当前位置:文档之家› PVA水凝胶的制备及在生物医学工程中的应用_崔福兴

PVA水凝胶的制备及在生物医学工程中的应用_崔福兴

PVA水凝胶的制备及在生物医学工程中的应用_崔福兴
PVA水凝胶的制备及在生物医学工程中的应用_崔福兴

聚乙烯醇水凝胶的制备方法及设备

1.实验 1.1试剂和仪器 (1)仪器:Alpha-Centau“FT.IR型红外光谱仪 (日本岛津),S540—SEM型扫描电镜(日本日立),热 分析(DT A_TG)(Du Pont 1090B型热分析仪),紫 外一可见光谱仪(日本日立)UV-3400紫外可见分光光度计,PH孓3C型精密pH计(上海精密科学有限 公司)。 (2)试剂:壳聚糖(CS)(浙江玉环县化工厂,分 子量:1.5×105,脱乙酰度:93%),聚乙烯醇(PVA) (佛山市化工实验厂,日本进口分装,Mw一1.o× 105),冰乙酸(分析纯),甲醛(37%,分析纯),盐酸 (分析纯),氢氧化钠(分析纯)。 1.2水凝胶的制备及其溶胀性能测试 1.2.1水凝胶的制备 取50mL圆底烧瓶,向其中加入o.5 g CS、 15mL二次水和2mL冰乙酸(3 m01/L),搅拌均匀 后,再加入o.39 PVA,搅拌混合均匀,然后抽真空, 向其中加入2mL甲醛(37%),室温反应24h;成胶 后,取出,切成1mm3左右的颗粒,用二次水浸泡,每 天换1次水,1周后取出;真空干燥,最后置于干燥 器中备用。

2. 实验 1.1 实验样品的制备 1.1.1 银溶胶的制备 将0.001mol/L的单宁酸和0.1mol/L的Naz COs溶液加热 至6O℃并搅拌,逐滴滴加0,001mol/L的AgNO3。当混合物颜 色逐渐加深至橙红色时,形成稳定的银溶胶。反应的关键是控 制AgNOa溶液的滴加速度和加入量。其反应机理l1]为: 6 AgNOs+ 6H52046+ 3 Na2C03— 6Ag +C76H52049+6 NaNO3+3 0 1.1.2 Ag/聚乙烯醇复合水凝胶的制备 制备浓度为1O%的PVA溶胶,将新制备的银溶胶在搅拌 的条件下加入PVA溶胶中,其混合液在室温下静置5min后倒 入模具中,放入THCD-04低温恒温槽中,采用冷冻一解冻法使之 结晶成型。每个循环的冷冻一解冻工艺见图1。按此做7个循环 制得样品,即得到Ag/PVA水凝胶。同理可制得Ag 浓度为 O%、0.125%、0.25 、0.5% (即Ag 占PVA的质量百分比 为:O%、1.25%、2.5 和5 )的Ag/PVA复合水凝胶。将样品制成哑铃形,测试区宽度约4mm,厚度约lmm(每个样品在测试前用千分尺精确测定其宽度和厚度)。每个样品裁5个样条,结果取平均值。2.1 Ag/PVA复合水凝胶的制备 微粒由于比表面积很大和表面不饱和键较多,具有很高的 表面能,所以极易团聚_3]。如果金属微粒发生团聚,则其光、电、

PVA水溶液配制方法

1.溶解装置 (A)容器 PVA通常配置成水溶液,因溶液略偏酸性(PH 5-7),制造容器的材料应选用耐腐蚀、不生锈、对溶液无污染的材料。建议采用不锈钢容器。搪瓷容器或合成树脂衬里的钢制品。特别提醒的是PVA比重在1.26-1.31g/cm3之间,比水重,低速搅拌或不适宜的搅拌方式会造成团块沉淀,以致堵塞溶解釜出料口。为此,建议在容器的底部装一个冲洗阀门来防止团块堵塞出料口。 (B)搅拌器 搅拌器在搅动和传热方面应该是高效的,任何能够阻止团块形成、均匀传递热量的搅拌器都能用于溶解PVA,通常使用双螺旋桨型搅拌速度在80-100转/分的搅拌器。 搅拌器要精心设计,特别是在溶解高粘度和高浓度的部分醇解PVA时,搅拌桨页尺寸应为容器内径的65-75%,桨轴要与底部垂直。 (A)采用低压蒸汽或热水夹套加热效果较好。为缩短加热时间,也可将蒸汽直接通入溶液中,但应考虑蒸汽冷凝水的影响,可少加10-15%的溶解水量。 2、溶解步骤 (A)首先,加入定量的干净的温水,水温应不超过30℃。热水能产生团块,以至延长溶解时间。 (B)开动搅拌器。 (C)慢慢将PVA加入容器中,建议每隔1-2分钟加入一包,加入量要均匀,加入速度要缓慢,这样不容易形成团块。 (D)可在不升温的情况下搅拌15-30分钟。 (E)缓慢的将温度升高到85℃(部分醇解PVA)或90-95℃(完全醇解PVA)。

(F)保温至PVA完全溶解,一般需要2.5-4小时。 (G)将溶液温度降至所需的温度,再经过过滤网过滤,滤去杂质后即可使用。 3、检验本产品是否完全溶解的方法:取出少量溶液,加入1-2滴碘液,如出现蓝色团粒状透明液体,则尚未完全溶解,如色泽能均匀扩散,说明已完全溶解。 4、特别说明: (A)为延长存储时间,在PVA溶液中加入0.02%-0.2%的防腐剂以避免微生物生长是必要的。 (B)在部分醇解PVA溶解过程中,可能会有少量气泡产生,建议升温不要太快,也可加入少量消泡剂(如辛醇、磷酸三丁酯、有机硅乳液等)来消除泡沫。

【CN109988319A】一种水凝胶的制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910144318.X (22)申请日 2019.02.27 (71)申请人 韩建中 地址 610000 四川省成都市青羊区人民中 路一段20号26栋1单元3号 申请人 杨凯文 (72)发明人 邢孟秋  (51)Int.Cl. C08J 3/075(2006.01) C08B 37/08(2006.01) C08L 5/08(2006.01) (54)发明名称 一种水凝胶的制备方法 (57)摘要 本发明公开了一种水凝胶的制备方法,所述 水凝胶制备原料比重如下:羧甲基壳聚糖200- 1200份,CE 10-100份,双蒸馏水1-10份,EDTA游 离酸100-300份,EDC -HCI 100-200份,通过将一 定比例的羧甲基壳聚糖和CE粉末进行混合制得 水凝胶,改水凝胶用于医学领域,具备抗菌抗感 染,刺激细胞增长的功能,同时该制备方法具备 简单,制备难度较低, 生产成本低等特点。权利要求书1页 说明书2页CN 109988319 A 2019.07.09 C N 109988319 A

