当前位置:文档之家› 数字伺服系统实验指导书G

数字伺服系统实验指导书G

数字伺服系统实验指导书G
数字伺服系统实验指导书G

《数字伺服系统》实验指导书

徐绍芬编写

适用专业:自动化

电气工程及其自动化江苏科技大学电子信息学院

2007年9月

前言

伺服系统是自动控制系统中的一类,且与工程实际有着密切地联系。本课程系统地介绍了伺服系统的组成原理和设计方法,通过该课程的学习,要求学生掌握伺服系统的硬件组成如:测速、测角(位移)及各种信号转换线路等; 了解系统的软件结构。为了使学生更好地理解和深刻地把握这些知识,设置了两个实验项目:

实验1:伺服系统的参数测定。通过测试系统的动态和静态特性,计算速度环数学模型参数,从而得到伺服系统的传递函数。

实验2(设计性实验):伺服系统控制算法实现。根据实验对象及在实验1中建立的系统传递函数,自行设计控制算法,并在本实验系统提供的软件平台上,编制嵌入式C++ B uil de程序,实现新的控制算法。使伺服系统的性能指标得到改善或伺服系统能够实现稳定控制。

目录

实验一: 伺服系统参数测定 (4)

实验二: 伺服系统控制算法实现 (8)

附录:数字伺服系统实验的有关说明 (9)

实验一: 伺服系统参数测定

实验学时:4

实验类型:验证

实验要求:必修

一、实验目的

1、了解数字交流伺服系统的组成及其工作原理。

2、通过测试系统的动态和静态特性,计算速度环数学模型参数。

3、熟悉和掌握Pa nat erm的操作方法。

二、实验仪器

1、计算机一台

2、数字交流伺服系统装置一套

3、实验专用软件一套

三、实验内容

测试数字交流伺服系统速度环数学模型参数。

四、实验原理:

1.了解数字伺服系统的组成

在对实际的一个交流伺服系统进行控制之前,必须对系统的数学模型有一个清楚的认识。由于本实验使用的系统为一实际系统,所以必须先通过实验方法来获取各个部分的传递函数,来对实际系统建立数学模型。系统的线路连接图如下所示。下面对系统的各个主要组成部分进行研究。

图 1 数字伺服系统连线图

控制计算机在每个采样周期读取正余旋变换器到数字转换模块组成的轴角编码装置得到反馈信号,经过组合运算得到16位输出角度数字值θ0、 θ0和θ1(给定信号)相比较,再通过一定的控制规律求得这个周期要输出的控制量U ,送到驱动器来驱动电机转动。 2.交流伺服系统的速度环

交流伺服驱动器与电动机以及400H Z 激磁电源版一块(同时此板卡还完成了控制信号从单级性到双极性的转化)构成了该伺服系统的速度环。速度环的结构如下图:

输出量

图 2 速度环的结构图

A.交流伺服电机与驱动器

在本数字交流伺服系统中,选用的是由日本松下公司生产的松下MINA S043A1A 系列的驱动器和小惯量的MSM A042A 1G 的电机。

B.数学模型的获得

电机,驱动器和控制箱里的单极输入双极输出组成速度环,速度环的前相通道为电机和驱动器,单极输入双极输出看成反馈通道。考虑诸多因素,将速度环看成一个二阶变系数环节

2

2

2

2n

n n

S s K ωξωω++ (1-1)

3、轴角编码装置

轴角编码装置的功能是测量数字伺服系统输出轴的位置并将其转化为自然二进制码,用来实现系统的主反馈。它主要由旋转变压器到数字量转换模块两部分组成。

A.减速器

减速器看成是一个比例环节k=108.32。 B.旋转变压器

本系统采用的是由电子部二十一所制造的36xz 017(36xz 10-6)型的正余弦旋转变压器,军工制造。

旋转变压器作为位置传感器,检测位置输出。直接影响着伺服系统的性能。由于本身不带有半导体元件,所以非常适合在较高温度以及恶劣环境下工作,但是成本高。

旋转变压器激磁绕组由于转角的变化在三相定子绕组上感应出电动势e1,e2,e3(分别对应电机的d 1,d2,d 3绕组)则作为输出信号,送入轴角编码板,由它处理得到转轴的绝对位置。

其中旋转变压器的参考电压由控制箱内400H Z 激磁电源版提供,其电路图见附录。

C.轴角编码板

该板卡即基于ISA 总线的接口卡,将正余弦旋转变压器的轴输出位置值转化成数字量,送给计算机。

位输出

图2-6交流伺服系统系统数学模型框图

五、实验组织运行要求

根据实验特点,以集中模式组织实验教学。每批分4组,每组2人。每组学生必须完成所规定的实验内容,记录相应的实验数据,经教师认可后才视为完成实验。

六、实验步骤

1、测动态响应特性:

利用驱动器P ANA TER M 的输入输出关系,给定速度,输出实际速度测出三组数据取平均值。

参数设置 : P r05=1(第一内部速度) P r53=n=800r/m in 、1000r/m in 、1200r /mi n

面板开关设置: C W —0 C CW —0 增益—0 控制—0 指令1—0 指令2—0 箝位—1 伺服—1

打开机箱和驱动器电源,运行P ana ter m 程序,采样周期为T=0.17ms ,求取超调量σ%和峰值时间p t

2

ω

π-=

n

p t

π

ξ

ξ

σ*12

--

=e

计算得到 n ω 、ξ

2、测静特性:

此环节的放大系数K 可以根据给定开环量来确定,查看电机的转速。经过大量的数据确定K :

参数设置:Pr5=2 面板开关设置: CW —0 CCW —0 增益—0 控制—0 指令1—1

指令2—1 箝位—1 伺服—1

打开机箱电源和驱动器电源,运行ser vo 程序。 界面操作:设置--信号发生器选 内部

阶跃幅值选 100

运行方式选 开环

输入开环控制量 800(1000、1200)

利用变频器监控模式观察输出转速r **** 顺馈误差系数=

k

*005.0*6553660*32.108

k=输出转速(n 0)/给定转速(nr ) 最后得速度环节数学模型为:

七、实验预习要求

1、 预习实验指导书以及相关知识;

2、 准备好有关的记录表格;

3、 写出预习报告。

八、实验报告

实验报告内容应包括:系统的结构图、整理各项实验数据及曲线、进行分析比较和必要的计算,记录实验中出现的各种现象,分析说明其原因。

实验二: 伺服系统控制算法实现

实验学时:4

实验类型:设计

实验要求:专业限选课

一、实验目的

学会用系统提供的软件平台,实现新的控制算法,使系统能够达到稳定控制。二、实验内容:

根据实验对象及在前面实验中建立的数学模型,自行设计控制算法,并在本实验系统提供的软件平台上,编制嵌入式C++ Bu ild e 程序,实现新的控制算法。使伺服系统的性能指标得到改善或伺服系统能够实现稳定控制。

三、实验要求:

编制嵌入式C++ Bu ilde 程序,实现自行设计的控制方案。要求伺服系统的稳定跟踪误差e s s<5m il,记录系统响应曲线,对多种控制方法的控制效果作分析与比较。

四、实验组织运行

以学生自主训练为主的开放模式组织实验教学。

五、实验步骤:

a)打开C++ Bu ilde ,打开F ile——op en Pr o jec t——数字伺服系统源文

件——d ll.c pp(或test2.c pp)

b)此文件中的函数d oub le S M()是实验系统的控制部分,其中的变量

和参数说明如下:

Insig[63 ]——输入量Outsig[3]——输出量

Error[MAX_ERRO R_N UM_1]——当前时刻误差

c)用户可根据设计的控制方案,在该函数内编写这段程序。

d)注意:不要修改d oub le S M()函数以外的任何内容!

