当前位置:文档之家› 拜耳法生产氧化铝溶出工艺CAD软件系统的开发

拜耳法生产氧化铝溶出工艺CAD软件系统的开发

拜耳法生产氧化铝溶出工艺CAD软件系统的开发
拜耳法生产氧化铝溶出工艺CAD软件系统的开发

拜耳法氧化铝生产中的有机物

拜耳法氧化铝生产中的有机物 有机物的积累和危害是大多数拜耳法氧化铝厂必须面对的问题。溶液中有机物含量较高时,其所产生的负面影响往往是多方面的,工厂的产量、产品质量及其它技术经济指标将因此受到严重影响。文献[1]报道,仅澳大利亚每年由于有机物造成的氧化铝产量损失就达130万吨。某些有机物的存在使生产砂状氧化铝变得困难。因此,有机物问题成为氧化铝生产中的主要研究方向之一。国外就拜耳法生产中有机物的行为、对生产过程的影响及其排除方法等进行了长期的、大量的研究,取得了重要进展。 我国大多数氧化铝厂采用混联法或烧结法生产,有机物的影响很小或完全不存在。平果铝业公司氧化铝厂是我国目前唯一的采用纯拜耳法生产的工厂,投产较晚,原矿中的有机物含量也较低,有机物的影响需继续观察和研究。我国在“九五”期间进行的中、低品位铝土矿选矿研究取得了重大的进展,但除原矿中部分有机物进入精矿外,还有一定数量的浮选药剂被带入精矿,这种浮选药剂在拜耳法生产中的行为及其影响如何,尚未见诸文献报道,非常值得重视。 一、拜耳法溶液中的有机物 拜耳法溶液中的有机物主要来自铝土矿,絮凝剂、消泡剂、脱水剂等添加剂也会带入少量有机物。但据文献报道,其数量和影响均较小。铝土矿中的有机碳含量通常为0.1-0.3%,但亦可低至0.03%或高达0.6%(某些地表矿)。热带铝土矿中有机碳含量较高,一般为0.2~0.4%,而一水硬铝石型铝土矿中

的含量则较低,通常为0.1%。南美、非洲、澳大利亚铝土矿中的有机物含量较高,而欧洲、俄罗斯和中国的大多数铝土矿有机物含量较低。 铝土矿中的有机物分为腐殖质和沥青两种[2]。腐殖质主要成分为木质素转变的产物—腐殖酸。腐殖质成分复杂,其平均元素组成为,%:58%C,36%O2,4%H2,2%N2及其它杂质。腐殖质易溶于碱液。沥青中的C和H含量比腐殖质中的高,实际上不溶于碱液。据文献[3],铝土矿高压溶出时,腐殖质几乎全部溶入溶液,而沥青的溶出率不高于10%,在赤泥浆液稀释及沉降分离过程中,又全部析出进入赤泥。Jose G. Pulperiro等[4]报道,在铝土矿溶出条件下,60-90%的腐殖质溶解于强苛性碱溶液中,生成腐殖酸钠。不溶解的腐殖质是由于被铝土矿中不溶的无机物结合或吸附。 虽然原矿中有机物的含量一般不高,在铝土矿溶出时也非全部进入溶液,但由于种分母液与洗液是循环的,拜耳法流程中的有机物会逐渐积累,直至达到进出平衡为止。溶液中有机物的平衡浓度主要取决于铝土矿中有机物的含量及其组成,也与溶出条件等有关。一般情况下,拜耳溶液中有机碳含量为7-15g/L,在极端情况下可达25g/L[5]。文献[6]报道,处理热带铝土矿的德国施塔德氧化铝厂的溶出液中,有机碳含量甚至高达34g/L。 Β. Α. Зинченко[7]早期所作的乌拉尔氧化铝厂有机物的平衡表明:随铝土矿(一水硬铝石型)进入流程的有机物占全部有机物的88.5%,其余11.5%来自面粉(当时用作赤泥絮凝剂),而赤泥排走的有机物占全部有机物总量的83%,仅有17%进入溶液。进入溶液中的有机物主要随苏打结晶(据有关资料,苏打结晶中有机碳含量达0.5~1.5%)和氢氧化铝排出,二者分别占原矿中有机物总量的5.7%和4.5%,按对进入溶液中的有机物总量计算,则分别占33.5%和26.5%,其余则随苏打苛化后的石灰渣、蒸发母液等

氧化铝生产工艺流程

氧化铝生产工艺流程及在线设备描述 我厂氧化铝生产工艺流程采用拜耳法工艺。其用的矿石、石灰用汽车运入卸矿站,通过板式输送机,胶带输送机及卸料车进入矿仓和石灰仓。磨头仓底部出料设有电子皮带计量装置。按规定的配料比与经过计量的循环母液加入磨机。磨矿过程采用一段球磨与水力旋流器分级闭路的一段磨矿流程,磨制合格的原矿浆送往原矿浆槽,再用泵送至溶出工序的矿浆槽。 矿浆槽内矿浆送入溶出系统,管道化溶出采用Φ159Φ×8/2 ∣Φ480×10×1150000管道化溶出器,三套管四层间接加热连续溶出设备(Φ159管走料,Φ480管供汽),通过四段预热和三段加热,使物料出口温度达145℃,送入保温罐保温一小时以上,经过三级闪蒸和稀释,完成溶出过程。 稀释矿浆在Φ16M高效沉降槽内进行液固分离,底流进入洗涤沉降槽,进行5~6次赤泥反向洗涤,末次洗涤沉降槽底流经泵送往赤泥堆场进行堆存。 将合成絮凝剂制备成合格的溶液,按添加量加入赤泥分离沉降槽,将制备好的合成絮凝剂按添加量加入赤泥洗涤沉降槽,以强化赤泥沉降、分离和洗涤效果。 分离沉降槽溢流用泵送入粗液槽,再送226m2立式叶滤机进行控制过滤,过滤时加入助滤剂(石灰乳或苛化渣),滤饼送二次洗涤槽,精液送板式热交换器。 精液经板式热交换器与分解母液和冷却水进行热交换,冷却至设定温度后,再与种子过滤滤饼(晶种)混合,然后用晶种泵送至种分分解槽首槽(1#或2#槽),经连续种分分解后,从11#槽(或12#槽)顶用立式泵抽取分解浆液进行旋流分级。分级溢流进13#(或12#)分解槽,底流再用部分分解母液稀释后自压或用泵至产品过滤机,分解11#槽的分解浆液,从槽上部出料自流或下部用泵至120m2种子过滤机,滤饼用精液冲入晶种槽,滤液入锥形母液槽。 AH浆液经泵送入80 m2平盘过滤机,进行成品过滤、洗涤、氢氧化铝滤饼经皮带送至氢氧化铝储仓或直接送至焙烧炉前小仓。母液送种子过滤机的锥形母槽。氢氧化铝洗液(白泥洗液)送溶出稀释槽。锥形母液槽的溢流进母液槽,底流送立盘过滤机过滤,滤液进母液槽,滤饼混合后作种分种子。母液槽内母液部分送氢氧化铝旋流分级底流作稀释液,其余经板式热交换器与精液进行热交换提温送至蒸发原液槽。 蒸发原液除少部分不经蒸发直接送母液调配槽外,大部分送六效管式降膜蒸发器内进行浓缩,经三次闪蒸后的蒸发母液送调配槽。在流程中Na2CO3高于规定指标时,需排盐,此时,蒸发二级闪蒸出部分母液送强制循环蒸发器内进行结晶蒸发,并加入部分盐晶种,作为蒸发结晶的诱导结晶,然后在析盐沉降槽进行分离,底流用排盐过滤机进行过滤分离,滤饼用热水溶解后,送入苛化槽内,添加石灰乳进行苛化,苛化渣送赤泥洗涤系统。排盐过滤机滤液和盐分离沉降槽溢流进强碱液槽,其一部分送入蒸发出料第三次闪蒸槽与蒸发母液混合,还有一部分送各化学清洗用点和种分槽化学清洗槽。新蒸汽含碱冷凝水和二次蒸汽冷凝水用作氢氧化铝洗水或送沉降热水站。生产补碱用NaOH浓度大于30%的液体苛性碱,循环母液储槽区域设有补碱设施。 焙烧炉前小仓料位与仓下皮带计量给料机连锁,控制焙烧炉进料量。含水6~8%的氢氧化铝经皮带、螺旋喂料机送入文丘里干燥器内,干燥后的氢氧化铝被汽流带入一级旋风预热器中,一级旋风出来的氢氧化铝进入第二级旋风预热器,并与从热分离器来的温度约1000℃的烟气混合后进行热交换,氢氧化铝的温度达320~360℃,结晶水基本脱除,预焙烧过的氧化铝在第二级旋风预热器与烟气分离卸入焙烧炉的锥体内,焙烧炉所用的燃烧空气经预热至600~800℃从焙烧炉底部进入,燃料、预焙烧的氧化铝及热空气在炉底充分混合并燃烧,氧化铝的焙烧在炉内约1.4秒钟时间完成。

