当前位置:文档之家› 分子生物学相关数据库

分子生物学相关数据库

分子生物学相关数据库
分子生物学相关数据库

分子生物学相关数据库

Entrez

由NCBI开发的一个数据库检索系统,它综合了下述各大数据库的信息,包括核酸、蛋白以及Medline 文摘数据库,在这三个数据库中建立了非常完善的联系。因此,可以从一个序列查询到蛋白产物以及相关的结构、功能和文献信息,详见NCBI(美国国立生物技术信息中心) 简介。

EBI

欧洲生物信息学研究所(European Bioinformatics Institute,EBI)是EMBL的分部,位于英国Hinxton 的Wellcome Trust Genome Campus。

EBI维护和发布的数据库:

?EMBL核酸数据库、欧洲原始核酸数据资源库

?SwissProt蛋白质序列数据库[与瑞士生物信息学协会(Swiss Institute for Bioinformatics,SIB)的Amos Bairroch合作]

?TrEMBL(SwissProt的附属数据库,由EMBL数据库编码序列翻译而来的蛋白质序列数据库)

?分子结构数据库(Molecular Structure Database,MSD)[与Brookhaven 国家实验室(纽约)的蛋白质三维结构数据库(Protein Data Bank,PDB)合作]

?放射杂交数据库(Radiation Hybrid database,RHdb)

?其他组织合作产生的分子生物学数据库:EBI还提供网络服务,通过互联网、其WEB界面和FTP服务器可以访问最新收集到的数据,同时也提供数据库和序列相似性的搜索工具。

核酸数据库:

GenBank

GenBank是NIH的基因序列数据库,由美国国立卫生研究院全国生物技术信息中心(NCBI)建立并维护,是所有公开的DNA序列的集合( Nucleic Acids Research 1998 Jan 1;26(1):1-7),GenBank包含所有已知的核苷酸及蛋白质序列、以及与之相关的生物学信息和参考文献,是世界上的权威序列数据库。GenBank 每条数据包含对序列的精确描述,序列来源生物的科学名称及树状分类,以及特征数据栏,提供序列的蛋白编码区和具有特殊生物学意义的位点,如转录单位(transcription units)、突变或修饰位点(sites of mutationsormodifications)及重复序列(repeats),还提供特定序列编码的蛋白质序列。参考文献还给出其在MEDLINE上的特定标识号。

EMBL-EBI

欧洲分子生物学实验室(EuropeanMolecularBiology Laboratory)于1974年由欧洲14个国家加上亚洲的以色列共同发起建立,包括一个位于德国Heidelberg的核心实验室,及三个位于德国Hamburg,法国Grenoble 及英国Hinxton的研究分部,是欧洲最重要和最核心的分子生物学基础研究和教育培训机构。.

EMBL-DNA数据库于1982年由EMBL建立,为欧洲最主要的核酸序列数据库,与美国的GenBank 及日本的DDBJ共同组成全球性的国际DNA数据库。EBI即现在的欧洲生物信息研究所,是EMBL在英国Hinxton的分部,主要负责建立EMBL-DNA数据库,可进行核苷酸序列检索及序列相似性查询。

目前此数据库由其分支机构—EBI(the European Bioinformatics Institute,欧洲生物情报研究所)维护。

DDBJ

日本DNA数据库DDBJ(DNA Data Bank of Japan),于1984年建立,是世界三大DNA数据库之一,与NCBI的GenBank,EBI的EMBL数据库共同组成国际DNA数据库,每日交换更新数据和信息,并主持两个国际年会-国际DNA数据库咨询会议和国际DNA数据库协作会议。DDBJ 主要向研究者收集DNA序列信息并赋予其数据存取号,信息来源主要是日本的研究机构,亦接受其他国家呈递的序列,数据库通过WWW环球网,匿名FTP,e-mail或Gopher方式为广大研研究人员服务。

蛋白数据库:

ExPASy

ExPASy 是由位于瑞士日内瓦的 Swiss Institute of Bioinformatics 所建立,为全世界最重要的蛋白质资料库之一,也是GCG 最主要的蛋白质资料来源。主要内容包括蛋白质序列,构造及2-D PAGE (Two -dimentional polyacrylamide gel electrophoresis ) 的多个重要资料库,以及蛋白质序列和构造工具,FTP Server 和相关讯息。有许多用于分析上所需的工具,包括蛋白质功能预测、序列搜寻及比对,二级,三级和四级结构的预测等等。

ExPASy Proteomics tools包括Protein identification tools ,Protein characterization tool s,以及Sequence analysis tools三大部分,具体有:

?Aldente:利用肽指纹图谱来辨别蛋白质。

?Rasmol:观看生物分子3D微观立体结构的软件,可以旋转,以多个模式观看,并可以存成普通图形文件。

?MolMol:将PDB等格式的蛋白质文件通过微调,存成普通的图形文件。

?CLUSTALW:用来对蛋白质序列进行多序列比较的工具。多序列比较在分子生物学中是一个及基本方法,用来发现序列特征,进行蛋白质分类,证明序列见得同源性,帮助预测序列二级结构与三级结构,确定PCR引物,以及分子进化分析。

?Fasta3:在internent上有许多的在线FASTA 查找服务,查找某数据库中的同源序列,也可下载后离线使用。

?BLAST:在数据库中查找某一序列的类似序列,目前在internet上有许多的在线查找BLAST程序。

专门用于查找各大数据库中与用户提交序列类似的序列,分别为blastp,blastn,blastx,tblastn,tb lastn.

?VMD: 用来显示生物分子的微观立体结构,可以利用内建的功能,做出动画效果。

?Swiss-PdbViewer:是一个界面友好的应用程序,使用方便,可以同时分析几个蛋白质的PDB文件,可以将几个蛋白质叠加起来用来分析结构类似性,比较活性位点或其他有关位点,通过菜单操作与直观的图形,可以很容易获得氢键,角度,原子距离,氨基酸突变等数据。

?Astex Viewer:三维分子显示控件,用来在网页中以及office各个软件的文件中,VB,VC应用程序中显示三维分子,支持许多标准的三维分子格式。

?PHYLIP:进行进化树分析,可以分析DNA与蛋白质序列,限制位点等,可以绘制进化树,程序含有多种选项可以精确控制与分析。

?TREE PUZZLE:核酸序列,蛋白质序列相似性分析以及进化树构建工具,根据序列数据的最大相似性来构建进化树,可对大量数据进行快速分析构建,程序还包含多个统计测试。

?FindMod:预测潜在的蛋白质翻译后修饰和蛋白质中潜在的单氨基酸替换.