六、验报告要求:

a)写明控制方案设计的过程。

b)在C++ Bu ilde 程序上实现。

c)记录系统响应曲线,并作分析。

附录:数字伺服系统实验的有关说明

一、实验装置的介绍:

本实验装置主要包括:

计算机一台;

变频器与电机一套(松下MSDA 043A1G 200v 400w);

开关电源两只(一只提供正负12v 电源供给激磁电源的工作电压,另一只电源提供24v电源供给变频器控制电路的工作电压);

减速器一台(SEW公司减速比为1 : 108.32);

正余弦旋转变压器一只(36XZ017信号及参考频率400HZ);

轴角编码板一块(激磁频率为400HZ ISA插槽);

PCL-812PG多功能采集板一块(ISA插槽);

400HZ激磁电源板一块(同时此板卡还完成了控制信号从单极性到双极性的转化);

实验工作台一部;

串行通信电缆一根。

二、变频器主要参数的设置:

参数的设置方法:

SET按钮(在模式显示和执行显示间切换)模式由模式切换按钮来选择;

MODE切换按钮(有五种模式选项):

1.监视模式会在面板上看到dp_spd的显示,说明已进入监视模式,按set键可看到要监视的数值;

2.参数设定模式在面板上看到pa_00的显示,00表示要设定的参数号,可通过∧、∨、< 来设定要要设置的参数号,在按set键后,就可以用∧、∨、< 来

设定该参数号的值了;

3.EEPROM写模式,当出现EE_SEL就说明已是写入模式;

其他两种模式和以上的具体设定方法参考交流伺服电机驱动器使用说明书P47-P50;

三、系统核心过程的实验流程图如下所示:(COMEventProc()函数流程图)

四、界面操作说明

X轴对应的是时间轴,X轴的最小值表示要跟踪的起始时间,一般应该被设为0;X轴的最大值所对应的是要跟踪的时间,当跟踪阶跃信号时,一般被设为10秒,跟踪斜坡信号、正弦信号时,一般被设为15秒,当输入所设定值时,按回车键即可有效。

Y轴对应的是位置信号,包括输入信号,输出信号,误差信号的图形表示,单位为密位;还包括控制信号的图形表示,单位是δ;Y轴的最小值被固定设为-3000,对应于角度值为-180°Y轴的最大值被设为3000,对应于角度值为180°;当输入所设定值时,按回车键即可有效。

点击工具栏中“设置”項,将弹出一“系统设置”对话框,在“信号发生器”选项卡中,选择信号发生器中的“内部信号发生器”,在“信号种类”中,选择要被跟踪的信号,如阶跃,斜坡,正弦;在信号参数中,输入要所跟踪信号的幅值。在“采样周期”选项卡中,输入要采样的时间,默认为5毫秒;在“运行方式选择”选项卡中,在运行方式中可选择开环控制和闭环控制,当选择开环控制时,可在下面的开环控制量中输入值进行开环控制,当选择闭环控制时,可以选择算法,算法1和算法2是程序自带的演示算法,当学生自己编制算法后,在算法选择中选择“我的算法”,这时程序所调用的控制算法就是自己编制的控制律算法。在“颜色设置”选项卡中可以选择输入信号、输出信号、误差信号、控制信号的颜色。在“算法系数输入”选项卡中,可以输入一些系数,这些系数对于用户自定义的算法的调试很有好处。当所有“系统设置”对话框的内容被设定后,按“确定”键即可。

“系统设置”完毕后,在电机工具栏中的“跟踪”按钮,弹出一“跟踪信号选择”对话框,在此对话框中选择要跟踪的曲线,包括输入信号、输出信号、误差信号、控制信号曲线,当选择“全部选中”时,以上四种实时跟踪曲线将会在界面上反应出来,选择完成后,按“确定”键后,系统将会启动,实时曲线将会在界面上反应出来。

当跟踪时间到了以后,将会弹出一对话框说明“跟踪时间到了”,为了分析跟踪曲线的性质,可以通过工具栏中的“X轴放大、缩小,Y轴放大、缩小”来看的更清楚。跟踪时间到了以后,“动态性能指标”和“稳态性能指标”使能,这时,性能指标的值将会计算出来。

五、机箱面板上的控制开关说明

机箱面板上总共有九个开关,包括电源开关,内部速度指令选择1、内部速度指令选择2、伺服—ON、第2增益选择、零速箝位、控制方式选择、CCW驱动禁止、CW驱动禁止开关,现将开关说明如下:

内部速度指令选择1开关、内部速度指令选择2开关和变频器参数Pr5一起来控制电机是以内部速度还是以外部速度来运转,在此选择外部速度指令,即内部速度指令选择1和内部速度指令选择2开关都选择ON,并且Pr5被设定为2;

控制方式选择总共有有三种控制模式,位置、速度、转矩控制模式,在本实验中选择的是速度控制,此开关和变频器参数Pr2一起来控制选择何种控制模式,当Pr2为1时,变频器默认为是第一方式下的速度控制,当Pr2为3,4,5时,控制方式选择开关与控制模式对应着,详细请参阅变频器使用说明书page32。

伺服—ON开关是电机运转的使能信号,使电机运转。

零速箝位开关和变频器参数Pr6一起来控制零速箝位输入有效/无效;

CCW驱动禁止,当机器的移动部分顺时针超过限位时,即与COM—断开,电机不产生转矩。和Pr4一起进行顺时针限位。

CW驱动禁止,当机器的移动部分逆时针超过限位时,即与COM—断开,电机不产生转矩,和Pr4一起进行逆时针限位。

开关的详细使用请参阅松下驱动器的使用说明书。

数字逻辑实验指导书(multisim)(精)

实验一集成电路的逻辑功能测试 一、实验目的 1、掌握Multisim软件的使用方法。 2、掌握集成逻辑门的逻辑功能。 3、掌握集成与非门的测试方法。 二、实验原理 TTL集成电路的输入端和输出端均为三极管结构,所以称作三极管、三极管逻辑电路(Transistor -Transistor Logic 简称TTL电路。54 系列的TTL电路和74 系列的TTL电路具有完全相同的电路结构和电气性能参数。所不同的是54 系列比74 系列的工作温度范围更宽,电源允许的范围也更大。74 系列的工作环境温度规定为0—700C,电源电压工作范围为5V±5%V,而54 系列工作环境温度规定为-55— ±1250C,电源电压工作范围为5V±10%V。 54H 与74H,54S 与74S 以及54LS 与74LS 系列的区别也仅在于工作环境温度与电源电压工作范围不同,就像54 系列和74 系列的区别那样。在不同系列的TTL 器件中,只要器件型号的后几位数码一样,则它们的逻辑功能、外形尺寸、引脚排列就完全相同。 TTL 集成电路由于工作速度高、输出幅度较大、种类多、不易损坏而使用较广,特别对我们进行实验论证,选用TTL 电路比较合适。因此,本实训教材大多采用74LS(或74系列TTL 集成电路,它的电源电压工作范围为5V±5%V,逻辑高电平为“1”时≥2.4V,低电平为“0”时≤0.4V。 它们的逻辑表达式分别为:

图1.1 分别是本次实验所用基本逻辑门电路的逻辑符号图。 图1.1 TTL 基本逻辑门电路 与门的逻辑功能为“有0 则0,全1 则1”;或门的逻辑功能为“有1则1,全0 则0”;非门的逻辑功能为输出与输入相反;与非门的逻辑功能为“有0 则1,全1 则0”;或非门的逻辑功能为“有1 则0,全0 则1”;异或门的逻辑功能为“不同则1,相同则0”。 三、实验设备

数字逻辑实验报告。编码器

数字逻辑实验实验报告 脚分配、1)分析输入、输出,列出方程。根据方程和IP 核库判断需要使用的门电路以及个数。 2)创建新的工程,加载需要使用的IP 核。 3)创建BD 设计文件,添加你所需要的IP 核,进行端口设置和连线操作。 4)完成原理图设计后,生成顶层文件(Generate Output Products)和HDL 代码文件(Create HDL Wrapper)。 5)配置管脚约束(I/O PLANNING),为输入指定相应的拨码开关,为输出指定相应的led 灯显示。

6)综合、实现、生成bitstream。 7)仿真验证,依据真值表,在实验板验证试验结果。

实验报告说明 数字逻辑课程组 实验名称列入实验指导书相应的实验题目。 实验目的目的要明确,要抓住重点,可以从理论和实践两个方面考虑。可参考实验指导书的内容。在理论上,验证所学章节相关的真值表、逻辑表达式或逻辑图的实际应用,以使实验者获得深刻和系统的理解,在实践上,掌握使用软件平台及设计的技能技巧。一般需说明是验证型实验还是设计型实验,是创新型实验还是综合型实验。 实验环境实验用的软硬件环境(配置)。 实验内容(含电路原理图/Verilog程序、管脚分配、仿真结果等;扩展内容也列入本栏)这是实验报告极其重要的内容。这部分要写明经过哪几个步骤。可画出流程图,再配以相应的文字说明,这样既可以节省许多文字说明,又能使实验报告简明扼要,清楚明白。 实验结果分析数字逻辑的设计与实验结果的显示是否吻合,如出现异常,如何修正并得到正确的结果。 实验方案的缺陷及改进意见在实验过程中发现的问题,个人对问题的改进意见。 心得体会、问题讨论对本次实验的体会、思考和建议。

数字电子技术实验报告

专业: 班级: 学号: 姓名: 指导教师: 电气学院

实验一集成门电路逻辑功能测试 一、实验目的 1. 验证常用集成门电路的逻辑功能; 2. 熟悉各种门电路的逻辑符号; 3. 熟悉TTL集成电路的特点,使用规则和使用方法。 二、实验设备及器件 1. 数字电路实验箱 2. 万用表 3. 74LS00四2输入与非门1片74LS86四2输入异或门1片 74LS11三3输入与门1片74LS32四2输入或门1片 74LS04反相器1片 三、实验原理 集成逻辑门电路是最简单,最基本的数字集成元件,目前已有种类齐全集成门电路。TTL集成电路由于工作速度高,输出幅度大,种类多,不宜损坏等特点而得到广泛使用,特别对学生进行实验论证,选用TTL电路较合适,因此这里使用了74LS系列的TTL成路,它的电源电压为5V+10%,逻辑高电平“1”时>2.4V,低电平“0”时<0.4V。实验使用的集成电路都采用的是双列直插式封装形式,其管脚的识别方法为:将集成块的正面(印有集成电路型号标记面)对着使用者,集成电路上的标识凹口左,左下角第一脚为1脚,按逆时针方向顺序排布其管脚。 四、实验内容 ㈠根据接线图连接,测试各门电路逻辑功能 1. 利用Multisim画出以74LS11为测试器件的与门逻辑功能仿真图如下

按表1—1要求用开关改变输入端A,B,C的状态,借助指示灯观测各相应输出端F的状态,当电平指示灯亮时记为1,灭时记为0,把测试结果填入表1—1中。 表1-1 74LS11逻辑功能表 输入状态输出状态 A B C Y 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 悬空 1 1 1 悬空0 0 0 2. 利用Multisim画出以74LS32为测试器件的或门逻辑功能仿真图如下

电子测量-实验指导书1

电子测量实验指导书 通信与电子工程学院 通信与测量实验室

实验一、信号发生器和模拟示波器的使用 一、实验目的 1.学会信号发生器、模拟示波器的使用方法 二、实验仪器 函数信号发生器F40 一台 示波器GOS6051 一台 三、实验内容 1.用示波器测量正弦信号 (1)调节信号发生器,使其输出频率为1kHz,峰峰值为1V,不含直流成分的正弦波信号,用示波器观测次信号,记录其实际周期值,并在坐标纸上记录示波器荧光屏上显示的被测波形。 (2)调节信号发生器,使其输出频率为5kHz,峰峰值为2V,含1v直流成分的正弦波信号,用示波器观测次信号,记录其实际周期值,并在坐标纸上记录示波器荧光屏上显示的被测波形。2.用示波器测量正弦信号 (1)调节信号发生器,使其输出周期为0.1ms,峰峰值为2V,占空比为50%,不含直流成分的矩形波信号,用示波器观测次信号,记录其实际频率值,并在坐标纸上记录示波器荧光屏上显示的被测波形。 (2)调节信号发生器,使其输出周期为0.2ms,峰峰值为3V,占空比为50%,含1V直流成分的矩形波信号,用示波器观测次信号,记录其实际频率值,并在坐标纸上记录示波器荧光屏上显示的被测波形。 (3) 调节信号发生器,使其输出周期为1ms,低电平为0V,高电平为3V,占空比为20%,不含直流成分的矩形波信号,用示波器观测次信号,记录其实际频率值,并在坐标纸上记录示波器荧光屏上显示的被测波形。 3.用示波器观测几个通信原理常用调制信号(选作) (1)调节信号发生器,使其产生一个调幅波,载波信号为频率1MHz的正弦波,幅度为2V;调制

信号选内部信号正弦波(波形编号为1),调制信号频率为5kHz,调制深度为80%。 (2)调节信号发生器,使其产生一个FSK波,输出正弦信号幅度为2V;调制信号选内部信号正弦波(波形编号为1),频率在100Hz和10KHz之间交替,交替间隔时间为10ms的正弦波。 4.用示波器观察李萨如图像(演示或者选作) 四、实验步骤 打开电源,并预热信号发生器,进入正常工作状态 4.1 用示波器测量正弦信号 4.1.1 步骤 (1)按“shift”,则屏幕上显示“shift”字样,shift表明要选择某个按键的第二功能。然后按“频率”,即完成按键上面对应蓝字的功能,说明完成选择波形为正弦波。在显示屏左端显示“~”。(2)按“频率键”,可显示频率或者时间单位,使其显示频率,完成1kHz的输入,即为:在数字按键上输入1,然后按扫描键,这时选择了按钮下方的单位“kHz”。 (3)按“shift”,则屏幕上显示“shift”字样,shift表明要选择某个按键的第二功能。然后按“猝发”,即完成按键上面对应蓝字的第一项功能,说明完成选择偏移功能。在数字按键上输入0,然后按调频键,这时选择了“mV”(或在数字按键上输入0,然后按“shift”,这时选择了“V”)。即说明选择直流分量为0。 (4)按“幅度键”,可显示幅度位,即电压单位。完成1V的输入,即为:在数字按键上输入1,然后按“shift”键,这时选择了“V”。 (5)用示波器观测输出信号,并记录实际周期和波形。 4.1.2 步骤 (1)按“shift”,则屏幕上显示“shift”字样,shift表明要选择某个按键的第二功能。然后按“频率”,即完成按键上面对应蓝字的功能,说明完成选择波形为正弦波。在显示屏左端显示“~”。(2)按“频率键”,可显示频率或者时间单位,使其显示频率,完成5kHz的输入,即为:在数字按键上输入5,然后按扫描键,这时选择了按钮下方的单位“kHz”。 (3)按“shift”,则屏幕上显示“shift”字样,shift表明要选择某个按键的第二功能。然后按“猝发”,即完成按键上面对应蓝字的第一项功能,说明完成选择偏移功能。在数字按键上输入1,然