氧化铝生产流程

氧化铝生产流程 中州铝厂:烧结法生产线(第一氧化铝厂) 第一氧化铝厂控制系统有AB公司、ROCKWELL公司、Honeywell公司;企业与院校协作逐步优化氧化铝各工序操作控制,如料浆制备、沉降分离洗涤系统等。 一车间:包括:铝土矿破碎、堆料、取料、输送:目前没有控制系统。 二车间:生料磨制、料浆调配:正在上一套控制系统,采用美国AB公司的control logic 5000系统,包括6台原料磨及各倒料泵、调配槽,每两台磨为一套控制器,倒料泵及调配槽为一套控制器,四套控制器连成网。目前安装已经完成,还没有投入使用。 三车间:熟料烧成、煤粉制备、熟料中碎、电收尘、风机螺旋:每台大窑上一套独立的控制器,有control logic 5000系列,也有slc 500系列,包括大窑参数的显示、设备的启停,不包括煤磨系统,不包括饲料泵及电收尘的控制,包括部分饲料参数的显示。5、6#煤磨合上一套slc 500系统,对煤磨有关设备进行控制。1—4#煤磨仍然是常规仪表控制。 四车间:熟料溶出、赤泥分离、赤泥洗涤:6台溶出磨上了三套control logic 5000控制系统,分离和洗涤仍然是常规仪表控制。 五车间:粗液喂料泵、脱硅、叶滤硅渣及**:其中5组6组脱硅分别上了一套control logic 5000控制系统,1-4组脱硅为常规仪表控制,叶滤上了一套control logic 5000控制系统。六车间:碳酸化分解、种子分解、氢铝过滤、母液蒸发:碳分上了一套slc 500控制系统,种分上了一套control logic 5000控制系统,5组6组蒸发分别上了一套TPS系统,1-4组蒸发为常规仪表控制。 七车间:平盘过滤、焙烧:三台焙烧及三台平盘上了三套TPS系统。 空压车间:石灰炉、二氧化碳站、高压站、低压站:5台石灰炉上了5套控制系统,有control logic 5000系统,也有slc 500系统。 中州铝厂:30万吨选矿拜耳法生产线(第二氧化铝厂) 选矿拜尔法流程国内首创,2004年初成功投产。在磨浮、高压溶出、赤泥分离洗涤、种分、蒸发工序上了5套TPS系统,另外选矿车间上了一套ABB公司control logic 5000系统,矿浆调配上了一套Honeywell 公司HC900控制系统。目前正在做这些系统的联网工作。 供矿:浮选矿法,中州铝厂生产药剂。14套视屏装置监视皮带、圆锥矿碎机。控制系统为ABB公司controllogic5000。 原料制备:24套视屏装置监视4台格子磨等,2套模糊控制东大设计院开发(软件复杂),2套模糊控制计控室开发,设计的磨机负荷及矿浆密度参与控制,因引进芬兰的矿浆粒度分析仪不好用(易堵取样管),所以没实现完全模糊控制,计控室以后将改进并进一步优化控制。单管溶出:4个预脱硅槽、2个预脱硅加热槽、3台隔膜泵、9个溶出器、10个自蒸发器、13个加热器。蒸汽从1、2级溶出器底部进入加热,3到9级溶出器利用余热加热,溶出器无搅拌机,溶出器内基本无结巴。13级碱液加热,后3级有结巴。检测控制少。调节阀用上海梁光厂(定位器为韩国YTC),蒸汽用气动调节阀,其他用电动调节阀,电动调节阀有

拜耳法生产氧化铝的工艺流程#(精选.)

1拜耳法生产氧化铝的工艺流程概述 拜耳法系奥地利拜耳(K.J.Bayer)于 1888年发明。其原理是用苛性钠(NaOH)溶液加温溶出铝土矿中的氧化铝,得到铝酸钠溶液。溶液与残渣(赤泥)分离后,降低温度,加入氢氧化铝作晶种,经长时间搅拌,铝酸钠分解析出氢氧化铝,洗净,并在950~1200℃温度下煅烧,便得氧化铝成品。析出氢氧化铝后的溶液称为母液,蒸发浓缩后循环使用。 拜耳法的简要化学反应如下: 由于三水铝石、一水软铝石和一水硬铝石的结晶构造不同,它们在苛性钠溶液中的溶解性能有很大差异,所以要提供不同的溶出条件,主要是不同的溶出温度。三水铝石型铝土矿可在125~140℃下溶出,一水硬铝石型铝土矿则要在240~260℃并添加石灰(3~7%)的条件下溶出。 现代拜耳法的主要进展在于:①设备的大型化和连续操作; ②生产过程的自动化;③节省能量,例如高压强化溶出和流态化焙烧;④生产砂状氧化铝以满足铝电解和烟气干式净化的需要。拜耳法的工艺流程见图1。

