立、自主权较大,其引入市场机制,向排污者收取排污费,并发展沿河旅游娱乐业,多渠道筹措资金。仅

循环水凉水塔检修方案计划

1#循环水凉水塔大修方案 一、目的 合成车间1#循环水NH-4500型钢混结构冷却塔由海鸥公司04年设计并承建;单塔尺寸为18X18m,单塔配置φ9140mm风机,185kw电机驱动运行。在运行过程中发现塔组塔芯部件老化,导致换热效果差,拟对该塔组塔芯部件进行更换。 二、确立项目检修负责人:刘江成 三、隔离方案 3.1循环水工段相关责任人将1#循环水凉水塔T-4201A进水上塔管线切断蝶阀关闭,风机电机断电拆线。 3.2施工单位、车间办理检修项目施工联络单,做好工作前安全分析及安全风险辨识等工作,按程序办理动火票。 3.3由庆丰公司在1#循环水凉水塔底下扎好施工脚手架,并在脚手架上铺防水雨布,放置拆除旧填料时破损填料落入循环水池内。 四、施工进度网络图 序 号项目名称工期 (天) 工作天数 1 2 3 4 5 6 1 进厂培训教育提前 2 准备工作(脚手架、水池保护)提前 3 填料粘结、收水器组装提前 4 拆除改造部件 2.0 4.1轮毂(叶片)拆除 1 4.2收水器、喷头拆除 1 4.3填料拆除 1.5 4.4检修走道拆除业主负责 5改造部件安装 4 5.1检修走道安装业主负责 5.2轮毂(叶片)安装 1 5.3填料安装 2 5.4收水器、喷头安装 1.5 4 清扫及调试 1 清扫现场0.5 调试运行0.5 注:检修走道拆除安装施工及材料是由业主负责,可交叉施工,不含在施工周期内。

该冷却塔组单塔施工周期6天,总施工周期12天,雨天延顺(本施工周期不包含前期准备工作,不包含业主部分施工时间) 五、改造方案 (一)拆除旧塔 1、拆除顺序 由外协施工单位从凉水塔顶部向下进行拆除:先拆收水器、喷头,再拆凉水塔内部填料。 2、拆除填料 在1#循环水凉水塔上塔管线东侧的凉水塔壁上拆除4*4平方的运料孔(具体方位根据现场施工定),然后由外协施工人员人工从上往下拆除旧填料,为保证安全,拆空区域铺设跳板。 填料共分上下两层,拆除填料时,将填料按纵向分成两个部分,采用分段作业。 a、拆除上层填料,将填料通过运料口运出塔外。 b、将一半底层填料运至塔外,随机安装底层填料。 c、再拆除余下底层填料,再重新安装新填料。 d、拆除的旧填料由吊车从1#循环水凉水塔顶部吊装至循环水凉水塔南侧石子地面上,拆除彻底完成后用运输车装满后直接运至废料厂。 (二)安装新塔 旧塔拆除完毕后,应根据图纸核对基础尺寸,需整改的应及时整改并复验。施工顺序如下: 清理现场——粘接填料——安装填料——安装收水器——清理现场——单机试车 1、填料粘结 施工人员应熟悉填料粘接的特点,填料粘接前对成捆的填料片进行外观检查,填料片粘接前应将填料片上的风沙等污物抖落干净。要选择地面平整,四周通风的场地(循环水凉水塔南侧空地)作为填料粘接的场所,施工前应清扫场地。 填料粘接时,以二人为一组,使用一只专用粘接盘。将经搅拌均匀的粘接剂倒入粘接盘中,使盘中粘接剂存量控制在0.5~1cm深。填料粘接时,要做到片间的粘接点粘接牢固,不得有虚粘和脱开的现象,各片间的有效粘接点不少于粘接点总数的90%。粘接好的填料要堆放整齐,搬运时要轻拿轻放,不能在地面上拖,也不能抛落。 2、安装填料 填料通过运料口吊入塔内。按图纸要求,按规格、数量将填料顺序堆放在填料支承梁上。堆放时必须轻拿轻放,堆放排列整齐,间距均匀,紧松适宜,无透无缝隙。遇到塔内边角及塔周部位,可现场根据实际情况对填料进行局部切割。 安装过程中应对填料层间,分块内的残留碎屑清理干净,不能有遗留杂物。 填料安装检验完毕后,不得有人员在填料上随意走动。若确实需要在填料上行走或安装,需平铺木板。 3、验收开车 改造完成自检合格之后,经车间、运行保障部等多方验收,合格后开车检验改造性能,并作交付使用手续。 六、所需材料:

工业循环水水质标准 2

循环冷却水的水质标准表 项目 单位 要求和使用条件 允许值 悬浮物 Mg/L 根据生产工艺要求确定 <20 换热设备为板式,翅片管式, 螺旋板式 <10 PH 值 根据药剂配方确定 7-9.2 甲基橙碱度 Mg/L 根据药剂配方及工况条件确 定 <500 钙离子 Mg/L 根据药剂配方及工况条件确定 30-200 亚铁离子 Mg/L <0.5 氯离子 Mg/L 碳钢换热设备 <1000 不锈钢换热设备 <300 硫酸根离子 Mg/L 对系统中混凝土材质的要求 按现行的<岩土工程勘察规范>GB50021 94的规定执行 硫酸根离子与氯离子之和 <1500 硅酸 Mg/L <175 镁离子与二氧化硅的乘积 <15000 游离氯 Mg/L 在回水总管处 0.5-1.0 石油类 Mg/L <5 炼油企业 <10 注: 甲基橙碱度以碳酸钙计; 硅酸以二氧化硅计; 镁离子以碳酸钙计。 3.1.8密闭式系统循环冷却水的水质标准应根据生产工艺条件确定; 3.1.9敞开式系统循环冷却水的设计浓缩倍数不宜小于3.0.浓缩倍数可按下式计算: N=Q M /Q H +Q W (3.1.9) 式中 N 浓缩倍数; Q M 补充水量((M 3 /H); Q H 排污水量((M 3/H);

Q W 风吹损失水量(M 3 /H). 3.1.10敞开式系统循环冷却水中的异养菌数宜小于5×105个/ML 粘泥量宜小于4ML/M 3 ; 表10-3锅炉加药水处理时的水质标准 表10-4蒸汽锅炉采用锅外化学水处理时的 水质标准 项目 给水 锅水 额定蒸汽压力,MPA 《1 》1 《1.6 >1.6 <2.5 <1 >1 <1.6 >1.6 <2.5 悬浮物, <5 <5 <5 总硬度 <0.03 <0.03 <0.03 总碱度 无过热器 6-26 6-24 6-16 有过热器 <14 <12 PH >7 >7 >7 10-12 10-12 10-12 含油量 <2 <2 <2 溶解氧 <0.1 <0.1 <0.05 溶解固形物 无过热器 <4000 <3500 <3000 有过热器 <3000 <2500 亚硫酸根 10-30 10-30 磷酸根 10-30 10-30 相对碱度(游离氢氧化钠 <0.2 <0.2 <0.2 项目 单位 给水 锅水 悬浮物 Mg/L <20 PH 值 》7 10-12 总硬度 Mg/L <4 溶解固形物 Mg/L <5000 相对碱度 Mg/L 总碱度 Mg/L 8-26

空调冷却循环水系统设计

空调冷却循环水系统设计 民用建筑空调冷却循环水系统相对于工业冷却循环水系统,设计具有一些特点:循环水量较小,设备为定型产品,水质要求较低,季节性运转等。加上民用建筑设计周期短,设计人员往往根据以往的经验,形成定式思维,对一些具体的细节问题,关注不够,造成冷却水系统水温降不下来,系统能耗过大,运转操作不便等问题。该文针对冷却循环水系统经常出现的问题,谈谈自己的设计体会,旨在引起大家的进一步讨论,达到共同认识共同提高的目的。 一、冷却循环水系统设备的合理选型 1.设计基础资料 为保证冷却塔的冷却效果,必须注重气象参数的收集,气象参数应包括空气干球温度θ(℃),空气湿球温度τ(℃),大气压力P(104Pa),夏季主导风向,风速或风压,冬季最低气温等。 根据《采暖通风与空气调节设计规范》和《建筑给水排水设计规范》,冷却塔设计计算所选用的空气干球温度和湿球温度,应与所服务的空调等系统的设计空气干球温度和湿球温度相吻合,应采用历年平均不保证50小时的干球温度和湿球温度。 2、冷却循环水量确定 确定冷却循环水量时,首先要清楚准确地了解空调负荷及空调设备要求的冷却循环水量,同时还要关注空调机的选型,一般可根据制冷量(美RT),估算冷却循环水量Q(m3/h),对于机械式制冷:离心式、螺杆式、往复式制冷机,Q= 0.8RT。对于热力式制冷:单、双效溴化锂吸收式制冷机,Q=(1.0~1.1)RT ;设计时,冷却循环水量一般是由空调专业根据制冷机样本中给出的冷却水量提出