数字逻辑电路实验报告

数字逻辑电路 实验报告 指导老师: 班级: 学号: 姓名: 时间: 第一次试验一、实验名称:组合逻辑电路设计

二、试验目的: 1、掌握组合逻辑电路的功能测试。 2、验证半加器和全加器的逻辑功能。 3、、学会二进制数的运算规律。 三、试验所用的器件和组件: 二输入四“与非”门组件3片,型号74LS00 四输入二“与非”门组件1片,型号74LS20 二输入四“异或”门组件1片,型号74LS86 四、实验设计方案及逻辑图: 1、设计一位全加/全减法器,如图所示: 电路做加法还是做减法是由M决定的,当M=0时做加法运算,当M=1时做减法运算。当作为全加法器时输入信号A、B和Cin分别为加数、被加数和低位来的进位,S 为和数,Co为向上的进位;当作为全减法时输入信号A、B和Cin分别为被减数,减数和低位来的借位,S为差,Co为向上位的借位。 (1)输入/输出观察表如下: (2)求逻辑函数的最简表达式 函数S的卡诺图如下:函数Co的卡诺如下: 化简后函数S的最简表达式为: Co的最简表达式为:

(3)逻辑电路图如下所示: 2、舍入与检测电路的设计: 用所给定的集成电路组件设计一个多输出逻辑电路,该电路的输入为8421码,F1为“四舍五入”输出信号,F2为奇偶检测输出信号。当电路检测到输入的代码大于或等于5是,电路的输出F1=1;其他情况F1=0。当输入代码中含1的个数为奇数时,电路的输出F2=1,其他情况F2=0。该电路的框图如图所示: (1)输入/输出观察表如下: B8 B4 B2 B1 F2 F1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1

[整理]15数字逻辑实验指导书1

------------- 数字逻辑与数字系统实验指导书 青岛大学信息工程学院实验中心巨春民 2015年3月

------------- 实验报告要求 本课程实验报告要求用电子版。每位同学用自己的学号+班级+姓名建一个文件夹(如2014xxxxxxx计算机X班张三),再在其中以“实验x”作为子文件夹,子文件夹中包括WORD 文档实验报告(名称为“实验x实验报告”,格式为实验名称、实验目的、实验内容,实验内容中的电路图用Multisim中电路图复制粘贴)和实验中完成的各Multisim文件、VerilogHDL源文件、电路图和波形图(以其实验内容命名)。

实验一电子电路仿真方法与门电路实验 一、实验目的 1.熟悉电路仿真软件Multisim的安装与使用方法。 2.验证常用集成逻辑门电路的逻辑功能。 3.掌握各种门电路的逻辑符号。 4.了解集成电路的外引线排列及其使用方法。 5. 学会用Multisim设计子电路。 二、实验内容 1.用逻辑门电路库中的集成逻辑门电路分别验证二输入与门、或非门、异或门和反相器的逻辑功能,将验证结果填入表1.1中。 注:与门型号7408,或门7432,与非门7400,或非门7402,异或门7486,反相器7404. 2.用 L=ABCDEFGH,写出逻辑表达式,给出逻辑电路图,并验证逻辑功能填入表1.2中。 ()' 三、实验总结 四、心得与体会

实验二门电路基础 一、实验目的 1. 掌握CMOS反相器、与非门、或非门的构成与工作原理。 2. 熟悉CMOS传输门的使用方法。 3. 了解漏极开路的门电路使用方法。 二、实验内容 1. 用一个NMOS和一个PMOS构成一个CMOS反相器,实现Y=A’。给出电路图,分析其工作原理,测试其逻辑功能填入表2-1。 表2-1 CMOS反相器逻辑功能表 2. 用2个NMOS和2个PMOS构成一个CMOS与非门,实现Y=(AB)’。给出电路图,分析其工作原理,测试其逻辑功能填入表2-2。 3. 用2个NMOS和2个PMOS构成一个CMOS或非门,实现Y=(A+B)’。给出电路图,分析其工作原理,测试其逻辑功能填入表2-3。 表2-3 CMOS或非门逻辑功能表 4. 用CMOS传输门和反相器构成异或门,实现Y=A B 。给出电路图,测试其逻辑功能填入表2-4。

数字电路实验指导书2016

***************************************************** ***************************************************** *********************************************** 数字电路 实验指导书 广东技术师范学院天河学院电气工程系

目录 实验系统概术 (3) 一、主要技术性能 (3) 二、数字电路实验系统基本组成 (4) 三、使用方法 (12) 四、故障排除 (13) 五、基本实验部分 (14) 实验一门电路逻辑功能及测试 (14) 实验二组合逻辑电路(半加器全加器及逻辑运算) (18) 实验三译码器和数据选择器 (43) 实验四触发器(一)R-S,D,J-K (22) 实验五时序电路测试及研究 (28) 实验六集成计数器161(设计) (30) 实验七555时基电路(综合) (33) 实验八四路优先判决电路(综合) (43) 附录一DSG-5B型面板图 (45) 附录二DSG-5D3型面板图 (47) 附录三常用基本逻辑单元国际符号与非国际符号对照表 (48) 附录四半导体集成电路型号命名法 (51) 附录五集成电路引脚图 (54)

实验系统概述 本实验系统是根据目前我国“数字电子技术教学大纲”的要求,配合各理工科类大专院校学生学习有关“数字基础课程,而研发的新一代实验装置。”配上Lattice公司ispls1032E可完成对复杂逻辑电路进行设计,编译和下载,即可掌握现代数字电子系统的设计方法,跨入EDA 设计的大门。 一、主要技术性能 1、电源:采用高性能、高可靠开关型稳压电源、过载保护及自动恢复功能。 输入:AC220V±10% 输出:DC5V/2A DC±12V/0.5A 2、信号源: (1)单脉冲:有两路单脉冲电路采用消抖动的R-S电路,每按一次按钮开关产生正、负脉冲各一个。 (2)连续脉冲:10路固定频率的方波1Hz、10Hz、100Hz、1KHz、10KHz、100KHz、500KHz、1MHz、5MHz、10MHz。 (3)一路连续可调频率的时钟,输出频率从1KHz~100KHz的可调方波信号。 (4)函数信号发生器 输出波形:方波、三角波、正弦波 频率范围:分四档室2HZ~20HZ、20HZ~200HZ、200HZ~2KHZ、2KHZ~20HZ。 3、16位逻辑电平开关(K0~K15)可输出“0”、“1”电平同时带有电平指示,当开关置“1”电平时,对应的指示灯亮,开关置“0”电平时,对应的指示灯灭,开关状态一目了然。 4、16位电平指示(L0~L15)由红、绿灯各16只LED及驱动电路组成。当正逻辑“1”电平输入时LED红灯点亮,反之LED绿灯点亮。

