当前位置:文档之家› 氮肥行业工艺流程

氮肥行业工艺流程

氮肥行业工艺流程
氮肥行业工艺流程

煤/天然气化工(化肥)工艺流程

概述

整个生产过程可以分为造气、脱硫、压缩、变换、脱碳、合成、甲醇、尿素等主要单元(工段)。上述各单元(工段)的操作在工艺上密切联系,但在地域上分散、在控制上相对独立。

1、造气

造气一般是以块煤为原料,采用间歇式固定层常压气化法,在高温和程控机油传动控制下,交替与空气和过热蒸汽反应。反应方程式:

吹风 C+O2→CO2+Q

CO2+C→2CO-Q

上、下吹 C+H2O(g) →CO+H2-Q

A、吹风阶段

吹风阶段的主要作用是产生热量,提高燃料温度。

B、上吹(加氮)阶段

上吹阶段的主要作用是置换炉底空气,吸收热量、制造半水煤气,同时加入部分氮气。

C、下吹阶段

下吹阶段作用是制取半水煤气,吸收热量,使上吹后上移的气化层下移。

D、二上吹阶段

二上吹的主要作用是将炉底及进风管道中煤气吹净并回收,确保生产安全。

E、吹净阶段

吹净的主要作用是回收造气炉上层空间的煤气及补充适量的氮气,以满足合成氨生产对氮氢比的要求。

2、变换

工艺简介

经过压缩有一定压力的半水煤气先经过油水分离器,除去煤气中的油物。然后进入饱和塔的下部与热水进行交换后升至一定温度,经过气水分离器分离出煤气中的水份。去除水分的煤气进入预热交换器,与中变炉出口的高温煤气进行两次热交换后,进入中变炉,在触媒的催化作用下,煤气中的一氧化碳发生反应,生成二氧化碳,中变炉的炉体内有三层反应区,在正常的工艺状况下,第一层的反应温度控制在450℃左右,第二层反应温度控制在400℃左右,第三层的反应温度控制在380℃左右。反应后出中变炉的变换气进入与入口水煤气进行热交换的两级热交换器后,再进入低变炉使变换气中的一氧化碳进一步变换,经过两次变换的水煤气成为合格的变换气后,经热水塔,冷却塔之后送入下一工段进行后续处理。

3、脱碳

工艺简介

含有一定浓度(CO2)的变换气进入吸收塔内。气体中CO2被逆流流下的碳酸丙烯酯所吸收。净化CO2气脱至所要求的浓度由塔顶排出,成为可供用户使用的工艺气。吸收CO2后的碳酸丙烯酯富液经涡轮机回收能量后,在高压闪蒸槽内闪蒸。高压闪蒸液再到减压槽进行减压闪蒸。减压闪蒸汽相含浓度较高的CO2,可供用户使用。减压闪蒸液在气提塔内经空气气提再生,再生后的碳酸丙烯酯贫液经循环液泵送回吸收塔循环使用。气提空气由通风机从气提塔塔底送入。

高压闪蒸汽中含CO2及部分工艺气。高压闪蒸汽可全部或部分返回压缩与原料气汇合,以回收氮气和氢气。

脱碳过程中,入脱碳塔贫液的流量,将直接影响二氧化碳在脱碳塔中的溶解度。流量过小,原料气中的CO2不能被充分吸收;流量过大,能耗增加。闪蒸槽的液位和压力,对于原料气的回收再利用有重要作用,它不仅可以回收闪蒸汽里的氮气和氢气,还可以减少碳酸丙烯酯的损失。

脱碳后煤气送入下一个工段进行进一步处理。

4、合成

工艺简介

目前国内大多数中小氮肥企业均采用中压法氨合成工艺,其合成压力为31.4MPa。合成塔的直径一般为Ф800~Ф1200mm。

将压缩送来的合格精炼气在适当的温度、压力和触媒存在的条件下合成为氨,所得气氨经冷却水及液氨冷却,冷凝为液氨,并将液氨从氢氮气中分离出来,未合成的氢氮气补充部分新鲜气继续在合成系统内循环合成。

5、甲醇

工艺简介

甲醇是重要的有机化工原料,又是优良的能源载体。近代工业甲醇生产主要以天然气、煤炭为原料转化和气化制得,我国目前年产5万吨和10万吨的生产装置大都是以煤炭为原料制得。甲醇的生产一般分为合成和精馏两个工段。

1、甲醇合成:脱碳岗位送来的净化气和循环机来的循环气在油分离器混合,经油水分离器分离油水,剩余的原料气分主副线进入合成塔合成生成粗甲醇气,借助于铜基催化剂的作用,CO、CO2和H2进行化合反应生成甲醇,经冷凝到醇分离器分离得粗甲醇,减压后送中间槽,不凝气体一部分加压循环使用,一部分经高压水洗塔水洗掉夹带的甲醇经铜洗送入氨合成系统,粗甲醇送精馏。流程图如下:

2、甲醇精馏:甲醇的精馏工艺,多数采用两塔流程,少数生产规模较大的厂采用三塔流程,年产5-10万吨的装置一般都采用两塔流程。粗醇经预塔给料泵加压经粗醇预热器加热到65℃左右进初塔,同时初塔再沸器用蒸汽加热使塔内液体蒸发,甲醇及其他轻组分的蒸汽由塔顶蒸出,冷凝后打回流。控制出气温度40-45℃,塔釜温度75-85℃;塔顶温度60-65℃。经预塔底出来的预后甲醇给主塔,主塔再沸器加热使塔底温度控制在104-120℃,塔顶出气温度控制在

65-70℃,在塔顶采出回流液即精醇;合格后送精醇储槽。流程图如上:

6、尿素

工艺简介

尿素的生产原理是氨与二氧化碳的合成,生产方法有水溶液全循环法、气提法、中压联尿法,小氮企业大多采用水溶液全循环法。其反应方程式为:

2NH3(液)+CO2(气)CO(NH2)2(液)+H2O(液)+Q

二氧化碳(压力为20.69MPa,温度为125℃)经压缩机压缩进入合成塔,从一吸塔送来的90℃甲铵液经一甲泵加压至20.69MPa送入合成塔,液氨在氨预热器中加热至60℃送入合成塔,在合成塔中进行合成反应。在反应的过程中,合成塔的操作压力为19.6 MPa,温度为186-191℃,整个反应过程CO2的转化率在63℅左右。出尿素合成塔的反应液含有尿素、甲铵、过剩氨和水,出来后经过压力调节阀减压至1.77MPa进入预蒸馏塔上部,在此分离出闪蒸气体后,液体自流到中部蒸馏段,与从一分加热器出来的热气逆流换热,使液相中的部分甲铵分解与过剩氨蒸出、气化进入气相。预蒸馏后的尿液自蒸馏下部流入一分加热器,物料温度控制在155-160℃,在此甲铵的分解率达到80℅,总氨蒸出率达到90℅。从一分加热器出来的尿液进入预蒸馏塔下部的分离器进行气液分离,液相自塔底排出,经减压后送至二分塔。尿液在二分塔上部闪蒸后,液体经过液体分离器进入蒸馏段,与下分离段出来的气相逆流接触换热,出蒸馏段的尿液从底部进入加热段的列管内,物料温度控制在135-140℃,使甲铵基本分解,气液混合物进入下分离段进行气液分离,尿液经液位调节阀入闪蒸槽。在闪蒸槽中液相残余的氨和二氧化碳大部分逸入气相,尿液直接进入一段蒸发器或流入尿液槽。尿液经一段蒸发加热器下部热能回收段和上部蒸汽加热段加热到130℃,压力控制在0.033MPa(绝压),这时浓度提高至96℅。尿液经一段蒸发器分离段出来去二段蒸发器,在0.0033 MPa(绝压)、140℃的条件下被浓缩成99.7℅的熔融尿素,经分离段分离后,熔融尿素由熔融泵送往造粒塔顶部的旋转喷头进行造粒。