的。需用指出的是,制冷机样本中给出的冷却水量往往比用负荷法计算值小,尤其是进口机,这主要是由于目前冷却塔本身的热工性能达不到进口设备的要求。

循环水站冷却塔施工方案

循环水站冷却塔施工方案

1编制依据 ?《钢筋焊接及验收规范》JGJ18—96; ?《建筑工程施工质量验收统一标准》GB50300—2001; ?《建筑地基基础工程施工质量验收规范》GB50202—2002; ?《混凝土结构工程施工质量验收规范》GB50204—2002; ?《地下防水工程质量验收规范》GB50208—2002; ?《混凝土结构设计规范》GB50010-2002; ?工程招标文件 ?施工蓝图 ?其他与本工程有关的现行技术规范和评定标准 2工程概况 基础:集水池为现浇钢筋混凝土筏板基础,基础埋深为EL99.00,吸水池为现浇钢筋混凝土筏板基础,基础埋深EL96.2,水池底板混凝土C30 抗 渗等级P6抗冻等级F150,框架:柱梁板均采用C30混凝土,抗冻等级 F150,设备基础采用C30。地基采用天然地基,基础持力层为粉质粘土层, 地基承载力不小于160KPa,抗震设防烈度为八度,建筑结构安全等级为二 级,基础垫层以上及基础外表面与土壤接触部分上刷冷底子油一道、热沥青 二道进行防腐处理,基础防腐处理完毕后基坑应即时回填,回填土分层夯实, 压实系数≥0.94。 本工程抗震设防烈度为八度,基本风压0.55KN/M2,设计特征周期 0.45s。 3工程施工总体布置流程 根据本工程结构的特点:根据图纸要求基础在施工过程中应先深后浅,即先吸水池后集水池,吸水池根据图纸要求在筏板、墙壁、顶板均应设置后浇带,后浇带待两侧混凝土浇筑完毕28天后再浇筑混凝土,混凝土两侧表面凿毛并冲洗干净后用C40补偿收缩混凝土浇筑,振捣密实并加强养护,集水池根据图纸要求○5~○6底板及池壁设置通长伸缩缝,根据现场实际情况需分段进行施工以满足材料的周转

循环水冷却塔节能技改分析

循环水冷却塔节能技改分析 冯浩周世祥 (山西鲁能河曲发电有限公司036500) 摘要:本文主要通过分析发电厂循环水冷却塔在各种运行工况下对机组循环水温度的影响,经过对循环水冷却塔运行方式的调整和部分设计参数进行改造,达到提高发电厂机组循环热效率、节约能源的目的。 关键词:循环水冷却塔;节能;技改 1引言 山西鲁能河曲发电公司位于山西省西北部河曲县境内,一期工程安装2×600MW二台机组,汽轮机为东方汽轮机厂生产的亚临界、一次中间再热、单轴三缸四排汽、冲动凝汽式,汽轮机型号为N600-16.7/538/538-1;锅炉为哈尔滨锅炉厂生产的亚临界、中间一次再热、强制循环、平衡通风、单炉膛、悬吊式、燃煤汽包炉;发电机为东方电机厂生产的全封闭、自然通风、强制润滑、水--氢--氢冷却、圆筒型转子、同步交流发电机。 2循环水冷却塔的设计 2.1 循环水冷却塔基本设计参数 每台机组配套一座7000m2自然通风双曲线冷水塔,塔高130米,冷却塔进风口标高9.0米,塔池底部直径104米。冷却塔采用虹吸式竖井配水设计,分内外区,内区安装有¢38mm的XPH(XPZ)改进型喷头1920个;外区安装有¢40 mm及¢42mm的XPH(XPZ)改进型喷头4576个。冷却塔配水系统的设计是按两台循环水泵全年一个冷却倍率运行。冬季时采取关闭内区配水,启用防冻管的运行方式。全年平均运行冷却水温为20℃左右。冷却塔填料采用两层塑料填料,厚1.0米,经热力计算,夏季P=10%的气象条件下冷却塔出水水温29.14℃。按汽轮机最大连续工况设计,循环水温度20℃,高背压为5.61kPa,低背压为4.27kPa。循环水量60800m3/h,总水阻小于57kPa,额定工况的排汽量,冷却倍率采用50,循环水进水温度20℃,循环水温升10.4℃。 2.2循环水冷却塔的防冻设计 由于我公司地处北部较寒冷地区,冬季运行时必须采取了以下防冻措施: 2.2.1关闭内围配水的压力沟,只利用外围配水。 2.2.2在进风口上缘内侧沿壳壁装设防冻管。 2.2.3在进风口悬挂玻璃钢挡风板。 2.2.4为避免冷态循环,设置旁路管把热水直接送入水池。 2.2.5淋水填料和除水器均采用PVC塑料材质。 329

