当前位置:文档之家› 弹性力学试题及答案

弹性力学试题及答案

弹性力学试题及答案
弹性力学试题及答案

《弹性力学》试题参考答案(答题时间:100分钟)

一、填空题(每小题4分)

1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。 2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。 3.等截面直杆扭转问题中, M dxdy D

=??

2?的物理意义是 杆端截面上剪应力对转轴的矩等于杆

截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数?在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为:

0,=+i j ij X σ ,)(2

1,,i j j i ij u u +=ε。

二、简述题(每小题6分)

1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。 作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数?的分离变量形式。

题二(2)图

(a )???=++= )(),(),(222θθ??f r r cy bxy ax y x (b )?

??=+++= )(),(),(3

3223θθ??f r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。试求薄板面积的改变量S ?。

题二(3)图

设当各边界受均布压力q 时,两力作用点的相对位移为l ?。由q E

)1(1με-=得,

)1(2

22

2

με-+=+=?E

b a q b a l

设板在力P 作用下的面积改变为S ?,由功的互等定理有:

l P S q ??=??

将l ?代入得:

221b a P E

S +-=

显然,S ?与板的形状无关,仅与E 、μ、l 有关。

4.图示曲杆,在b r =边界上作用有均布拉应力q ,在自由端作用有水平集中力P 。试写出其边界条件(除固定端外)。

题二(4)图

(1)0 ,====b

r r b

r r q θτσ; (2)0 ,0====a

r r a r r θ

τσ

(3)

sin cos θτθσθθP dr P dr b a

r b

a

=-=??

2

cos b a P rdr b a

+-=?θ

σθ

5.试简述拉甫(Love )位移函数法、伽辽金(Galerkin )位移函数法求解空间弹性力学问题的基本思想,并指出各自的适用性

Love 、Galerkin 位移函数法求解空间弹性力学问题的基本思想:

(1)变求多个位移函数),(),,(),,(y x w y x v y x u 或),(),,(θθθr u r u r 为求一些特殊函数,如调和函

数、重调和函数。

(2)变求多个函数为求单个函数(特殊函数)。

适用性:Love 位移函数法适用于求解轴对称的空间问题; Galerkin 位移函数法适用于求解非轴对称的空间问题。

三、计算题

1.图示半无限平面体在边界上受有两等值反向,间距为d 的集中力作用,单位宽度上集中力的值为P ,设间距d 很小。试求其应力分量,并讨论所求解的适用范围。(提示:取应力函数为

θθ?B A +=2sin ) (13分)

题三(1)图

解:d Θ很小,Pd M =∴,可近似视为半平面体边界受一集中力偶M 的情形。

将应力函数),(θ?r 代入,可求得应力分量:

θθ??σ2sin 4112222A r r r r r -=??+??=

; 022=??=r ?σθ; )2cos 2(1

12B A r

r r r +=??

? ??????-=θθ?τθ

边界条件:

(1)0 ,00

00

0==≠=≠=r r r θθ

θθ

τσ; 0 ,00

==≠=≠=r r r πθθ

πθθ

τσ

代入应力分量式,有

0)2(12

=+B A r 或 02=+B A (1)

(2)取一半径为r 的半圆为脱离体,边界上受有:θτσr r ,,和M = Pd

由该脱离体的平衡,得

022

2=+?

-M d r r ππ

θθτ

将θτr 代入并积分,有

0)2cos 2(122

22

=++?

-M d r B A r ππ

θθ 02sin 22

=++-M B

A π

πθ 得 0=+M B π (2)

联立式(1)、(2)求得:

ππPd M B -=-=,π

2Pd A =

代入应力分量式,得

2

2

sin 2r

Pd r θπσ-==; 0=θσ; 22

sin 2r Pd r θπτθ-=。 结果的适用性:由于在原点附近应用了圣维南原理,故此结果在原点附近误差较大,离原点较远

处可适用。 2.图示悬臂梁,受三角形分布载荷作用,若梁的正应力x σ由材料力学公式给出,试由平衡微分方程求出y xy στ,,并检验该应力分量能否满足应力表示的相容方程。

(12分)

题三(2)图

解:(1)求横截面上正应力x σ

任意截面的弯矩为306x l q M -=,截面惯性矩为12

3h I =

,由材料力学计算公式有 y x lh

q I My

x 3302-==

σ (1) (2)由平衡微分方程求xy τ、y σ

平衡微分方程: ???

????=+??+??=+??+??(3) 0(2) 0Y y x X y

x y yx xy

x σττσ

其中,0,0==Y X 。将式(1)代入式(2),有

y x lh

q y xy 2

306=??τ 积分上式,得

)(312

230x f y x lh

q xy +=

τ 利用边界条件:02

=±=h

y xy

τ,有

0)(4312230=+x f h x lh q 即 2

23

01

43)(h x lh q x f -=

)41(32

223

0h y x lh q xy -=

τ (4)

将式(4)代入式(3),有

0)41(62230=??+-

y h y x lh q y σ 或 )41(6223

0h y x lh q y y --=??σ 积分得

)()4133(622

3

0x f y h y x lh q y +--

=σ 利用边界条件:

x l

q h

y y

2

-

=-=σ,02

=+=h

y y σ

得:

?????=+---=++--

0)()8124(6)()8124(6233

3002333

0x f h h x lh

q x l q x f h h x lh q

由第二式,得

x l

q x f 2)(0

2-

= 将其代入第一式,得

x l

q

x l q x l q 00022-=--

自然成立。 将)(2x f 代入y σ的表达式,有

x l q

y h y x lh

q y 2)413(602330---=σ (5)

所求应力分量的结果:

y x lh

q I My

x 3302-==

σ )41(32

223

0h y x lh q xy -=

τ (6)

x l q

y h y x lh

q y 2)413(602330---=σ

校核梁端部的边界条件:

(1)梁左端的边界(x = 0):

022

=?

-=h h x x

dy σ,022

=?-=h h x xy

dy τ 代入后可见:自然满足。

(2)梁右端的边界(x = l ):

02223

3022

=-=?

?-=-=h h l

x h

h l

x x

dy y lh x q dy σ

2)4(3022

223

2022

l

q dy h y lh x q dy h h l x h h l

x xy

=-=?

?

-=-=τ M l q y lh l q dy y lh

x

q ydy h

h h h l

x h h l

x x

=-=-=-=--=-=?

?