电炉制磷的工艺流程及主要设备

电炉制磷的工艺流程及主要设备

————————————————————————————————作者:————————————————————————————————日期:

第一节电炉制磷的工艺流程及主要设备 一、电炉法生产对炉料的要求 电炉法制磷生产的主要原料是磷矿、焦碳和硅石。生产上原料的品位、粒度及杂质含量都有一定的要求。 (一)磷矿 对磷矿品位P2O5的要求,一般而言,品位愈高则生产每t黄磷的电耗就愈低,不过这种说法尚不够全面。磷矿中除了P2O5组分外,还有CaO、SiO2、Fe2O3、AL2O3、CO2、F等组分。SiO2是参与磷矿还原反应的有用成分之一。根据SiO3-CaO-Al2O3三元体系的熔点图和生产实践,在炉料中控制炉渣的酸度指标SiO2/CaO(质量比)在0.75 -0.85范围内。可以使炉料有较低的熔融温度,促使反应向生成磷的方向进行。在配料时通常需要添加硅石以补充磷矿石中SiO2含量的不足。一般磷矿和硅石的混合料中P2O5含量达22%-25%即可满足生产要求。但是,P2O5每降低1%,每T黄磷将增加电耗400kW·h左右。某些含硅石高的中低品位磷矿,对酸法生产磷肥是不太适应,但却是制磷的好原料。这是中低品位磷矿的利用途径之一。 磷矿必须有适宜的粒度才能确保电炉的正常运行。如粒度过大,易引起料管堵塞,并在炉内发生离析现象,呈现局部的焦炭“不足”或“过多”,影响还原反应进行。如粒度过细,则增加料层阻力,妨碍炉气逸出,炉内容易结拱、塌料引起操作不稳,炉气中粉尘含量大,泥磷量增多,使磷的得率降低。通常磷矿石的机械强度和热稳定性也有一定的要求。在贮存、运输、加工过程中要有足够的强度而不致粉碎;在加热时不发生爆裂和软化发粘的现象。但磷矿石的机械强度和热稳定性,至今还没有建立统一的质量检验指标,通常是在选用某种磷矿石作原料之前,经试生产考核后才能确定其适用与否。 中国制磷工作者综合参考了磷矿石中P2O5、Ca02、SiO2、Fe2O3、CO2等五个主要组分在电炉内参与化学反应的热效应,根据生产经验推导出评价磷矿的

现代氯碱工业技术

今天由我来代表我们最后一组,为大家介绍现代氯碱工业生产技术。 首先我们先来了解什么是氯碱工业。其实氯碱工业就是指工业上用电解饱和NaCl溶液的方法来制取NaOH、Cl2和H2,并以它们为原料生产一系列化工产品的工业。 反应方程式如下:2NaCl+2H2O=2NaOH+ H2 + Cl2 今天给大家讲的内容主要分为三个部分 第一部分是氯碱工业发展概况,近20年来离子膜法氯碱生产技术得到了快速发展.……经过近几年的高速发展,中国已经成为全球氯碱行业主要产品最重要的生产国和消费国之一。 咱们再来看一下氯碱工业的特点,氯碱工业主要特点有三个部分,第一个是能源消耗大,第二是氯与碱的平衡,由反应方程式可以看出,氯与碱的物质的量比是1:2,然后分别乘上他们的相对分子质量,得出质量比是1:0.85,第三是腐蚀和污染. 那氯碱工业产品有哪些用途呢? 我们知道氯碱工业的三大产物分别是烧碱、氯气和氢气。 氯气和氢气可以去制取盐酸;氢气可以进行有机合成和金属的冶炼;氯气也能参与有机合成、氯化物的合成以及农药的生产;烧碱可以和氯气可以制成含氯的漂白剂,也是造纸、玻璃、肥皂生产必不可少的物质。随着石油化工的发展用途进一步扩大 接下来咱们看一下第二个部分氯碱工业的原理及工艺流程图, 这个流程图主要分为四个工段,第一个是化盐阶段, 就是把盐溶解经澄清槽过滤精制得到饱和食盐水为电解工段做准备,…… 第二是电解工段'电解二次精制的盐水生产氯气氢气和烧碱 第三工段是氯氢处理工段,主要针对电解槽出来的氢气氯气进行冷却干燥处理,为后续生产做准备, 第四就是蒸发工段也就是固碱工段, 我们来看一下烧碱的生产方法,主要分为三个 1、人们最早制取NaOH的方法是苛化法、

氯碱生产工艺流程

氯碱生产工艺流程总述 永祥树脂有限公司生产系统是由氯碱系统,PVC系统,三氯氢硅系统, 及公用系统组成。公用系统又包括水,电,汽。水,电,汽的正常供应是确保生产平稳运行的关键。这里我就谈谈氯碱系统的生产流程。 永祥树脂有限公司的氯碱系统是由电解,盐水,氯氢,液氯,冷冻,盐酸,漂液,蒸发,循环水组成的系统。其主要流程是盐水生产的精盐水经电解生成主要成分是NaoH NaCI的电解液和氯气,氢气三种物质。电解液由蒸发经浓缩,并分离其中的NaCI,加水溶解后供盐水工序生产精盐水用。NaoH经冷却沉降后,送成品桶作为成品销售。氯气在氯氢工序通过洗涤冷却,干燥,压缩输送到液氯,盐酸,PVC三氯氢硅。氯碱片区主要是 送液氯和盐酸。氯气在液氯经冷冻送来的-35 C冷冻盐水液化为液氯,液氯尾气送盐酸和漂液生产盐酸和漂液用。氢气是经氯氢工序洗涤冷却,压缩输送到PVC三氯氢硅,盐酸。氯碱片区送盐酸,在合成炉与氯气燃烧生成氯化氢气体,经水吸收后生成成品盐酸供销售出售。液氯尾气在漂液生产池中与石灰水生成漂液供销售出售。 氯碱车间工艺流程简述 一.氯碱车间基本概况