工业循环水主要分析指标及方法

工业循环水主要分析方法 一、水质分析中标准溶液的配制和标定 (一) 盐酸标准溶液的配制和标定 取 9mL 市售含 HCl 为 37%、密度为/ mL 的分析纯盐酸溶液,用水稀释至 1000mL ,此溶液的浓度约 为L 。 准确称取于270?300 C 灼烧至恒重的基准无水碳酸钠 (准确至0. 2mg),置于250mL 锥形瓶中,加水 约50mL ,使之全部溶解。加1 — 2滴%甲基橙指示剂,用/ L 盐酸溶液滴定至由黄色变为橙色,剧烈振荡 片刻,当 橙色不变时,读取盐酸溶液消耗的体积。盐酸溶液的浓度为 c(HCI) = m X 1000 / (V X mol / L 式中 m ——碳酸钠的质量,g ; V --- 滴定消耗的盐酸体积, ml ; —— 1/2 Na 2C03的摩尔质量, (二) EDTA 标准溶液的配制和标定 准确称取已于500?600 C 灼烧至恒重的优级纯氯化钠 (准确至。加水溶解后,移至 250mL 容量瓶中 并 稀释至刻度,摇匀。用移液管移取氯化钠溶液于 250mL 锥形瓶中加水约100mL5 %铬酸钾溶液lmL ,用硝 酸银溶液滴定至砖红色出现时即为终点。 记下硝酸银溶液的体积。 用 100mL 水作空白,记录空白消耗硝酸银溶液的体积。硝酸银溶液的浓度为 c(AgNO 3) = m X 1000 / [ X (V — V 0 ) X 25] mol/L m ——氯化钠的质量,g ; NaCl 的摩尔质量, g /mol ; V ――滴定氯化钠溶液时消耗硝酸银的体积, V 0――滴定空白时消耗硝酸银的体积, mL 。 ① 1g 钙黄绿素和1g 酚酞与50g 分析纯干燥的硝酸钾混合,磨细混匀。 (四 )硝酸汞标准溶液的配制和标定 称取Hg(NO 3)2 ? H 2O[或Hg(NO 3)2]溶于50mL l+200硝酸溶液中,稀释至 1000mL ,贮于棕色瓶中, 该溶液浓度约为/ L 。 附页 1 g / mol 。 称取分析纯 EDTA( 乙二胺四乙酸二钠 )于 250mL 烧杯中, 加水约 150mL 和两小片氢氧化钠, 微热溶解 后,转移至试剂瓶中,用水稀释至 1000mL ,摇匀。此溶液的浓度约为/ L 。 (1) 用碳酸钙标定 EDTA 溶液的浓度 准确称取于110C 干燥至恒重的高纯碳 酸钙 (准确至,置于250mL 烧杯中,加水 100mL ,盖上表面皿,沿杯嘴加入 温,用水冲洗表面皿和烧杯内壁,定量转移至 移取上述溶液于 400mL 烧杯中,加水约 I2,加约10mg 钙黄绿素一酚酞混合指示剂①, 光消失并突变为紫红色 时即为终点。 (2) 用锌或氧化锌标定 EDTA 准至,放入 250mL 烧杯中,加水 解后,用水冲洗表面皿与烧杯内壁, 用移液管移取上述溶液于 l+1 盐酸溶液 10mL 。加热煮沸至不再冒小气泡。冷至室 250mL 容量瓶中,用水稀释至刻度,摇匀。 150mL ,在搅拌下加入 10mL 20 %氢氧化钾溶液。使其 pH > 溶液呈现绿色荧光。立即用 EDTA 溶液的体积。 EDTA 标准溶液滴定至绿色荧 记下消耗的 溶液的浓度 准确称取纯金属锌 (或已于 50mL ,盖上表面皿,沿杯嘴加入 10mL 冷却。转移入 250mL 容量瓶中,用水稀释至刻度,摇匀,备用。 800C 灼烧至恒重的氧化锌,称 l+1 盐酸溶液,微热。待全部溶 250mL 锥形瓶中,加水100mL ,加%二甲酚橙指示剂溶液 1?2滴,滴加20% 六次甲基四胺溶液至呈现稳定红色,再 过量 5mL ,加热至60C 左右,用EDTA 溶液滴定至由红色突变为 黄色时即为终点。记下 EDTA 溶液消耗的体积。 EDTA 溶液的浓度用下式计算: c(EDTA) = m X1000 / (MXVX10) moI/L 式中 m 基准物质的质量, mg ; M ――基准物质的摩尔质量, g / mol ,选用碳酸钙时为,选用金属锌 (或氧化锌)时为(或; V ――滴定消耗的 EDTA 溶液体积, 用 EDTA 滴定法测定水硬度时,习惯使用 c(1 / 2 EDTA) = 2c (EDTA) (三)硝酸银标准溶液的配制和标定 称取分析纯硝酸银,加水溶解并稀释至 mL 。 c (1/2 EDTA) ,这 1000mL ,贮于棕色瓶中。此溶液的浓度约为/ L 。 式中 mL ;