6

3222022

3

33

022

2

33

022

σ

可见,所有边界条件均满足。

检验应力分量y xy x στσ,,是否满足应力相容方程: 常体力下的应力相容方程为

0))(()(22222

=+??+??=+?y x y x y x σσσσ 将应力分量y xy x στσ,,式(6)代入应力相容方程,有

xy lh q x y

x 3

02212)(-=+??σσ,xy lh q y y x 302212)(-=+??σσ

024))(()(3022222

≠-=+??+??=+?xy lh q y x y x y x σσσσ

显然,应力分量y xy x στσ,,不满足应力相容方程,因而式(6)并不是该该问题的正确解。 3.一端固定,另一端弹性支承的梁,其跨度为l ,抗弯刚度EI 为常数,梁端支承弹簧的刚度系数为k 。梁受有均匀分布载荷q 作用,如图所示。试:

(1)构造两种形式(多项式、三角函数)的梁挠度试函数)(x w ;

(2)用最小势能原理或Ritz 法求其多项式形式的挠度近似解(取1项待定系数)。

(13分)

题二(3)图

解:两种形式的梁挠度试函数可取为

)()(23212ΛΛ+++=x A x A A x x w —— 多项式函数形式

)2cos

1()(1

∑=-=n

m m l

x

m A x w π —— 三角函数形式 此时有:

0)

()(0

23212=+++==x x A x A A x x w ΛΛ

0)

()(2)(0

3222321=++++++='=x x A A x x A x A A x x w ΛΛΛΛ

0)2cos

1()(0

1

=-===∑x n

m m l x

m A x w π 02sin 2)(0

1

=='==∑x n

m m

l

x m m l A x w ππ

即满足梁的端部边界条件。

梁的总势能为

[]2

02

022)(21)(21l w k dx x qw dx dx w d EI Πl l +-???

? ??=?? 取:2

1)(x A x w =,有

12

22A dx

w d =,2

1)(l A l w = 代入总势能计算式,有

2

21012021)(2

1)2(21l A k dx A qx dx A EI Πl l +-=

?? 4

21312

12

132l kA l qA EIlA +-

= 由0=Πδ,有

03

4341

1=-+l q l kA EIlA )

4(34

3

01kl EIl l q A += 代入梁的挠度试函数表达式,得一次近似解为

2

4

30)

4(3)(x kl EIl l q x w += 4.已知受力物体内某一点的应力分量为:

0=x σ,MPa 2=y σ,MPa 1=z σ,MPa 1=xy τ,0=yz τ,

MPa 2=zx τ,试求经过该点的平面13=++z y x 上的正应力。

(12分)

解:由平面方程13=++z y x ,得其法线方向单位矢量的方向余弦为

11

11

3112

2

2

=

++=

l ,11

31

3132

2

2

=

++=

m ,11

11

3112

2

2

=

++=

n

??????????=102021210ij σ, {}??

???

?????=??????????=131111n m l L

[][][][]111131102021210131111??

???

???????????????==L L T N

σσ []MPa 64.21129

111131375==??

???

?????=

《弹性力学》课程考试试卷

一、简述题(40分)

1. 试叙述弹性力学两类平面问题的几何、受力、应力、应变特征,并指出两类平面问题中弹性常

数间的转换关系。 2. 弹性力学问题按应力和位移求解,分别应满足什么方程? 3. 写出直角坐标下弹性力学平面问题的基本方程和边界条件? 4. 写出弹性力学按应力求解空间问题的相容方程。

5. 求解弹性力学问题时,为什么需要利用圣维南原理?

6. 试叙述位移变分方程和最小势能原理,并指出他们与弹性力学基本方程的等价性?

7.

试判断下列应变场是否为可能的应变场?(需写出判断过程)

)(22y x C x +=ε,2Cy y =ε,Cxy xy 2=γ。

8.试写出应力边界条件:

(1)(a)图用极坐标形式写出;(2)(b)图用直角坐标形式写出。

(a)图(b)图

二、计算题(15分)

已知受力物体中某点的应力分量为:0

=

x

σ,a

y

2

=

σ,a

z

=

σ,a

xy

=

τ,0

=

yz

τ,a

zx

2

=

τ。

试求作用在过此点的平面1

3=

+

+z

y

x上的沿坐标轴方向的应力分量,以及该平面上的正应力和切应力。

三、计算题(15分)

图示矩形截面悬臂梁,长为l,高为h,在左端面受力P作用。不计体力,试求梁的应力分量。(试取应力函数Bxy

Axy+

=3

?)

四、计算题(15分)

图示半无限平面体在边界上受有两等值反向,间距为d的集中力作用,单位宽度上集中力的值为P,设间距d很小。试求其应力分量,并讨论所求解的适用范围。(试取应力函数

θ

θ

?B

A+

=2

sin)

五、计算题(15分)

如图所示的悬臂梁,其跨度为l。抗弯刚度为EI,在自由端受集中力P作用。试用最小势能原

x

y

O

P

α

h

h yγ

2

h

x

O

l

h

y

x

P

r

θ

y

q

p

x

理求最大挠度。(设梁的挠度曲线)2cos 1(l

x

A w π-=)

《弹性力学》试题(答题时间:120分钟)

班级 姓名 学号

一、填空题(每小题4分)

1.用最小势能原理求解时所假设的位移试函数应满足: 。 2.弹性多连体问题的应力分量应满足 , , , 。

3.拉甫(Love )位移函数法适用 空间问题;伽辽金(Galerkin )位移函数法适用于 空间问题。

4.圣维南原理的基本要点有 , , 。 5.有限差分法的基本思想为: , 。 二、简述题(每小题5分)

1.试比较两类平面问题的特点,并给出由平面应力到平面应变问题的转换关系。 2.试就下列公式说明下列问题:

(1)单连体问题的应力分量与材料的弹性常数无关; (2)多连体弹性力学问题中应力分量与弹性常数无关的条件。

[]

[]????

?'+''=+-'='+'=+

)()(22)(Re 4)()(211111

z z z i z z z xy x y y x ψ?τσσ???σσ ???

????

+----=+-+--=∑∑=*=*m

k k k k m k k k k z z z Y X z z z z Y X z 1111

11)()ln()i (83)()()ln()i (81)(ψπμψ?πμ? 式中:)(),(11z z ψ?均为解析函数;)(),(11z z **ψ?均为单值解析函数。

3.试列写图示半无限平面问题的边界条件。

题二(3)图

4.图示弹性薄板,作用一对拉力P 。试由功的互等定理证明:薄板的面积改变量S ?与板的形状无关,仅与材料的弹性模量E 、泊松比 μ 、两力P 作用点间的距离l 有关。

题二(4)图

5.下面给出平面问题(单连通域)的一组应变分量,试判断它们是否可能。

),(22y x C x +=ε,2Cy y =εCxy xy 2=γ。

6.等截面直杆扭转问题的应力函数解法中,应力函数),(y x ?应满足:

GK 22-=??

式中:G 为剪切弹性模量;K 为杆件单位长度扭转角。试说明该方程的物理意义。 三、计算题

1. 图示无限大薄板,在夹角为90°的凹口边界上作用有均匀分布剪应力q 。已知其应力函数为:

)2cos (2B A r +=θ?

不计体力,试求其应力分量。 (13分)

题三(1)图

2.图示矩形截面杆,长为l ,截面高为h ,宽为单位1,受偏心拉力N ,偏心距为 e ,不计杆的体力。

θ

θ

α

τ

τ

试用应力函数2

3By Ay +=?求杆的应力分量,并与材料力学结果比较。

(12分)

题三(2)图

3.图示简支梁,其跨度为l ,抗弯刚度EI 为常数,受有线性分布载荷q 作用。试求:

(1)用三角函数形式和多项式写出梁挠度(w )近似函数的表达式;

(2)在上述梁挠度(w )近似函数中任选一种,用最小势能原理或Ritz 法求梁挠度(w )的

近似解(取2项待定系数)。 (13分)

题三(3)图

4.图示微小四面体OABC ,OA = OB = OC ,D 为AB 的中点。设O 点的应变张量为:

??