1?自然条件: 氯碱车间位于公司的东部,西部为乙炔车间,南部为聚合乙烯车间,西南为氯乙烯车间,东西向220米,南北向220米。人员构成:员工212人,其中管理人员18人,一般员工19 4人,倒班员工为168人。最高气温39C,最低气温约0C,平均气温16.5—18C。平均风速为0.5—2.0 米/秒。 2?生产装置规模: 最初设计能力为1万吨/年隔膜碱,正式投产时间1990年,经过多次技改扩产,产量达到约9万吨/年隔膜碱。 3.氯碱车间工艺特点: 车间压力容器较多,压力控制要求高;工艺介质为有毒有害物质。 二.工艺流程简述: 1.电解工序工艺流程简述: 符合工艺要求的精制盐水由盐水工序送入精盐水贮槽用精盐水泵送入高位槽,自流入盐水预热器,加热至80C±2C后注入电解槽内,当供给直流电后,盐水进行电化学反应,在阳极室生成的氯气和在阴极室生成的氢气分别送往氯氢工序处理, 阴极室生成的电解碱液断电后经管道流入电解液集中槽,用泵送至蒸发工序。 电解工艺流程简图: 直流电氢气 冷凝水 2.氯处理工序工艺流程简述:

氮肥的主要种类、利用现状及需求供应概况

氮肥的主要种类、利用现状及需求供应概况 巩来江 (CSU化工0802班,湖南长沙,410083) 摘要:氮肥(nitrogenous fertilizer),是指提供植物氮营养,具有氮标明量的单质肥料。元素氮对作物生长起着非常重要的作用,它是植物体内氨基酸的组成部分、是构成蛋白质的成分,也是植物进行光合作用起决定作用的叶绿素的组成部分。氮还能帮助作物分殖。施用氮肥不仅能提高农产品的产量,还能提高农产品的质量。本文简介氮肥的主要种类、利用现状及需求供应概况。 关键词:氮肥种类利用供求 一.氮肥[1] 氮素在植物体内的分布,一般集中于生命活动最活跃的部分(新叶、分生组织、繁殖器官)。因此,氮素供应的充分与否和植物氮素营养的好坏,在很大程度上影响着植物的生长发育状况。农作物生育的有些阶段,是氮素需要多,氮营养特别重要的阶段,例如禾本科作物的分孽期、穗分化期,棉花的蕾铃期,经济作物的大量生长及经济产品形成期等。在这些阶段保证正常的氮营养,就能促进生育,增加产量。 二.氮肥的主要种类[2] 可做氮肥的有:尿素[CO(NH2)2],氨水(NH3.H2O),铵盐如:碳酸氢铵(NH4HCO3),氯化铵(NH4Cl),硝酸铵(NH4NO3) 。一些复合肥如磷酸铵[磷酸二氢铵NH4H2PO4和磷酸氢二铵(NH4)2HPO4的混合物],硝酸钾(KNO3)也可做氮肥。 常用的氮肥主要品种可分为铵态、硝态、铵态硝态和酰胺态氮肥4种类型。各种氮肥主要品种为:(1)铵态氮肥:有硫酸铵、氯化铵、碳酸氢铵、氨水和液体氨;(2)硝态氮肥:有硝酸钠、硝酸钙;(3)铵态硝态氮肥:有硝酸铵、硝酸铵钙和硫硝酸铵;(4)酰胺态氮肥:有尿素、氰氨化钙(石灰氮)。(土肥站) 1.铵态氮肥 铵态氮肥包括碳酸氢铵、硫酸铵、氯化铵、氨水、液氨等。铵态氮肥有一些共同特性,简要如下: 1).铵态氮肥易被土壤胶体吸附,部分进入粘土矿物晶层。 2).铵态氮易氧化变成硝酸盐。 3).在碱性环境中氨易挥发损失。 4).高浓度铵态氮对作物容易产生毒害。 5).作物吸收过量铵态氮对钙、镁、钾的吸收有一定的抑制作用。 2.硝态氮肥 硝态氮肥包括硝酸钠、硝酸钙、硝酸铵等。同样的,硝态氮也有着一些共同特性: 1).易溶于水,在土壤中移动较快。 2).NO3—吸收为主吸收,作物容易吸收硝酸盐。 3).硝酸盐肥料对作物吸收钙、镁、钾等养分无抑制作用。 4).硝酸盐是带负电荷的阴离子,不能被土壤胶体所吸附。 5).硝酸盐容易通过反硝化作用还原成气体状态(NO、N2O、N2),从土壤中逸失。 3.铵态硝态氮肥

氮肥行业清洁生产评价指标体系

氮肥行业清洁生产评价指标体系(试行) 前言 为贯彻落实《中华人民共和国清洁生产促进法》,指导和推动氮肥企业依法实施清洁生产,提高资源利用率,减少和避免污染物的产生,保护和改善环境,制定氮肥行业清洁生产评价指标体系(试行)(以下简称“指标体系”)。 本指标体系用于评价氮肥企业的清洁生产水平,作为创建清洁生产先进企业的主要依据,并为企业推行清洁生产提供技术指导。 本指标体系依据综合评价所得分值将企业清洁生产等级划分为两级,分别为清洁生产先进水平和清洁生产一般水平。随着技术的不断进步和发展,本指标体系每3-5年修订一次。 本指标体系由化工清洁生产中心起草。 本指标体系由国家发展和改革委员会会同国家环境保护总局负责解释。 本指标体系自公布之日起试行。 1 氮肥行业清洁生产评价指标体系适用范围 本评价指标体系适用于以煤、油(重油或轻油)或者天然气(含焦炉气、炼厂气)为原料生产合成氨,进而生产尿素、碳酸氢铵的氮肥企业。以煤、油或者天然气为原料生产合成氨,进而生产硝酸铵、硫酸铵、氯化铵和磷酸铵的化肥企业可参照执行。 2 氮肥行业清洁生产评价指标体系结构 本指标体系选取资源与能源消耗指标、产品特征指标、污染物指标、资源综合利用指标及环境管理与劳动安全卫生指标等5个方面共33项指标作为氮肥行业的清洁生产评价指标。这些指标的高低将反映企业的生产工艺水平、资源综合利用水平、污染物产生和排放水平以及安全环境健康管理水平。氮肥行业清洁生产评价指标体系框架见图1。

1112131415161718192021222324图1氮肥行业清洁生产评价指标体系框架

评价指标分为正向指标和逆向指标。其中,资源与能源消耗指标、污染物指标、环境管理与劳动安全卫生指标均为逆向指标,数值越小越符合清洁生产的要求;资源综合利用指标均为正向指标,数值越大越符合清洁生产的要求。产品特征指标中既有正向指标,也有逆向指标。 3 氮肥行业清洁生产评价指标的基准值和权重分值 在评价指标体系中,指标的评价基准值是衡量该项指标是否符合清洁生产基本要求的评价标准。本定量化评价指标的评价基准值选取行业清洁生产的先进水平,即,对于正向指标,评价基准值采用氮肥行业能达到的最大值(即行业最优值)。对于逆向指标,评价基准值采用氮肥行业能达到的最小值(即行业最优值)。 各项指标的权重值采用层次分析法(AHP)来确定。 以天然气、油和煤为原料的氮肥企业的清洁生产评价指标项目、各项指标权重及评价基准值分别见表1、表2和表3。