权 利 要 求 书1/1页CN 109988319 A 1.一种水凝胶的制备方法,其特征在于:所述水凝胶制备原料比重如下:羧甲基壳聚糖200-1200份,CE10-100份,双蒸馏水1-10份,EDTA游离酸100-300份,EDC-HCI100-200份。 2.根据权利要求1所述的一种水凝胶的制备方法,其特征在于:所述CE的制备步骤如下: S1、将200份羧甲基壳聚糖溶入10份的双蒸馏水中; S2、在溶液中加入240份的EDTA游离酸; S3、再加入160份的EDC-HCI形成胺键; S4、将反应混合物在室温下酝酿,再用透析管进行提纯; S5、将提纯后的溶液冷冻干燥,得到CE粉末。 3.根据权利要求1所述的一种水凝胶的制备方法,其特征在于:所述水凝胶制备步骤如下: S1、取80份CE粉末,将其溶入5份的双蒸馏水中; S2、在溶液中加入定量的羧甲基壳聚糖,然后持续搅拌; S3、将搅拌得到的物质以3000r/min的速度进行分离一定的时间,使得气泡得以消除。 4.根据权利要求2所述的一种水凝胶的制备方法,其特征在于:所述冷冻干燥的时长为72h。 5.根据权利要求3所述的一种水凝胶的制备方法,其特征在于:所述持续搅拌的时长为2h。 6.根据权利要求3所述的一种水凝胶的制备方法,其特征在于:所述分离的时长为5min。 2

聚乙烯醇水溶液基本性能介绍

https://www.doczj.com/doc/6c6466703.html, 聚乙烯醇水溶液基本性能介绍 聚乙烯醇水溶液有哪些基本性能? (1)黏度 聚乙烯醇水溶液具有一定的黏度。其黏度随品种、浓度和温度而变化。随着浓度的提高,黏度值急剧上升;而温度的升高使黏度明显下降。 聚乙烯醇水溶液为非牛顿流体,当质量分数低于0.5%、在较低剪切速率(<400s-1)时可视为牛顿流体。 (2)水溶性 聚乙烯醇的溶解性随其醇解度的高低有很大差别。醇解度87%~89%的产品水溶性最好,不管在冷水中还是在热水中都能很快地溶解且表现出最大的溶解度。醇解度在90%以上的产品,为了完全溶解,一般需加热到60~70℃。醇解度为99%以上的聚乙烯醇只溶于9 5℃的热水。而醇解度在75%~80%的产品只溶于冷水,不溶于热水。醇解度小于6 6%的,由于憎水的乙酰基含量增大,水溶性下降。直到醇解度50%以下,聚乙烯醇不再溶解于水。聚乙烯醇一旦制成水溶液,就不会在冷却时从溶液中再析出来。 (3)表面活性 通过对醇解度和醇解方法的改变,可以得到一种具有优良表面活性、富有强乳化力和分散力的产品。例如早就用于乙酸乙烯乳液聚合的乳化剂和保护胶、氯乙烯悬浮聚合的分散剂就是这样的聚乙烯醇。 聚乙烯醇的表面活性和表面胶体效应两者都随醇解度的下降而提高。保护胶体能力随分子量的增大而提高,但表面活性则随分子量的增大而减少。 (4)粘结性 聚乙烯醇对于多孔、亲水表面(如纸张、纺织品、木材等)有很强的融合力。它对颜料和其他细小颗粒也是有效的黏结剂。对平滑、不吸水表面,其粘结力随醇解度的提高而降低。 (5)成膜性 聚乙烯醇水溶液干燥后,能形成非常强韧耐撕裂的膜,膜的耐磨性也很好。聚乙烯醇膜的力学性能可通过增塑剂用量、含水量及不同的聚乙烯醇牌号等项来调节。 所有牌号的聚乙烯醇都具有吸湿性,聚乙烯醇的膜甚至在高温度下仍保持不黏和干燥。 聚乙烯醇对许多气体有高度的不透性。聚乙烯醇的连续膜或涂层对氧气、二氧化碳、氢气、氦气和硫化氢都有很好的隔气性。但氨和水蒸气对聚乙烯醇膜的透过率较高。 (6)对盐的容忍度及凝胶化作用 聚乙烯醇水溶液对氢氧化铵、乙酸及大多数无机酸都有很高的容忍度。但浓度相当低的氢氧化钠溶液就会使聚乙烯醇从溶液中沉淀出来。 聚乙烯醇溶液对硝酸钠、氯化铝、氯化钙等也都有很高的容忍度。低浓度下作为沉淀剂的盐类有碳酸钙、硫酸钠和硫酸钾。 聚乙烯醇水溶液对硼砂特别敏感,即使很少剂量的硼砂也会使聚乙烯醇水溶液凝胶化而失去流动性。聚乙烯醇水溶液的凝胶化是可逆的,低温下形成的凝胶,在高温下将变稀,冷却时又会成为凝胶。 钒、锆等的化合物及高锰酸钾也可使聚乙烯醇凝胶。 原文来源https://www.doczj.com/doc/6c6466703.html,/sites/tl.html

聚乙烯醇缩甲醛的制备

聚乙烯醇缩甲醛的制备 一、 令狐采学 二、实验目的 了解聚乙烯醇缩甲醛的化学反应的原理,并制备红旗牌胶水。 三、实验原理 聚乙烯醇缩甲醛是利用聚乙烯醇与甲醛在盐酸催化作用下而制得的,其反应如下: 聚乙烯醇缩醛化机理: 聚乙烯醇是水溶性的高聚物,如果用甲醛将它进行部分缩醛化,随着缩醛度的增加,水溶液愈差,作为维尼纶纤维用的聚乙烯醇缩甲醛其缩醛度控制在35%左右,它不溶于水,是性能优良的合成纤维。本实验是合成水溶性的聚乙烯醇缩甲醛,即红旗牌胶水。反应过程中需要控制较低的缩醛度以保持产物的水溶性,若反应过于猛烈,则会造成局部缩醛度过高,导致不溶于水的物质存在,影响胶水质量。因此在反应过程中,特别注意要严格控制崐催化剂用量、反应温度、反应时间及反应物比例等因素。聚乙烯醇缩甲醛随缩醛化程度的不同,性质和用途各有所不同,它能溶于甲酸、乙酸、二氧六环、氯化烃(二氯乙烷、氯仿、二氯甲烷)、乙醇甲苯混合物(30∶70)、乙醇甲苯混合物(40∶60)以及60%的含水乙醇中。缩醛度为75%~85%的聚乙烯醇缩甲醛重要的用途是制造绝缘漆和粘合