??

??????---=03.001.0001.002.0005.00005.001

.0ij ε

试求D 点处单位矢量v 、t 方向的线应变。 (12分)

题三(4)图

2011----2012学年第二学弹性力学模拟考试试卷

一.名词解释(共10分,每小题5分)

1.弹性力学:研究弹性体由于受外力作用或温度改变等原因而发生的应力、应变和位移。

2. 圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计。

二.填空(共20分,每空1分)

1.边界条件表示在边界上位移与约束,或应力与面力之间的关系式,它可以

分为位移边界条件、应力边界条件和混合边界条件。

2.体力是作用于物体体积内的力,以单位体积力来度量,体力分量的量纲为L-2MT-2;面力是

作用于物体表面上力,以单位表面面积上的力度量,面力的量纲为L-1MT-2;体力和面力符号的规定为以沿坐标轴正向为正,属外力;应力是作用于截面单位面积的力,属内力,应力的量纲为L-1MT-2,应力符号的规定为:正面正向、负面负向为正,反之为负。

3.小孔口应力集中现象中有两个特点:一是孔附近的应力高度集中,即孔附近的应力远大于

远处的应力,或远大于无孔时的应力。二是应力集中的局部性,由于孔口存在而引起的应力扰动范围主要集中在距孔边1.5倍孔口尺寸的范围内。

4. 弹性力学中,正面是指外法向方向沿坐标轴正向的面,负面是指外法向方向沿坐标轴负向的面。

5. 利用有限单元法求解弹性力学问题时,简单来说包含结构离散化、单元分析、

整体分析三个主要步骤。

三.绘图题(共10分,每小题5分)

分别绘出图3-1六面体上下左右四个面的正的应力分量和图3-2极坐标下扇面正的应力分量。

图3-1

图3-2

四.简答题(24分)

1.(8分)弹性力学中引用了哪五个基本假定?五个基本假定在建立弹性力学基本方程时有什么用途?

答:弹性力学中主要引用的五个基本假定及各假定用途为:(答出标注的内容即可给满分)

1)连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。

2)完全弹性假定:这一假定包含应力与应变成正比的含义,亦即二者呈线性关系,复合胡克定律,从而使物理方程成为线性的方程。

3)均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反应这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化。

4)各向同性假定:各向同性是指物体的物理性质在各个方向上都是相同的,也就是说,物体的弹性常数也不随方向变化。

5)小变形假定:研究物体受力后的平衡问题时,不用考虑物体尺寸的改变,而仍然按照原来的尺寸

和形状进行计算。同时,在研究物体的变形和位移时,可以将它们的二次幂或乘积略去不计,使得弹性力学的微分方程都简化为线性微分方程。

2.(8分)弹性力学平面问题包括哪两类问题?分别对应哪类弹性体?两类平面问题各有哪些特征?

答:弹性力学平面问题包括平面应力问题和平面应变问题两类,两类问题分别对应的弹性体和特征分别为:

平面应力问题:所对应的弹性体主要为等厚薄板,其特征是:面力、体力的作用面平行于xy平面,外力沿板厚均匀分布,只有平面应力分量

x

σ,

y

σ,

xy

τ存在,且仅为x,y的函数。

平面应变问题:所对应的弹性体主要为长截面柱体,其特征为:面力、体力的作用面平行于xy平面,

外力沿z轴无变化,只有平面应变分量

x

ε,

y

ε,

xy

γ存在,且仅为x,y的函数。

3.(8分)常体力情况下,按应力求解平面问题可进一步简化为按应力函数Φ求解,应力函数Φ必须满

足哪些条件?

答:(1)相容方程:0

4=

Φ

?

(2)应力边界条件(假定全部为应力边界条件,σs

s=):

()

()()上

σ

τ

σ

τ

σ

s

s

f

l

m

f

m

l

y

s

xy

y

x

s

yx

x

=

??

?

?

?

=

+

=

+

(3)若为多连体,还须满足位移单值条件。

五.问答题(36)

1.(12分)试列出图5-1的全部边界条件,在其端部边界上,应用圣维南原理列出三个积分的应力边界

条件。(板厚1

=

δ)

图5-1

解:在主要边界2

h

=上,应精确满足下列边界条件:

()l qx

h

y

y

-

=

-

=2

σ,()0

2

=

-

=h

y

yx

τ;()0

2

=

+

=h

y

y

σ,()1

2

q

h

y

yx

-

=

+

=

τ

在次要边界0

=

x上,应用圣维南原理列出三个积分的应力边界条件,当板厚1

=

δ时,()

?+-=-=

2

20

h

h N

x

x

F

dy

σ,()

?+-=-=

2

20

h

h x

x

M

ydy

σ,()

?+-=-=

2

20

h

h S

x

xy

F

dy

τ

在次要边界l

x=上,有位移边界条件:()0=

=l

x

u,()0=

=l

x

v。这两个位移边界条件可以改用三个积分的应力边界条件代替:

()l q F

dy h h N x x ?+-=+-=2210σ,()2622

20qlh ql l F M ydy S h h x x +---=?+-=σ,()2

220ql

F dy h h S x xy --=?+-=τ 2. (10分)试考察应力函数3

cxy =Φ,0>c ,能满足相容方程,并求出应力分量(不计体力),画出

图5-2所示矩形体边界上的面力分布,并在次要边界上表示出面力的主矢和主矩。

图5-2

解:(1)相容条件:将3

cxy =Φ代入相容方程02442244

4=?Φ

?+??Φ?+?Φ?y

y x x ,显然满足。 (2)应力分量表达式:cxy y

x 62

2=?Φ

?=σ,0=y σ,23cy xy -=τ (3)边界条件:在主要边界2h y ±=上,即上下边,面力为()

chx h y y 32

±=±=σ,()2

24

3ch h y xy -=±=τ 在次要边界l x x ==,0上,面力的主失和主矩为

()()()???

??????-=-===????+-+-=+-=+-=22322202

202

204300

h h h h x xy h h x x h h x x h c dy cy dy dy y dy τσσ ()()()????