电子测量原理实验指导书

电子测量原理实验指导书 南京邮电大学自动化学院

目录 电子测量实验系统组成原理及操作 (1) 电子计数器原理及应用 (10) 示波器原理及应用 (16) R、L、C参数测量 (24) 逻辑分析仪原理及应用 (31) 交流电压测量 (40)

电子测量实验系统组成原理及操作 一、实验目的 1.了解SJ-8002B电子测量实验系统的原理和组成。 2.学习操作本实验系统并完成一些简单实验。 二、实验内容 1.操作本系统的实验箱内部DDS信号源,产生出多种信号波形,并用外接示波器观察。 2.使用本实验箱内部数字示波器,去观察外部信号源的信号波形。 3.使用本实验箱内部数字示波器,观察内部DDS信号源产生的信号波形。 三、实验器材 1.SJ-8002B电子测量实验箱 1台 2.双踪示波器(20MHz模拟或数字示波器) 1台 3.函数信号发生器(1Hz~1MHz) 1台 4.计算机(具有运行windows2000和图形化控件的能力) 1台 四、实验原理 SJ-8002B电子测量实验系统由三大部分组成:a电子测量实验箱;b系列化的实验板;c微型计算机(含配套的实验软件),如图1-1所示。此外,实验中根据需要可以再配备一些辅助仪器,如通用示波器、信号源等。 图1-1 电子测量实验系统的基本组成 电子测量实验系统的外貌图如图1-2所示。

图1-2 电子测量实验系统 电子测量实验箱主板如图1-3所示。 S102 短路块 62芯插座,实验电路板 AC9V 温度板用电源 EPP 插座,连接计算机 并口 键盘板接口 电位器直流可调电压 S101 短路块 S702 短路块 S602 短路块 采集1通道输入Ain1信号源1输出Aout1 测频输入Fx 采集2通道输入Ain2信号源2输出Aout2 直流电压输入DCin 图1-3 电子测量实验箱主板 短路块名 短路位置 连接说明 使用场合 S101 左边 7109直流电压差分输入端DC -不接地 温度实验时使用

数字逻辑个性课实验报告

学生学号0121410870432实验成绩 学生实验报告书 实验课程名称逻辑与计算机设计基础 开课学院计算机科学与技术学院 指导教师姓名肖敏 学生姓名付天纯 学生专业班级物联网1403 2015--2016学年第一学期

译码器的设计与实现 【实验要求】: (1)理解译码器的工作原理,设计并实现n-2n译码器,要求能够正确地根据输入信号译码成输出信号。(2)要求实现2-4译码器、3-8译码器、4-16译码器、8-28译码器、16-216译码器、32-232译码器。 【实验目的】 (1)掌握译码器的工作原理; (2)掌握n-2n译码器的实现。 【实验环境】 ◆Basys3 FPGA开发板,69套。 ◆Vivado2014 集成开发环境。 ◆Verilog编程语言。 【实验步骤】 一·功能描述 输入由五个拨码开关控制,利用led灯输出32种显示 二·真值表

三·电路图和表达式

四·源代码 module decoder_5( input [4:0] a, output [15:0] d0 ); reg [15:0] d0; reg [15:0] d1; always @(a) begin case(a) 5'b00000 :{d1,d0}=32'b1000_0000_0000_0000_0000_0000_0000_0000; 5'b00001 :{d1,d0}=32'b0100_0000_0000_0000_0000_0000_0000_0000; 5'b00010 :{d1,d0}=32'b0010_0000_0000_0000_0000_0000_0000_0000; 5'b00011 :{d1,d0}=32'b0001_0000_0000_0000_0000_0000_0000_0000; 5'b00100 :{d1,d0}=32'b0000_1000_0000_0000_0000_0000_0000_0000; 5'b00101 :{d1,d0}=32'b0000_0100_0000_0000_0000_0000_0000_0000; 5'b00110 :{d1,d0}=32'b0000_0010_0000_0000_0000_0000_0000_0000; 5'b00111 :{d1,d0}=32'b0000_0001_0000_0000_0000_0000_0000_0000; 5'b01000 :{d1,d0}=32'b0000_0000_1000_0000_0000_0000_0000_0000; 5'b01001 :{d1,d0}=32'b0000_0000_0100_0000_0000_0000_0000_0000; 5'b01010 :{d1,d0}=32'b0000_0000_0010_0000_0000_0000_0000_0000; 5'b01011 :{d1,d0}=32'b0000_0000_0001_0000_0000_0000_0000_0000; 5'b01100 :{d1,d0}=32'b0000_0000_0000_1000_0000_0000_0000_0000; 5'b01101 :{d1,d0}=32'b0000_0000_0000_0100_0000_0000_0000_0000; 5'b01110 :{d1,d0}=32'b0000_0000_0000_0010_0000_0000_0000_0000; 5'b01111 :{d1,d0}=32'b0000_0000_0000_0001_0000_0000_0000_0000; 5'b10000 :{d1,d0}=32'b0000_0000_0000_0000_1000_0000_0000_0000; 5'b10001 :{d1,d0}=32'b0000_0000_0000_0000_0100_0000_0000_0000; 5'b10010 :{d1,d0}=32'b0000_0000_0000_0000_0010_0000_0000_0000; 5'b10011 :{d1,d0}=32'b0000_0000_0000_0000_0001_0000_0000_0000; 5'b10100 :{d1,d0}=32'b0000_0000_0000_0000_0000_1000_0000_0000; 5'b10101 :{d1,d0}=32'b0000_0000_0000_0000_0000_0100_0000_0000; 5'b10110 :{d1,d0}=32'b0000_0000_0000_0000_0000_0010_0000_0000; 5'b10111 :{d1,d0}=32'b0000_0000_0000_0000_0000_0001_0000_0000; 5'b11000 :{d1,d0}=32'b0000_0000_0000_0000_0000_0000_1000_0000; 5'b11001 :{d1,d0}=32'b0000_0000_0000_0000_0000_0000_0100_0000; 5'b11010 :{d1,d0}=32'b0000_0000_0000_0000_0000_0000_0010_0000;

数字逻辑实验指导书(1)

实验一 实验箱及小规模集成电路的使用 一 实验目的 1 掌握实验箱的功能及使用方法 2 学会测试芯片的逻辑功能 二 实验仪器及芯片 1 实验箱 2 芯片:74LS00 二输入端四与非门 1片 74LS86 二输入端四异或门 1片 74LS04 六非门 1片 三 实验内容 1 测试芯片74LS00和74LS86的逻辑功能并完成下列表格。 (1) 74LS00的14脚接+5V 电源,7脚接地;1、2、4、5、9、10、12、13脚接逻辑开关,3、6、8、11接发光二极管。(可以将1、4、9、12接到一个逻辑开关上,2、5、10、13接到一个逻辑开关上。)改变输入的状态,观察发光二极管。74LS86的接法74LS00基本一样。 表 74LS00的功能测试 表 74LS86的功能测试 (2)分析74LS00和74LS86的四个门是否都是完好的。 2 用74LS00和74LS04组成异或门,要求画出逻辑图,列出异或关系的真值表。 (3)利用74LS00和74LS04设计一个异或门。画出设计电路图。