剂。 四、实验药品及仪器 药品:聚乙烯醇(7g)---、甲醇(4.6mL) ---、盐酸(40%工业纯1:4)、氢氧化钠(1.5mL)(8%)、蒸馏水(90+34mL)等; 仪器:恒温水浴锅、搅拌器、三口烧瓶、球型冷凝管、温度计、吸管、天平、量筒、pH试纸等。 五、实验装置图 六、实验步骤与现象分析 步骤(1): 在250ml三颈瓶中,加入90ml去离子水(或蒸馏水),7g聚乙烯醇,搅拌下升温溶解。 现象:[白色晶状聚乙烯醇溶解] 分析:[聚乙烯醇可溶于蒸馏水中] 步骤(2): 等聚乙烯醇完全溶解后,于90℃左右加入4.6ml甲醛(40%工业纯),搅拌15min,再加入1:4的盐酸,使溶液PH为1~3,保持温度90℃左右,继续搅拌。 分析:[调节PH使之为酸性,是因为H离子作为羟醛缩合的催化剂。升温是由于甲醛沸点低易挥发,缩合反应不可

探究水凝胶材料的制备方法

龙源期刊网 https://www.doczj.com/doc/6c6466703.html, 探究水凝胶材料的制备方法 作者:张晓春刘嘉豪梁飞 来源:《中国化工贸易·上旬刊》2018年第04期 摘要:水凝胶是一类兼具应用价值和经济效益的新型功能高分子材料,由于其具有良好 的生物相容性和亲水性,在生物医学领域有着广泛的应用。重点研究物理水凝胶和化学水凝胶的制备方法,为环境敏感水凝胶提供研究基础。环境敏感型水凝胶因为这种特殊的性质,被广泛应用在药物控制释放材料、传感器、形状记忆材料等,使得智能水凝胶在生物医药、仿生工程等领域拥有广泛的前景。 关键词:水凝胶;制备方法;环境敏感 水凝胶是指具有三维网络结构的水溶性高分子中引入一部分疏水基团和亲水残基,亲水残基与水分子结合,将水分子连接在网状内部,而疏水残基遇水膨胀的交联聚合物,水凝胶可以吸收自身重量的上千倍的水,且仅溶胀不溶解。由于水凝胶具有良好的生物相容性和亲水性,形态柔软类似生物体组织,目前在生物医学领域,如药物控释、细胞的固定化载体、生物分子、组织工程和传输体系等,有着广泛的应用。根据水凝胶的网络的交联方式,可分为物理凝胶和化学凝胶。 1 水凝胶材料的制备 1.1 物理凝胶的制备 物理凝胶通过物理作用如氢键、静电作用、链的缠绕等分别或者共同形成的。制备物理凝胶通常采用下列几种方法: ①缔合交联。两亲性高分子聚合物是指具有不同极性链段的高分子,具有表面活性,可以通过疏水相互作用等在水中自组装形成水凝胶及胶束等有序结构,接枝共聚物有丙烯酸接枝聚N-异丙基丙烯酰胺(PNIPAM)、改性淀粉接枝聚乙烯醇(PVA)等,多嵌段共聚物有左旋聚乳酸(PLLA)和PEO的三嵌段共聚物(PLLA-PEO-PLLA)、聚环氧丙烷(PPO)和PEO的共聚物(PEO-PPO-PEO)、聚乙二醇(PEG)和聚乳酸/轻基乙酸(PLGA)的共聚物(PEG-PLGA-PEG)、聚氨醋(PU)和PAA的共聚物等。 ②离子交联。向带有中正电荷的高分子或者负电荷的高分子中加入交联剂就可以得到由离子交联而形成的水凝胶,离子桥的形成使高分子链连结成一个三维网络,如海藻酸可在Ca+存在下交联形成开放的三维网状结构。 ③氢键和疏水相互作用。纤维素、壳聚糖等可以通过氢键交联作用而形成凝胶。例如,室温下的纤维素可以溶解于尿素和NaOH的混合溶液中,纤维素分子与混合溶液分子之间形成的

快速检测聚乙烯醇水溶液浓度的适用方法

快速检测聚乙烯醇水溶液浓度的适用方法 现有的聚乙烯醇水溶液浓度的检测耗时较长,严重制约着化工生产过程中数据传递的及时性。本课题给出聚乙烯醇水溶液高、中、低浓度的快速检测方法。 标签:聚乙烯醇;浓度;碘/碘化钾溶液;折光率;微波 1 引言 聚乙烯醇是一种典型的水溶性高分子聚合物,广泛应用于纺织、化工、材料、生物等领域。使用过程都是配制成一定浓度的水溶液,分析聚乙烯醇水溶液浓度的准确和及时性成了保证生产稳定的前提。现行的分析方法都是将聚乙烯醇水溶液放在105℃的烘箱中进行干燥,低浓度树脂液需要3小时左右,高浓度树脂液需要10小时以上,极大地限制了分析数据及时指导生产作用。为此,建立一种快速准确分析聚乙烯醇水溶液浓度的方法势在必行,利用聚乙烯醇水溶液的折光性、与碘结合产生络合物、以及微波的快速渗透性可以很好的建立不同聚乙烯醇水溶液的快速分析方法。 2 检测原理 2.1 低浓度聚乙烯醇水溶液的检测原理 低浓度的聚乙烯醇水溶液在硼酸存在的条件下会与碘生成稳定的蓝绿色化合物,该有色化合物的颜色深度与水中PV A含量呈线性正比,且在670nm的波长下有最大吸收值,为此通过配制系列浓度的标准聚乙烯醇水溶液,在此波长下测定其吸光度值并建立标准曲线,即可得到聚乙烯醇水溶液的浓度值。 2.2 中浓度聚乙烯醇水溶液的检测原理 折光率是有机化合物最重要的物理常数之一,尤其是对于聚乙烯醇水溶液,在一定浓度范围内(一般为10%~15%),随着聚乙烯醇水溶液中聚乙烯醇含量的不断变化,其折光率也随着呈现线性变化。为此,将浓度和对应的折光率建立标准曲线即可以快速准确测得中浓度聚乙烯醇水溶液的浓度值。 2.3 高浓度聚乙烯醇水溶液的检测原理 高浓度聚乙烯醇水溶液(一般浓度大于25%),常规干燥方法一般是在150℃的烘箱中干燥10小时以上才能达到恒重且易焦化。微波是一种穿透力强的电磁波,它能穿透物体的内部,向被加热介质内部辐射微波电磁场,推动其极化分子的剧烈运动,使分子相互碰撞、摩擦而生热。因此其加热过程在整个物体内同时进行,升温迅速,温度均匀,温度梯度小,是一种“体加热”。然而微波加热要想使高浓度树脂液达到绝干状态就必须使用大火力,这种大火力势必造成树脂液发泡溢出,影响最终结果。为此,本实验中采用微波-烘箱组合干燥的方式来对高