?????-=-=====??????+-+-=+-+-=+-+-=232

2203222

22222432606h h h h x xy h h h h l x x h h h h l x x h c dy cy dy clh dy cly dy y dy cly dy τσσ 弹性体边界上的面力分布及在次要边界l x x ==,0上面力的主失量和主矩如解图所示。

3. (14分)设有矩形截面的长竖柱,密度为ρ,在一边侧面上受均布剪力q, 如图5-3所示,试求应力

分量。(提示:采用半逆解法,因为在材料力学弯曲的基本公式中,假设材料符合简单的胡克定律,故可认为矩形截面竖柱的纵向纤维间无挤压,即可设应力分量0=x σ )

图 5-3

解:采用半逆解法,因为在材料力学弯曲的基本公式中,假设材料符合简单的胡克定律,故可认为矩形截面竖柱的纵向纤维间无挤压,即可设应力分量0=x σ,

(1) 假设应力分量的函数形式。0=x σ

(2) 推求应力函数的形式。此时,体力分量为g f f y x ρ==,0。将0=x σ代入应力公式2

2y x ?Φ

?=

σ有022=?Φ?=y x σ对x 积分,得

()x f y

=?Φ

?, (a ) ()()x f x yf 1+=Φ。 (b )

其中()x f ,()x f 1都是x 的待定函数。

(3)由相容方程求解应力函数。将式(b )代入相容方程04

=Φ,得

()()041444=+dx

x f d dx x f d y 这是y 的一次方程,相容方程要求它有无数多的根(全部竖柱内的y 值都应该满足),可见它的

系数和自由项都必须等于零。

()044=dx x f d ,()0414=dx x f d ,两个方程要求 ()Cx Bx Ax x f ++=23,()231Ex Dx x f += (c)

()x f 中的常数项,()x f 1中的一次和常数项已被略去,因为这三项在Φ的表达式中成为y 的一

次和常数项,不影响应力分量。得应力函数

()()

2323Ex Dx Cx Bx Ax y ++++=Φ (d)

(4)由应力函数求应力分量。

022=-?Φ

?=x x xf y

σ, (e)

gy E Dx By Axy yf x

y y ρσ-+++=-?Φ

?=262622, (f)

C Bx Ax y

x xy

---=??Φ?-=2322τ. (g)

(5) 考察边界条件。利用边界条件确定待定系数 先来考虑左右两边2b x ±=的主要边界条件:

()0=±=b x x σ,()0=-=b x xy τ,()q b x xy =+=2τ。

将应力分量式(e)和(g)代入,这些边界条件要求:

()02=±=b x x σ,自然满足; ()04

32=-+-=-=C Bb Ab b x xy τ (h)

()

q C Bb Ab b x xy =---

=+=2

4

3τ (i) 由(h )(i ) 得 b

q

B 2-

= (j ) 考察次要边界0=y 的边界条件,应用圣维南原理,三个积分的应力边界条件为

()

()02262

2

22

==+=?

?+-=+-Eb dx E Dx dx b b y b b y

σ; 得 0=E

()()02263

2

02

2==+=??+-=+-Db dx x E Dx xdx b b y b b y σ, 得 0=D

()043322

02

2=--

=??

? ??-+-=??+-=+-bC Ab dx C x b q Ax dx b b y b b xy τ (k ) 由(h )(j )(k )得 2b q A -

=, 4

q

C =

将所得A 、B 、C 、D 、E 代入式(e )(f )(g )得应力分量为:

0=x σ,gy y b q xy b q y ρσ---=26

, 4

322q x b q x b q xy -+=τ

2009 ~ 2010学年第二学期期末考试试卷(A )卷

六.名词解释(共10分,每小题5分)

2.弹性力学:研究弹性体由于受外力作用或温度改变等原因而发生的应力、应变和位移。

2. 圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计。

七.填空(共20分,每空1分)

4.边界条件表示在边界上位移与约束,或应力与面力之间的关系式,它可以

分为位移边界条件、应力边界条件和混合边界条件。

5.体力是作用于物体体积内的力,以单位体积力来度量,体力分量的量纲为L-2MT-2;面力是

作用于物体表面上力,以单位表面面积上的力度量,面力的量纲为L-1MT-2;体力和面力符号的规定为以沿坐标轴正向为正,属外力;应力是作用于截面单位面积的力,属内力,应力的量纲为L-1MT-2,应力符号的规定为:正面正向、负面负向为正,反之为负。

6.小孔口应力集中现象中有两个特点:一是孔附近的应力高度集中,即孔附近的应力远大于

远处的应力,或远大于无孔时的应力。二是应力集中的局部性,由于孔口存在而引起的应力扰动范围主要集中在距孔边1.5倍孔口尺寸的范围内。

4. 弹性力学中,正面是指外法向方向沿坐标轴正向的面,负面是指外法向方向沿坐标轴负向的面。

5. 利用有限单元法求解弹性力学问题时,简单来说包含结构离散化、单元分析、

整体分析三个主要步骤。

八.绘图题(共10分,每小题5分)

分别绘出图3-1六面体上下左右四个面的正的应力分量和图3-2极坐标下扇面正的应力分量。

图3-1

图3-2

九.简答题(24分)

4.(8分)弹性力学中引用了哪五个基本假定?五个基本假定在建立弹性力学基本方程时有什么用途?

答:弹性力学中主要引用的五个基本假定及各假定用途为:(答出标注的内容即可给满分)

1)连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。

2)完全弹性假定:这一假定包含应力与应变成正比的含义,亦即二者呈线性关系,复合胡克定律,从而使物理方程成为线性的方程。

3)均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反应这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化。

4)各向同性假定:各向同性是指物体的物理性质在各个方向上都是相同的,也就是说,物体的弹性常数也不随方向变化。

5)小变形假定:研究物体受力后的平衡问题时,不用考虑物体尺寸的改变,而仍然按照原来的尺寸

11弹性力学试题及答案

2012年度弹性力学与有限元分析复习题及其答案 (绝密试题) 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力 =1σ150MPa ,=2σ0MPa ,=1α6135'ο。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力 =1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为

最新期末考试试卷(a答案)—弹性力学

,考试作弊将带来严重后果! 华南理工大学2011年期末考试试卷(A )卷 《弹性力学》 1. 考前请将密封线内各项信息填写清楚; 所有答案请直接答在答题纸上; .考试形式:闭卷; 20分) 、五个基本假定在建立弹性力学基本方程时有什么用途?(10分) 答:1、连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 (2分) 2、完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。 (4分) 3、均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反映这些物理性质的弹性常数(如弹性模量E 和泊松比μ等)就不随位置坐标而变化。 (6分) 4、各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。进一步地说,就是物体的弹性常数也不随方向而变化。 (8分) 5、小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。 在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。 (10分) 2、试分析简支梁受均布荷载时,平面截面假设是否成立?(5分) 解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。而在材料力学中没有严格考虑上述条件,因而得出的是近似解答。例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。所以,严格来说,不成立。 3、为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2-15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替教材中式(2-15),将会发生什么问题?(5分) 解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。这时,圣维南原理可为简化局部边界上的应力边界条件提供很大的方便。将物体一小部分边界上的面力换成分布不同,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计。如果在占边界绝大部分的主要边界上用三个应力边界条件来代替精确的边界条件。教材中式(2-15),就会影响大部分区域的应力分布,会使问题的解答具有的近似性。 三、计算题(80分) 2.1 已知薄板有下列形变关系:,,,2 3 Dy C By Axy xy y x -===γεε式中A,B,C,D 皆为常数,试检查在形变过程中是否符合连续条件,若满足并列出应力分量表达式。(10分) 1、 相容条件: 将形变分量带入形变协调方程(相容方程)

弹性力学试题参考答案与弹性力学复习题

弹性力学复习资料 一、简答题 1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系在应用这些方程时,应注意些什么问题 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和