拜耳法的优点主要是流程简单、投资省和能耗较低,最低者每吨氧化铝的能耗仅3×106千卡左右,碱耗一般为100公斤左右(以Na2CO3计)。 拜耳法生产的经济效果决定于铝土矿的质量,主要是矿石中的SiO2含量,通常以矿石的铝硅比,即矿石中的Al2O3与SiO2含量的重量比来表示。因为在拜耳法的溶出过程中,SiO2转变成方钠石型的水合铝硅酸钠(Na2O·Al2O3·1.7SiO2·nH2O),随同赤泥排出。矿石中每公斤SiO2大约要造成1公斤Al2O3和0.8公斤NaOH的损失。铝土矿的铝硅比越低,拜耳法的经济效果越差。 2 主要生产原理及过程 2.1 预脱硅与铝硅比的提高 拜耳法生产的经济效果决定于铝土矿的质量,主要是矿石中的SiO2含量,通常以矿石的铝硅比,即矿石中的Al2O3与SiO2

氧化铝工艺流程简介

氧化铝工艺流程简介 一、生产工艺简介 公司采用国际先进的拜耳法生产工艺,主要设备从德国、法国、荷兰、澳大利亚等国进口;生产指挥系统采用美国Rockwell公司的DCS控制系统。公司还建有庞大的生产ERP系统及信息管理系统,集生产调度、控制、信息采集、管理于一体。 二、生产工艺流程图

三、工艺流程简述 1、原料工序原料矿石堆场在建厂初期,为方便装卸矿石及避免大量杂质在倒运过程进入生产流程,堆场使用原矿石将地基提升50cm压实后用于储存铝土矿。原矿石由汽车运进厂的铝土矿经地磅站称重后和原矿堆场的铝土矿经破碎后一起倒入卸矿站,经胶带输送机送往均化堆场堆存,为避免斗轮取料机将杂质当做矿石取走,取料机斗轮离地面30cm,其间用矿石进行填充,再由胶带输送机将铝土矿送往原料磨的磨头仓。外购石灰由汽车运进厂,卸入石灰卸矿站,经胶带输送机送往石灰仓,一部分石灰通过胶带输送机送往原料磨磨头仓,另一部分石灰送往石灰消化工段。在石灰消化工段,石灰与热水一同加入化灰机中,制备的石灰乳流进石灰乳槽,石灰乳用泵送往蒸发车间苛化工序和沉降车间控制过滤工序。在原料磨工段,铝土矿、石灰及循环母液按比例加入原料磨中磨制原矿浆,原矿浆用水力漩流器进行分级,分级机溢流为合格的原矿浆,送入原矿浆槽,分级机底流返回原料磨。为应对磨机突发故障及流程稳定,矿浆槽必须保持一定液位。 2、溶出工序来自原料磨已研磨好的原矿浆首先进入溶出预脱硅槽,矿浆通过预脱硅槽的压差进行自溢流至末槽,同时为消除矿浆中的SiO2对溶出过程的影响,根据车间操作规程,矿浆在预脱硅槽首槽加热至100℃,且原矿浆在脱硅槽中停留8h以上,以达到预脱硅的目

氧化铝的生产方法

氧化铝的生产工艺流程 氧化铝的生产工艺流程从矿石提取氧化铝有多种方法,例如:拜耳法、碱石灰烧结法、拜耳-烧结联合法等。拜耳法一直是生产氧化铝的主要方法,其产量约占全世界氧化铝总产量的95%左右。70年代以来,对酸法的研究已有较大进展,但尚未在工业上应用。 拜耳法 系奥地利拜耳(K.J.Bayer)于1888年发明。其原理是用苛性钠(NaOH)溶液加温溶出铝土矿中的氧化铝,得到铝酸钠溶液。溶液与残渣(赤泥)分离后,降低温度,加入氢氧化铝作晶种,经长时间搅拌,铝酸钠分解析出氢氧化铝,洗净,并在950~1200℃温度下煅烧,便得氧化铝成品。析出氢氧化铝后的溶液称为母液,蒸发浓缩后循环使用。拜耳法的简要化学反应如下: 由于三水铝石、一水软铝石和一水硬铝石的结晶构造不同,它们在苛性钠溶液中的溶解性能有很大差异,所以要提供不同的溶出条件,主要是不同的溶出温度。三水铝石型铝土矿可在125~140℃下溶出,一水硬铝石型铝土矿则要在240~260℃并添加石灰(3~7%)的条件下溶出。现代拜耳法的主要进展在于:①设备的大型化和连续操作;②生产过程的自动化;③节省能量,例如高压强化溶出和流态化焙烧;④生产砂状氧化铝以满足铝电解和烟气干式净化的需要。 拜耳法的工艺流程见图1。

拜耳法的优点主要是流程简单、投资省和能耗较低,最低者每吨氧化铝的能耗仅3×106千卡左右,碱耗一般为100公斤左右(以Na2CO3计)。拜耳法生产的经济效果决定于铝土矿的质量,主要是矿石中的SiO2含量,通常以矿石的铝硅比,即矿石中的Al2O3与SiO2含量的重量比来表示。因为在拜耳法的溶出过程中,SiO2转变成方钠石型的水合铝硅酸钠(Na2O·Al2O3·1.7SiO2·nH2O),随同赤泥排出。矿石中每公斤SiO2大约要造成1公斤Al2O3和0.8公斤NaOH的损失。铝土矿的铝硅比越低,拜耳法的经济效果越差。直到70年代后期,拜耳法所处理的铝土矿的铝硅比均大于7~8。由于高品位三水铝石型铝土矿资源逐渐减少,如何利用其他类型的低品位铝矿资源和节能新工艺等问题,已是研究、开发的重要方向。 碱石灰烧结法 适用于处理高硅的铝土矿,将铝土矿、碳酸钠和石灰按一定比例混合配料,在回转窑内烧结成由铝酸钠(Na2O·Al2O3)、铁酸钠(Na2O·Fe2O3、原硅酸钙(2CaO·SiO2)和钛酸钠(CaO·TiO2组成的熟料。然后用稀碱溶液溶出熟料中的铝酸钠。此时铁酸钠水解得到的NaOH也进入溶液。如果溶出条件控制适当,原硅酸钙就不会大量地与铝酸钠溶液发生反应,而与钛酸钙、Fe2O3·H2O 等组成赤泥排出。溶出熟料得到的铝酸钠溶液经过专门的脱硅过程,SiO2O形成水合铝硅酸钠(称为钠硅渣)或水化石榴石3CaO·Al2O3·xSiO2·(6-2x)H2O 沉淀(其中x≈0.1),而使溶液提纯。把CO2气体通入精制铝酸钠溶液,和加入晶种搅拌,得到氢氧化铝沉淀物和主要成分是碳酸钠的母液。氢氧化铝经煅烧成为氧化铝成品。水化石榴