冷却塔循环水水质分析

摘要:在厦门烟草工业有限责任公司生产系统中,循环冷却水系统是指冷却水通过热交换器完成冷却作用后,进入冷却塔或喷水池中冷却,然后循环重复利用,在重复使用的过程中,循环水系统会出现结垢、腐蚀和产生藻类等多种现象,为了达到既节约用水又保护冷却水系统的目的,文章探讨通过哪些途径的改进来提高冷却循环水系统水质。 关键词:ph值电导率氯根总碱度大冷却水系统真空系统空压系统软化水中水深度处理。 一、冷却塔水质处理效果 冷却塔水质指标解析 ph:循环水ph与循环水中碱度有一定关系,对于加酸处理的循环水系统,应严格控制循环水的ph;当循环水ph有较大幅度变化时,循环水碱度也变化很大;循环水ph的变化,也可验证加酸的稳定性,当循环水ph有较大变化,则加酸不稳定,应调整加酸。合理、有效、及时地控制循环水ph值在适当范围,应当兼顾阻垢、缓蚀和防黏泥附着,是控制循环水水质的关键。 氯根:氯离子是引起铜管发生点蚀的主要因素之一。它会破坏氧化亚铜保护膜的形成,其腐蚀产物氯化亚铜会水解生成氧化亚铜和盐酸。因此,在任何一点上,如果氯化亚铜生成很快,而它的水解产物又没有被迅速去除,都要发生点蚀。在点蚀内部,铜、氯化亚铜和氧化亚铜同时存在,其溶液的ph值为2.5~4,这样基底金属处于酸性条件下所产生的自催化作用,使铜管逐渐为腐蚀穿透。 电导率:同一类型淡水,在ph值5~9的范围内,电导率和总溶解固形物含量大致成线性关系,其比例约为1:0.55~0.90。该比例随不通离子及离子含量高低而不同。但有少数系统的线性关系不明显或比例过低。因此,要准确地由电导率换算为总溶解固形物值,应由循环水系统积累运算数据找出准确的线性关系。一般可按循环水的总溶解固形物值=0.7×浓缩倍率×补充水电导率计算,但也有局限性。 总硬度:一般而言,当循环水补水碳酸盐硬度较低时,循环水的极限碳酸盐硬度也较低,但对应的循环水系统浓缩倍率较高;当循环水补水碳酸盐硬度较高时,循环水的极限碳酸盐硬度也较高,但对应的循环水系统浓缩倍率较低。硬度为结垢性离子,应控制在合理的范围内。 总碱度:采用碱度来控制循环水的加酸量,控制碱度值在 5.0~11.0mmol/l,在循环水碱度未达到极限碳酸盐碱度下碱度值的变化及波动幅度与加酸量的大小和加酸是否稳定、连续、恒流量有关,当循环水碱度变化较大时,应及时调整加酸量并保证加酸的稳定性,避免不均匀加酸对系统造成的结垢及腐蚀。 细菌:冷却塔当空气与水充分接触时,空气中的灰尘、细菌孢子、烟丝烟末都进入了系统;同时由于冷却塔周围适宜温度和湿度,适合细菌生长;浓缩后的循环水中含有丰富营养源,这些导致细菌大量繁殖,产生生物粘泥而使水质恶化,进而引起粘泥垢沉积同时发生垢下腐蚀。 各冷却塔系统水质分析 大冷却水系统电导率较高:周边存在粉尘,被吸入冷却塔内,悬浮在水中,无法从系统内清除掉,且大冷却水系统从来不排污,以及该冷却塔散失飞溅水量少,使浓缩倍数超高,旁路过滤器也较少开启,过滤浮渣的能力较低。 处理方法:应保证系统运行时开启旁路过滤器,并加强对旁滤过滤罐的反冲洗。若能定期排污便能够将电导率控制在指标范围内,但考虑到节水降耗的原因,故应在数值指标和能耗方面寻找一个平衡点。 大冷冻水系统总铁偏高:大冷冻水系统由于经常停机,导致每次停机后水的浊度和总铁