混合边界问题。 位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定试将它们写出。如何确定它们的正负号 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:x 、y 、z 、xy 、yz 、、zx 。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定什么是“理想弹性体”试举例说明。 答:答:在推导弹性力学基本方程时,采用了以下基本假定: (1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题什么叫平面应变问题各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的 面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑各方面反映的是那些变量间的关系 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方面主要反映的是形变分量与应力分量之 间的关系,也就是平面问题中的物理方程。 7.按照边界条件的不同,弹性力学平面问题分为那几类试作简要说明 答:按照边界条件的不同,弹性力学平面问题可分为两类: (1)平面应力问题 : 很薄的等厚度板,只在板边上受有平行于板面并且不沿厚度变化的面力。这一类问题可以简化为平面应力问题。例如深梁在横向力作用下的受力分析问题。在该种问题中只存在 yx xy y x ττσσ=、、三个应力分量。 (2)平面应变问题 : 很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,而且体力

弹性力学复习重点+试题及答案【整理版】

弹性力学2005 期末考试复习资料 一、简答题 1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题? 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题? 试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和 混合边界问题。 位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。如何确定它们的正负号? 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:x 、y 、z 、xy 、yz、、zx。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。 答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题?什么叫平面应变问题?各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的 面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑?各方面反映的是那些变量间的关系? 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方 面主要反映的是形变分量与应力分量之间的关系,也就是平 面问题中的物理方程。 7.按照边界条件的不同,弹性力学问题分为那几类边界问题? 试作简要说明 答:按照边界条件的不同,弹性力学问题可分为两类边界问题:

弹性力学试题及标准答案

弹性力学与有限元分析复习题及其答案 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135'ο。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。 19、在有限单元法中,单元的形函数N i 在i 结点N i =1;在其他结点N i =0及∑N i =1。 20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。

第二章弹性力学基础

第二章弹性力学基础 弹性力学又称弹性理论,它是固体力学的一个分支。弹性力学任务是确定结构或机械零件在外载荷作用或温度改变等原因而发生的应力、位移和应变。 弹性力学与材料力学总的任务是相同的,但弹性力学研究的问题比材料力学要更加深刻和精确,并研究材料力学所不能解决的一些问题。 材料力学-----研究杆状构件(长度>>高度和宽度)在拉压、剪切、弯曲、扭转作用下的应力和位移。 弹性力学-----研究板壳、挡土墙、堤坝、地基等实体结构。对杆状构件作较精确的分析,也需用弹性力学。 结构力学-----研究杆状构件所组成的结构。例如桁架、刚架。

第一节弹性力学假设 在弹性力学中,所研究的问题主要是理想弹性体的线性问题,所谓理想弹性体的线性问题,是指符合以下假定的物体。 1. 假设物体是线弹性的 假定物体服从虎克定律,即应变与引起该应变的应力成正比,反映这一比例关系的常数,就是弹性常数。即该比例关系不随应力、应变的大小和符号而变。 由材料力学已知: 脆性材料的物体:在应力?比例极限以前,可作为近似的完全弹性体; 韧性(塑性)材料的物体:在应力<屈服极限以前,可作为近似的完全弹性体。 这个假定,使得物体在任意瞬时的应变将完全取决于该瞬时物体所受到的外力或温度变化等因素,而与加载的历史和加载顺序无关。 2. 假设物体是连续性的 假设整个物体的体积都被该物体介质完全充满,不留下任何空隙。有了这一假定决定了应力、应变、位移是连续的,可用坐标的连续函数来表示他们的变化规律。 注:实际上,一切物体都是由微粒组成的,都不能符合该假定。但是由于物体粒子的尺寸以及相邻粒子间的距离,

都比物体自己本身的尺寸小得很多,因此连续性假设不会引起显着的误差。 3. 假设物体是均匀性、各向同性的 整个物体是由同一材料组成的。这样整个物体的所有各部分才具有相同的弹性,因而物体的弹性常数不随坐标而变化,可以取出该物体的任意一小部分来加以分析,然后把分析所得结果应用于整个物体。 各向同性是指物体内一点的弹性在所的各个方向上都是相同的,故物体的弹性常数不随方向而变化。 对于非晶体材料,是完全符合这一假定。而由木材,竹材等做成的构件,就不能作为各向同性体来研究;钢材构件基本上是各向同性的。 弹性常数? 凡是符合以上三个假定的物体,就称为理想弹性体。 4. 假设物体的位移和应变是微小的 假定物体在载荷或温度变化等外界因素的作用下所产生的位移远小于物体原来的尺寸,应变分量和转角都远小于1。 因此 ①在建立物体变形以后的平衡方程时,可用变形前的尺寸代替变形后的尺寸,而不至于引起显著的误差。

弹性力学复习题期末考试集锦 (2)

弹性力学复习题(06水工本科) 一、选择题 1. 下列材料中,()属于各向同性材料。 A. 竹材; B. 纤维增强复合材料; C. 玻璃钢; D. 沥青。 2 关于弹性力学的正确认识是()。 A. 计算力学在工程结构设计的中作用日益重要; B. 弹性力学从微分单元体入手分析弹性体,与材料力学不同,不需要对问题作假设; C. 任何弹性变形材料都是弹性力学的研究对象; D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。 3. 弹性力学与材料力学的主要不同之处在于()。 A. 任务; B. 研究对象; C. 研究方法; D. 基本假设。 4. 所谓“完全弹性体”是指()。 A. 材料应力应变关系满足胡克定律; B. 材料的应力应变关系与加载时间历史无关; C. 本构关系为非线性弹性关系; D. 应力应变关系满足线性弹性关系。 5. 所谓“应力状态”是指()。 A. 斜截面应力矢量与横截面应力矢量不同; B. 一点不同截面的应力随着截面方位变化而改变; C. 3个主应力作用平面相互垂直; D. 不同截面的应力不同,因此应力矢量是不可确定的。 6. 变形协调方程说明()。 A. 几何方程是根据运动学关系确定的,因此对于弹性体的变形描述是不正确的; B. 微分单元体的变形必须受到变形协调条件的约束; C. 变形协调方程是保证所有弹性体变形协调条件的必要和充分条件; D. 变形是由应变分量和转动分量共同组成的。 7. 下列关于弹性力学基本方程描述正确的是()。 A. 几何方程适用小变形条件; B. 物理方程与材料性质无关; C. 平衡微分方程是确定弹性体平衡的唯一条件; D. 变形协调方程是确定弹性体位移单值连续的唯一条件; 8、弹性力学建立的基本方程多是偏微分方程,最后需结合()求解这些微分方程,以