醇解法制备聚乙烯醇

醇解法制备聚乙烯醇

第一章产品简介 (6) 1.1 产品的性质 (6) 1.2 产品的应用 (7) 第二章原料规格及性质 (9) 2.1 原料规格 (8) 2.2 原料性质 (9) 第三章合成原理及工艺路线 (10) 第四章流程图 (12) 4.1 生产设备 (12) 4.2 工艺流程 (12) 第五章操作步骤及工艺参数 (13) 5.1 操作步骤 (15) 第六章产品规格及标准 (17) 第七章消耗定额及成本核算 (18) 7.1 工程投资 (18) 7.2 生产投资 (18) 7.3 年利润核算 (18) 第八章参考文献 (19) 附图说明 (20)

1.1 产品的性质 聚乙烯醇是以乙烯法生产的醋酸乙烯为原料,经溶液聚合、无水低碱醇解得。聚乙烯醇(PV A)其充填密度约0.20~0.48g/cm3,折射率为1.51~1.53。聚乙烯醇的熔点难于直接测定,因为它在空气中的分解温度低于熔融温度。用间接法测得其熔点在230℃左右。聚乙烯醇的玻璃化温度约80℃。玻璃化温度除与测定条件有关外,也与其结构有关。聚乙烯醇工艺具有物耗低、能耗低、污染小的特点,是一种环保型产品,聚乙烯醇主要有完主醇解型和部分醇解型两大类。聚乙烯醇的端基较复杂,除了羟基外,还有羧基、羰基和二甲基乙氰基等。这些基团表现了复杂的行为。它们除了影响到维尼维纤维的着色、染色性能、吸湿性能,并促使聚乙烯醇溶解部分的增加。根据羟基空间分布的位臵,可分为全同结构聚乙烯醇(I-PV A)、间位结构聚乙烯醇(S-PV A)和无规结构聚乙烯醇(A-PV A)。 聚乙烯醇的一般性质:1) 外观:白色或微黄色片状、颗粒状固体。2) 填充比重:0.4~0.5g/ml 3) 水溶性:本品在冷水中仅溶胀,随水温的升高而逐渐溶解,在搅拌情况下至95℃能迅速溶解。在热水中的最高浓度达16%左右。其水溶液具有良好的成膜性和粘接性。4) 耐化学药品性:本品耐弱酸、弱碱及有机溶剂,耐油性极好。5) 热稳定性:在40℃以下没有显著变色,至160℃时颜色逐渐变深,超过220℃开始分解,生成水、乙酸、乙醛等。6) 贮存稳定性:本品贮存稳定性良好,长期贮存不发霉,不变质。但其水溶液长期贮存时,需加一定的防霉剂,如FF02等。而且由于聚乙烯醇主链大分子上有大量仲羟基,在化学性质方面有许多与纤维素相似之处。聚乙烯醇可与多种酸、酸酐、酰氯等作用,生成相应的聚乙烯醇的酯。但其反应能力低于一般低分子醇类。聚乙烯醇的醚化反应较酯化反应容易进行。醚化反应后,聚乙烯醇分子间作用力有所减弱,制品的强度、软化点和亲水性等都有所降低。在聚乙烯醇水溶液

PVA水凝胶

主要内容: 聚乙烯醇(PVA)水凝胶由于良好的理化和生物性能,在近几十年里得到极大的发展。透明的PVA水凝胶作为人工角膜和接触眼镜材料,具有很好的抗拉强度、断裂拉伸率、含水率、氧渗透能力以及较低的蛋白质吸附性能。PVA水凝胶的合成可用物理交联法制备。物理交联目前报导中使用最多的是“反复冷冻解冻法”。 主要制备方法:实验用品主要为聚乙烯醇(PVA)聚合度1700士50,醇解度99.9%,二甲基亚砜(DMSO,分析纯),本实验中所用水均为去离子水。将PVA颗粒倒入不同浓度的DMSO水溶液中,在90℃恒温水浴中分别溶解3h,制成PVA与DMSO/H20质量比为20 :100的PVA/DMSO/H20溶液。称取该溶液13.0g,倒人模具中,超声波除去气泡,放人冰箱,在-18℃下冷冻7h,然后取出在室温下解冻3h,如此循环7次。将冷冻解冻后的PVA水凝胶放人去离子水中,在37.5℃恒温水浴箱中充分洗涤浸泡(换水、超声数次),即制得PVA水凝胶膜。 性能测试: 1.含水率测试 剪取一定量的水凝胶膜,用滤纸吸去表面水后称重(记为W2),再放入105℃烘箱中烘干至恒重,称量其质量(记为W1),计算出PVA水凝胶的含水率,其计算公式为:(W2-W1)/W2 2.PVA水凝胶透光率的测量 分别选择可见光的不同波长(425、450、485、550、590、600、700nm)使用紫外一可见分光光度仪测量经过充分溶涨的PVA水凝胶膜的透光