循环水凉水塔检修规划方案.doc

. 1#循环水凉水塔大修方案 一、目的 合成车间1#循环水NH-4500 型钢混结构冷却塔由海鸥公司04 年设计并承建;单塔尺寸为 18X18m,单塔配置φ9140mm 风机, 185kw 电机驱动运行。在运行过程中发现塔组塔芯部件老化,导致换热效果差,拟对该塔组塔芯部件进行更换。 二、确立项目检修负责人:刘江成 三、隔离方案 3.1 循环水工段相关责任人将 1#循环水凉水塔 T-4201A 进水上塔管线切断蝶阀关闭,风机电机断电拆线。 3.2 施工单位、车间办理检修项目施工联络单,做好工作前安全分析及安全风险 辨识等工作,按程序办理动火票。 3.3 由庆丰公司在 1#循环水凉水塔底下扎好施工脚手架,并在脚手架上铺防水雨 布,放置拆除旧填料时破损填料落入循环水池内。 四、施工进度网络图 序 项目名称工期工作天数 号(天 ) 2 3 4 5 6 1 1 进厂培训教育提前 2 准备工作(脚手架、水池保护)提前 3 填料粘结、收水器组装提前 4 拆除改造部件 2.0 4.1 轮毂(叶片)拆除 1 4.2 收水器、喷头拆除 1 4.3 填料拆除 1.5 4.4 检修走道拆除业主负责 5 改造部件安装 4 5.1 检修走道安装业主负责 5.2 轮毂(叶片)安装 1 5.3 填料安装 2 5.4 收水器、喷头安装 1.5 4 清扫及调试 1 清扫现场0.5 调试运行0.5

. 该冷却塔组单塔施工周期 6 天,总施工周期12 天,雨天延顺(本施工周期不包含前期准备工作, 不包含业主部分施工时间) 五、改造方案 (一)拆除旧塔 1、拆除顺序 由外协施工单位从凉水塔顶部向下进行拆除:先拆收水器、喷头,再拆凉水塔内部 填料。 2、拆除填料 在1#循环水凉水塔上塔管线东侧的凉水塔壁上拆除 4*4 平方的运料孔(具体方位根 据现场施工定),然后由外协施工人员人工从上往下拆除旧填料,为保证安全,拆空区域 铺设跳板。 填料共分上下两层,拆除填料时,将填料按纵向分成两个部分,采用分段作业。 a、拆除上层填料,将填料通过运料口运出塔外。 b、将一半底层填料运至塔外,随机安装底层填料。 c、再拆除余下底层填料,再重新安装新填料。 d、拆除的旧填料由吊车从 1# 循环水凉水塔顶部吊装至循环水凉水塔南侧石子地面上,拆除彻底完成后用运输车装满后直接运至废料厂。 (二)安装新塔 旧塔拆除完毕后,应根据图纸核对基础尺寸,需整改的应及时整改并复验。施工顺 序如下: 清理现场——粘接填料——安装填料——安装收水器——清理现场——单机 试车1、填料粘结 施工人员应熟悉填料粘接的特点,填料粘接前对成捆的填料片进行外观检查,填料 片粘接前应将填料片上的风沙等污物抖落干净。要选择地面平整,四周通风的场地(循 环水凉水塔南侧空地)作为填料粘接的场所,施工前应清扫场地。 填料粘接时,以二人为一组,使用一只专用粘接盘。将经搅拌均匀的粘接剂倒入粘接盘中,使盘中粘接剂存量控制在 0.5~1cm 深。填料粘接时,要做到片间的粘接点粘接牢固,不得有虚粘和脱开的现象,各片间的有效粘接点不少于粘接点总数的 90% 。粘接好的填料要堆放整齐,搬运时要轻拿轻放,不能在地面上拖,也不能抛落。 2、安装填料 填料通过运料口吊入塔内。按图纸要求,按规格、数量将填料顺序堆放在填料支承 梁上。堆放时必须轻拿轻放,堆放排列整齐,间距均匀,紧松适宜,无透无缝隙。遇到 塔内边角及塔周部位,可现场根据实际情况对填料进行局部切割。 安装过程中应对填料层间,分块内的残留碎屑清理干净,不能有遗留杂物。 填料安装检验完毕后,不得有人员在填料上随意走动。若确实需要在填料上行走或 安装,需平铺木板。 3、验收开车 改造完成自检合格之后,经车间、运行保障部等多方验收,合格后开车检验改造性 能,并作交付使用手续。 六、所需材料:

循环水冷却塔系统术语及计算

循环水冷却塔系统术语及计算 1常用术语解释 1.1补充水:对于因冷却塔蒸发,排污,风吹(飞溅)而从循环冷却水系统中损失的水量,进行必要的补充的水叫补充水。 1.2蒸发损失:在敞开式循环冷却水系统中热的循环冷却水在冷却塔中因蒸发而被冷却,在此过程中损失的水量叫蒸发损失。 1.3风吹损失:被通风时气流从系统中带入大气中所损失的水量。 1.4排污或排放率:为维持系统中一定的浓缩倍数而排放的水量。 1.5冷却范围或温降度:冷却塔入口和集水池出口之间的温度差。 1.6 循环量:系统中循环水的量,它是时间的函数。 1.7浓缩倍数(K):冷却水在循环过程中由于蒸发损失,水中所含的溶解盐类不断在循环冷却水系统中浓缩,使冷却水中的含盐量高于补充中含盐量,两者的比值称浓缩倍数。 1.8系统容积:敞开式冷却水系统中所有水容量的总和, 包括冷却塔集水池的有效容积和系统管道.换热设备水侧容积等。 1.9 总溶固:水中所有溶解物质的量之和。 1.10 碱度:水中的重碳酸盐,碳酸盐及氢氧化物之和。 1.11 Rs稳定指数:用于判断水的结垢.腐蚀趋势。 2 术语缩写: 2.1补水率: M 2.2蒸发损失: E 2.3风吹损失: D 2.4排污或排放率: B 2.5冷却范围或温降度: △T 2.6循环量: R 2.7浓缩倍数: K 2.8系统容积: HC 2.9总溶固: TDS 2.10 Ryznar稳定指数: I.S