同济【弹性力学试卷】2008年期终考试A-本科

同济大学课程考核试卷(A 卷) 2008 — 2009 学年第 一 学期 命题教师签名: 审核教师签名: 课号:030192 课名: 弹性力学 考试考查:考试 此卷选为:期中考试( )、期终考试(√ )、重考( )试卷 年级 专业 学号 姓名 得分 一.是非题(正确,在括号中打√;该题错误,在括号中打×。)(共30分,每小题2分) 1. 三个主应力方向必定是相互垂直的。( ) 2. 最小势能原理等价于平衡方程和面力边界条件。( ) 3. 轴对称的位移对应的几何形状和受力一定是轴对称的。( ) 4. 最大正应变是主应变。( ) 5. 平面应力问题的几何特征是物体在某一方向的尺寸远小于另两个方向的尺寸。( ) 6. 最大剪应力对应平面上的正应力为零。( ) 7. 弹性体所有边界上的集中荷载均可以按照圣维南原理放松处理边界条件。( ) 8. 用应力函数表示的应力分量满足平衡方程,但不一定满足协调方程。( ) 9. 经过简化后的平面问题的基本方程及不为零的基本未知量(应力、应变和位移)均为8 个。( ) 10. 运动可能的位移必须满足已知面力的边界条件。( ) 11. 实对称二阶张量的特征值都是实数。( ) 12. 对单、多连通弹性体,任意给出的应变分量只要满足协调方程就可求出单值连续的位 移分量。( ) 13. 若整个物体没有刚体位移,则物体内任意点处的微元体都没有刚体位移。( ) 14. 出现最大剪应力的微平面和某两个应力主方向成45度角。( ) 15. 对任意弹性体,应力主方向和应变主方向一致。( ) 二.分析题(共20分,每小题10分) 1.已知应力张量为()()2211e e e e σ?-+?+=b a b a ,0>>a b (1) 设与xy 平面垂直的任意斜截面的法向矢量为21sin cos e e n θθ+=,试求该斜截面上的正应力与剪应力。 (2) 求最大和最小剪应力值。

(完整word版)弹性力学简明教程(第四版)_第二章_课后作业题答案

第二章 平面问题的基本理论 【2-9】试列出图2-17,图2-18所示问题的全部边界条件。在其端部小边界上,应用圣维南原理列出三个积分的应力边界条件。 x y 2 h 1h b g ρo () 2h b >> h x y l /2/2 h M N F S F 1 q q 图2-17 图2-18 【分析】有约束的边界上可考虑采用位移边界条件,若为小边界也可写成圣维南原理的三个积分形式,大边界上应精确满足公式(2-15)。 【解答】图2-17: 上(y =0) 左(x =0) 右(x =b ) l 0 -1 1 m -1 () x f s () 1g y h ρ+ () 1g y h ρ-+ () y f s 1gh ρ 代入公式(2-15)得 ①在主要边界上x=0,x=b 上精确满足应力边界条件: ()()100(),0;===-+=x xy x x g y h σρτ ()()1b b (),0; ===-+=x xy x x g y h σρτ ②在小边界0y =上,能精确满足下列应力边界条件: () () ,0y xy y y gh σρτ===-= ③在小边界2y h =上,能精确满足下列位移边界条件: ()()2 2 0,0 ====y h y h u v 这两个位移边界条件可以应用圣维南原理,改用三个积分的应力边界条件来代替,当板厚=1δ时,可求得固定端约束反力分别为: 10,,0s N F F gh b M ρ==-=

由于2y h =为正面,故应力分量与面力分量同号,则有: ()()()22210000 0b y y h b y y h b xy y h dx gh b xdx dx σρστ===?=-???=???=?? ??? ⑵图2-18 ①上下主要边界y=-h/2,y=h/2上,应精确满足公式(2-15) l m x f (s) y f (s) 2h y =- 0 -1 0 q 2 h y = 1 -1q -/2()y y h q σ==-,-/2()0yx y h τ==,/2()0y y h σ==,/21()yx y h q τ==- ②在x =0的小边界上,应用圣维南原理,列出三个积分的应力边界条件:负面上应力与面力符号相反,有 /20/2/2 0/2/20 /2()()()h xy x S h h x x N h h x x h dx F dx F ydx M τσσ=-=-=-?=-??=-???=-???? ③在x=l 的小边界上,可应用位移边界条件0,0====l x l x v u 这两个位移边界条件也可改用三个积分的应力边界条件来代替。 首先,求固定端约束反力,按面力正方向假设画反力,如图所示,列平衡方程求反力: 110,x N N N N F F F q l F q l F ''=+=?=-∑ 0,0y S S S S F F F ql F ql F ''=++=?=--∑ 2 211110,'02222 A S S q lh ql M M M F l ql q lh M M F l =+++-=?=---∑ 由于x=l 为正面,应力分量与面力分量同号,故 M ' N F 'S F '

(完整word版)弹性力学试题及答案

《弹性力学》试题参考答案(答题时间:100分钟) 一、填空题(每小题4分) 1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。 2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。 3.等截面直杆扭转问题中, M dxdy D =?? 2?的物理意义是 杆端截面上剪应力对转轴的矩等于杆 截面内的扭矩M 。 4.平面问题的应力函数解法中,Airy 应力函数?在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。 5.弹性力学平衡微分方程、几何方程的张量表示为: 0,=+i j ij X σ ,)(2 1,,i j j i ij u u +=ε。 二、简述题(每小题6分) 1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。 圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。 作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。 (2)将次要的位移边界条件转化为应力边界条件处理。 2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数?的分离变量形式。 题二(2)图 (a )???=++= )(),(),(222θθ??f r r cy bxy ax y x (b )? ??=+++= )(),(),(3 3223θθ??f r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。试求薄板面积的改变量S ?。

弹性力学期末考试卷A答案

2009 ~ 2010学年第二学期期末考试试卷(A )卷 一.名词解释(共10分,每小题5分) 1.弹性力学:研究弹性体由于受外力作用或温度改变等原因而发生的应力、应变和位移。 2. 圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显着的改变,但是远处所受的影响可以不计。 二.填空(共20分,每空1分) 1.边界条件表示在边界上位移与约束,或应力与面力之间的关系式,它可以 分为位移边界条件、应力边界条件和混合边界条件。 2.体力是作用于物体体积内的力,以单位体积力来度量,体力分量的量纲为L-2MT-2;面力是 作用于物体表面上力,以单位表面面积上的力度量,面力的量纲为L-1MT-2;体力和面力符号的规定为以沿坐标轴正向为正,属外力;应力是作用于截面单位面积的力,属内力,应力的量纲为L-1MT-2,应力符号的规定为:正面正向、负面负向为正,反之为负。 3.小孔口应力集中现象中有两个特点:一是孔附近的应力高度集中,即孔附近的应力远大于 远处的应力,或远大于无孔时的应力。二是应力集中的局部性,由于孔口存在而引起的应力扰动范围主要集中在距孔边1.5倍孔口尺寸的范围内。 4. 弹性力学中,正面是指外法向方向沿坐标轴正向的面,负面是指外法向方向沿坐标轴负向的面。 5. 利用有限单元法求解弹性力学问题时,简单来说包含结构离散化、单元分析、 整体分析三个主要步骤。 三.绘图题(共10分,每小题5分) 分别绘出图3-1六面体上下左右四个面的正的应力分量和图3-2极坐标下扇面正的应力分量。 图3-1 图3-2 四.简答题(24分) 1.(8分)弹性力学中引用了哪五个基本假定五个基本假定在建立弹性力学基本方程时有什么用途 答:弹性力学中主要引用的五个基本假定及各假定用途为:(答出标注的内容即可给满分) 1)连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 2)完全弹性假定:这一假定包含应力与应变成正比的含义,亦即二者呈线性关系,复合胡克定律,从而使物理方程成为线性的方程。 3)均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反应这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化。 4)各向同性假定:各向同性是指物体的物理性质在各个方向上都是相同的,也就是说,物体的弹性常数也不随方向变化。 5)小变形假定:研究物体受力后的平衡问题时,不用考虑物体尺寸的改变,而仍然按照原来的尺寸