氧化铝生产工艺

氧化铝生产工艺 在氧化铝生产行业,氧化铝的生产方法大约分四类:碱法、酸法、酸碱联合法、和热法,但目前用于工业生产的基本全部属于碱法。 用碱法生产氧化铝,是用碱(NaOH或Na2CO3)来处理铝矿石,使矿石中的氧化铝转变为铝酸钠溶液。矿石中的铁、钛等杂质和绝大部分的硅则成为不溶解的化合物,将不溶解的残渣(由于含氧化铁而成红色,故称赤泥)与溶液分离,经洗涤后弃去或综合利用,已回收利用其中的有用组分。纯净的铝酸钠溶液分解析出氢氧化铝,经与母液分离、洗涤后焙烧,得到氧化铝产品。 用碱法生产氧化铝又可分为:①拜尔法②烧结法③联合法,因我国的铝土矿资源的特殊性,主要为一水硬铝石,因此在早期建厂的生产氧化铝的方法均采用烧结法、混联法,后期建厂和扩建工程多采用拜尔法较多,拜尔法具有工艺流程简单,投入成本少,产品质量好等特点。 具体情况如下: 中国铝业山东分公司:1954年建厂,采用烧结法,后经四次扩建,主要采用拜尔法,2006年的总产量已达128万吨 中国铝业河南分公司:1965年建厂投产,主要采用混联法,1999年完成4次扩建,年产达80万吨,2005年新建年产70万吨的拜尔法生产线,2006年的年生产量已达到232万吨。 中国铝业贵州分公司:1978年完成一期拜尔法生产线,年产15万吨,后经扩建,采用混联法,2006年已达到年产120万吨。 中国铝业山西分公司:1987年一期烧结法投产,后经扩建,1992年完成二期混联法,年产达70万吨,2005年投产的拜尔法80万吨项目,到2006年已经达到年产219万吨目标。 中国铝业中州分公司:1992年一期投产烧结法,后经两次扩建选矿拜尔法生产线,2006年年产量达172万吨。 中国铝业广西分公司:1995年拜尔法投产使用,2006年总产量达94万吨。 中国铝业集团还有重庆、遵义准备建造氧化铝厂。 除中国铝业公司外,现已建或拟建的氧化铝项目29个,山东荏平氧化铝、山东魏桥氧化铝氧化铝、山西鲁能晋北氧化铝、山东龙口东海氧化铝、山东信发(100万吨)、河南开曼铝、东方希望铝业(三门峡)有限公司、广西华银(160万吨)、阳煤集团(120万吨)等众多氧化铝企业。据专家估计,2006年我国的氧化铝产量将年增29-33%,达到1200-1300万吨。

拜耳法生产氧化铝工艺流程简介

拜耳法生产氧化铝工艺流程简介 拜耳法适于处理高品位铝土矿,这是用苛性碱溶液在一定的温度下溶出铝土矿中的氧化铝的生产方法,具有工艺简单、产品纯度高、经济效益好等优点。 基本原理 拜耳法的基本原理有两个。一个是铝土矿的溶出;一个是铝酸钠溶液的分解。溶出是用苛性碱溶液在一定的条件下(加石灰、碱浓度、温度、时间及搅拌等)溶出铝土矿中的氧化铝,反应为 Al2O3·H2O+2NaOH=2NaAlO2+2H2O Al2O3·3H2O+2NaOH=2NaAlO2+4H2O SiO2+NaOH+NaAlO2=Na2O·Al2O3·2SiO 2·2H2O+H2O 一水铝石或三水铝石溶解形成铝酸钠进入碱液中,而其它杂质不进入溶液中,呈固相存在,称赤泥。 三水铝石(Al2O3·3H2O)的溶解温度为105℃,一水硬铝石(α-Al2O3·H2O)为220℃,一水软铝石(γ-Al2O3·H2O)为190℃。 分解是利用NaAlO2溶液在降低温度、加入种子及搅拌的条件下析出固相Al(OH)3,分解反应为NaAlO2+2H2O=Al(OH)3↓+NaOH 种子即为Al(OH)3,加入量(以Al2O3量计算)为溶液中Al2O3含量的一倍以上;温度控制为从75℃降到55℃;搅拌时间为60h左右。 所得Al(OH)3再经焙烧脱水变成Al2O3;并使Al2O3晶型转变,满足铝电解的要求,焙烧反应为

Al2O3·3H2O 225℃γ-Al2O3·H2O + 2H2O γ-Al2O3·H2O 500℃γ-Al2O3 + H2O γ-Al2O3 900~1200℃α-Al2O3 工艺流程及主要技术条件 拜耳法的生产工艺主要由溶出、分解和焙烧三个阶段组成。全流程主要加工工序为:矿石的破碎、均化及湿磨、高温高压溶出、赤泥分离洗涤、叶滤、种子分解、母液蒸发及氢氧化铝焙烧。 铝矿石进厂后经破碎、均化、贮存,碎矿石送下一工序湿磨。本工序的目的是使铝矿石破碎至≤15㎜粒度,并且使化学成分均匀地向湿磨供料,控制指标是:每7天的供矿量加权平均值A/S波动在±0.5范围内。 湿磨是使铝矿石进一步磨细并进行三组分(铝矿石、石灰、循环碱液)配料,使得到的产品原矿浆满足高压溶出的要求。本工序控制的技术条件是:石灰加入量为干铝矿量的7%;循环碱液配入量为控制溶出液的αk(苛性化系数)为1.4左右;磨矿细度为:-315μm 100%,-63μm 70%~75%。 高压溶出是拜耳法的核心部位,要求其热利用率高、建设投资少及易操作、经营成本低。对溶出一水硬铝石型矿石而言最常用的工艺型式是:将原矿浆送入套管预热器中,用二次蒸汽预热至160~180℃,之后进入用二次蒸汽间接加热、机械搅拌的预热压煮器中,将矿浆温度提高至220℃左右,再在机械搅拌的反应压煮器中用6.0Mpa的新蒸