国内外化肥行业状况及产业链分析

世界化肥消费量增长趋势 单位:百万吨资料来源:IFA

我国作为农业大国,人口众多,政府对于农业发展始终非常重视。从化肥需求来看,从1990年至今,我国化肥的产量和消费量均居世界首位。全国有2/3的化肥用在粮食作物上,近一半的粮食产量是来自于化肥的施用。化肥的需求主要受到农作物种植计划、采购模式以及天气情况的影响。受种植计划影响,在我国通常3-5月和7-9月为化肥销售旺季。对农业产生不利影响的气候则主要包括洪水和干旱,对化肥的需求量产生较大的影响。气候也会对作物收成产生较大的影响,进而影响农民收入,也会影响到化肥的购买力。此外,我国的农民偏好使用氮肥,全国农业技术推广服务中心对88个化肥经销商的调查结果显示,农民购买氮肥所占的比重最大,为41%,其次是复混肥,占28%。而磷肥和钾肥的比重仅占18%和12%。我国氮、磷、钾的消费比例仅为1:0.32:0.17,农业部要求的比例为1:0.37:0.25,与世界平均水平1:0.40:0.27还有一定差距。从施用的作物看,60%用于粮食作物,40%用于经济作物和其他行业。

年发展,我国尿素产品产量和质量都得到大幅提高,从总量上看,目前中国已成为全球最大的尿素生产国,不但已经能够满足国内农业生产需求,由进口国转变成出口国,近年来还出现了产能过剩的趋势。受制于产能过剩、出口受限和原料成本上涨等多重因素的推动,未来尿素行业的整体利润水平将可能出现下滑,这将给大型尿素企业带来整合机会。尿素生产具有资金密集的特点和较为明显的规模经济效应,大型合成氨、尿素生产装臵具有流程合理、能耗少的优势,能够通过扩产来抵御单位利润下滑所带来的影响。而一些小型尿素生产企业由于原料供应和成本方面的劣势,利润空间将受到挤压,甚至出现亏损。预计未来随着市场竞争的进一步加剧,以及原料、环保等方面壁垒的提高,会有更多的小企业退出,这将为大型尿素企业创造一个更加有利的经营环境,也为尿素行业整合提供了契机。 合成氨是氮肥制造工艺的主要原料,85~90%的合成氨被用于化肥生产。美国约有30%的液氨作为氮肥直接施用,但在世界范围内,通常是将合成氨加工成下游的氮肥品种施用。世界工业用氨量占合成氨总消费量的10~15%。工业用氨主要用于动物饲料、炸药以及聚合物产品等。 “十二五”期间,随着天然气定价机制改革的推进,以天然气为原料的企业面临成本上升的压力,拥有煤炭资源的企业的竞争优势将进一步显现。氮肥行业将围绕淘汰落后产能,提高行业集中度,提升节能环保和安全生产水平,优化产业布局,调整产品结构,发展复合肥、专用肥以及开发新型肥料,加强农化服务等方面,实现产业的协调发展。 (2)磷肥 磷肥是我国化肥工业发展的重点,磷肥生产始于20世纪50年代,根据我国磷矿品位低的特点,以生产普钙和钙镁磷肥为主,目前是世界上低浓度磷肥产量最大的国家。随着化肥消费观念的转变,国内磷复肥的消费增长,同时也带动了高浓度磷复肥工业的迅速发展。磷肥产量中90%要用硫酸作原料。我国磷矿资源丰富,主要集中在云南、贵州和湖南三省,但优质磷矿少,而中低品位磷矿多为难选矿,磷精矿成本高,同时磷矿外运受铁路运输制约,这些都对磷肥的发展起到限制作用。

电炉制磷的工艺流程及主要设备知识交流

第一节电炉制磷的工艺流程及主要设备 一、电炉法生产对炉料的要求 电炉法制磷生产的主要原料是磷矿、焦碳和硅石。生产上原料的品位、粒度及杂质含量都有一定的要求。 (一)磷矿 对磷矿品位P2O5的要求,一般而言,品位愈高则生产每t黄磷的电耗就愈低,不过这种说法尚不够全面。磷矿中除了P2O5组分外,还有CaO、SiO2、Fe2O3、AL2O3、CO2、F等组分。SiO2是参与磷矿还原反应的有用成分之一。根据SiO3-CaO-Al2O3三元体系的熔点图和生产实践,在炉料中控制炉渣的酸度指标SiO2/CaO(质量比)在0.75 -0.85范围内。可以使炉料有较低的熔融温度,促使反应向生成磷的方向进行。在配料时通常需要添加硅石以补充磷矿石中SiO2含量的不足。一般磷矿和硅石的混合料中P2O5含量达22%-25%即可满足生产要求。但是,P2O5每降低1%,每T黄磷将增加电耗400kW·h左右。某些含硅石高的中低品位磷矿,对酸法生产磷肥是不太适应,但却是制磷的好原料。这是中低品位磷矿的利用途径之一。 磷矿必须有适宜的粒度才能确保电炉的正常运行。如粒度过大,易引起料管堵塞,并在炉内发生离析现象,呈现局部的焦炭“不足”或“过多”,影响还原反应进行。如粒度过细,则增加料层阻力,妨碍炉气逸出,炉内容易结拱、塌料引起操作不稳,炉气中粉尘含量大,泥磷量增多,使磷的得率降低。通常磷矿石的机械强度和热稳定性也有一定的要求。在贮存、运输、加工过程中要有足够的强度而不致粉碎;在加热时不发生爆裂和软化发粘的现象。但磷矿石的机械强度和热稳定性,至今还没有建立统一的质量检验指标,通常是在选用某种磷矿石作原料之前,经试生产考核后才能确定其适用与否。 中国制磷工作者综合参考了磷矿石中P2O5、Ca02、SiO2、Fe2O3、CO2等五个主要组分在电炉内参与化学反应的热效应,根据生产经验推导出评价磷矿的

氯碱工艺流程

永祥树脂有限公司生产系统是由氯碱系统,PVC系统,三氯氢硅系统,及公用系统组成。公用系统又包括水,电,汽。水,电,汽的正常供应是确保生产平稳运行的关键。这里我就谈谈氯碱系统的生产流程。 永祥树脂有限公司的氯碱系统是由电解,盐水,氯氢,液氯,冷冻,盐酸,漂液,蒸发,循环水组成的系统。其主要流程是盐水生产的精盐水经电解生成主要成分是NaoH,NaCl的电解液和氯气,氢气三种物质。电解液由蒸发经浓缩,并分离其中的NaCl,加水溶解后供盐水工序生产精盐水用。NaoH经冷却沉降后,送成品桶作为成品销售。氯气在氯氢工序通过洗涤冷却,干燥,压缩输送到液氯,盐酸,PVC,三氯氢硅。氯碱片区主要是送液氯和盐酸。氯气在液氯经冷冻送来的-35℃冷冻盐水液化为液氯,液氯尾气送盐酸和漂液生产盐酸和漂液用。氢气是经氯氢工序洗涤冷却,压缩输送到PVC,三氯氢硅,盐酸。氯碱片区送盐酸,在合成炉与氯气燃烧生成氯化氢气体,经水吸收后生成成品盐酸供销售出售。液氯尾气在漂液生产池中与石灰水生成漂液供销售出售。