率T.因人工角膜、接触眼镜厚度一般为0.5mm左右,所以根据水凝胶膜的实际厚度d校正为0.5mm厚的PVA水凝胶的透光率Ta,所用公式为: 3.PVA水凝胶力学性能的测量 将PVA水凝胶膜按照国标GB/T 1040—1992塑料拉伸性能试验方法制样,用万能试验机测量其抗拉强度和断裂伸长率,拉伸速率为500mm /min,测量温度20℃,测量湿度71% 创新点:(1)初戴舒适性好,容易被患者所接受(含水、柔软)。(2)初戴镜片适应时间短。(3)镜片不易从眼里滑落。(4)容易验配、适配。(5)治疗大疱性角膜病变。并且镜片覆盖于不光滑的角膜表而使整个光学表面变得相对光滑,可矫正低度散光,提高视力。这种治疗方法安全、简便、易行,尤其适用于不能或不愿接受手术治疗的患者。(6)临床上用SCL保护角膜瓣或上皮瓣不至于游离,促使伤口的愈合。(7)SCL作为药物载体,利用其对液体的吸收负载和缓慢释放的特性,显著提高滴眼剂的生物利用度,减少滴眼的频度,方便了患者和治疗。(8)软质隐形眼镜柔软、佩戴舒适、能随眼球转动(9)可减少角膜干燥、对眼睛的刺激少.(10)角膜接触镜具有无框架、体积小、戴摘自由(11)从外观上和方便性方面给近视、远视、散光等屈光不正患者带来了很大的改善,而且在控制青少年近视、散光发展,治疗特殊的眼病等方面也发挥了特殊的功效(12)该材质亲水柔软镜片透氧性、顺应性好配戴舒适视野广阔、外观自然已逐渐被屈光不正者所接受(13)良好的生理相溶

PVA水凝胶的制备及研究综述

PVA水凝胶的制备与研究 关键词:PVA水凝胶制备研究表征应用 摘要:简要评述了聚乙烯醇水凝胶的制备方法,评述了PV A水凝胶的研究现状与前景展望,详细介绍了本课题传统PV A水凝胶及温敏性凝胶的制备测试方法,总结了凝胶的应用,并展望了未来PV A水凝胶的发展趋势。 高分子凝胶是基础研究以及技术领域的一种重要材料。凝胶是指溶胀了的高分子聚合物相互联结,形成三维空间网状结构,又在网状结构的空隙中填充了液体介质的分散体系。近几年,高分子水性凝胶(又被称为水凝胶)的研究获得了极大的重视。水凝胶是一种网络结构中含有大量水而不溶于水的高分子聚合物,具有良好的柔软性、弹性、储液能力和生物相容性,在生物医学和生物工程中具有广泛的用途。 常见的水凝胶有聚酰胺水凝胶、聚乙烯醇水凝胶、聚N-异丙基丙烯酰胺温敏性水凝胶等。本课题主要针对于PV A水凝胶。 1 PV A水凝胶的制备 PV A水凝胶的制备按照交联的方法可分为化学交联和物理交联。化学交联又分辐射交联和化学试剂交联两大类。辐射交联主要利用电子束、γ射线、紫外线等直接辐射PV A溶液,使得PV A分子问通过产生自由基而交联在一起。化学试剂交联则是采用化学交联剂使得PV A分子间发生化学交联而形成凝胶,常用的交联剂有醛类、硼酸、环氧氯丙烷以及可以与PV A通过配位络台形成凝胶的重金属盐等等。物理交联主要是反复冷冻解冻法。 1.1 物理交联法 通过物理交联法制备聚乙烯醇水凝胶,报道中最多的是使用“冷冻-熔融法”和“冻结-部分脱水法”两种方法。 反复冻融法是将一定浓度的PV A水溶液在-10~-40℃冷冻1d左右,再在25℃条

件下解冻1~3h,即形成物理交联的PV A水凝胶。将其反复冷冻、解冻几次后,就可以使其一些物理性能和机械性能等有很大的改善。冷冻使水溶液中的PV A的分子链在某一时刻的运动状态“冻结”下来,接触着的分子链可以发生相互作用及链缠结,通过范德华力和氢键等的物理作用紧密结合,在某一微区不在分开,成为“缠结点”。重新冻结时又有新的有序微区形成,这些微区称为“物理交联点”。用冷冻-解冻的办法可以促进分子运动,重新排列,通过分子链的折叠获得具有半结晶或者结晶结构的水凝胶。其示意图如下所示: 冻结-部分脱水法是将PV A水溶液冷冻后置于真空下脱去10%~20%的水,所得到的水凝胶的结构与性能类似于反复冻结法。 物理交联法形成的PVA水凝胶其共同点是分子链间通过氢键和微晶区形成 三维网络,即物理交联点,这些交联点随温度等外界条件的变化而变化。例如将

PVA水溶液配制方法

P V A水溶液配制方法 Prepared on 24 November 2020

1.溶解装置(A)容器 PVA通常配置成水溶液,因溶液略偏酸性(PH 5-7),制造容器的材料应选用耐腐蚀、不生锈、对溶液无污染的材料。建议采用不锈钢容器。搪瓷容器或合成树脂衬里的钢制品。特别提醒的是PVA比重在之间,比水重,低速搅拌或不适宜的搅拌方式会造成团块沉淀,以致堵塞溶解釜出料口。为此,建议在容器的底部装一个冲洗阀门来防止团块堵塞出料口。 (B)搅拌器 搅拌器在搅动和传热方面应该是高效的,任何能够阻止团块形成、均匀传递热量的搅拌器都能用于溶解PVA,通常使用双螺旋桨型搅拌速度在80-100转/分的搅拌器。 搅拌器要精心设计,特别是在溶解高粘度和高浓度的部分醇解PVA时,搅拌桨页尺寸应为容器内径的65-75%,桨轴要与底部垂直。 (A)采用低压蒸汽或热水夹套加热效果较好。为缩短加热时间,也可将蒸汽直接通入溶液中,但应考虑蒸汽冷凝水的影响,可少加10-15%的溶解水量。 2、溶解步骤 (A)首先,加入定量的干净的温水,水温应不超过30℃。热水能产生团块,以至延长溶解时间。 (B)开动搅拌器。 (C)慢慢将PVA加入容器中,建议每隔1-2分钟加入一包,加入量要均匀,加入速度要缓慢,这样不容易形成团块。 (D)可在不升温的情况下搅拌15-30分钟。