3.计算: 3.1浓缩倍数: K =(循环水中电导或K+或Na+)÷(补充水中电导或K+或Na+) 3.2补充量: M = E × K /(K-1) M = B+E+D 3.3排放量: B = E÷K×△T 3.4每周期的时间= HC÷R 3.5蒸发量: E = R×/r r(蒸发潜热) = 573(千卡/公斤) 43℃ 574(千卡/公斤) 40℃ 577(千卡/公斤) 35℃ 2.3.6风吹损失: D = R×0.1% 工业循环水冷却的术语及其涵义应符合下列规定: 1 冷却塔cooling tower 水冷却的一种设施。水被输送到塔内,使水和空气之间进行热交换或热、质交换,达到降低水温的目的。 2 湿式冷却塔wet cooling tower 水和空气直接接触,热、质交换同时进行的冷却塔。 3 干式冷却塔dry cooling tower 水和空气不直接接触,只有热交换的冷却塔。 4 干湿式冷却塔dry cooling tower 由干式、湿式两部分组成的冷却塔。 5 自然通风冷却塔natural draft cooling tower 靠塔内外的空气密度差或自然风力形成的空气对流作用进行通风的冷却塔。 6 机械通风冷却塔mechanical draft cooling tower

工业循环水知识

工业循环水系统的技术管理 在水资源日益缺乏的今天,如何利用好水资源, 对耗水大户石化企业来说,显得特别重要。它不但影响企业的经济效益,而且还关系到企业的生存和发展,我厂8万t/年硫酸循环冷却水系统,经过十余年的运行,取得了良好效果,下面就循环冷却水系统的技术管理做一探讨。 1 循环冷却水系统工艺流程的改进 我厂循环冷却水系统原工艺流程为:冷水池→ 冷水泵→管壳式换热器→热水池→热水泵→冷却塔→冷水池。共有6台水泵同时运行,无备用机。冷热水池置于地下,故采用真空起泵方法,在运行时,如果有一台泵泄压,就会造成冷热水池液位不平衡而冒池,严重时会影响到其他泵泄压,造成系统停车。针对这一现象,我们进行了深入研究和测试,对其工艺流程进行了该进,取消了热水池和热水泵,将热水泵改为冷水泵使用,改进后的工艺流程为:冷水池→ 冷水泵→管壳式换热器→冷却塔→冷水池。这一改进,不但解决了冒池现象同时也解决了无备机的问题,并且降低了电耗和泵的维修费用,取得了可观的经济效益。 2 冷却塔的技术管理 2.1 风机的选型与维护 风机的选型是否合理,将影响到冷却效果和能耗大小。原有风机为铝合金叶片,15kW圆锥齿轮减速机,经过三年时间的运行,暴露出冷却效果差、能耗高、噪音大的缺点,通过改造,我们更换成玻璃钢叶片11kW行星齿轮减速机,工作效率提高10%左右。 2.2 填料的安装及维护 我厂冷却塔填料采用的是改性硬乙稀斜波片, 每年定期清理两次填料,去除填料间隙中的污垢,在清理时要注意轻拿轻放,防止破损。装填料时要循中心给水管盘成圆形,不要拉得过紧,但也要贴合防止松动,相邻层斜波要交叉错置叠放,每层要校核水平,外围与塔壁贴合良好,这样就可以保证分水均匀,与空气接触良好。 3 循环冷却水处理技术管理 3.1 阻垢、缓蚀 最初的水处理药剂分为两大类,阻垢或缓蚀的, 但后来发现冷却水的结垢和腐蚀现象是相互关联的,水中阻垢剂含量高会引起腐蚀,缓蚀剂含量高会增大结垢的可能,现在工业循环水大都采用复合型水处理药剂,既有阻垢功能,又有缓蚀效应,如HEDP。既使这样,要在实际操作中保持既不腐蚀又不能结垢的平衡也是非常困难的,所以在投入正常运行前,对系统进行预处理是非常必要的,它能在腐蚀结垢发生前在系统内建立一层钝化膜。我厂循环冷却水预处理程序为①投加DC—S213剂浓度至标准2~3倍,②循环24~36h,pH值维持在6~7,温度20 ~30℃。③钝化后系统降至标准水平2.8~ 5.2ppm。 3.2 有机物的生长