弹性力学 第二章 应力状态分析

第二章应力状态分析 一、内容介绍 弹性力学的研究对象为三维弹性体,因此分析从微分单元体入手,本章的任务就是从静力学观点出发,讨论一点的应力状态,建立平衡微分方程和面力边界条件。 应力状态是本章讨论的首要问题。由于应力矢量与内力和作用截面方位均有关。因此,一点各个截面的应力是不同的。确定一点不同截面的应力变化规律称为应力状态分析。首先是确定应力状态的描述方法,这包括应力矢量定义,及其分解为主应力、切应力和应力分量;其次是任意截面的应力分量的确定—转轴公式;最后是一点的特殊应力确定,主应力和主平面、最大切应力和应力圆等。应力状态分析表明应力分量为二阶对称张量。本课程分析中使用张量符号描述物理量和基本方程,如果你没有学习过张量概念,请进入附录一,或者查阅参考资料。 本章的另一个任务是讨论弹性体内一点-微分单元体的平衡。弹性体内部单元体的平衡条件为平衡微分方程和切应力互等定理;边界单元体的平衡条件为面力边界条件。 二、重点 1、应力状态的定义:应力矢量;正应力与切应力;应力分量; 2、平衡微分方程与切应力互等定理; 3、面力边界条件; 4、应力分量的转轴公式; 5、应力状态特征方程和应力不变量; 知识点: 体力;面力;应力矢量;正应力与切应力;应力分量;应力矢量与应力 分量;平衡微分方程;面力边界条件;主平面与主应力;主应力性质; 截面正应力与切应力;三向应力圆;八面体单元;偏应力张量不变量; 切应力互等定理;应力分量转轴公式;平面问题的转轴公式;应力状态 特征方程;应力不变量;最大切应力;球应力张量和偏应力张量 §2.1 体力和面力 学习思路:

本节介绍弹性力学的基本概念——体力和面力,体力F b和面力F s的概念均不难理解。 应该注意的问题是,在弹性力学中,虽然体力和面力都是矢量,但是它们均为作用于一点的力,而且体力是指单位体积的力;面力为单位面积的作用力。 体力矢量用F b表示,其沿三个坐标轴的分量用F b i(i=1,2,3)或者F b x、F b y和F b z表示,称为体力分量。 面力矢量用F s表示,其分量用F s i(i=1,2,3)或者F s x、F s y和F s z表示。 体力和面力分量的方向均规定与坐标轴方向一致为正,反之为负。 学习要点: 1、体力; 2、面力。 1、体力 作用于物体的外力可以分为两种类型:体力和面力。 所谓体力就是分布在物体整个体积内部各个质点上的力,又称为质量力。例如物体的重力,惯性力,电磁力等等。 面力是分布在物体表面上的力,例如风力,静水压力,物体之间的接触力等。为了表明物体在xyz坐标系内任意一点P 所受体力的大小和方向,在P点的邻域取一微小体积元素△V,如图所示 设△V 的体力合力为△F,则P点的体力定义为 令微小体积元素△V趋近于0,则可以定义一点P的体力为

期末考试试卷A答案—弹性力学

,考试作弊将带来严重后果! 华南理工大学2011年期末考试试卷(A )卷 《弹性力学》 1. 考前请将密封线内各项信息填写清楚; 所有答案请直接答在答题纸上; .考试形式:闭卷; 20分) 、五个基本假定在建立弹性力学基本方程时有什么用途?(10分) 答:1、连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 (2分) 2、完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。 (4分) 3、均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反映这些物理性质的弹性常数(如弹性模量E 和泊松比μ等)就不随位置坐标而变化。 (6分) 4、各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。进一步地说,就是物体的弹性常数也不随方向而变化。 (8分) 5、小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。 在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。 (10分) 2、试分析简支梁受均布荷载时,平面截面假设是否成立?(5分) 解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。而在材料力学中没有严格考虑上述条件,因而得出的是近似解答。例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。所以,严格来说,不成立。 3、为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2-15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替教材中式(2-15),将会发生什么问题?(5分) 解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。这时,圣维南原理可为简化局部边界上的应力边界条件提供很大的方便。将物体一小部分边界上的面力换成分布不同,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计。如果在占边界绝大部分的主要边界上用三个应力边界条件来代替精确的边界条件。教材中式(2-15),就会影响大部分区域的应力分布,会使问题的解答具有的近似性。 三、计算题(80分) 2.1 已知薄板有下列形变关系:,,,2 3 Dy C By Axy xy y x -===γεε式中A,B,C,D 皆为常数,试检查在形变过程中是否符合连续条件,若满足并列出应力分量表达式。(10分) 1、 相容条件: 将形变分量带入形变协调方程(相容方程)

第二章弹性力学的基本原理

第二章 弹性力学的基本原理 §2.1 应力分析 2.1.1应力与应力张量 应力被定义为:用假想截面将物体截开,在截面上一点P 的周围取一微元S ?, 设S ?的外法线为ν, S ?上的力为T ?,如极限ν???T S T S =→/lim 0 存在,则称νT 为P 点在该截面上的应力矢量。 考察三个面为与坐标面平行的截面(即以321,,x x x 三个坐标轴为法线的三个截面), )3()2()1( , ,T T T 分别表示三个截面上的应力矢量。每一个应力矢量又分解为沿三个坐标轴的应力分量,有 j ij i e T σ=)( (i ,j =1,2,3) (2.1) 这里的张量运算形式满足“求和约定”,即凡是同一指标字母在乘积中出现两次时,则理解为对所有同类求和,即j ij e σ应理解为∑=3 1j j ij e σ。这样的求和指标j 称之为假指标或哑指标。由此得到 九个应力分量表示一点的应力状态,这九个分量组成应力张量: ? ?? ?? ??=333231232221131211σσσσσσσσσσij 或??? ? ? ??=zz zy zx yz yy yx xz xy xx ij στττστττσσ (2.2) 在本书第一章致第九章,应力分量符号(正负号)规定如下:对于正应力,我们规定张应力为正,压应力为负。对于剪应力,如果截面外法向与坐标轴的正方向一致,则沿坐标轴正方向的剪应力为正,反之为负。如果沿截面外法向与坐标轴的正方向相反,则沿坐标轴正方向的剪应力为负。 2.1.2 柯西(Cauchy)方程 记S 为过P 点的外法向为n 的斜截面。外法线n 的方向可由其方向余弦记为),,cos(11x n n =α ),cos(22x n n =α, ),cos(33x n n =α。 设此斜截面ABC ?的面积为S , 则如图2.1, 过此点所取的小四面体OABC 另外三个面为与坐标面平行的截面(即以321,,x x x 三个坐标轴为法线的三个截面), 其面积分别为 ??? ?? ?=?=?=?=?=?=333222111),cos(:),cos(:),cos(:n n n S x S S OAB S x S S OAC S x S S OBC α?α?α?n n n (2.3) 此截面上的应力矢量记为)(n T , 即 j n j n T e T )()(= (2.4) 另外三个面上的应力矢量分别为)1(T -, )2(T -, )3(T -。 考虑此微元(四面体OABC 的平衡,其平衡方程为 ()031 3)3(2)2(1)1()(=??+?+?+?-?h S S S S S n f T T T T (2.5) 其中f 为作用于此单元上的体力,h 为O 点至截面ABC 的垂直距离,h S ?3 1 为此微元的体积。当