(E)缓慢的将温度升高到85℃(部分醇解PVA)或90-95℃(完全醇解PVA)。 (F)保温至PVA完全溶解,一般需要小时。 (G)将溶液温度降至所需的温度,再经过过滤网过滤,滤去杂质后即可使用。 3、检验本产品是否完全溶解的方法:取出少量溶液,加入1-2滴碘液,如出现蓝色团粒状透明液体,则尚未完全溶解,如色泽能均匀扩散,说明已完全溶解。 4、特别说明: (A)为延长存储时间,在PVA溶液中加入%%的防腐剂以避免微生物生长是必要的。 (B)在部分醇解PVA溶解过程中,可能会有少量气泡产生,建议升温不要太快,也可加入少量消泡剂(如辛醇、磷酸三丁酯、有机硅乳液等)来消除泡沫。

水凝胶的应用和研究进展

水凝胶的应用和研究进展 摘要:水凝胶是一类具有广泛应用前景的高分子材料,本文主要叙述了水凝胶在生物医学、记忆元件开关、生物酶的固定、农业中的保水抗旱等领域的应用及研究进展,简要介绍了水凝胶在国内外研究状况,最后对其发展趋势作了展望。关键词:高分子材料;水凝胶;应用;进展 前言 水凝胶可定义为在水中能够溶胀并保持大量水分而又不能溶解的交联聚合物。分子能够在水凝胶中扩散。水凝胶的网络结构如图1所示。水凝胶具有良好的生物相容性,它能够感知外界刺激的微小变化,如温度、pH值、离子强度、电场、磁场等,并能够对刺激发生敏感性的响应,常通过体积的溶胀或收缩来实现。水凝胶的这一特点使它在生物医学领域、记忆元件开关、生物酶的固定、农业中的保水抗旱等方面有广泛的应用前景[1]。 图一,水凝胶的三维网络结构和扫描电镜图片 水凝胶有各种分类方法,根据水凝胶网络键合的不同,可分为物理凝胶和化学凝胶。物理凝胶是通过物理作用力如静电作用、氢键、链的缠绕等形成的,这种凝胶是非永久性的,通过加热凝胶可转变为溶液,所以也被称为假凝胶或热可逆凝胶。许多天然高分子在常温下呈稳定的凝胶态,如k2型角叉菜胶、琼脂等[2];在合成聚合物中,聚乙烯醇(PVA)是一典型的例子,经过冰和融化处理,可得到在60℃以下稳定的水凝胶[3]。化学凝胶是由化学键交联形成的三维网络聚合物,是永久性的,又称为真凝胶。 根据水凝胶大小形状的不同,有宏观凝胶与微观凝胶(微球)之分,根据形状的不同宏观凝胶又可分为柱状、多孔海绵状、纤维状、膜状、球状等,目前制备的微球有微米级及纳米级之分。根据水凝胶对外界刺激的响应情况可分为传统

的水凝胶和环境敏感的水凝胶两大类。传统的水凝胶对环境的变化如温度或pH 等的变化不敏感,而环境敏感的水凝胶[4,5]是指自身能感知外界环境(如温度、pH、光、电、压力等)微小的变化或刺激,并能产生相应的物理结构和化学性质变化甚至突变的一类高分子凝胶。此类凝胶的突出特点是在对环境的响应过程中其溶胀行为有显著的变化,利用这种刺激响应特性可将其用做传感器、控释开关等,这是1985年以来研究者最感兴趣的课题之一。 根据合成材料的不同,水凝胶又分为合成高分子水凝胶和天然高分子水凝胶。天然高分子由于具有更好的生物相容性、对环境的敏感性以及丰富的来源、低廉的价格,因而正在引起越来越多学者的重视。但是天然高分子材料稳定性较差,易降解,近几年不少学者开始了天然高分子与合成高分子共混合成水凝胶的研究工作[6,7],这将是今后的一大重要课题。 1 聚合物交联 从聚合物出发制备水凝胶有物理交联和化学交联两种。物理交联通过物理作用力如静电作用、离子相互作用、氢键、链的缠绕等形成。化学交联是在聚合物水溶液中添加交联剂,如在PVA水溶液中加入戊二醛可发生醇醛缩合反应从而使PVA交联成网络聚合物水凝胶。从聚合物出发合成水凝胶的最好方法是辐射交联法,所谓辐射交联是指辐照聚合物使主链线性分子之间通过化学键相连接。许多水溶性聚合物可通过辐射法制备水凝胶[9],如PVA、polyNI2PAAm、聚乙烯基吡咯烷酮(PVP)、聚丙烯酸(PAAc)、聚丙烯酰胺(PAAm)、聚氧乙烯(PEO)、聚甲基丙烯酸羟乙酯(PHEMA)等。采用辐射法合成水凝胶无须添加引发剂,产物更纯净。 2 水凝胶的性质研究 2.1 溶胀-收缩行为 吸水溶胀是水凝胶的一个重要特征。在溶胀过程中,一方面水溶剂力图渗入高聚物内使其体积膨胀,另一方面由于交联聚合物体积膨胀,导致网络分子链向三维空间伸展,分子网络受到应力产生弹性收缩能而使分子网络收缩。当这两种相反的倾向相互抗衡时,达到了溶胀平衡。 2.2 力学性能 水凝胶不仅要求具有良好的溶胀性能,而且应具有理想的力学强度,以满足

聚乙烯醇水凝胶的发展现状及研究方向

调研报告 ——聚乙烯醇水凝胶的发展现状及研究方向 1.研究背景 高分子凝胶是基础研究以及技术领域的一种重要材料。凝胶是指溶胀了的高分子聚合物相互联结,形成三维空间网状结构,又在网状结构的空隙中填充了液体介质的分散体系.近几年,高分子水性凝胶(又被称为水凝胶)的研究获得了极大的重视。水凝胶是一种网络结构中含有大量水而不溶于水的高分子聚合物,具有良好的柔软性、弹性、储液能力和生物相容性,在生物医学和生物工程中具有广泛的用途。 自从20世纪70年代末,美国Tanaka发现凝胶的体积相变现象以来,响应型凝胶(responsive hydrogel)作为一类新兴的智能材料,尤其是作为软湿件材料 成为智能高分子材料中的重要研究领域,在医药和生物工程中有着广泛的应用.当环境的pH值、离子浓度、温度、光照和电磁场或特定化学物质发生变化时,凝胶的体积也随之发生变化,有时还出现相的转变.这种体积的急剧扩张或收缩的变化是可逆的、不连续的,这种现象称为凝胶的敏感性.正是由于高分子水凝胶环境刺激响应这一智能化功能,使其在许多领域得以广泛的研究和应用。目前对于响应型凝胶的研究主要还集中在以温度、环境的pH值、离子浓度等激发因素为主。 2.PV A基水凝胶发展现状 PV A是一种高度亲水的水溶性聚合物,PV A水凝胶的制备方法主要分为物理交联法(冰冻一熔融法与冰冻一真空脱水法')与化学交联法(化学试剂交联与辐射交联)两种。由于PV A水凝胶有着很好的生物相容性,低毒性,较高的机械强度和极好的吸水性,其在生物医药领域的应用研究获得了很高的重视,可以用作人工肾、渗透膜、接触性镜片、伤口绷带和敷料、组织工程以及药物释放体系等等。因此,对于PV A水凝胶的制备研究很有意义。 2.1 目前对PV A水凝胶的研究主要集中在如下几个方面: 1、从基础研究的角度,对其凝胶过程中水的结合情况,体系的应力变化, 动力学等方面进行考察。 2、将PV A与其它聚合物共混形成互穿网络结构制备水凝胶。