?FindPept:综合分子量的信息、化学修饰,翻译后修饰等其他信息共同来鉴定蛋白

?GlycoMod:预测可能的oligosaccharide结构.

?SWISS-MODEL:一个自动的蛋白质建模服务,如果一个3维结构未知的蛋白质的序列和已知三维结构的蛋白质的序列有很近的相似关系,那么就可以使用这个工具来构建这个蛋白的3维模型.

?ProtParam:计算一个蛋白质序列的理化参数例如氨基酸残基位置,等电点,原子位置等

?ScanProsite:输入序列或SWISS-PROT 编号即可,能够得到超过50 种待测蛋白的特征。可沿序列计算每个残基位点的移动平均疏水性,并给出疏水性-序列曲线。

PDB/RCSB (Protein Database)

Protein Data Bank (PDB)是美国RCSB (Reserach Collaborotory for Structural Bioinformatics;由Rutger大学、位于UCSD之San Diego Supercomputer Center及National Institute of Standards and Technology所组成)所维持的蛋白质数据库,收集了包括以x-ray diffraction及NMR取得之生物大分子3D结构信息。在2002年9月,它包含有16823种蛋白,761种蛋白核酸complex,1089种核酸及18种碳水化合物的3D结构 (图二)。PIR亦自PDB选取部分结构成立NRL-3D数据库,使用ATLAS这种

multi-database information retrieval program进行搜寻大分子序列数据。PDB除了有自行开发之软件外,亦可连接至主要之crystallograph, NMR, modeling and simulation软件/网站。

SWISS-PROT

SWISS-PROT 数据库是最齐全的注释精炼的蛋白序列库,建立于1986年,1987年起由日内瓦大学(University of Geneva)医学生物化学系和EMBL 数据馆(即现在的欧洲生物信息研究所EBI)共同维护。是欧洲最主要的蛋白序列数据库,世界两大蛋白序列数据库之一。SWISS-PROT由EMBL核苷酸序列库翻译而来,附件TrEMBL数据库含有126,995条蛋白质序列,包括34,178,645个氨基酸残基。每条蛋白质序列条目按照各种数据行的格式书写排列。

PIR

PIR(Protein Identification Resource)为PIR-International 这个大分子序列资料收集中心所维持的蛋白质序列鉴定数据库。由美国国家生物医学研究基金会(National Biomedical Research Foundation)维护。是美国最主要的蛋白序列数据库,为世界两大蛋白序列数据库之一。此中心包括National Biomedical Research Foundation (NBRF) 的Protein Information Resource (PIR),日本的Japan International Protein Information Database及Martinscried Institute for Protein Sequence (MIPS)。搜寻之程序可自NBRF-PIR数据库网页取得。

分子生物学复习题(有详细答案)

绪论 思考题:(P9) 1.从广义和狭义上写出分子生物学的定义? 广义上讲的分子生物学包括对蛋白质和核酸等生物大分子结构与功能的研究,以及从分子水平上阐明生命的现象和生物学规律。 狭义的概念,即将分子生物学的范畴偏重于核酸(基因)的分子生物学,主要研究基因或DNA结构与功能、复制、转录、表达和调节控制等过程。其中也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 2、现代分子生物学研究的主要内容有哪几个方面?什么是反向生物学?什么是 后基因组时代? 研究内容: DNA的复制、转录和翻译;基因表达调控的研究;DNA重组技术和结构分子生物学。 反向生物学:是指利用重组DNA技术和离体定向诱变的方法研究已知结构的基因相应的功能,在体外使基因突变,再导入体内,检测突变的遗传效应,即以表型来探索基因结构。 后基因组时代:研究细胞全部基因的表达图式和全部蛋白质图式,人类基因组研究由结构向功能转移。 3、写出三个分子生物写学展的主要大事件(年代、发明者、简要内容) 1953年Watson和Click发表了?脱氧核糖核苷酸的结构?的著名论文,提出了DNA的双螺旋结构模型。 1972~1973年,重组DNA时代的到来。H.Boyer和P.Berg等发展了重组DNA 技术,并完成了第一个细菌基因的克隆,开创了基因工程新纪元。 1990~2003年美、日、英、法、俄、中六国完成人类基因组计划。解读人类遗传密码。 4、21世纪分子生物学的发展趋势是怎样的? 随着基因组计划的完成,人类已经掌握了模式生物的所有遗传密码。又迎来了后基因组时代,人类基因组的研究重点由结构向功能转移。相关学说理论相应诞生,如功能基因组学、蛋白质组学和生物信息学。生命科学又进入了一个全新的时代。 第四章 思考题:(P130) 1、基因的概念如何?基因的研究分为几个发展阶段? 概念:基因是原核、真核生物以及病毒的DNA和RNA分子中具有遗传效应的核苷酸序列,是遗传的基本单位和突变单位以及控制形状的功能单位。 发展阶段:○120世纪50年代以前,主要从细胞的染色体水平上进行研究,属于基因的染色体遗传学阶段。 ○220世纪50年代以后,主要从DNA大分子水平上进行研究,属于分