实验二译码器和数据选择器 一实验目的 1继续熟悉实验箱的功能及使用方法 2掌握译码器和数据选择器的逻辑功能 二实验仪器及芯片 1 实验箱 2 芯片:74LS138 3线-8线译码器 1片 74LS151 八选一数据选择器 1片 74LS20 四输入与非门 1片 三实验内容 1 译码器功能测试(74LS138) 芯片管脚图如图所示,按照表连接电路,并完成表格。其中16脚接+5V,8脚接地,1~6脚都接逻辑开关,7、9、10、11、12、13、14、15接发光二极管。 表 2 数据选择器的测试(74LS151) 按照表连接电路,并完成表格。其中16脚接+5V,8脚接地;9、10、11,为地址输入端,接逻辑开关;4、3、2、1、12、13、14、15为8个数据输入端,接逻辑开关;G为选通输入端,Y为输出端,接发光二极管。

实验指导书-电子测量原理

电子科技大学 实验指导书 《电子测量原理》实验 -----数字存储示波器的使用和带宽测试 一.实验目的 1.熟悉数字示波器基本工作原理 2.了解数字示波器的主要技术指标 3.掌握数字示波器的使用方法和带宽测试 二.实验内容 1.相关测试仪器的熟练使用 2.边沿、脉宽等触发类型的使用 3.触发释抑功能的使用 4.预触发与延迟触发功能的使用 5.脉冲参数的测量 6.获取模式(标准、峰值、平均、高分辨率)的使用 7.触发方式(自动、正常、单次)的使用 8.带宽的测量 三.预备知识 1.了解数字存储示波器原理 2.熟悉掌握数字存储示波器使用和带宽的测试方法。 四.实验设备与工具 数字存储示波器、任意波形发生器、射频信号源 五.实验原理与说明 1.实验仪器简介 ⑴函数发生器 Agilent Technologies 33220A 是高性能的20 MHz 任意波形发生器,其具有内置任意波

形和脉冲功能。实物如图1。 ?10 个标准波形 ?内置的14 位50 MSa/s 任意波形功能 ?具有可调边沿时间的精确脉冲波形功能 ?LCD 显示器可提供数字和图形视图 ?易用的旋钮和数字小键盘 ?仪器状态存储器,用户可自定义名称 ?带有防滑支脚的便携式耐用机箱灵活的系统特性 ?四个可下载的64K 点任意波形存储器 ?GPIB (IEEE-488)、ΜS B 和LAN 远程接口为标准配置?符合LXI Class C 标准?SCPI(可编程仪器的标准命令)兼容 图1 Agilent 33220A 20 MHz 任意波形发生器 ⑵数字存储示波器Agilent DSO5012A Agilent DSO5012A主要指标: ?采样率2 GSa/sec 每通道 ?垂直分辨率8 位 ?模拟带宽:100MHz ?上升时间(= 0.35/ 带宽):3.5 nsec ?水平范围:5 nsec/div 至50 sec/div ?触发系统模式:自动、正常(已触发)、单,释抑时间~60 ns 至10 秒 ?触发类型:边沿、脉冲宽度、码型、TV、持续时间 ?边沿:在任何源的上升沿、下降沿或交变沿触发 ?脉冲宽度:当正向或负向脉冲小于、大于或在任意源通道的特定范围内时触发。 ?最小脉冲宽度设置:5 ns ?最大脉冲宽度设置:10 s

数字电路实验指导书

数字逻辑电路 实验指导书 师大学计算机系 2017.10 . .

数字逻辑电路实验 Digital Logic Circuits Experiments 一、实验目的要求: 数字逻辑电路实验是计算机科学与技术专业的基础实验,与数字逻辑电路理论课程同步开设(不单独设课),是理论教学的深化和补充,同时又具有较强的实践性,其目的是通过若干实验项目的学习,使学生掌握数字电子技术实验的基本方法和实验技能,培养独立分析问题和解决问题的能力。 二、实验主要容: 教学容分为基础型、综合型,设计型和研究型,教学计划分为多个层次,学生根据其专业特点和自己的能力选择实验,1~2人一组。但每个学生必须选做基础型实验,综合型实验,基础型实验的目的主要是培养学生正确使用常用电子仪器,掌握数字电路的基本测试方法。按实验课题要求,掌握设计和装接电路,科学地设计实验方法,合理地安排实验步骤的能力。掌握运用理论知识及实践经验排除故障的能力。综合型实验的目的就是培养学生初步掌握利用EDA软件的能力,并以可编程器件应用为目的,培养学生对新技术的应用能力。初步具有撰写规技术文件能力。设计型实验的目的就是培养学生综合运用已经学过的电子技术基础课程和EDA软件进行电路仿真实验的能力,并设计出一些简单的综合型系统,同时在条件许可的情况下,可开设部分研究型实验,其目的是利用先进的EDA软件进行电路仿真,结合具体的题目,采用软、硬件结合 的方式,进行复杂的数字电子系统设计。 . .

数字逻辑电路实验 实验1 门电路逻辑功能测试 实验预习 1 仔细阅读实验指导书,了解实验容和步骤。 2 复习门电路的工作原理及相应逻辑表达式。 3 熟悉所用集成电路的引线位置及各引线用途。 4 熟悉TTL门电路逻辑功能的测试。 5 了解数字逻辑综合实验装置的有关功能和使用方法。 实验目的 1 熟悉数字逻辑实验装置的有关功能和使用方法。 2 熟悉双踪示波器的有关功能和使用方法。 3 掌握门电路的逻辑功能,熟悉其外形和外引线排列。 4 学习门电路的测试方法。 实验仪器 1 综合实验装置一套 2 数字万用表一块 3 双踪示波器一台 4 器件 74LS00 二输入端四与非门2片 74LS20 四输入端双与非门1片 74LS86 两输入端四异或门1片 74LS04 六反相器1片 实验原理说明 数字电路主要研究电路的输出与输入之间的逻辑关系,这种逻辑关系是由门电路的组合来实现的。门电路是数字电路的基本单元电路。门电路的输出有三种类型:图腾柱输出(一般TTL门电路)、集电极开路(OC门)输出和三态(3S)输出。它们的类型、逻辑式、逻辑符号与参考型号见表1-0。门电路的输入与输出量均为1和0两种逻辑状态。我们在实验中可以用乒乓开关的两种位置表示输入1和0两种状态,当输入端为高电平时,相应的输入端处于1位置,当输入端为低电平时,相应的输入端处于0位置。我们也可以用发光二极管的两种状态表示输出1和0两种状态,当输出端为高电平时,相应的发光二极管亮,当输出端为低电平时,相应的发光二极管不亮。我们还可以用数字万用表直接测量输出端的电压值,当电压值为3.6V左右时为高电平,表示1状态;当电压值为0.3V以下时为低电平,表示0状态。在实验中,我们可以通过测试门电路输入与输出的逻辑关系,分析和验证门电路的逻辑功能。我们实验中的集成电路芯片主要以TTL集成电路为主。 . .