聚乙烯醇及其缩丁醛的制备

五、聚乙烯醇及其缩丁醛的制备 一、实验目的 1.了解聚合物中官能团反应的常识,并学会其中的操作技术。 2.了解大分子的基本有机化学反应,在高分子链上有合适的反应基团时,均可 按小分子有机反应历程进行高分子反应。 3.了解通过高分子反应改性原理。 二、实验原理 由于单体乙烯醇并不存在,聚乙烯醇不可能从单体聚合而得,而只能以它的酯类(即聚乙酸乙烯酯)通过醇解在酸性条件下进行,通常用乙醇或甲醇作溶剂,酸性醇解时,由于痕量的酸极难自聚乙烯醇中除去,残留在产物中的酸,可能加速聚乙烯醇的脱水作用,使产物变黄或不溶于水;碱性醇解时,产品中含有副产品醋酸钠,目前工业上都采用碱性醇解法。 碱性醇解: 酸性醇解: 醇解在加热和搅拌下进行。初始时微量聚乙烯醇先在瓶壁析出,当约有60%的乙酰氨基被羟基取代后,聚乙烯醇即自溶液中大量析出,继续加热,醇解在两相中进行,在反应过程中,除了乙酸根被醇解外,还有支链的断裂,聚乙酸乙烯酯的支化度愈高,醇解后分子量降低就愈多。 聚乙烯醇是白色粉末,易溶于水,将它的水溶液自纺织头喷入Na 2SO 4-K 2SO 4的溶液中,聚乙烯醇即沉淀而出,再用甲醛处理就得高强度、密度大的人造纤维,商品名叫“维尼纶”。 聚乙烯醇水溶液在浓盐酸催化下与丁醛缩合制得的聚乙烯醇缩丁醛树脂,就C H 2H C OCOCH 3H 2C H C OCOCH 3CH OH NaOH C H 2H C OH H 2C H C OH +CH 3COONa +CH 3COOCH 3C H 2H C OCOCH 3H 2C H C OCOCH 3CH OH H 2SO 4 C H 2H C OH H 2C H C OH +CH 3COOH +CH 3COOCH 3

聚乙烯醇溶液配制

1.溶解设备 欧阳学文 可直接利用可消性淀粉的溶解设备,但至少需满足以下条件。 (1)溶解槽聚乙烯醇基本为中性,无特殊腐蚀性,与一般水溶性糊料的情况相同,应使用不因生锈而使溶液污损的材质。因此最好为不锈钢制,根据不同情况也可以使用搪瓷和合成树脂衬里的铁制品或木槽。一般圆筒形便于使用:效率高。 当搅拌不好时,装入的聚乙烯醇的大颗粒会沉积于槽酌底部,堵塞底部溶解液排出管,因此可如图137—A所示在槽底部的排出口安装一个可以从槽的上部开闭的栓塞。 (2)搅拌机为了促进熔解,使溶液均匀,必须有搅拌机,其形状最好是既能防止生成聚乙烯醇块状物,又能有效地进行热传递。一般所用的是双翼螺旋桨型的搅拌机。搅拌速度过低,聚乙烯醇就会沉陈,溶解不好。搅拌速度过高溶解液面就会升高,溶解描的实际使用容量变小并卷入气抱。所以必须选择适当的搅拌速度。虽然因槽和搅拌机的

形状不同,不能一概而论,促搅拌速度大体可在100转/分左右。特别是容易形成块状物的部分醉解聚乙烯醉的溶解及粘度高的高聚合度聚乙烯醉的治解。搅拌翼的大小及旋转速度对溶解效率影响很大,所以必须选择适当。搅拌男的大小为溶解槽内径的60 70%,搅拌轴与档底面垂直,转数为;60一80转/分时搅拌效果较好。 一般来说搅拌翼越小,转数可越高。 搅拌机所需的动力,若以配制yvA—117的10%溶液1000升的情况为基准。1/2马力已足够。既能搅拌又能吹人蒸汽的简便搅拌方法AJ团137—c所示。格内径1英寸管按十字形焊接,管上开蒸汽吹出儿?孔的位置要保证对水平面以45。仰角吹出消汽,通过蒸汽喷出给周围的水以旋转运动。假如在十·字管上按上蒸汽软件.还可搬动使用。 溶解时,在槽的底部固定上这种族汽吹入十字管,吹入蒸汽,档内液体就会顺喷出蒸汽流产生水平旋转运动和由槽底部向上部的旋转运动的一个加成搅扦流。得到某种程度的搅拌效果,但对完全醇解聚乙烯醇得到溶解。低对部分酵解聚乙烯脖,这样的搅拌是不够的。