一.氯碱车间基本概况 1.自然条件: 氯碱车间位于公司的东部,西部为乙炔车间,南部为聚合乙烯车间,西南为氯乙烯车间,东西向220米,南北向220米。人员构成:员工212人,其中管理人员18人,一般员工194人,倒班员工为168人。最高气温39℃,最低气温约0℃,平均气温16.5—18℃。平均风速为0.5—2.0米/秒。 2.生产装置规模: 最初设计能力为1万吨/年隔膜碱,正式投产时间1990年,经过多次技改扩产,产量达到约9万吨/年隔膜碱。 3.氯碱车间工艺特点: 车间压力容器较多,压力控制要求高;工艺介质为有毒有害物质。二.工艺流程简述: 1.电解工序工艺流程简述: 符合工艺要求的精制盐水由盐水工序送入精盐水贮槽,用精盐水泵送入高位槽,自流入盐水预热器,加热至80℃±2℃后注入电解槽内,当供给直流电后,盐水进行电化学反应,在阳极室生成的氯气和在阴极室生成的氢气分别送往氯氢工序处理,阴极室生成的电解碱液断电后经管道流入电解液集中槽,用泵送至蒸发工序。 电解工艺流程简图: 直流电氢气 泵

氮肥行业化解产能过剩矛盾的建议

氮肥行业化解产能过剩矛盾的建议 一、我国氮肥行业发展现状 (一)产能快速增长 “十一五”以来,我国氮肥产能快速增长,尤其是尿素产能增速更为显著。据中国氮肥工业协会统计,到2012年,全国合成氨产能达到6850万吨,比2005年增长48.27%;约占全球总产能的34%,比2005年提高两个百分点。全国尿素产能达到7148万吨,比2005年增长51.52%;约占全球总产能的37%,比2005年提高9个百分点。2012年全国合成氨产量6008.2万吨,氮肥产量4313.3万吨,其中尿素产量6192.6万吨(折纯约2850万吨),占氮肥总产量的66.1%。 近两年国内氮肥行业投资热情高涨,产能增长势头迅猛。据调查,2013-2015年国内还将新增合成氨产能约1500万吨,尿素产能2000万吨。预计到2015年,全国合成氨产能将达8350万吨,占全球的37%;尿素产能达9500万吨,占全球的44%。 (二)产业集中度明显提高,大企业成为行业骨干力量 自2009年以来,随着“上大压小”步伐加快,我国氮肥产业进入了高速增长期,产业集中度明显提高。 据氮肥协会统计,2009-2012年,我国新投产的合成氨产能达1020万吨,其中69%的产能为单系列在30万吨及以上的大型合成氨装置。新建的尿素产能为1600万吨,有60%的产能为单套规模在50万吨及以上的尿素装置。近年来,通过市场的优胜劣汰,先后有830万吨尿素产能和2000多万吨碳铵产能陆续退出。 至2012年底,我国氮肥企业共有392家,其中,产能在30万吨及以上的合成氨企业达到86家,合计产能达到3763万吨,占合成氨总产能的55%;尿素生产企业179家,产能在50万吨及以上的企业达到58家,合计产能达到4384吨,占尿素总产能的61.3%。 大型企业和集团成为行业的骨干力量。已形成19个具有百万吨级以上规模的生产基地,其产能占行业尿素总产能的68%,有效提升了我国氮肥行业竞争能力,这些企业走出了一条创新发展、高端发展、差异化发展的新路子,已成为引领行业实现氮肥强国的主力军。(三)技术升级加快,为行业持续较快发展提供了坚实支撑 一是先进煤气化技术取得重大突破,研发出多喷嘴对置式水煤浆气化技术、HT-L航天粉煤加压气化技术、分级给氧气化技术等一批先进煤气化技术并成功实现产业化,标志着我国新型煤化工技术达到了国际先进水平,为加快我国原料结构调整提供了技术保障。目前我国以非无烟煤为原料的合成氨产能达到1140万吨,占合成氨总产能的16%;比2010年增长了40%。 二是合成工艺及装置的低压化、大型化取得重大进展。成功开发了合成气精脱硫、低温甲醇洗、耐硫宽温变换催化剂、两段法变压吸附、醇烃化、醇烷化、双加压法硝酸工艺等一批具有自主知识产权的先进工艺与技术。这些新技术、新工艺的开发应用,促进了氮肥生产装置的国产化和大型化。 结合国外引进技术,目前建成了江苏灵谷、呼伦贝尔金新以煤为原料,中海油、中石油塔里木石化、重庆建峰等以天然气为原料的45万吨合成氨装置。这些大型装置的先后投产,大大提升了我国氮肥行业的整体技术水平。目前我国合成氨装置单套规模在30万吨及以上的装置已达41套,这些装置产能合计达1630万吨,占合成氨总产能的21.4%;尿素装置单套规模在50万吨及以上的装置已达34套,这些装置产能合计达2269万吨,占尿素总产能的34%;未来随着在建装置的陆续投产,这些数据还在不断刷新。 二、氮肥行业发展面临的问题 (一)产能过剩态势显现 进入2013年以来,随着新增产能的陆续释放,产能过剩的形势逐步凸显,企业开工下降,

化肥行业概况及发展环境

化肥行业概况及发展环境 第一节行业范围界定 一、行业定义 化肥是化学肥料简称,是指用化学和(或)物理方法人工制成的含有一种或几种农作物生长需要的营养元素的肥料。本报告研究所指的化肥行业是指直接使用自然资源(无烟煤、粉煤、天然气、磷矿石、硫磺和卤水)生产化学肥料的化肥制造行业。 按照国民经济分类标准(GB/吨4754-2017),肥料制造行业包括氮肥制造、磷肥制造、钾肥制造、复混肥料制造、有机肥料及微生物肥料制造和其他肥料制造六个子行业。 表1化肥行业子行业分类(GB/吨4754-2017) 资料来源:国家统计局 二、化肥行业产业链 化肥行业主要包括基础化肥生产和化肥的二次加工,而基础化肥主要包括氮肥、磷肥和钾肥;化肥的二次加工主要包括复合肥、混配肥(含微量元素肥及有机、无机复合肥等)。 化肥的上游行业主要是煤炭、天然气、磷矿、硫磺和钾矿等,上游原料的价格对化肥生产成本具有直接的影响。全球氮肥生产以天然气为主要原料,而我国氮肥企业面临天然气成本较高与用气量限制的问题,因此氮肥生产更依赖煤炭。磷矿与硫磺是磷肥的主要生产原料,我国磷矿资源储量较高、硫磺资源缺乏,硫磺价格起伏对化肥行业的影响很大。钾矿主要分布在加拿大、俄罗斯等国,加之