《电子测量实验指导书》

《电子测量》实验指导书 电子测量实验室编写

目录 实验一示波器性能研究及使用 实验二交流电压的测量 实验三时间的测量 实验四相位差和频率的测量 实验五测量放大器参数测试 实验六函数信号发生器的设计与调测 实验七扫频仪的使用及有源滤波器性能测试实验八简易数显频率计的设计

前言 《电子测量》是一门理论与实践并重的课程。它主要介绍电学中常见物理量(如电压、电流、电阻、电感、频谱、频率特性等)的测量方法、测量时使用的测量仪器以及基本的测量误差理论。学生通过本课程的学习,应该在理解原理的基础上,掌握各物理量的测量方法,会使用相关的测量仪器。 《电子测量》课程实验开设目的:首先是加深理解在课堂上获得的理论知识,将理论知识形象化;同时学习仪器设备的实际操作,加强动手能力,积累实践经验;另外通过一些综合性实验达到对已学过的其它课程知识融会贯通的效果。

实验一示波器性能研究及使用 一实验目的 熟悉示波器的工作原理; 掌握正确使用示波器测量各种参数的方法。 二实验原理 我们可以把示波器简单地看成是具有图形显示的电压表。 普通的电压表是在其刻度盘移动的指针或数字显示来给出信号电压的测量度数。而示波器则不同,示波器具有屏幕,它能在屏幕上以图形的方式显示信号电压的随时间的变化,即波形。 示波器能把非常抽象的,眼睛看不到的电过程,变换成具体的看得见的图像。因此,使用示波器测量电压和电流时,可在显示被测电压或电流幅值的同时,还可显示波形、频率、相位。这是其它电压测量仪表,如电压表等无法做到的。一般电压表的读数与被测电压波形有关,而用示波器测量时,其精度可不受被测电压和电流波形形状的影响。另外,示波器的响应速度极快,也没有指针式仪表所具有的惯性。但是,示波器作定量测试时,测试值是以屏面上波形幅值所占的垂直刻度值乘Y 轴偏转灵敏度得出的,而屏面上波形幅值所占的垂直刻度值将受到光迹宽度、视差及示波器固有误差和工作误差等因素的影响,往往不易精确读出测试值,这就决定了示波器的测试精度不可能太高。 本次实验目的是熟悉示波器各功能旋钮的使用,掌握用屏面上波形及屏幕标尺测量波形幅值及时间的方法。示波器使用方法见附录一。 三实验设备 1. 示波器一台 2.信号发生器一台 3.超高频毫伏表一台 四实验步骤 1、了解信号发生器的性能与使用方法: 用信号源输出高频信号,用示波器观察高频信号发生器的正弦波输出和调幅波输出,观察改变调制度时波形的变化。 2、熟悉触发器正负极性及触发电平的功能: 用高频信号源输出正弦波,用示波器进行观察。当示波器上出现清晰的波形后,适当将波形右移,使波形的起始端出现在屏幕上。改变触发极性,即将触发极性钮拉出或推入,观察波形的变化。再转动触发电平旋钮,观察波形变化。 3、测试偏转灵敏度: 使信号源输出正弦波信号,频率为100KHz,调节输出幅度,用超高频毫伏表测量,使之为0.5V。示波器探头置于×1档,偏转因数选择开关置于0.2V/cm,微调钮置于“校准”。将信号源输出接入示波器,从荧光屏上读出信号幅度的格数,记录在表1-1中,计算出偏转因数,与选择开关指示值(0.2V/cm)比较。 将信号幅度改为0.1V,示波器偏转因数选择开关置于50mv/cm,重复上面的测量。 4、测试扫描速度: 示波器的扫描速度开关置于0.2ms,扫描微调置于校正,输入函数发生器的1KHz 方波。测出一个信号周期T所占的水平格数,则可算出扫描速度=T/格数,与扫描速度选择开关指示值(0.2ms)相比较,计算出相对误差。记录在表1-2中。

数字逻辑实验指导书

《数字逻辑实验指导书》 实验一组合逻辑电路分析与设计 一、实验目的: 1、掌握PLD实验箱的结构和使用; 2、学习QuartusⅡ软件的基本操作; 3、掌握数字电路逻辑功能测试方法; 4、掌握实验的基本过程和实验报告的编写。 二、原理说明: 组合电路的特点是任何时刻的输出信号仅取决于该时刻的输入信号,而与信号作用前电路的状态无关。 (一)组合电路的分析步骤: (二)组合逻辑电路的设计步骤 首先根据给定的实际问题进行逻辑抽象,确定输入、输出变量,并进行状态赋值,再根据给定的因果关系,列出逻辑真值表。然后用公式法或卡诺图法化简逻辑函数式,以得到最简表达式。最后根据给定的器件画出逻辑图。 三、实验内容 (一)组合逻辑电路分析: 1.写出函数式,画出真值表; 2.在QuartusⅡ环境下用原理图输入方式画出原理图,并完成波形仿真; 3.将电路设计下载到实验箱并进行功能验证,说明其逻辑功能。(必做)

(二)组合逻辑电路设计 1.设计一个路灯的控制电路,要求在四个不同的路口都能独立地控制路灯的亮灭。(用异或门实现) 画出真值表,写出函数式,画出实验逻辑电路图。在QuartusⅡ环境下实现设计,完成对波形的仿真,并将设计下载到实验箱并进行功能验证。(必做) 要求:用四个按键开关作为四个输入变量;用一个LED彩灯(发光二极管)来显示输出的状态,“灯亮”表示输出为“高电平”,“灯灭”表示输出为“低电平”。 2.设计一个保密锁电路,保密锁上有三个键钮A、B、C。要求当三个键钮同时按下时,或A、B两 个同时按下时,或按下A、B中的任一键钮时,锁就能被打开;而当不符合上列组合状态时,将使电铃发出报警响声。试设计此电路,列出真值表,写出函数式,画出最简的实验电路。(用最少的与非门实现)。在QuartusⅡ环境下实现设计,完成对波形的仿真,并将设计下载到实验箱并进行功能验证。(选做) (注:取A、B、C三个键钮状态为输入变量,开锁信号和报警信号为输出变量,分别用F1用F2表示。设键钮按下时为“1”,不按时为“0”;报警时为“1”,不报警时为“0”,A、B、C都不按时,应不开锁也不报警。) 三、予习要求: 1.复习组合电路的分析方法和设计方法。 2.预习利用QuartusⅡ和可编程器件(PLD)进行数字电路设计的基本设计方法。 3.画出实验用电路图和记录表格,填好理论值,注明管脚号码。 四、报告要求: 1.实验目的和要求 2.实验主要仪器和设备 3.实验原理 4.实验方案设计、实验方法 5.实验步骤

《电子测量》课件—电子测量实验指导书.doc

《测量技术基础》实验指导书 张海燕编 计算机与信息学院 二O 一三年十月 实验一、示波器的基本原理及其应用 实验目的

1、了解通用示波器和数字实时示波器的基本组成和工作原理 2、掌握通用示波器和数字实时示波器测量电压、时间、相位的基本方法 3、掌握示波器的基本应用 实验仪器 1、双踪小波器一 台 2、数字示波器一台 3、函数信号发生器一 台 4、移相器一 个 三、实验内容 1、掌握通用示波器、数字实时示波器的基本组成和工作原理,主要控制旋 钮的作用以及测量电压、时间、相位差的基本方法。 2、示波器X轴、Y轴偏转系统的灵活应用 向X轴、Y轴输入2KHz的正弦信号,分别显示下列图形: (1)一个光点(调节各控制旋钮使光点亮度适中,聚焦良好) (2)一条垂直线 (3)一条水平线 (4)一条45°斜线 (5)在示波器屏幕上分别显示10个、3个、1个周期波形。 以上各步骤除调出图形外,应记录或说明各主要控制旋钮所放置的位置或范围。 3、电压测量 由信号发生器输出IKHz的脉冲信号,测量其幅值。 (1)直接测量法 直接从示波器屏幕上量出被测电压波形的高度,然后换算成电压值。若已知Y 通道的偏转灵敏度为Vy, Y轴通道处于“校正”位置,被测电压波形峰-峰高度为h,则可求被测电压值:Vp-p二Dy*h