氧化铝生产工艺流程图

氧化铝生产工艺流程图 流程仿真技术原理 根据工艺过程所涉及到的基础物性数据,引用或创建特定的物性包,建立生产过程中的单元设备的数学模型和单元设备之间的模型,从而完成完整描述实际生产过程系统的数学模型[6,7]。通过一定的数学方法对过程中所涉及到的模型进行联列求解。通过装置的稳态和动态模型,进行不同方案和工艺条件的分析,为新工艺的规划、研究开发和技术可靠性进行分析,为生产实际提供优化操作指导。在动态模拟中,还可以通过不同控制策 略的比较,对生产过程进行优化控制[5]。 生产过程的数学模型通常为一大型非线性代数方程组,过程模拟实质就是通过求解该非线性方程组来预测在一定工艺条件下生产过程的性能。常用 的求解方法主要有序贯模块法、联立方程法和联立模块法[3]。 氧化铝生产工艺 氧化铝的生产方法有酸法、碱法和热法。目前氧化铝工业生产实际应用的是碱法。碱法又包括拜耳法、烧结法及各种形式的联合法。因拜耳法生产成本低,经济效益好,流程相对简单,应用最广,所以主要介绍一下拜耳法的生产工艺。 所谓拜耳法是因为它是由K.J.bayer在1889-1892年提出而得名的。拜耳法主要包括两个主要过程,一是Na2O与Al2O3摩尔比为1.8的铝酸钠在常温下,只要添加氢氧化铝作为晶种,不断搅拌,溶液种的Al2O3就可以呈氢氧化铝析出,直到其中Na2O:Al2O3的摩尔比提高到6为止,此即为铝酸钠溶液的晶种分解过程。另一过程是已经析出了大部分氢氧化铝的溶液。在加热时,又可以溶出铝土矿中的氧化铝水合物。此即利用种分母液溶出铝土矿的过程。交替使用这两个过程处理铝土矿,得到氢氧化铝产品,构成所谓拜耳法循环[8]。拜耳法的生产工艺流程图如图1 所示。

氧化铝冶炼工艺流程简介

氧化铝的主要冶炼工艺介绍 氧化铝的冶炼工艺大致可以分为烧结法、拜耳法和烧结-拜耳联合法等。 一、烧结法 1.1烧结法的基本原理 将铝土矿与一定数量的纯碱、石灰(或者石灰石)、配成炉料在高温下进行烧结,使氧化硅和石灰化合成不溶于水的原硅酸钙,氧化铝与纯碱化合成可溶于水的固体铝酸钠,而氧化铁与纯碱化合成可以水解的铁酸钠,将烧结产物(熟料)用稀碱溶液溶出时固体铝酸钠便进入溶液,铁酸钠水解放出碱,氧化铁以水合物与原硅酸钙一道进入赤泥。在用二氧化碳分解铝酸钠溶液便可以析出氢氧化铝,经过焙烧后产出氧化铝。分离氢氧化铝后的母液成为碳分母液经过蒸发后返回配料。 1.2烧结法工艺过程简述 烧结法生产氧化铝有生料浆制备、熟料烧结、熟料溶出、赤泥分离以及洗涤、粗液脱硅、精液碳酸化分解、氢氧化铝的分离以及洗涤、氢氧化铝焙烧、母液蒸发等主要生产工序。 生料浆制备:将铝土矿、石灰(或石灰石)、碱粉、无烟煤以及碳分母液按一定的比例,送入原料磨中磨制成生料浆,经过料浆槽的三次调配成各项指标合格的生料浆,送熟料窑烧结。 熟料烧结:配合格的生料浆送入熟料窑内,在1200℃-1300℃的高温下发生一系列的物理化学变化,主要生产使氧化硅和石灰化合成不溶于水的熟料。熟料窑烧结过程通常在熟料窑(回转窑)内进行,氧化硅和石灰化合成不溶于水的原硅酸钙,氧化铝和纯碱化合成可溶于水的固体铝酸钠,而氧化铁与纯碱化合成可以水解的铁酸钠,并且烧至部分熔融,冷却后成外观为黑灰色的颗粒状物料即熟料。 熟料溶出:熟料经过破碎达到要求的粒度后,用稀碱溶液(生产上称调整液),在湿磨内进行粉碎性溶出,有用成分氧化铝和氧化钠进入溶液,成为铝酸钠溶液,而杂质铁和硅则进入赤泥。 赤泥分离和洗涤:为了减少溶出过程中的化学损失,赤泥和铝酸钠溶液必须快速分离,为了回收赤泥附液中所带走的有用成分氧化铝和氧化钠,将赤泥进行多次反向洗涤再排入堆场。

拜耳法氧化铝生产工艺流程框图

拜耳法氧化铝生产工艺流程框图 成品氧化铝 图一 焙烧 2O 3 图二 碱法生产氧化铝基本过程

开曼铝业氧化铝厂工艺流程简图

氧化铝厂主要生产车间 一车间:原料准备 包括:地磅房、破碎站、原矿堆场、均化库、石灰仓、石灰消化及原料磨等工段 a.石灰消化:3台ф1200x10500m化灰机,2用1备 b.石灰仓:3台ф14x18m c.拜尔原料磨(棒球两段磨加水力漩流器):4组,每组配一级棒磨 ф3.2x4.5m及二级球磨ф3.6x8.5m,产能100t/h,用3备1。 二车间:高压溶出 包括:常压脱硅、高压泵房、管道化预热、溶出及稀释 a.常压脱硅:3台带加热管束搅拌的ф10x16m预脱硅加热槽及11台 机械搅拌的ф10x16m脱硅槽,1台ф6x6m赤泥洗液槽。其中预脱硅加热槽2用1备,脱硅槽10用1备。 b.高压泵房:36~6.8MPa,流量 400-500m3用1备。 c.溶出装置:2组。采用法铝技术,6级套管预热,4级压煮器预热, 新蒸汽间接加热,保温压煮器停留30分钟,10级闪蒸降温。每组配套预热管预热器长度2880m,19台ф2.8x16.8m压煮器,12台ф3.0-5.0x9.7m闪蒸器。2台ф12.5x13.5m溶出后槽,稀释料浆停留4.2小时,产能400-500kt/a. 三车间:赤泥沉降 包括:赤泥分离及洗涤、絮凝剂制备、控制过滤、赤泥贮槽及赤泥泵站、赤泥堆场、热水站 a.赤泥分离及洗涤:2组。采用高效深锥沉降槽技术及设备。每组配 6台ф14x16-18m高效沉降槽,其中分离槽1台,洗涤槽4台,备用槽1台。 b.控制过滤:7台226m2立式叶滤机,其中用6台备1台。 c.赤泥泵站:3台引进的高压隔膜泵,2用1备。