弹性力学期末考试第一份试卷和答案

2011----2012学年第二学期期末考试试卷(1 )卷题号一二三四五六七八九十总分评分 评卷教师 一.名词解释(共10分,每小题5分) 1.弹性力学:研究弹性体由于受外力作用或温度改变等原因而发生的应力、应变和位移。 2. 圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计。 二.填空(共20分,每空1分) 1.边界条件表示在边界上位移与约束,或应力与面力之间的关系式,它可以 分为位移边界条件、应力边界条件和混合边界条件。 2.体力是作用于物体体积内的力,以单位体积力来度量,体力分量的量纲为L-2MT-2;面力是 作用于物体表面上力,以单位表面面积上的力度量,面力的量纲为L-1MT-2;体力和面力符号的规定为以沿坐标轴正向为正,属外力;应力是作用于截面单位面积的力,属内力,应力的量纲为L-1MT-2,应力符号的规定为:正面正向、负面负向为正,反之为负。 3.小孔口应力集中现象中有两个特点:一是孔附近的应力高度集中,即孔附近的应力远大于 远处的应力,或远大于无孔时的应力。二是应力集中的局部性,由于孔口存在而引起的应力扰动范围主要集中在距孔边1.5倍孔口尺寸的范围内。 4. 弹性力学中,正面是指外法向方向沿坐标轴正向的面,负面是指外法向方向沿坐标轴负向的面。 5. 利用有限单元法求解弹性力学问题时,简单来说包含结构离散化、单元分析、 整体分析三个主要步骤。 三.绘图题(共10分,每小题5分) 分别绘出图3-1六面体上下左右四个面的正的应力分量和图3-2极坐标下扇面正的应力分量。 图3-1

弹性力学试题及答案

弹性力学试题及答案

处具有相同的位移时,也能在整个公共边界上具有相 同的位移。 19、在有限单元法中,单元的形函数N i 在i 结点N i =1;在其他结点N i =0及∑N i =1。 20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。 二、判断题(请在正确命题后的括号内打“√”,在 错误命题后的括号内打“×”) 1、连续性假定是指整个物体的体积都被组成这个物 体的介质所填满,不留下任何空隙。(√) 5、如果某一问题中,0===zy zx z ττσ ,只存在平面应力分量x σ,y σ,xy τ,且它们不沿z 方向变化,仅为x ,y 的函数,此问题是平面应力问题。(√) 6、如果某一问题中,0===zy zx z γγε ,只存在平面应变分量x ε,y ε,xy γ,且它们不沿z 方向变化,仅为x ,y 的函数,此问题是平面应变问题。(√) 9、当物体的形变分量完全确定时,位移分量却不能完全确定。(√) 10、当物体的位移分量完全确定时,形变分量即完全 确定。(√)

14、在有限单元法中,结点力是指结点对单元的作用力。(√) 15、在平面三结点三角形单元的公共边界上应变和应力均有突变。(√ ) 三、分析计算题 1、试写出无体力情况下平面问题的应力分量存在的 必要条件,并考虑下列平面问题的应力分量是否可能在弹性体中存在。 (1)By Ax x +=σ ,Dy Cx y +=σ,Fy Ex xy +=τ; (2))(22y x A x +=σ,)(22y x B y +=σ,Cxy xy =τ; 其中,A ,B ,C ,D ,E ,F 为常数。 解:应力分量存在的必要条件是必须满足下列条件: (1)在区域内的平衡微分方程 ???????=??+??=??+??00x y y x xy y yx x τστσ;(2)在区域内的相容方程 ()02222=+???? ????+??y x y x σσ;(3)在边界上的应力边界条件 ()()()()?????=+=+s f l m s f m l y s xy y x s yx x τστσ;(4)对于多连体的位移单值条件。 (1)此组应力分量满足相容方程。为了满足平

弹性力学期末测试模拟试题

《弹性力学》期末考试 学号: 姓名 一 选择题(每题3分,共36分) 1. 所谓“应力状态”是指 。 A. 斜截面应力矢量与横截面应力矢量不同; B. 不同截面的应力不同,因此应力矢量是不可确定的。 C. 3个主应力作用平面相互垂直; D.一点不同截面的应力随着截面方位变化而改变; 2. 应力不变量说明 。 A. 主应力的方向不变; B. 一点的应力分量不变; C.应力随着截面方位改变,但是应力状态不变; D. 应力状态特征方程的根是不确定的; 3 在轴对称问题中,σr 是,τr θ是 。 A.恒为零;B.与r 无关; C.与θ无关; D.恒为常数。 4. 半平面体在边界上受集中力下的解答是 。 A. 精确解; B.圣维南意义下的解; C.近似解; D.数值解。 5. 在与三个应力主轴成相同角度的斜面上,正应力σN = 。 A. σ1+σ2+σ3; B. (σx +σy +σz )/3; C. (σ1+σ2+σ3)/2; D. (σ1+σ2+σ3)/9。 6.等截面直杆扭转中,矩形截面上最大剪应力发生在 。 A .矩形截面长边上;B. 矩形截面短边上; C. 矩形截面中心; D. 矩形截面角点。 矩形薄板自由边上独立的边界条件个数,正确的是 个。 ; B. 3; C. 1; D. 4。 薄板弯曲问题的物理方程有 个。 ; B. 6; C. 2; D. 4。 σx ,σy ,τxy 个沿厚度分布是 。 B.三角分布; C.梯形分布; D.双曲线分布。 。 轴对称应力必然是轴对称位移;B. 轴对称位移必然是轴对称应力; C. 只要轴对称结构,救会导致轴对称应力; D. 对于轴对称位移,最多只有两个边界条件。 11. 下列关于弹性力学基本方程描述正确的是 D .变形协调方程是确定弹性体位移单值连续的唯一条件; 。 A. 几何方程适用小变形条件; B. 物理方程与材料性质无关; C. 平衡微分方程是确定弹性体平衡的唯一条件; 12.矩形薄板受纯剪作用,剪力强度为q 。设距板边缘较远处有一半 径为a 的小圆孔,试求孔边的最大应力和最小应力为 A. 1q, B. 2q, C. 3q, D. 4q. D A CA B B A D A 应力轴对称是说对称轴两端的应力对应点相等,位移轴对称是说对称轴两边对应点位移相等。如是应变位移则各点应力也对称,如是刚体位移和应力无关。

相关主题
文本预览
相关文档 最新文档