分子生物学基本概念

[1]The Shine-Dalgarno sequence(AGGAGG), proposed by Australian scientists John Shine and Lynn Dalgarno,[1] is a ribosomal binding site located upstream of the start codon AUG. It is a consensus sequence that helps recruit the ribosome to the mRNA to initiate protein synthesis by aligning it with the start codon. The complementary sequence (CCUCCU), is called the anti-Shine-Dalgarno sequence and is located at the 3' end of the 16S rRNA in the ribosome.Mutations in the Shine-Dalgarno sequence can reduce translation. This reduction is due to a reduced mRNA-ribosome pairing efficiency, as evidenced by the fact that complementary mutations in the anti-Shine-Dalgarno sequence can restore translation.When the Shine-Dalgarno sequence and the anti-Shine-Dalgarno sequence pair, the translation initiation factors IF2-GTP, IF1, IF3, as well as the initiator tRNA fMet-tRNA(fMET) are recruited to the ribosome.Shine-Dalgarno sequence vs. ribosomal S1 protein in Gram-negative bacteria, however, Shine-Dalgarno sequence presence is not obligatory for ribosome to locate initiator codon, since deletion of anti-Shine-Dalgarno sequence from 16S rRNA doesn't lead to translation initiation at non-authentic sites. Moreover, numerous prokaryotic mRNAs don't possess Shine-Dalgarno sequences at all. What principally attracts ribosome to mRNA initiation region is apparently ribosomal protein S1, which binds to AU-rich sequences found in many prokaryotic mRNAs 15-30 nucleotides upstream of start-codon. It should be noted, that S1 is only present in Gram-negative bacteria, being absent from Gram-positive species.SD序列(16S互补区)是位于原核生物mRNA 起始密码子(AUG)上游5~10个核苷酸处,一段富含嘌呤的序列。 其与核糖体小亚基中的16S rRNA的3’末端互补配对,促进mRNA 的翻译。 [2]ORF:An open reading frame (ORF) is a portion of a gene’s sequence that contains a sequence of bases, uninterrupted by stop sequences, that could potentially encode a protein. When a new gene is identified and its DNA sequence deciphered, it is still unclear what its corresponding protein sequence is. This is because, in the absence of

《分子生物学》

第一章绪论 一.分子生物学的含义及其研究内容: 1. 分子生物学的含义: 广义:研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规侓性和互相关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。 狭义:研究范畴偏重于核酸(或基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调节控制等过程。(也涉及与这些过程相关的蛋白质和酶的结构、功能的研究) 2. 分子生物学的研究内容: (1)分子生物学的三条基本原理: 构成生物体各类有机大分子的单体在不同的生物体中都是相同的。 生物体内一切有机大分子的建成都遵循共同的规则。 某一特定生物体所拥有的核酸及蛋白质分子决定了它的属性。 (2)研究内容: DNA重组技术 DNA重组技术的应用前景: 用于大量生产某种在正常细胞代谢中产量很低的多肽:如激素、抗生素、酶类、抗体等,提高产量,降低成本,使许多有用多肽得到广泛的应用。 用于定向改造某些生物基因组结构,使其具备的特殊经济价值或功能提高、扩大 用于基础研究 基因表达调控研究 原核生物:基因组、染色体结构简单。转录、翻译在同一时间和空间内发生,调控主要在转录水平。 真核生物:存在细胞核结构。转录、翻译过程在时间、空间上都被隔开,且转录、翻译后存在复杂的信号加工过程。 调控:三个水平上 信号传导研究 转录因子研究 RNA剪辑 生物大分子的结构、功能研究 又称:结构分子生物学 研究生物大分子特定的空间结构及结构的运动变化与其生物学功能关系的科学。 研究方向:结构的测定 结构运动变化规律 结构与功能相关关系 常用手段:X射线衍射的晶体学(三维结构及运动规律) 三维核磁共振,多维核磁研究液相结构 二.分子生物学简史: 三.分子生物学在生命科学中的地位: 与生物化学 与微生物学 与遗传学 与细胞生物学 与发育生物学

分子生物学基本含义

分子生物学 分子生物学的基本含义(p8) 分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。 分子生物学与其它学科的关系 分子生物学是由生物化学、生物物理学、遗传学、微生物学、细胞学、以至信息科学等多学科相互渗透、综合融会而产生并发展起来的,凝聚了不同学科专长的科学家的共同努力。它虽产生于上述各个学科,但已形成它独特的理论体系和研究手段,成为一个独立的学科。 生物化学与分子生物学关系最为密切: 生物化学是从化学角度研究生命现象的科学,它着重研究生物体内各种生物分子的结构、转变与新陈代谢。传统生物化学的中心内容是代谢,包括糖、脂类、氨基酸、核苷酸、以及能量代谢等与生理功能的联系。 分子生物学则着重阐明生命的本质----主要研究生物大分子核酸与蛋白质的结构与功能、生命信息的传递和调控。 细胞生物学与分子生物学关系也十分密切: 传统的细胞生物学主要研究细胞和亚细胞器的形态、结构与功能。探讨组成细胞的分子结构比单纯观察大体结构能更加深入认识细胞的结构与功能,因此现代细胞生物学的发展越来越多地应用分子生物学的理论和方法。 分子生物学则是从研究各个生物大分子的结构入手,但各个分子不能孤立发挥作用,生命绝非组成成分的随意加和或混合,分子生物学还需要进一步研究各生物分子间的高层次组织和相互作用,尤其是细胞整体反应的分子机理,这在某种程度上是向细胞生物学的靠拢。 第一章序论 1859年发表了《物种起源》,用事实证明“物竞天择,适者生存”的进化论思想。 指出:物种的变异是由于大自然的环境和生物群体的生存竞争造成的,彻底否定了“创世说”。达尔文第一个认识到生物世界的不连续性。 意义:达尔文关于生物进化的学说及其唯物主义的物种起源理论,是生物科学史上最伟大的创举之一,具有不可磨灭的贡献。

分子生物学数据库

陈成 一、国内的一些有针对性的数据库 BIOSINO 我国的核酸序列公共数据库 更像是一个论坛,有一些提问,互动等功能,信息的筛选也不是特别的严格。但是规模较小 0条记录可以看出网站的维护和使用都不怎么频繁。 其他许多网站也没有明显的巨大差距。 二、国内的一些大型数据库 中国知网

大部分高校已经购买了它的资源,是国内较权威、全面的数据库。主要是文献下载,不针对我们实验过程中对数据遇到问题时的解答。

冀鼎觉SciFinder SciFinder使用简介 SciFinder Scholar是美国化学学会(ACS)旗下的化学文摘服务社CAS(Chemical Abstract Service)所出版的《Chemical Abstract》化学文摘的在线版数据库学术版。其内容涵盖应用化学、化学工程、普通化学、物理、生物学、生命科学、医学、聚合体学、材料学、地质学、食品科学和农学等诸多领域。 https://www.doczj.com/doc/6d17725018.html,/products/scifinder/ SciFinder是可以与交大图书馆相连的,在找到文献时,可以直接连接到交大图书馆进行检索帮助。 下面以检索Molecular Dynamics为例简单解释其使用。 在登进SciFinder之后会进入检索界面。上图即为SciFinder的文献检索界面,可以对文件类型,语言,作者等信息作初步筛选。除此之外也可以看到左面可以选择对作者,公司,杂志,专利进行直接检索。