拜耳法生产氧化铝

书山有路勤为径,学海无涯苦作舟 拜耳法生产氧化铝 所谓“拜耳法”系奥地利化学家K·J·Bayer 于1887 年发明的处理优质铝土矿 制取氧化铝的一种方法。拜耳法就是用含有大量游离苛性碱的循环母液处理铝 土矿,溶出其中的氧化铝得到铝酸钠溶液,往铝酸钠溶液中添加氢氧化铝晶 种,经过一定时间的搅拌分解就可以析出氢氧化铝,分解母液经蒸发后用于溶 出下一批铝土矿。拜耳法生产中经常用到苛性比、硅量指数、循环效率、晶 种系数等概念。拜耳法就是用碱溶出铝土矿中的氧化铝。工业上把溶液中以NaAlO2 和NaOH 形式存在的Na2O 叫做苛性碱(记作Na2Ok),以Na2CO3 形式存在的Na2O 叫做碳酸碱(记作Na2Oc),以Na2CO4 形式存在的Na2O 叫做硫酸碱(记作Na2O),所有形态的碱的总和称做全碱(记作Na2Ot)。苛性比就是铝酸钠溶液中的Na2Ok 与Al2O3 的摩尔比,记作αko。美国习惯用铝酸钠溶液中的Al2O3 与Na2Ok 的质量比表示,符号A/N。硅量指数指铝酸钠溶液中的Al2O3 与SiO2 含量的比,符号A/S。循环效率指铝酸钠溶液中的1t Na2O 在一次拜耳法循环中产出的Al2O3 的量(t),用E 表示。它表明碱的利 用率的高低。晶种系数(种子比)指添加晶种氢氧化铝中的Al2O3 数量与分解原液中的Al2O3 数量之比。分解离指分解出氢氧化铝中的Al2O3 数量占精液中所含Al2O3 数量之比。计算式为:η=(1-αa/αm)×100%式中αa,αm-分别表示分解精液和分解母液的苛性比值。拜耳法生产包括四个过程:(1)用 αk=3.4的分解母液溶出铝土矿中的氧化铝,使溶出液的αk=1.6~1.5;(2)稀释溶出液,洗涤分离出精制铝酸溶液(精液);(3)精液加晶种分解;(4) 分解母液蒸发浓缩至苛性碱的浓度达到溶出要求(230~280g/L)。拜耳法生产 氧化铝的工艺流程如图1 所示。图1 拜耳法生产氧化铝的工艺流程铝土矿的溶出是拜耳法的关键工序。铝土矿中的三水铝石在140℃就很快地溶入苛性碱

氧化铝的生产工艺流程

氧化铝的生产工艺流程 从矿石提取氧化铝有多种方法,例如:拜耳法、碱石灰烧结法、拜耳-烧结联合法等。拜耳法一直是生产氧化铝的主要方法,其产量约占全世界氧化铝总产量的95%左右。70年代以来,对酸法的研究已有较大进展,但尚未在工业上应用。 拜耳法 系奥地利拜耳(K.J.Bayer)于1888年发明。其原理是用苛性钠(NaOH)溶液加温溶出铝土矿中的氧化铝,得到铝酸钠溶液。溶液与残渣(赤泥)分离后,降低温度,加入氢氧化铝作晶种,经长时间搅拌,铝酸钠分解析出氢氧化铝,洗净,并在950~1200℃温度下煅烧,便得氧化铝成品。析出氢氧化铝后的溶液称为母液,蒸发浓缩后循环使用。 拜耳法的简要化学反应如下: 由于三水铝石、一水软铝石和一水硬铝石的结晶构造不同,它们在苛性钠溶液中的溶解性能有很大差异,所以要提供不同的溶出条件,主要是不同的溶出温度。三水铝石型铝土矿可在125~140℃下溶出,一水硬铝石型铝土矿则要在240~260℃并添加石灰(3~7%)的条件下溶出。 现代拜耳法的主要进展在于:①设备的大型化和连续操作;②生产过程的自动化;③节省能量,例如高压强化溶出和流态化焙烧;④生产砂状氧化铝以满足铝电解和烟气干式净化的需要。拜耳法的工艺流程见图1。 拜耳法的优点主要是流程简单、投资省和能耗较低,最低者每吨氧化铝的能耗仅3×106千卡左右,碱耗一般为100公斤左右(以Na2CO3计)。 拜耳法生产的经济效果决定于铝土矿的质量,主要是矿石中的SiO2含量,通常以矿石的铝硅比,即矿石中的Al2O3与SiO2含量的重量比来表示。因为在拜耳法的溶出过程中,SiO2转变成方钠石型的水合铝硅酸钠(Na2O·Al2O3·1.7SiO2·nH2O),随同赤泥排出。矿石中每公斤SiO2大约要造成1公斤Al2O3和0.8公斤NaOH的损失。铝土矿的铝硅比越低,拜耳法的经济效果越差。直到70年代后期,拜耳法所处理的铝土矿的铝硅比均大于7~8。由于高品位三水铝石型铝土矿资源逐渐减少,如何利用其他类型的低品位铝矿资源和节能新工艺等问题,已是研究、开发的重要方向。 碱石灰烧结法 适用于处理高硅的铝土矿,将铝土矿、碳酸钠和石灰按一定比例混合配料,在回转窑内烧结成由铝酸钠(Na2O·Al2O3)、铁酸钠(Na2O·Fe2O3、原硅酸钙(2CaO·SiO2)和钛酸钠(CaO·TiO2组成的熟料。然后用稀碱溶液溶出熟料中的铝酸钠。此时铁酸钠水解得到的NaOH也进入溶液。如果溶出条件控制适当,原硅酸钙就不会大量地与铝酸钠溶液发生反应,而与钛酸钙、Fe2O3·H2O 等组成赤泥排出。溶出熟料得到的铝酸钠溶液经过专门的脱硅过程,SiO2O形成水合铝硅酸钠(称为钠硅渣)或水化石榴石3CaO·Al2O3·xSiO2·(6-2x)H2O沉淀(其中x≈0.1),而使溶液提纯。把CO2气体通入精制铝酸钠溶液,和加入晶种搅拌,得到氢氧化铝沉淀物和主要成分是碳酸钠的母液。氢氧化铝经煅烧成为氧化铝成品。水化石榴石中的Al2O3可以再用含Na2CO3母液提取回收。

回顾拜耳法和碱石灰烧结法

回顾:拜耳法与碱石灰烧结法 一、原理 拜耳法:K. J. Bayer 1889-1892 提出, 实质为两项专利: ?低温低ακ铝酸钠溶液, 加晶种时AH析出; ?高温高ακ铝酸钠溶液, 铝土矿的溶出。 实质:使下列反应在不同的条件下朝不同方向交替进行 Al2O3(1或3)H2O + 2NaOH + aq 2NaAl(OH)4 + aq 碱石灰烧结法: 1. 高温焙烧把铝土矿中的Al2O3与加入的纯碱Na2CO3反应形成易溶于水或稀碱的固体铝酸钠(Na2O·Al2O3),同时使杂质硅、铁、钛等生成原硅酸钙(2CaO·SiO2)、铁酸钠(Na2O·Fe2O3)、钛酸钙(CaO·TiO2)等。 2. 用调整液溶出熟料中的Na2O与Al2O3,得到铝酸钠溶液,与进入赤泥的原硅酸钙、钛酸钙以及Fe2O3·H2O等不溶性残渣分离。 3. 熟料的溶出液(粗液)进行专门的脱硅净化,脱硅后的精液碳分产出Al2O3。碳分母液蒸发浓缩后返回配料。 二、流程 拜耳法:四个循环,六个工序 原矿浆制备、高压溶出(循环一)、溶出矿浆稀释和赤泥分离和洗涤(循环二)、晶种分解(循环三)、AH分级与洗涤、AH煅烧、母液蒸发及苛化(循环四)等。 碱石灰烧结法:九个工序,六个比 九个工序:生料浆制备;熟料烧结;熟料溶出;赤泥分离及洗涤;粗液脱硅;精液碳酸化分解;氢氧化铝分离与洗涤;氢氧化铝的煅烧;分解母液蒸发浓缩六个比:碱比(Na2CO3/Al2O3+Fe2O3);钙比(CaO/SiO2);铝硅比(A/S);铁铝比(F/A);生料浆液固比;溶出液固比 三、溶出主要反应 拜耳法: 1.主反应:三水铝石:Al(OH)3 + NaOH + aq = NaAl(OH)4 + aq 一水铝石:AlOOH + NaOH + aq = NaAl(OH)4 + aq 2. SiO2: 溶解:Al2O3·2SiO2·2H2O + 6NaOH + aq → 2NaAl(OH)4 + 2Na2SiO3 + aq 析出: 1.7Na2SiO3 + 2NaAl(OH)4+ aq → Na2O·Al2O3·1.7SiO2·H2O↓+ 3.4NaOH + H2O ①引起Al2O3和Na2O 的损失;