我国自身钾肥产能较低,我国钾肥的进口依存度很高,钾矿价格波动将直接影响化肥企业的生产成本。 化肥的下游行业主要是农业,其中农业种植面积、单位面积施肥量(施肥水平)对化肥需求量有直接的影响,而生物能源的发展以及食品消费升级是化肥产业发展的重要下游推动力量。 数据来源:世经未来 图1化肥行业产业链简介 三、化肥行业各子行业关系分析 在化肥各子行业中存在着一定的关系。氮肥、磷肥、钾肥三种肥料存在着比价关联。且根据统计,氮肥、磷肥和钾肥的实际消耗中消耗量比例大约为1:0.29:0.05。复混肥是由钾肥、磷肥、氮肥和有机肥料的某些产品配置而成的,与其他肥料上下游存在一定的关系。 第二节行业主要产品分析 化学肥料按所含养分可分为氮肥、磷肥、钾肥和复混肥料等。 表2化肥行业主要产品 资料来源:世经未来

氯碱生产工艺流程(1)

氯碱生产工艺流程 氯碱系统是由电解,盐水,氯氢,液氯,冷冻,盐酸,漂液,蒸发,循环水组成的系统。其主要流程是盐水生产的精盐水经电解生成主要成分是氢氧化钠,NaCl的电解液和Cl2,H2三种物质。电解液由蒸发经浓缩,并分离其中的NaCl,加水溶解后供盐水工序生产精盐水用。氢氧化钠经冷却沉降后,送成品桶作为成品销售。Cl2在氯氢工序通过洗涤冷却,干燥,压缩输送到液氯,盐酸,PVC,三氯氢硅。氯碱片区主要是送液氯和盐酸。Cl2在液氯经冷冻送来的-35℃冷冻盐水液化为液氯,液氯尾气送盐酸和漂液生产盐酸和漂液用。H2是经氯氢工序洗涤冷却,压缩输送到PVC,三氯氢硅,盐酸。氯碱片区送盐酸,在合成炉与Cl2燃烧生成氯化H2体,经水吸收后生成成品盐酸供销售出售。液氯尾气在漂液生产池中与石灰水生成漂液供销售出售。 氯碱车间工艺流程简述 一.氯碱车间基本概况 电解工艺流程简图: 直流电 H2 冷凝水 2.氯处理工序工艺流程简述: 电解生产70-85℃的湿Cl2,经Cl2洗涤塔用工业水洗涤后,进入Ⅰ段钛冷却器用工业水冷却,再进入Ⅱ段钛冷却器用+5℃盐水进一步冷却到12-15℃,然后进入泡沫干燥塔、泡罩塔用硫酸干燥,干燥后的Cl2经过酸雾捕集器后用Cl2压缩机压缩输送到各用氯岗位。 Cl2处理工艺流程简图: 电解来湿Cl2

处理工艺流程简述: 电解生产80℃的湿H2经Ⅰ段、Ⅱ段H2洗涤塔用工业水洗涤后,送H2压缩机加压后经过Ⅰ段H2冷却器用工业水对其进行冷却,再进入Ⅱ段H2冷却器用+5℃盐水进行冷却到12℃,经过水捕雾器进入H2分配台至各用氢单位。 H2处理工艺流程简图: 膜过滤盐水工艺流程简述:

我国化肥产量数据统计

2018年1-6月我国化肥产量数据统计 内容提示:1-6月钾肥产量累计达240.69万吨,同比增长6.85%,增速比上年同期增速下降10.6个百分点;其中6月份当月,钾肥产量为50.99万吨,同比增长-3.18%,与上年同期增速相比,增速下降2.94个百分点,比本年5 月份增速上浮0.78个百分点。 2018年以来,在国内外经济环境十分复杂的情况下,化肥产量急速下降。统计数据显示,1-6月份化肥产量(折纯,下同>3705.13万吨,同比增长11.9%;其中,氮肥产量2484.66万吨(折纯>,同比增长10.05%;尿素产量1518.12万吨,同比增长10.41%;磷肥产量979.79万吨,同比增长 18.34%;钾肥产量240.69万吨,同比增长6.85%。从具体数据来看: 1-6月份,全国氮肥产量为2484.66万吨(折纯>,同比增长10.05%,与上年同期增速相比,增速加快7.71个百分点;其中,1-6月份尿素产量为1518.12万吨,同比增长10.41%,比上年同期增速上升14.39个百分点。6月份当月,氮肥产量为431.34万吨,同比增长8.77%,增速比上年同期下降 3.32个百分点。氮肥中,尿素单月产量达到267.21万吨,同比增长9.22%,增速比上年同期上升6.68个百分点。 1-6月磷肥累计产量为979.79万吨,同比增长18.34%,增速比上年同期下降11.43个百分点;其中6月份当月,磷肥产量为204.59万吨,同比增长23.29%,比上年同期增速下降26.4个百分点。 1-6月钾肥产量累计达240.69万吨,同比增长6.85%,增速比上年同期增速下降10.6个百分点;其中6月份当月,钾肥产量为50.99万吨,同比增长-3.18%,与上年同期增速相比,增速下降2.94个百分点,比本年5月份增速上浮0.78个百分点。 从地域结构分析,化肥产量居前五名的省份是:山东(1-6月化肥累计产量达到685.98万吨,同比增长了12%>化肥产量居全国的18.51%;湖北(1-6月

我国主要氮肥品种生产情况分析

中安顾问:我国主要氮肥品种生产情况分析 一、尿素生产及规模分析 根据我国尿素行业生产的具体情况来看,我国尿素行业总体产量在近年来出现了下降,产量由2009年的2932万吨下降到了2011年的2657万吨。2009-2011年我国尿素产能及产量情况的具体情况如下图所示: 图表1:2009-2011年我国尿素产能及产量情况统计单位:万吨 数据来源:国家统计局中安顾问整理 二、碳酸氢铵生产及规模分布 碳酸氢铵,又称碳铵,是一种碳酸盐,含氮17.7%左右。可作为氮肥,由于其可分解为NH3、CO2和H2O三种气体而消失,故又称气肥。生产碳铵的原料是氨、二氧化碳和水。根据我国碳铵行业发展的具体数据来看,近年来,我国碳铵行业总体产量有所下降,2011年,我国碳铵航宇总体产量下降到了2300万吨,比2010年下降了6.1%。2009-2011年我国碳酸氢铵产量及增长率的具体情况如下图所示:

数据来源:国家统计局中安顾问整理碳铵产品不再是一个全国性的化肥品种,而是一个区域性的化肥品种。在部分区域可能完全不使用碳铵,而在另外一些地区,碳铵仍是一个主要的化肥品种,生产量往往也比较大。目前我国碳铵产量较大的省份有河南、山东、安徽、江苏、河北、湖南、湖北、四川等,这些省份有悠久的碳铵生产历史,生产厂家众多,农民需求量也比较大,有比较好的市场基础。由于碳铵市场的区域性很强,市场具有相对的封闭性和独立性,各地区之间的价差比较大,远高于尿素之间的地区价差。 三、氯化铵生产 中国纯碱工业协会会长底同立表示,随着近年来纯碱产量的不断增加,氯化铵面临着很大的产销压力,对氯化铵造粒改造也越来越迫切。2011年我国氯化铵产量已达到1100万吨,同比增加110万吨,增长10.0%,今后的产量还要不断增加。在我国氮肥已经过剩的情况下,2009~2011年,氯化铵的生产能力平均每年还要增加200万吨,市场压力很大。他同时指出,氯化铵属于酸性肥料,有的农作物对氯离子有限制,但是经过实验,大部分农作物是可以直接施用的。2009-2011年我国氯化铵产量及增长率分析的具体情况如下图所示:

氯碱行业工艺操作规范

精心整理 精心整理 氯碱企业的生产工艺流程及说明 到目前为止,为了得到氯产品中所必需的氯气,唯一途径就是电解食盐(工艺路线) 2NaCl+2H 2O=2NaOH+Cl 2+H 2 这一过程是经过两个生产车间的多道工序完成的。首先将经过化验的原盐在盐水车间加水加温融化为饱和食盐水(需化验盐水中的盐含量是否达到饱和315克/L )或从卤水井中采集的卤水进行精制(去除盐水中的钙、镁、水不溶物等杂质),得到符合工艺要求的精盐水(需化验精盐水中的H 2(氢气)32%、40%、这两种料。 1化氢、磷化氢都是易燃易爆气体,所以乙炔车间属于甲级防爆单位。其合格产品为经过碱洗和清净处理去掉硫化氢和磷化氢的经化验达到一定技术指标的乙炔气。电石渣一般作为水泥生产的原料或直接代替白灰用于建筑业。从合成车间生产的氯化氢气经化验(纯度和水分)合格后与乙炔气按一定比例在氯乙烯单体车间的转化器(主要生产设备)中合成氯乙烯单体:HCL+C 2H 2=C 2H 3CL 。氯乙烯单体经过精馏塔(主要生产设备)分馏,在不同温度将其中不同沸点的物质去掉,得到经化验合格的氯乙烯单体,经压缩机(主要生产设备)由气相变为液相存储于单体储槽中(加压设备)。 上述单体可以作为商品出售,也可以进入聚合车间。单体进入聚合釜(主要生产设备),在引

精心整理 发剂、分散剂、水、蒸汽的作用下,反应成聚氯乙烯。根据生产按排的型号不同,其工艺条件和原材料的投放比例亦不相同,此时就有了生产配方。从聚合釜出来的物料须经碱洗塔(生产设备)进行碱洗去掉一些短链分子,再经过水洗塔(生产设备)去掉碱含量,最后经过离心器(生产设备)去掉水分,经过干燥塔(生产设备)干燥得到最终产品PVC。经化验后按等级入库。 2、乙烯法亦称氧氯化法,是从石油裂解得到乙烯,乙烯可以与氯化氢氧氯化成氯乙烯通过聚合成为聚氯乙烯;或者与氯气合成二氯乙烷。沧井公司是直接由国外进口的二氯乙烷,这一做法可以不用配套的氯气生产投资,另外电解食盐生产氯气是高耗电高污染的生产过程,烧碱在国内供大 精心整理

2013年氮肥行业分析报告

2013年氮肥行业分析 报告 2013年3月

目录 一、我国氮肥工业发展迅速,成为世界第一大氮肥生产国 (4) 二、春耕旺季到来,预计上半年氮肥价格先扬后抑 (5) 1、尿素资源属性明显 (5) 2、原材料价格上涨对尿素成本构成支撑 (7) (1)国际天然气价格具有长期上涨趋势,近期价格低位回升 (7) (2)我国煤炭价格近期上涨,对尿素价格形成成本支撑 (9) 3、尿素开工率处于低位,寒冬来临加剧气荒,部分减少气头尿素产量 (10) 4、上半年我国尿素价格有望重复先扬后抑 (11) 三、煤头尿素具有资源优势,产能向资源地集中 (13) 四、12年尿素出口大幅增加,关税政策调整利好13年尿素出口 (15) 五、人口增加、农民收入提高、作物结构调整支持尿素需求 (17) 1、未来几年尿素需求仍有持续稳定提高的动力 (17) 2、世界人口不断上升,粮食产量增速低于消费增速,对化肥需求形成支撑 (18) 3、农产品价格上涨,农民收入增加,提升化肥需求 (20) 4、经济作物播种面积占比上升,促进化肥需求 (21) 六、重点公司简况 (22) 1、华鲁恒升:向新型煤化工转型的煤化工龙头 (22) (1)公司尿素生产具有技术优势,行业竞争力强 (22) (2)公司产业链多元化发展,向新型煤化工转型 (23) 2、湖北宜化:化肥龙头,成本优势明显 (24) (1)具有规模化优势的化肥龙头企业 (24) (2)向西部资源丰富地区进军,尿素成本优势明显 (24) 七、主要风险 (25) 1、原材料价格波动风险 (25)

2、氮肥产能集中投放风险 (25) 3、极端天气及病虫害风险 (26)

瓮安黄磷公司环保隐患整改方案(废水工艺流程图)2016.4.13

生产废水整治综合方案 编制:生产部、技术与项目开发部 拟稿:王开林、付忠炎 审核:韦国祖、蒋成义、祝萌

审批:段仕东 时间:2016年4月

一、目的 为认真贯彻落实黔南州环境保护局、黔南州公安局文件黔南环通[2016]35文件《关于对龙马磷业有限公司等6件环境违法案件实施挂牌督办的通知》要求,进一步解决公司内存在的环境突出问题,消防环境安全隐患,重点整治各车间生产废水外排问题,经公司党政联协会、公司安全生产委员会根据公司实际情况,经研究讨论特制定本方案 二、组织领导 (一)、 为保证公司生产废水整治工作落到实处,特成立以公司总经理为组长的“生产废水整治工作领导小组”,以下简称领导小组,成员如下: 组 长:段仕东 副组长:韦国祖、蒋成义、祝萌 成 员:广聚祥、邓孝吉、田勇、丁大祥、王承俊、徐祖荣、王吕建、王开林 领导小组设办公室于技术与项目研发部,由蒋成义担任组长、祝萌任副组长,二人具体负责监督、检查生产废水整治工作开展情况 (二)、工作职责 1、按照瓮安县环境保护局2016年4月11日环境整治会议“一厂一策”的要求,领导小组组织相关人员对厂区生产废水进行辨识分析,并针对存在的问题拟定环境整治工作专项方案,并为专项整治工作提供必要的技术、工程、资金、人力资源支持。 2、统筹、协调各部门按照专项整治方案落实整治内容,并对各部门整治工作开展情况进行监督、检查,追究失职、渎职现象。 3、落实专项整治工程安全、环保预防措施,定期对整治工作现场进行检查,及时发现潜在的安全、环保隐患,并提出处理意见。 4、对环境专项整治效果进行验收,确保整治结果达到环境要求。 三、工作目标 生产废水“零排放” 四、公司简介 贵州省瓮安县瓮福黄磷有限公司(简称瓮安黄磷公司)地处贵州省瓮安县银盏镇银盏村下街村民组,2004年8月26日成立,注册资金壹仟肆佰零柒万玖仟元,职工人数78人,年工作300天,系贵州省瓮福(集团)有限责任公司下属子公司。 本厂于1998年9建成投产,原名为瓮安县贵信黄磷厂,2001年更名为贵州省大信黄磷有限责任公司,于2004年4月被贵州省瓮福(集团)有限公司收购, 贵州省瓮安县 瓮福黄磷有限公司 生产废水整治 综合方案 编号: SCB-2016-04-13-01 环保整改方案 编制:生产部