在搜索之后会出现题目和内容相关两种文献分类,如我们选择内容相关Molecular dynamics,点进Get Reference。 这是检索完成的结果。我们可以看到,在Reference字样之后又Getsubstances等字样,我们可以通过这些选项获取选定文献中相关的物质、反应、相关的引用及被引用等。在右侧可以看到Analysis以及Refine选项。现在显示的是Analysis中的Journal Name选项,可以看到对于MD来说,JCP, JPC, Biochemistry, JACS等杂志具有较多的信息。除此之外,还有对作者,公司的分析,为我们对相关内容的行业情况的了解提供了方便。

分子生物学重要概念解释

分子生物学重要概念解释 A Abundance (mRNA 丰度):指每个细胞中mRNA 分子的数目。 Abundant mRNA (高丰度mRNA):由少量不同种类mRNA组成,每一种在细胞中出现大量拷贝。 Acceptor splicing site (受体剪切位点):内含子右末端和相邻外显子左末端的边界。 Acentric fragment (无着丝粒片段):(由打断产生的)染色体无着丝粒片段缺少中心粒,从而在细胞分化中被丢失。 Active site (活性位点):蛋白质上一个底物结合的有限区域。 Allele (等位基因):在染色体上占据给定位点基因的不同形式。 Allelic exclusion (等位基因排斥):形容在特殊淋巴细胞中只有一个等位基因来表达编码的免疫球蛋白质。 Allosteric control (别构调控):指蛋白质一个位点上的反应能够影响另一个位点活性的能力。 Alu-equivalent family (Alu 相当序列基因):哺乳动物基因组上一组序列,它们与人类Alu家族相关。Alu family (Alu家族):人类基因组中一系列分散的相关序列,每个约300bp长。每个成员其两端有Alu 切割位点(名字的由来)。 α-Amanitin(鹅膏覃碱):是来自毒蘑菇Amanita phalloides 二环八肽,能抑制真核RNA聚合酶,特别是聚合酶II 转录。 Amber codon (琥珀密码子):核苷酸三联体UAG,引起蛋白质合成终止的三个密码子之一。 Amber mutation (琥珀突变):指代表蛋白质中氨基酸密码子占据的位点上突变成琥珀密码子的任何DNA 改变。 Amber suppressors (琥珀抑制子):编码tRNA的基因突变使其反密码子被改变,从而能识别UAG 密码子和之前的密码子。 Aminoacyl-tRNA (氨酰-tRNA):是携带氨基酸的转运RNA,共价连接位在氨基酸的NH2基团和tRNA 终止碱基的3`或者2`-OH 基团上。 Aminoacyl-tRNA synthetases (氨酰-tRNA 合成酶):催化氨基酸与tRNA 3`或者2`-OH基团共价连接的酶。Amphipathic structure(两亲结构):具有两个表面,一个亲水,一个疏水。脂类是两亲结构,一个蛋白质结构域能够形成两亲螺旋,拥有一个带电的表面和中性表面。 Amplification (扩增):指产生一个染色体序列额外拷贝,以染色体内或者染色体外DNA形式簇存在。Anchorage dependence (贴壁依赖):指正常的真核细胞需要吸附表面才能在培养基上生长。 Aneuploid (非整倍体):组成与通常的多倍体结构不同,染色体或者染色体片段或成倍丢失。 Annealing (退火):两条互补单链配对形成双螺旋结构。 Anterograde (顺式转运):蛋白质质从内质网沿着高尔基体向质膜转运。 Antibody (抗体):由B 淋巴细胞产生的蛋白质(免疫球蛋白质),它能识别特殊的外源“抗原”,从而引起免疫应答。 Anticoding strand (反编码链):DNA 双链中作为膜板指导与之互补的RNA 合成的链。 Antigen (抗原):进入基体后能引起抗体(免疫球蛋白质)合成的物质。 Antiparallel (反式平行):DNA双螺旋以相反的方向组织,因此一条链的5`端与另一条链的3`端相连。Antitermination protein (抗终止蛋白质):能够使RNA聚合酶通过一定的终止位点的蛋白质。 AP endonucleases (AP 核酸内切酶):剪切掉DNA 5`端脱嘌呤和脱嘧啶位点的酶 Apoptosis (细胞凋亡):细胞进行程序性死亡的能力;对刺激应答使通过一系列特定反应摧毁细胞的途径