拜耳法生产氧化铝工艺

拜耳法生产氧化铝工艺 1. 拜耳法定义 所谓“拜耳法”系奥地利化学家K.J.Bayer于1887年发明的处理优质铝土矿制取氧化铝的一种方法。100多年来它已经有了许多改进,但仍然习惯地沿用着拜耳法这个名词。拜耳法在处理低硅铝土矿,特别是用在处理三水铝石型铝土矿时,流程简单,作业方便,产品质量高,其经济效果远非其它方法所能媲美。目前全世界生产的Al2O3和Al(OH)3,有90%以上是用拜耳法生产的。拜耳法包括两个主要过程,也就是拜耳提出的两项专利。 (1)一项是他发现Na2O和Al2O3分子比为1.8的铝酸钠溶液在常温下,只要添加Al(OH)3作晶种,不断搅拌,溶液中的Al2O3便可以呈Al(OH)3徐徐析出,直到其中Na2O和Al2O3 的分子比提高到6为止。这也就是铝酸钠溶液的晶种分解过程。 (2)另一项是他发现,已经析出大部分Al(OH)3的溶液,在加热时,又可以溶出铝土矿中的Al2O3水合物,这也就是利用种分母液溶出铝土矿的过程。交替使用这两个过程就能够一批批地处理铝土矿,从中得出纯的Al(OH)3产品,构成所谓拜耳法循环。拜耳法的实质也可用下列反应来表示。反应在不同条件下的交替进行: Al2O3(1或3)H2O+2NaOH+aq=2NaAl(OH)4+aq 2拜耳法基本原理及适用范围 2.1基本原理: (l)用NaOH溶液溶出铝土矿,所得到的铝酸钠溶液在添加晶种、不断搅拌的条件下,溶液中的氧化铝呈氢氧化铝析出,即种分过程。 (2)分解得到的母液,经蒸发浓缩后在高温下可用来溶出新的铝土矿,即溶出过程。 2.2适用范围氧化铝的生产方法有拜耳法、烧结法、拜耳—烧结联合法三种。各种方法的适用范围为: (3)拜耳法:7

拜耳法生产氧化铝工艺模板

生产氧化铝工艺流程 从矿石提取氧化铝有多种方法, 例如:拜耳法、碱石灰烧结法、拜耳-烧结联合法等。拜耳法一直是生产氧化铝的主要方法, 其产量约占全世界氧化铝总产量的95%左右。70年代以来, 对酸法的研究已有较大进展, 但尚未在工业上应用。 碱石灰烧结法 适用于处理高硅的铝土矿, 将铝土矿、碳酸钠和石灰按一定比例混合配料, 在回转窑内烧结成由铝酸钠(Na2O·Al2O3)、铁酸钠(Na2O·Fe2O3、原硅酸钙( 2CaO·SiO2) 和钛酸钠( CaO·TiO2组成的熟料。然后用稀碱溶液溶出熟料中的铝酸钠。此时铁酸钠水解得到的NaOH也进入溶液。如果溶出条件控制适当, 原硅酸钙就不会大量地与铝酸钠溶液发生反应, 而与钛酸钙、Fe2O3·H2O 等组成赤泥排出。溶出熟料得到的铝酸钠溶液经过专门的脱硅过程, SiO2O形成水合铝硅酸钠(称为钠硅渣)或水化石榴石3CaO·Al2O3·xSiO2·(6-2x)H2O沉淀(其中x≈0.1),而使溶液提纯。把CO2气体通入精制铝酸钠溶液, 和加入晶种搅拌, 得到氢氧化铝沉淀物和主要成分是碳酸钠的母液。氢氧化铝经煅烧成为氧化铝成品。水化石榴石中的Al2O3能够再用含Na2CO3母液提取回收。 碱石灰烧结法的主要化学反应如下: 烧结: Al2O3+Na2CO3─→Na2O·Al2O3+CO2

Fe2O3+Na2CO3─→Na2O·Fe2O3+CO2 SiO2+2CaCO3─→2CaO·SiO2+2CO2 TiO2+CaCO3─→CaO·TiO2+CO2 熟料溶出: Na2O·Al2O3+4H2O─→2NaAl(OH)4( 溶解) Na2O·Fe2O3+2H2O─→Fe2O3·H2O↓+2NaOH( 水解) 脱硅: 1.7 Na2SiO3+2NaAl(OH)4─→Na2O·Al2O3·1.7SiO2·nH2O ↓+3.4NaOH 3 Ca(OH)2+2NaAl(OH)4+x Na2SiO3─→3CaO·Al2O3·x SiO2·(6-2x)H2O↓+2(1+x)NaOH 分解: 2NaOH+CO2─→Na2CO3+H2O NaAl(OH)4─→Al(OH)3↓+NaOH 中国碱石灰烧结法生产氧化铝的主要技术成就是: 在熟料烧成中 采用低碱比配方, 在熟料溶出工艺中采用二段磨料和低分子比溶液, 以抑制溶出时的副反应损失, 使熟料中Na2O和Al2O3的溶出率分别达到94~96%和92~94%。Al2O3的总回收率约90%,每吨氧化铝的Na2CO3的消耗量约95公斤。碱石灰烧结法能够处理拜耳法不能经济地利用的低品位矿石, 其铝硅比可低至3.5,且原料的综合利用较好, 有其特色。 碱石灰烧结法的常见流程见图2