聚乙烯醇水凝胶的制备及性能研究

抗菌敷料用淀粉一聚乙烯醇水凝胶的制备及性能研究 摘要 皮肤在受到损伤时容易造成体液流失和伤口感染,需要采用敷料对创面加以覆盖, 保护伤口,促进其愈合。水凝胶敷料是一类性能优良的新型创面敷料,它能够吸收创面渗液,提供有利于伤口愈合的湿润环境,更换时不会带来二次损伤等,但在抗菌功能方面有待加强。 本文以淀粉和聚乙烯醇两种生物相容性良好的高分子为基体,采用分子键合的技术 将一种高效、广谱的肌盐低聚物抗菌剂聚六亚甲基盐酸肌(PHMG)接枝到淀粉大分子上,通过化学交联的方法合成了一种具有长效抗菌性能的水凝胶,并测试了其各项相关性 育旨。 首先,通过熔融聚合的方法合成了PHMG,电喷雾离子飞行时间质谱分析显示,缩 聚产物中线型结构的分子占大部分,这为PHMG的接枝反应提供了基础。最低抑菌浓 度和溶血活性测试结果表明,PHMG具有较高的抑菌活性,同时对人体安全低毒,可以用于医用敷料的抗菌。 然后,分别以环氧氯丙烷和乙二醇二缩水甘油醚为键合剂,考察了反应时间、温度、 pH值对PHMG接枝效率的影响。实验结果表明,以乙二醇二缩水甘油醚为键合剂得到 的PHMG接枝效率较高,当反应时间为2h,反应温度为70OC,pH值为H时,接枝效率达到49.73%。 最后,将淀粉接枝PHMG产物加入到马铃薯淀粉与聚乙烯醇的混合物中,考察了 交联剂种类及用量、原料配比、反应时间、反应温度、pH值对水凝胶溶胀性能及脱水 性能的影响,发现PV A的加入有利于提高凝胶的强度,但是同时也降低了水凝胶的二 次溶胀率,加快了水凝胶的脱水速率,以环氧氯丙烷为交联剂制备的水凝胶具有较高的二次溶胀率,另外反应时间、温度及pH值对水凝胶的溶胀性能均有不同的影响。水凝 胶对大肠杆菌和金黄色葡萄球菌均显示出了较高的抑菌活性,振荡瓶法结果表明,当水凝胶中PHMG的含量为 1.0%时,40min内对大肠杆菌和金黄色葡萄球菌的抑菌率均能 达到100%,水凝胶抗菌性能优良。

水凝胶的制备及其研究进展

水凝胶的制备及其应用进展 摘要水凝胶是一类具有广泛应用的聚合物材料,它在水中能够吸收大量水分而溶胀,并在溶胀之后能够继续保持其原有结构而不被溶解。由于其特殊的结构和性能,水凝胶自人们发现以来,一直被人们广为研究。本文综述了近些年国内外在水凝胶制备和在生物医药、环境保护等方面的一些研究进展,并对水凝胶的应用前景做了一些展望。 关键词水凝胶药物释放壳聚糖染料吸附 凝胶按照分散相介质的不同而分为水凝胶(hydro-gel)、醇凝胶(alcogel)和气凝胶(aerogel)等。水凝胶的分散相介质是水,它是由水溶性分子经过交联后形成的,能够在水中溶胀并且保持大量水分而不溶解的胶态物质。它在水中能够吸收大量的水分显著溶胀,并在显著溶胀之后能够继续保持其原有结构而不被溶解。[1]正因为水凝胶的这种特性,水凝胶能够对外界环境,如温度、pH、电场、磁场等条件变化做出响应。近年来,对水凝胶的研究逐渐深入。水凝胶的应用也越来越广泛,不仅在载药缓释、环境保护方面有很大用途,而且在喷墨打印等方面也有越来越大的作用。 一、水凝胶的制备 (一)PVA水凝胶的制备 上世纪50年代,日本科学家曾根康夫最早注意到聚乙烯醇(PVA)水溶液的凝胶化现象。由于PVA水凝胶除了具备一般水凝胶的性能外,具有毒性低、机械性能优良(高弹性模量和高机械强度)、高吸水量和生物相容性好等优点,因而倍受青睐。PVA水凝胶在生物医学和工业方面的用途非常广泛[2]。 龚桂胜,钟玉鹏[3]等人利用冷冻-解冻法制备了不同类型高浓度聚乙烯醇(PVA)水凝胶,研究了PVA水凝胶的溶胀率、拉伸强度和流变特性。他们发现不同类型的高浓度 PVA 水凝胶的力学性能相差较大,高分子量的 PVA 水凝胶的拉伸强度较低;这与低浓度的水凝胶相反。徐冰函[4]首先制备PVA水凝胶,再以PVA 水凝胶作为载体利用反复冷冻的方法成功制备含有二甲基砜的PVA水凝胶。实验制备的MSM/PVA水凝胶具有优良的理化性能,并且可以用于人工敷料的制备。同时研究发现,二甲基矾在PVA水凝胶内缓慢释放,24h后释放量可达55%以上。体外细胞实验证明MSM/PVA水凝胶对细胞无毒副作用,对细胞增殖具有促进作用,其中以1%MSM用VA对细胞的增殖能力最强。

水凝胶的改性及其在生物医学中的应用研究进展

Advances in Material Chemistry 材料化学前沿, 2014, 2, 32-37 Published Online April 2014 in Hans. https://www.doczj.com/doc/6c6466703.html,/journal/amc https://www.doczj.com/doc/6c6466703.html,/10.12677/amc.2014.22005 The Progress of Modification and Biomedical Applications of Hydrogels Zhenchao Guo1,2 , Ke Hu1,2, Xiaoe Ma1,2, Naizhen Zhou1,2, Tianzhu Zhang1,2*, Ning Gu1,2 1School of Biological Science and Medical Engineering, Southeast University, Nanjing 2Jiangsu Key Laboratory of Biological Materials and Devices, Nanjing Email: *zhangtianzhulq@https://www.doczj.com/doc/6c6466703.html, Received: Mar. 26th, 2014; revised: Apr. 10th, 2014; accepted: Apr. 18th, 2014 Copyright ? 2014 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/6c6466703.html,/licenses/by/4.0/ Abstract Modification of hydrogels is the necessary precondition of their applications in many biomedical fields. This paper summarized the modification of composit hydrogel of Polyvinyl Alcohol (PVA) and gelatin, protein hydrogel, nano hydrogel and other smart hydrogels. At the same time, it also points out that it is important to keep a close eye on biocompatibility, modified cost, biodegrada-bility and application range of modified hydrogels, in order to put these hydrogels to clinical ap-plication, and obtain a wider range of applications. Keywords Composite Hydrogel, Smart Hydrogels, Modification of Hydrogel, Biomedical Application 水凝胶的改性及其在生物医学中的 应用研究进展 郭振超1,2,胡克1,2,马晓娥1,2,周乃珍1,2,张天柱1,2*,顾宁1,2 1东南大学生物科学与医学工程学院,南京 2江苏省生物材料与器件重点实验室,南京 Email: *zhangtianzhulq@https://www.doczj.com/doc/6c6466703.html, *通讯作者。

相关主题
文本预览
相关文档 最新文档