生物信息数据库

生物信息数据库 1生物信息数据库产生背景 上个世纪60年代以来,随着核酸序列测定、蛋白质序列测定以及基因克隆和PCR技术的不断发展与完善,全世界各研究机构获得了大量的生物信息原始数据。面对这些以指数方式增长的数据资源,传统的研究方式已经来不及迅速消化,因此有必要采用有效的方法将它们进行适当的储存、管理和维护,以便进一步分析、处理和利用,这就需要建立数据库即生物信息数据库[1]。生物信息数据库是一切生物信息学工作的基础。 2生物信息数据库的特点 2.1数据库种类的多样性。生物信息学各类数据库几乎覆盖了生命科学的各个领域,如核酸序列数据库,蛋白质序列数据库,蛋白质、核酸、多糖的三维结构数据库,基因组数据库,文献数据库和其他各类达数百种。 2.2数据库的更新和增长快。数据库的更新周期越来越短,有些数据库每天更新。数据的规模以指数形式增长。 2.3数据库的复杂性增加、层次加深。许多数据库具有相关的内容和信息,数据库之间相互引用,如PDB就与文献库、酶学数据库、蛋白质二级数据库、蛋白质结构分类数据库、蛋白折叠库等十几种数据库交叉索引。 2.4数据库使用高度计算机化和网络化。越来越多的生物信息学数据库与因特网联结,从而为分子生物学家利用这些信息资源提供了前所未有的机遇[2]。 2.5面向应用。首先各个数据库除了提供数据之外,还提供许多分析工具,如核酸数据库提供的序列搜索、基因识别程序等。此外,还在原始数据库的基础上开发了许多面向特殊应用的二级数据库,如蛋白质二级结构数据库等[3]。 3生物信息数据库的分类 生物信息数据库种类繁多,归纳起来,大体可以分为5个大类:核酸序列数据库、基因组数据库、蛋白质序列数据库、生物大分子(主要是蛋白质)结构数据库以及以这4类数据库和文献资料为基础构建的二次数据库。其中主要类型是序列数据库[4]。来自基因组作图的基因组数据库、来自序列测定的序列数据库以及来自X-衍射和核磁共振结构测定的结构数据库是分子生物信息学的基本数据资源,通常称为基本数据库或初始数据库,也称一次数据库。根据生命科学不同研究领域的实际需要,在一次数据库、实验数据和理论分析的基础上进行整理、归纳和注释,构建具有特殊生物学意义和专门用途的数据库即二次数据库, 也称专门数据库、专业数据库或专用数据库[2, 3, 5]。 3.1核酸序列数据库 EMBL、GenBank和DDBJ是国际上三大主要核酸序列数据库。EMBL是德国海德堡市的欧洲分子生物学实验室(European Molecular Biology Laboratory)1980年创建的,其名称也由此而来。美国国家健康研究院(National Institurte of Health,简称NIH)也于1982年委托洛斯阿拉莫斯(Los Alamos)国家实验室建立GenBank,后移交给美国国立卫生研究院国家生物技术中心(National Center for Bio-technology Information—NCBI)。DDBJ是日本静冈市的日本国立遗传学研究所于1986年创建的日本DNA数据库(DNA Database of Japan—DDBJ)。1988年,EMBL、GenBank与DDBJ共同成立了国际核酸序列联合数据库中心,建立了合作关系。根据协议,这三个数据库分别收集所在区域的有关实验室和测序机构所发布的核酸序列信息,并共享收集到的数据,每天交换各自数据库新建立的序列记录,以保证这三个数据库序列信息

分子生物学复习题(有详细答案)

分子生物学复习题(有详细答案)

绪论 思考题:(P9) 1.从广义和狭义上写出分子生物学的定义? 广义上讲的分子生物学包括对蛋白质和核酸等生物大分子结构与功能的研究,以及从分子水平上阐明生命的现象和生物学规律。 狭义的概念,即将分子生物学的范畴偏重于核酸(基因)的分子生物学,主要研究基因或DNA结构与功能、复制、转录、表达和调节控制等过程。其中也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 2、现代分子生物学研究的主要内容有哪几个方面?什么是反向生物学?什么是 后基因组时代? 研究内容: DNA的复制、转录和翻译;基因表达调控的研究;DNA重组技术和结构分子生物学。 反向生物学:是指利用重组DNA技术和离体定向诱变的方法研究已知结构的基因相应的功能,在体外使基因突变,再导入体内,检测突变的遗传效应,即以表型来探索基因结构。 后基因组时代:研究细胞全部基因的表达图式和全部蛋白质图式,人类基因组研究由结构向功能转移。 3、写出三个分子生物写学展的主要大事件(年代、发明者、简要内容) 1953年Watson和Click发表了“脱氧核糖核苷酸的结构”的著名论文,提出了DNA的双螺旋结构模型。 1972~1973年,重组DNA时代的到来。H.Boyer和P.Berg等发展了重组DNA 技术,并完成了第一个细菌基因的克隆,开创了基因工程新纪元。 1990~2003年美、日、英、法、俄、中六国完成人类基因组计划。解读人类遗传密码。 4、21世纪分子生物学的发展趋势是怎样的? 随着基因组计划的完成,人类已经掌握了模式生物的所有遗传密码。又迎来了后基因组时代,人类基因组的研究重点由结构向功能转移。相关学说理论相应诞生,如功能基因组学、蛋白质组学和生物信息学。生命科学又进入了一个全新的时代。 第四章 思考题:(P130) 1、基因的概念如何?基因的研究分为几个发展阶段? 概念:基因是原核、真核生物以及病毒的DNA和RNA分子中具有遗传效应的核苷酸序列,是遗传的基本单位和突变单位以及控制形状的功能单位。 发展阶段:○120世纪50年代以前,主要从细胞的染色体水平上进行研究,属于基因的染色体遗传学阶段。 ○220世纪50年代以后,主要从DNA大分子水平上进行研究,属于分

分子生物学的概念

1.分子生物学的概念:广义:蛋白质和核酸 狭义:偏重于核酸(基因);主要研究基因或DNA 2.用你现有的知识解释DNA为什么是遗传信息的载体。(分子生物学发展过程中 几个重要的实验-名称、原理)解释分子生物学是如何建立的?(不要求生物简史) 3.举例说明诺贝尔奖获得者的伟大科学发现。▲(选择、是非题) 第一、二章:DNA的结构 1.名词解释: ▲基因组(genome):是指细胞或生物体的全套遗传物质,即生物体维持配子或配子体正常功能的全套染色体所含的全部基因(DNA)。 9对碱基,编码3-4万个蛋白质分子▲引申——人的基因组的全长大约是3×10 6 大肠杆菌的基因组约为4.6×10 人类与E.coli编码基因数目的比较研究 E.coli. 4 X 106bp DAN 约编码3000种基因 人类29 X 108 bp 的DNA 是大肠杆菌的700多倍 C-值:通常是指一种生物单倍体基因组DNA的总量。 C-值矛盾:形态学的复杂程度与C-值的不一致。 割裂基因:编码某一DNA的基因中有些序列并不出现在成熟的DNA序列中,成熟RNA的序列在基因中被其他基因隔开。 Intron 内含子:DNA与成熟RNA之间的非对应区域。—非编码序列。 Exon 外显子:—编码序列。 持家基因:在所有细胞类型中都必须表达,即这些基因的功能为所有细胞所必须。 奢侈基因:仅在某种特定类型的细胞中表达的基因。(了解) 卫星DNA:将DNA切成数百个碱基对的片段进行超速离心时,由于富含AT的简单高度重复序列区段浮力密度较小,因而很容易和总体DNA分开,即常会在主要的DNA带的上面有一个次要的带相伴随。 2.简答题 1、何为C值矛盾,其表现在哪些方面。▲ 答:C-值矛盾是指形态学的复杂程度与C-值的不一致。 表现在:①低等真核生物中与形态学复杂程度相关,但高等真核生物中变化很大。