(2)比较测量法 比较测量法就是用已知电压值(一般为峰-峰值)的信号波形与被测信号电压波形比较,并算出测量值。 4、时间的测量 测量一个脉冲信号的时间参数。目前,示波器是测量脉冲时间参数的主要工具。 (1)记录数据 (2)在坐标纸上画出观察到的波形,标上参数。 5、相位差的测量 (1)线性扫描法 利用示波器的多波形显示,是测量信号间相位差的最直观、最简便的方法。 自己设计一个相移网络,将信号发生器输出的正弦信号直接加入YA通道,经相移网络输出的信号加入YB通道,相移网络参数(C=O.OluF, R=1.2K),根据测量数据计算vl、v2的相位差仞。

数字电子技术实验指导书

数字电子技术实验指导书 (韶关学院自动化专业用) 自动化系 2014年1月10日 实验室:信工405

数字电子技术实验必读本实验指导书是根据本科教学大纲安排的,共计14学时。第一个实验为基础性实验,第二和第七个实验为设计性实验,其余为综合性实验。本实验采取一人一组,实验以班级为单位统一安排。 1.学生在每次实验前应认真预习,用自己的语言简要的写明实验目的、实验原理,编写预习报告,了解实验内容、仪器性能、使用方法以及注意事项等,同时画好必要的记录表格,以备实验时作原始记录。教师要检查学生的预习情况,未预习者不得进行实验。 2.学生上实验课不得迟到,对迟到者,教师可酌情停止其实验。 3.非本次实验用的仪器设备,未经老师许可不得任意动用。 4.实验时应听从教师指导。实验线路应简洁合理,线路接好后应反复检查,确认无误时才接通电源。 5.数据记录 记录实验的原始数据,实验期间当场提交。拒绝抄袭。 6.实验结束时,不要立即拆线,应先对实验记录进行仔细查阅,看看有无遗漏和错误,再提请指导教师查阅同意,然后才能拆线。 7.实验结束后,须将导线、仪器设备等整理好,恢复原位,并将原始数据填入正式表格中,经指导教师签名后,才能离开实验室。

目录实验1 TTL基本逻辑门功能测试 实验2 组合逻辑电路的设计 实验3 译码器及其应用 实验4 数码管显示电路及应用 实验5 数据选择器及其应用 实验6 同步时序逻辑电路分析 实验7 计数器及其应用

实验1 TTL基本逻辑门功能测试 一、实验目的 1、熟悉数字电路试验箱各部分电路的基本功能和使用方法 2、熟悉TTL集成逻辑门电路实验芯片的外形和引脚排列 3、掌握实验芯片门电路的逻辑功能 二、实验设备及材料 数字逻辑电路实验箱,集成芯片74LS00(四2输入与非门)、74LS04(六反相器)、74LS08(四2输入与门)、74LS10(三3输入与非门)、74LS20(二4输入与非门)和导线若干。 三、实验原理 1、数字电路基本逻辑单元的工作原理 数字电路工作过程是数字信号,而数字信号是一种在时间和数量上不连续的信号。 (1)反映事物逻辑关系的变量称为逻辑变量,通常用“0”和“1”两个基本符号表示两个对立的离散状态,反映电路上的高电平和低电平,称为二值信息。(2)数字电路中的二极管有导通和截止两种对立工作状态。三极管有饱和、截止两种对立的工作状态。它们都工作在开、关状态,分别用“1”和“0”来表示导通和断开的情况。 (3)在数字电路中,以逻辑代数作为数学工具,采用逻辑分析和设计的方法来研究电路输入状态和输出状态之间的逻辑关系,而不必关心具体的大小。 2、TTL集成与非门电路的逻辑功能的测试 TTL集成与非门是数字电路中广泛使用的一种逻辑门。实验采用二4输入与非门74LS20芯片,其内部有2个互相独立的与非门,每个与非门有4个输入端和1个输出端。74LS20芯片引脚排列和逻辑符号如图2-1所示。

(相位鉴频器)电子测量实验指导书(科)

Xb08610209 陆斌 08电子信息(2)班 相位鉴频器 一、实验目的 1、熟悉相位鉴频电路的基本原理。 2、了解鉴频特性曲线(S 曲线)的正确调整方法。 3、将变容二极管调频器与相位鉴频器两实验板进行联机调试,进一步了解调频和解调全过程及整机调试方法。 二、实验原理 相位鉴频器是模拟调频信号解调的一种最基本的解调电路,它具有鉴频灵敏度高,解调线性好等优点。 1、鉴频概述 调频波的解调称为频率解调,简称鉴频;调相波的解调称为相位检波,简称 鉴相。它们的作用都是从已调波中检出反映在频率或相位变化上的调制信号。但是采用的方法不尽相同。由于在调频接收机中,当等幅调频信号通过鉴频前各级电路时,因电路频率特性不均匀而导致调频信号频谱结构的变化,从而造成调频信号的振幅发生变化。如果存在着干扰,还会进一步加剧这种振幅的变化。鉴频器解调这种信号时,上述寄生调幅就会反映在输出解调电压上,产生解调失真。因此,一般必须在鉴频前加一限幅器以消除寄生调幅,保证加到鉴频器上的调频电压是等幅的。限幅与鉴频一般是连用的,统称为限幅鉴频器。 鉴频器输出电压u 0随输入频率f (或频偏 )变化的特性称为鉴 频特性。在线性解调的理想情况下,鉴频特性为一直线,实际上会弯曲,呈“S”型,称为“S”曲线。 2、鉴频器指标 1)鉴频跨导(效率、灵敏度)S D :鉴频特性在f c 处的斜率,用它来评价鉴频能力。 单位为V/Hz 。S D 越大,表明鉴频器将输入瞬时频偏变换为输出解调电压的能力越强。 c f f f -=?

一般情况下,S D 为调制角频率的复值函数,即()D S j Ω,要求它的通频带大于调制信号的最高频率 m ax Ω 2)峰值带宽max B :鉴频器输出电压两峰值点所对应的频率差,即 max 21B f f =-,它近似表明鉴频器鉴频线性区的宽度。为了减小鉴频器的非线性 失真,要求鉴频特性近似线性的范围 m ax 2f ?大于2m f ?。 ③ 最大输出电压0m ax U :鉴频器输出的最大电压。 ④ 线性度要好与失真要小。 3.电容耦合双调谐回路相位鉴频器: 相位鉴频器的组成方框图如3-3示。图中的线性移相网络就是频—相变换网络,它将输入调频信号u1 的瞬时频率变化转换 为相位变化的信号u2,然后与原输入的调频信号一起加到相位检波器,检出反映频率变化的相位变化,从而实现了鉴频的目的。 图3-4的耦合回路相位鉴频器是常用的一种鉴频器。这种鉴频器的相位检波器部分是由两个包络检波器组成,线性移相网络采用耦合回路。为了扩大线性鉴频的范围,这种相位鉴频器通常都接成平衡和差动输出。 图3-4 耦合回路相位鉴频器 图3-5(a )是电容耦合的双调谐回路相位鉴频器的电路原理图,它是由调 o

相关主题
文本预览
相关文档 最新文档