氯碱工业生产

氯碱化工生产专题 [教学背景] 【教学内容】“化工生产”是高三化学教材第五章非金属元素的最后一节内容,包括氯碱工业、联合制碱工业等。 【意义】化工生产与理论实际关系密切,教材安排非金属元素及其化合物、氧化还原反应、离子互换反应、动态平衡等化学原理、理论等内容之后学习化工生产,学生已有一定的知识储备,对所学知识起到一定的指导作用。学习化工生产为学生后续学习金属及其冶炼打下了基础,同时巩固了已有知识。 【课标要求】对于氯碱工业和联合制碱工业的教学,应注意对原理以及生产流程的设计、比较、改进等相关资源进行充分挖掘和展示,提高学生的感性认识和理论联系实际的能力,激发学生的兴趣和求知欲,落实情感态度和价值观的教育。注意从生产流程的角度引导学生认识化学理论与生产实际的关系,发挥理论的指导作用。引导学生用对比的方法,运用化工生产的基本原理分析索氏制碱法和候氏制碱法异同、氯碱工业的改进,根据实际生产进行相关的计算通过思考、互动,从中理解物料平衡、能源充分利用、绿色化学等思想,感受化学原理应用于实际化工生产的方法和科学技术的发展。 一.[教学目标] 知识与技能 1、氯碱工业原理(B) 2、索氏制碱法原理(A) 3、候氏制碱法和简单流程,并与索氏制碱法作对比(B) 4、化工生产的一些基本原理(充分利用原料、充分利用能量和保护环境)(A) 过程与方法 1、用对比的方法,分析索氏制碱法和候氏制碱法,感受化学原理应用于实际化工生产的方法;产生学习兴趣,懂得化学和生活改善、生产发展、社会进步的关系(A) 2、从电解池的改进中了解技术改革的基本思路,探讨氯碱工业发展的前景(A) 2、通过预习、查找资料等培养自学能力和批评精神(A) 情感态度价值观 1、体验化学工业发展和社会物质文明提高的关系,树立“绿色化学”思想,增强民族自豪感(A) 2、用“充分利用原料、充分利用能量和保护环境”原理分析化工生产优点和缺点,形成合理利用资源、保护环境,确立可持续发展的观念,增强社会责任感(A) 教学重点和难点 重点:氯碱工业原理、候氏制碱法原理 难点:①食盐水的精制、电解槽中离子隔膜的作用、②候氏制碱法生产流程及优点 [教学过程]

合成氨工业现状及节能技术(DOC)

化工工艺论文 题目名称:合成氨的工业现状 和节能技术 系别:化学与化工学院专业:应用化学 班级: 学生: 学号: 指导教师:

摘要 本论文介绍了合成氨的一些生产方法,分别为煤制气合成法、固定床气化法、流化床气化法、气流床气化法、溶浴床气化法以及对现代典型合成氨工业生产流程详细介绍;节能技术分别从工艺改造和护手各项余热和余能进行研究。 关键字:合成氨,煤制气,固定床,节能,回收

abstract This paper introduces some methods of production of synthetic ammonia,for coal gas synthesis method, fixed bed gasification, fluidized bed gasification, entrained flow gasification method, melting bath bed gasification method and typical of modern synthetic ammonia industry production process in detail.Energy-saving technology from process improvement and hand the residual heat and energy research. key words: synthetic ammonia coal gas energy conservation reclaim

目录 第一章合成氨工艺现状 (1) 1.1 国外传统型蒸汽转化制氨工艺阶段 (1) 1.2 我国目前合成氨技术的基本状况 (2) 第二章几种典型的合成氨工艺介绍 (3) 2.1 煤制气合成氨工艺 (3) 2.2 固定床气化法 (3) 2.3 流化床气化 (4) 2.4 气流床气化 (4) 2.5 熔浴床气化 (5) 第三章合成氨典型工业生产工艺流程 (6) 3.1 造气工段 (6) 3.2 脱硫工段 (6) 3.3 变换工段 (7) 3.4 变换气脱硫与脱碳 (8) 3.5 碳化工段 (8) 3.5.1 气体流程 (8) 3.5.2 液体流程 (9) 3.6 甲醇合成工段 (9) 3.7 精炼工段 (10) 3.8 压缩工段 (10) 3.9 氨合成工段 (11) 3.10 冷冻工段 (12) 第四章合成氨的节能技术 (13) 4.1 选择先进的节能工艺 (13) 4.2 回收各项余热和余能进行热能综合利用 (14) 参考文献 (16)

氮肥行业工艺流程

煤/天然气化工(化肥)工艺流程 概述 整个生产过程可以分为造气、脱硫、压缩、变换、脱碳、合成、甲醇、尿素等主要单元(工段)。上述各单元(工段)的操作在工艺上密切联系,但在地域上分散、在控制上相对独立。 1、造气 造气一般是以块煤为原料,采用间歇式固定层常压气化法,在高温和程控机油传动控制下,交替与空气和过热蒸汽反应。反应方程式: 吹风 C+O2→CO2+Q CO2+C→2CO-Q 上、下吹 C+H2O(g) →CO+H2-Q A、吹风阶段 吹风阶段的主要作用是产生热量,提高燃料温度。 B、上吹(加氮)阶段 上吹阶段的主要作用是置换炉底空气,吸收热量、制造半水煤气,同时加入部分氮气。 C、下吹阶段 下吹阶段作用是制取半水煤气,吸收热量,使上吹后上移的气化层下移。 D、二上吹阶段 二上吹的主要作用是将炉底及进风管道中煤气吹净并回收,确保生产安全。 E、吹净阶段 吹净的主要作用是回收造气炉上层空间的煤气及补充适量的氮气,以满足合成氨生产对氮氢比的要求。 2、变换 工艺简介 经过压缩有一定压力的半水煤气先经过油水分离器,除去煤气中的油物。然后进入饱和塔的下部与热水进行交换后升至一定温度,经过气水分离器分离出煤气中的水份。去除水分的煤气进入预热交换器,与中变炉出口的高温煤气进行两次热交换后,进入中变炉,在触媒的催化作用下,煤气中的一氧化碳发生反应,生成二氧化碳,中变炉的炉体内有三层反应区,在正常的工艺状况下,第一层的反应温度控制在450℃左右,第二层反应温度控制在400℃左右,第三层的反应温度控制在380℃左右。反应后出中变炉的变换气进入与入口水煤气进行热交换的两级热交换器后,再进入低变炉使变换气中的一氧化碳进一步变换,经过两次变换的水煤气成为合格的变换气后,经热水塔,冷却塔之后送入下一工段进行后续处理。 3、脱碳 工艺简介

相关主题
文本预览
相关文档 最新文档