拜耳法氧化铝生产方法与工艺流程

拜耳法氧化铝生产方法与工艺流程 破碎后进厂的碎高铝矿经均化厂均化后,用斗轮取料机取料入输送机进入磨头仓,石灰石经煅烧后输送到石灰仓(根据其煅烧质量可消化或不消化),然后与循环母液经调配后按比例一同进入棒、球的二段磨合旋流器组成的磨矿分级闭路循环系统。 分级后的溢流经缓冲槽和泵进入原矿浆储槽(槽底粗粒部分返回重磨),用高压泥浆泵输送矿浆进入多级预热与溶出系统,加热介质可用熔盐也可用高压新蒸汽,各级矿浆自蒸发器排出的乏汽分别用来预热各级预热器中的矿浆。溶出设备可套管加热与高压釜组成溶出器组。溶出后的矿浆经多级降压自蒸发器降压后,与赤泥一次洗液一同进入矿浆稀释槽。末级自蒸发器排出的乏汽,用来预热赤泥洗水,洗水由循环水与不合格的冷凝水组成。稀释矿浆进入分离沉降槽,其溢流经叶滤与降温后送去晶种搅拌分解,分解后的氢氧化铝浆液经分离后,大部分氢氧化铝返回种分槽作为晶种使用,其余部分送去洗涤,洗水用纯净的热水,洗净后的氢氧化铝(其中部分氢氧化铝经袋装后作为成品氢氧化铝销售)送去焙烧,焙烧后的白泥洗液与分离后的种分母液送去蒸发,蒸发的同时添加少量的盐类晶种,以诱导和加速盐类结晶析出,进入时效槽与沉降槽,其溢流于滤液(蒸发母液)、补充新的液体苛性钠即回头的苛化液组成循环母液,送去调配制备原矿浆。 蒸发浓缩后的沉降底流进入盐类分离过滤机,其滤液与沉降溢流合并组成蒸发母液;其滤饼加水溶解后添加石灰乳进行苛化,得到苛化液。苛化渣经洗涤后与弃赤泥一同排至赤泥堆场,或用于其它用途。苛化渣的洗液用于石灰化灰。分离后的赤泥,用加热后的热水进行多次反向洗涤,洗净后的赤泥经过滤后排送至赤泥堆场;其滤液与末次洗涤沉降的溢流组成赤泥洗液,用于稀释溶出矿浆。 苛化渣的洗液用于石灰化灰,化灰机排出的渣弃去,排出的石灰乳送去苛化碱滤饼。 氧化铝的生产工艺流程 从矿石提取氧化铝有多种方法,例如:拜耳法、碱石灰烧结法、拜耳-烧结联合法等。拜耳法一直是生产氧化铝的主要方法,其产量约占全世界氧化铝总产量的95%左右。70年代以来,对酸法的研究已有较大进展,但尚未在工业上应用。 拜耳法 系奥地利拜耳(K.J.Bayer)于1888年发明。其原理是用苛性钠(NaOH)溶液加温溶出铝土矿中的氧化铝,得到铝酸钠溶液。溶液与残渣(赤泥)分离后,降低温度,加入氢氧化铝作晶种,经长时间搅拌,铝酸钠分解析出氢氧化铝,洗净,并在950~1200℃温度下煅烧,便得氧化铝成品。析出氢氧化铝后的溶液称为母

拜耳法氧化铝生产中的有机物

拜耳法氧化铝生产中的有机物

拜耳法氧化铝生产中的有机物 有机物的积累和危害是大多数拜耳法氧化铝厂必须面对的问题。溶液中有机物含量较高时,其所产生的负面影响往往是多方面的,工厂的产量、产品质量及其它技术经济指标将因此受到严重影响。文献[1]报道,仅澳大利亚每年由于有机物造成的氧化铝产量损失就达130万吨。某些有机物的存在使生产砂状氧化铝变得困难。因此,有机物问题成为氧化铝生产中的主要研究方向之一。国外就拜耳法生产中有机物的行为、对生产过程的影响及其排除方法等进行了长期的、大量的研究,取得了重要进展。 我国大多数氧化铝厂采用混联法或烧结法生产,有机物的影响很小或完全不存在。平果铝业公司氧化铝厂是我国目前唯一的采用纯拜耳法生产的工厂,投产较晚,原矿中的有机物含量也较低,有机物的影响需继续观察和研究。我国在“九五”期间进行的中、低品位铝土矿选矿研究取得了重大的进展,但除原矿中部分有机物进入精矿外,还有一定数量的浮选药剂被带入精矿,这种浮选药剂在拜耳法生产中的行为及其影响如何,尚未见诸文献报道,非常值得重视。 一、拜耳法溶液中的有机物 拜耳法溶液中的有机物主要来自铝土矿,絮凝剂、消泡剂、脱水剂等添加剂也会带入少量有机物。但据文献报道,其数量和影响均较小。铝土矿中的有机碳含量通常为0.1-0.3%,但亦可低至0.03%或高达0.6%(某些地表矿)。热带铝土矿中有机碳含量较高,一般为0.2~0.4%,而一水硬铝石型铝土矿中的 1

含量则较低,通常为0.1%。南美、非洲、澳大利亚铝土矿中的有机物含量较高,而欧洲、俄罗斯和中国的大多数铝土矿有机物含量较低。 铝土矿中的有机物分为腐殖质和沥青两种[2]。腐殖质主要成分为木质素转变的产物—腐殖酸。腐殖质成分复杂,其平均元素组成为,%:58%C,36%O2,4%H2,2%N2及其它杂质。腐殖质易溶于碱液。沥青中的C和H含量比腐殖质中的高,实际上不溶于碱液。据文献[3],铝土矿高压溶出时,腐殖质几乎全部溶入溶液,而沥青的溶出率不高于10%,在赤泥浆液稀释及沉降分离过程中,又全部析出进入赤泥。Jose G. Pulperiro等[4]报道,在铝土矿溶出条件下,60-90%的腐殖质溶解于强苛性碱溶液中,生成腐殖酸钠。不溶解的腐殖质是由于被铝土矿中不溶的无机物结合或吸附。 虽然原矿中有机物的含量一般不高,在铝土矿溶出时也非全部进入溶液,但由于种分母液与洗液是循环的,拜耳法流程中的有机物会逐渐积累,直至达到进出平衡为止。溶液中有机物的平衡浓度主要取决于铝土矿中有机物的含量及其组成,也与溶出条件等有关。一般情况下,拜耳溶液中有机碳含量为7-15g/L,在极端情况下可达25g/L[5]。文献[6]报道,处理热带铝土矿的德国施塔德氧化铝厂的溶出液中,有机碳含量甚至高达34g/L。 Β. Α. Зинченко[7]早期所作的乌拉尔氧化铝厂有机物的平衡表明:随铝土矿(一水硬铝石型)进入流程的有机物占全部有机物的88.5%,其余11.5%来自面粉(当时用作赤泥絮凝剂),而赤泥排走的有机物占全部有机物总量的83%,仅有17%进入溶液。进入溶液中的有机物主要随苏打结晶(据有关资料,苏打结晶中有机碳含量达0.5~1.5%)和氢氧化铝排出,二者分别占原矿中有机物总量的5.7%和4.5%,按对进入溶液中的有机物总量计算,则分别占33.5%和26.5%,其余则随苏打苛化后的石灰渣、蒸发母液等排出或循环。 1

相关主题
文本预览
相关文档 最新文档