工业循环水水质化验项目及方法

循环冷却水PH值的测定方法 方法:PH计直接测定 1.开机前准备 a、电极梗旋入电极梗插座,调节电极夹到适当位置。 b、复合电极夹在电极夹上拉下电极前端的电极套。 c、用蒸水清洗电极,清洗后用滤纸吸干。 2.开机 a、电源线插入电源插座。 b、按下电源开关,电源接通后,预热30min, 接着进行标定。 3.标定 仪器使用前,先要标定,一般来说,仪器在连续使用时,每天要标定一次。 a) 在测量电极插座处拨去短路插座; b) 在测量电极插座处插上复合电极; c) 把选择开关旋钮调到PH档; d) 调节温度补偿旋钮,使旋钮白线对准溶液温度值; e) 把斜率调节旋钮顺时针旋到底(即调到100%位置); f) 把清洗过的电极插入PH=6.8 6的缓冲溶液中; g) 调节定位调节旋,使仪器显示读数与该缓冲溶液当时温定下降时的PH值相一致(如用混合磷酸定位温度为100C时,PH=6.92); h) 用蒸馏水清洗过的电极,再插入PH=4.0 0(或PH=9.18)的标准溶液中,调节斜率旋钮使仪器显示读数与该缓冲溶液中当时温度下的PH值一致。i) 重复(f)--(h)直至不用再调节定位或斜率两调节旋钮为止。 j) 仪器完成标定。 4.测量PH值 经标定过的PH计仪器,即可用来测定被测溶液,被测溶液与标定溶液温度相同与否,测量步骤也有所不同。 (1)被测溶液与定位溶液温度相同时,测量步骤如下: ①用馏水洗电极头部,用被测溶液清洗一次; ②把电极浸入被测溶液中,用玻璃棒搅拌溶液,使溶液均匀,在显示屏上读出溶液的PH值。 (2)被测溶液和定位溶液温度不相同时,测量步骤如下: ①电极头部,用被测溶液清洗一次; ②用温度计测出被测溶液的温度值 ③调节“温度”调节旋钮(8),使白线对准补测溶液的温度值。 ④把电极插入被测溶液内,用玻璃棒搅溶液,使溶液均匀后读出该溶液的PH值。 循环冷却水电导率的测定方法

循环水池加装冷却塔

循环水系统外排水解决方案 一、现状 目前电厂有一座循环水池(14×7×11M),上安装4座1000T机力通风冷却塔,从使用的效果来看,有许多不尽人意的地方,首先是机力通风冷却塔的冷却效果本身就不好,其次循环水池的有效水容积不大,约在800立左右,加上整个循环水系统,也不过是1000左右,循环倍率大,水源温度高(夏季达到25℃),设计本身也有原因,冷却塔坐落在山脚下,夏季通风不畅。 二、目前应对措施 由于以上实际的困难,造成的结果就是循环水的温度在夏季居高不下,最高时到达34℃(进水)/40℃(回水),远高于24℃(进水)/34℃(回水)的设计值,主要造成的影响是机组的真空度下降,影响发电量,换热设备结垢,汽机辅机运行工况恶劣增加维护费用。发电工段应对的主要方法是通过大量排水、大量补水的方式来降低循环水的温度,维持发电负荷在8000kW—10000kW之间。三、解决方法 解决循环水池大量外排的根本方法就是降低循环水的温度。就现有的条件来看,有2条途径,第一增加机力通风塔的数量,弥补本身的缺陷,第二增加循环水池的容积,降低循环倍率,便于循环水热量能够排出。 四、具体方案 1、增加循环水池容积。电厂的整体设计中,紧靠循环水池还建造了一座工业水池(消防水池),容积为(14×5×7M),现在没有得到有效的利用,可以将两座水池的浇筑池壁打通,凿出1—2个直径600mm的孔洞,就可以实现循环水池的容积增加500立。 2、工业水池顶部标高与循环水池顶部标高只相差1米,利用工业水池的顶部做基础,再安装1—2台机力通风冷却塔,加强冷却效果。由于工业水池顶部宽度不足,只能安装1—2座1000T异型机力通风冷却塔。 3、只需对冷却塔的进水管道进行改造,循环池的出水口利用现有设备,无需进行相应改动,安装方便。 五、改造前景 通过以上的改造,势必会将外排水量大大的减少,同时,循环水的温度会降低,确保机组安全运行,稳产高产。改造资金需要36万元,已报明年预算技改技措中。

相关主题
文本预览
相关文档 最新文档