生物信息学数据库或软件

一、搜索生物信息学数据库或者软件 数据库是生物信息学的主要内容,各种数据库几乎覆盖了生命科学的各个领域。 核酸序列数据库有GenBank,EMBL,DDB等,核酸序列是了解生物体结构、功能、发育和进化的出发点。国际上权威的核酸序列数据库有三个,分别是美国生物技术信息中心(NCBI)的GenBank ,欧洲分子生物学实验室的EMBL-Bank(简称EMBL),日本遗传研究所的DDBJ 蛋白质序列数据库有SWISS-PROT,PIR,OWL,NRL3D,TrEMBL等, 蛋白质片段数据库有PROSITE,BLOCKS,PRINTS等, 三维结构数据库有PDB,NDB,BioMagResBank,CCSD等, 与蛋白质结构有关的数据库还有SCOP,CATH,FSSP,3D-ALI,DSSP等, 与基因组有关的数据库还有ESTdb,OMIM,GDB,GSDB等, 文献数据库有Medline,Uncover等。 另外一些公司还开发了商业数据库,如MDL等。

生物信息学数据库覆盖面广,分布分散且格式不统一, 因此一些生物计算中心将多个数据库整合在一起提供综合服务,如EBI的SRS(Sequence Retrieval System)包含了核酸序列库、蛋白质序列库,三维结构库等30多个数据库及CLUSTALW、PROSITESEARCH等强有力的搜索工具,用户可以进行多个数据库的多种查询。 二、搜索生物信息学软件 生物信息学软件的主要功能有: 分析和处理实验数据和公共数据,加快研究进度,缩短科研时间; 提示、指导、替代实验操作,利用对实验数据的分析所得的结论设计下一阶段的实验;寻找、预测新基因及预测其结构、功能; 蛋白高级结构预测。 如:核酸序列分析软件BioEdit、DNAClub等;序列相似性搜索BLAST;多重系列比对软件Clustalx;系统进化树的构建软件Phylip、MEGA等;PCR 引物设计软件Primer premier6.0、oligo6.0等;蛋白质二级、三级结构预测及三维分子浏览工具等等。 NCBI的网址是:https://www.doczj.com/doc/6d17725018.html,。 Entrez的网址是:https://www.doczj.com/doc/6d17725018.html,/entrez/。 BankIt的网址是:https://www.doczj.com/doc/6d17725018.html,/BankIt。 Sequin的相关网址是:https://www.doczj.com/doc/6d17725018.html,/Sequin/。 数据库网址是:https://www.doczj.com/doc/6d17725018.html,/embl/。

常用分子生物学软件简介

常用分子生物学软件 一、基因芯片: 1、基因芯片综合分析软件。 ArrayVision 7.0 一种功能强大的商业版基因芯片分析软件,不仅可以进行图像分析,还可以进行数据处理,方便protocol的管理功能强大,商业版正式版:6900美元。 Arraypro 4.0 Media Cybernetics公司的产品,该公司的gelpro, imagepro一直以精确成为同类产品中的佼佼者,相信arraypro也不会差。 phoretix?Array Nonlinear Dynamics公司的基因片综合分析软件。 J-express 挪威Bergen大学编写,是一个用JAVA语言写的应用程序,界面清晰漂亮,用来分析微矩阵(microarray)实验获得的基因表达数据,需要下载安装JAVA运行环境JRE1.2后(5.1M)后,才能运行。 2、基因芯片阅读图像分析软件 ScanAlyze 2.44 ,斯坦福的基因芯片基因芯片阅读软件,进行微矩阵荧光图像分析,包括半自动定义格栅与像素点分析。输出为分隔的文本格式,可很容易地转化为任何数据库。 3、基因芯片数据分析软件 Cluster 斯坦福的对大量微矩阵数据组进行各种簇(Cluster)分析与其它各种处理的软件。 SAM Significance Analysis of Microarrays 的缩写,微矩阵显著性分析软件,EXCEL软件的插件,由Stanford大学编制。 4.基因芯片聚类图形显示 TreeView 1.5 斯坦福开发的用来显示Cluster软件分析的图形化结果。现已和Cluster成为了基因芯片处理的标准软件。 FreeView 是基于JAVA语言的系统树生成软件,接收Cluster生成的数据,比Treeview增强了某些功能。 5.基因芯片引物设计 Array Designer 2.00 DNA微矩阵(microarray)软件,批量设计DNA和寡核苷酸引物工具 二、RNA二级结构。 RNA Structure 3.5 RNA Sturcture 根据最小自由能原理,将Zuker的根据RNA一级序列预测RNA二级结构的算法在软件上实现。预测所用的热力学数据是最近由T urner实验室获得。提供了一些模块以扩展Zuker算法的能力,使之为一个界面友好的RNA折叠程序。允许你同时打开多个数据处理窗口。主窗口的工具条提供一些基本功能:打开文件、导入文件、关闭文件、设置程序参数、重排窗口、以及即时帮助和退出程序。RNAdraw中一个非常非常重要的特征是鼠

分子生物学常用技术 习题

第五章常用分子生物学技术的原理及其应用习题(引自网络精品课程) 一、选择题 (一)A型题 1 .分子杂交实验不能用于 A .单链 DNA 与 RNA 分子之间的杂交 B .双链 DNA 与 RNA 分子之间的杂交 C .单链 RNA 分子之间的杂交 D .单链 DNA 分子之间的杂交 E .抗原与抗体分子之间的杂交 2 .关于探针叙述错误的是 A .带有特殊标记 B .具有特定序列 C .必须是双链的核酸片段 D .可以是基因组 DNA 片段 E .可以是抗体 3 .下列哪种物质不能用作探针 A . DNA 片段 B . cDNA C .蛋白质 D .氨基酸 E . RNA 片段 4 .印迹技术可以分为 A . DNA 印迹 B . RNA 印迹 C .蛋白质印迹 D .斑点印迹 E .以上都对 5 . PCR 实验延伸温度一般是 A .90 ℃ B .72 ℃ C .80 ℃ D .95 ℃ E .60 ℃ 6 . Western blot 中的探针是 A . RNA B .单链 DNA C . cDNA D .抗体 E .双链 DNA 7 . Northern blotting 与 Southern blotting 不同的是 A .基本原理不同 B .无需进行限制性内切酶消化 C .探针必须是 RNA D .探针必须是 DNA E .靠毛细作用进行转移 8 .可以不经电泳分离而直接点样在 NC 膜上进行杂交分析的是 A .斑点印迹 B .原位杂交 C . RNA 印迹 D . DNA 芯片技术 E . DNA 印迹 9 .下列哪种物质在 PCR 反应中不能作为模板 A . RNA B .单链 DNA C . cDNA D .蛋白质 E .双链 DNA 10 . RT-PCR 中不涉及的是 A .探针 B . cDNA C .逆转录酶 D . RNA E . dNTP 11 .关于 PCR 的基本成分叙述错误的是 A .特异性引物 B .耐热性 DNA 聚合酶 C . dNTP D .含有 Zn 2+ 的缓冲液 E .模板 12 . DNA 链末端合成终止法不需要 A . ddNTP B . dNTP C .引物标记 D . DNA 聚合酶 E .模板 13 . cDNA 文库构建不需要 A .提取 mRNA B .限制性内切酶裂解 mRNA C .逆转录合成 cDNA D .将 cDNA 克隆入质粒或噬菌体 E .重组载体转化宿主细胞 14 .标签蛋白沉淀是 A .研究蛋白质相互作用的技术 B .基于亲和色谱原理 C .常用标签是 GST D .也可以是 6 组氨酸标签 E .以上都对 15 .研究蛋白质与 DNA 在染色质环境下相互作用的技术是 A .标签蛋白沉淀 B .酵母双杂交 C .凝胶迁移变动实验 D .染色质免疫沉淀法 E .噬菌体显示筛选系统 16 .动物整体克隆技术又称为

(完整版)分子生物学习题与答案

第0章绪论 一、名词解释 1.分子生物学 2.单克隆抗体 二、填空 1.分子生物学的研究内容主要包含()、()、()三部分。 三、是非题 1、20世纪60年代,Nirenberg建立了大肠杆菌无细胞蛋白合成体系。研究结果发现poly(U)指导了多聚苯丙氨酸的合成,poly(G)指导甘氨酸的合成。(×) 四、简答题 1. 分子生物学的概念是什么? 2. 你对现代分子生物学的含义和包括的研究范围是怎么理解的? 3. 分子生物学研究内容有哪些方面? 4. 分子生物学发展前景如何? 5. 人类基因组计划完成的社会意义和科学意义是什么? 6.简述分子生物学发展史中的三大理论发现和三大技术发明。 7. 简述分子生物学的发展历程。 8. 二十一世纪生物学的新热点及领域是什么? 9. 21世纪是生命科学的世纪。20世纪后叶分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。试阐述分子生物学研究领域的三大基本原则,三大支撑学科和研究的三大主要领域? 答案: 一、名词解释 1.分子生物学:分子生物学就是研究生物大分子之间相互关系和作用的一门学科,而生物大分子主要是指基因和蛋白质两大类;分子生物学以遗传学、生物化学、细胞生物学等学科为基础,从分子水平上对生物体的多种生命现象进行研究。

2.单克隆抗体:只针对单一抗原决定簇起作用的抗体。 二、填空 1.结构分子生物学,基因表达与调控,DNA重组技术 三、是非题 四、简答题 1. 分子生物学的概念是什么? 答案: 有人把它定义得很广:从分子的形式来研究生物现象的学科。但是这个定义使分子生物学难以和生物化学区分开来。另一个定义要严格一些,因此更加有用:从分子水平来研究基因结构和功能。从分子角度来解释基因的结构和活性是本书的主要内容。 2. 你对现代分子生物学的含义和包括的研究范围是怎么理解的? 分子生物学是从分子水平研究生命本质的一门新兴边缘学科,它以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域。狭义:偏重于核酸的分子生物学,主要研究基因或DNA的复制、转录、表达和调节控制等过程,其中也涉及与这些过程有关的蛋白质和酶的结构与功能的研究。分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。所谓在分子水平上研究生命的本质主要是指对遗传、生殖、生长和发育等生命基本特征的分子机理的阐明,从而为利用和改造生物奠定理论基础和提供新的手段。这里的分子水平指的是那些携带遗传信息的核酸和在遗传信息传递及细胞内、细胞间通讯过程中发挥着重要作用的蛋白质等生物大分子。这些生物大分子均具有较大的分子量,由简单的小分子核苷酸或氨基酸排列组合以蕴藏各种信息,并且具有复杂的空间结构以形成精确的相互作用系统,由此构成生物的多样化和生物个体精确的生长发育和代谢调节控制系统。阐明这些复杂的结构及结构与功能的关系是分子生物学的主要任务。 3. 分子生物学主要包含以下三部分研究内容:A.核酸的分子生物学,核酸的分子生物学研究核酸的结构及其功能。由于核酸的主要作用是携带和传递遗传信息,因此分子遗传学(moleculargenetics)是其主要组成部分。由于50年代以来

分子生物学技术

分子生物学技术 近年来,心血管疾病的发病率和死亡率急剧增加,已成为危害我国人民群众生命和健康的重大疾病。人们逐渐认识到,包括心血管疾病在内的许多疾病的生理、病理机制的本质问题是相关基因的表达及其调控。随着研究的深入, 心血管疾病的研究已深入到分子生物学水平。人们寻找疾病相关基因, 研究其表达调控机制, 希望在分子水平阐明疾病发生机制, 以期更有效地进行疾病的诊断、治疗。相应地, 很多分子生物学研究技术也应用到对心血管疾病的研究中来, 成为不可或缺的基本手段, 如分子杂交技术、聚合酶链式反应(Polymerase Chain Reaction,PCR)技术、反义核酸技术、DNA微阵列、转基因技术等等。分子诊断学是以分子生物学理论为基础,利用分子生物学的技术和方法研究人体内源性或外源性生物大分子和大分子体系的存在、结构或表达调控的变化,为疾病的预防、预测、诊断、治疗和转归提供信息和决策依据的一门学科。1953年Watson & Crich发现DNA 双螺旋结构, 标志着分子生物学时代的到来。随着研究的进展, 人们对心血管疾病的研究也逐步深入到分子水平, 很多分子生物学的研究技术也在疾病机理、药物机理的研究中广泛应用, 成为基本的研究手段。人类基因组计划完成后, 生命科学研究进入后基因组时代, 进行功能基因组学、蛋白质组学的研究, 相应的实验技术也广泛应用并不断发展。 在过去的短短的10余年中,检验医学发展日新月异、发展迅猛,临床实验室的实验设备已高度自动化及网络化,“实验室全自动化”(Total Laboratory Automation,TLA)、分子诊断(MolecularDiagnostics)、床旁检验(Point of Care Tests,POCT)、循证检验医学(Evidence basedlaboratory medicine,EBLM)的兴起为心血管疾病的诊疗提供了极大帮助。 一、分子生物学技术 由于分子生物学技术的快速发展,以及人类基因组序列认识的逐渐完善,以PCR为代表的体外核酸扩增技术已在临床基因诊断中得以较为广泛的应用,如病毒、细菌的基因快速检测,遗传性疾病的诊断,肿瘤的基因诊断等。实时荧光定量PCR技术的应用,不仅使临床基因检测更加快速,而且使基因检测进入定量阶段,这特别有利于某些疾病治疗效果的评价。免疫检验中的放射免疫分析(Radioimmunoassay,RIA),酶免疫分析(Enzyme Iimrrmnoassay,EIA),金标记免疫分析,荧光免疫分析(Fluoroimmunoassay,FIA),时间分辨荧光免疫分析(Time-resolved Fluoroimmunoassay,TRFIA),化学发光免疫分析(Chemiluminescence Immunoassay,CLI A),电化学发光免疫分析(Electro-Chemiluminescence Immunoassay ,ECLI)技术的临床应用不仅拓宽了免疫学检测的领域,同时提高了免疫学检测的灵敏度,促进了免疫检测的自动化。特别是化学发光免疫分析、电化学发光免疫分析技术的诞生,使得免疫学检验进入了一个新的时代,检测灵敏度可达pg水平,其检测速度、分析自动化程度及分

分子生物学相关数据库

分子生物学相关数据库 Entrez 由NCBI开发的一个数据库检索系统,它综合了下述各大数据库的信息,包括核酸、蛋白以及Medline 文摘数据库,在这三个数据库中建立了非常完善的联系。因此,可以从一个序列查询到蛋白产物以及相关的结构、功能和文献信息,详见NCBI(美国国立生物技术信息中心) 简介。 EBI 欧洲生物信息学研究所(European Bioinformatics Institute,EBI)是EMBL的分部,位于英国Hinxton 的Wellcome Trust Genome Campus。 EBI维护和发布的数据库: ?EMBL核酸数据库、欧洲原始核酸数据资源库 ?SwissProt蛋白质序列数据库[与瑞士生物信息学协会(Swiss Institute for Bioinformatics,SIB)的Amos Bairroch合作] ?TrEMBL(SwissProt的附属数据库,由EMBL数据库编码序列翻译而来的蛋白质序列数据库) ?分子结构数据库(Molecular Structure Database,MSD)[与Brookhaven 国家实验室(纽约)的蛋白质三维结构数据库(Protein Data Bank,PDB)合作] ?放射杂交数据库(Radiation Hybrid database,RHdb) ?其他组织合作产生的分子生物学数据库:EBI还提供网络服务,通过互联网、其WEB界面和FTP服务器可以访问最新收集到的数据,同时也提供数据库和序列相似性的搜索工具。 核酸数据库: GenBank

GenBank是NIH的基因序列数据库,由美国国立卫生研究院全国生物技术信息中心(NCBI)建立并维护,是所有公开的DNA序列的集合( Nucleic Acids Research 1998 Jan 1;26(1):1-7),GenBank包含所有已知的核苷酸及蛋白质序列、以及与之相关的生物学信息和参考文献,是世界上的权威序列数据库。GenBank 每条数据包含对序列的精确描述,序列来源生物的科学名称及树状分类,以及特征数据栏,提供序列的蛋白编码区和具有特殊生物学意义的位点,如转录单位(transcription units)、突变或修饰位点(sites of mutationsormodifications)及重复序列(repeats),还提供特定序列编码的蛋白质序列。参考文献还给出其在MEDLINE上的特定标识号。 EMBL-EBI 欧洲分子生物学实验室(EuropeanMolecularBiology Laboratory)于1974年由欧洲14个国家加上亚洲的以色列共同发起建立,包括一个位于德国Heidelberg的核心实验室,及三个位于德国Hamburg,法国Grenoble 及英国Hinxton的研究分部,是欧洲最重要和最核心的分子生物学基础研究和教育培训机构。. EMBL-DNA数据库于1982年由EMBL建立,为欧洲最主要的核酸序列数据库,与美国的GenBank 及日本的DDBJ共同组成全球性的国际DNA数据库。EBI即现在的欧洲生物信息研究所,是EMBL在英国Hinxton的分部,主要负责建立EMBL-DNA数据库,可进行核苷酸序列检索及序列相似性查询。 目前此数据库由其分支机构—EBI(the European Bioinformatics Institute,欧洲生物情报研究所)维护。 DDBJ 日本DNA数据库DDBJ(DNA Data Bank of Japan),于1984年建立,是世界三大DNA数据库之一,与NCBI的GenBank,EBI的EMBL数据库共同组成国际DNA数据库,每日交换更新数据和信息,并主持两个国际年会-国际DNA数据库咨询会议和国际DNA数据库协作会议。DDBJ 主要向研究者收集DNA序列信息并赋予其数据存取号,信息来源主要是日本的研究机构,亦接受其他国家呈递的序列,数据库通过WWW环球网,匿名FTP,e-mail或Gopher方式为广大研研究人员服务。 蛋白数据库:

相关主题
文本预览
相关文档 最新文档