当前位置:文档之家› 排气系统设计

排气系统设计

排气系统设计
排气系统设计

奇瑞汽车有限公司设计指南

编制:

审核:

批准:

发动机工程研究一院

目录

一、主题与适用范围

1、主题

2、适用范围

二、排气消声系统的总成说明及功用

三、设计应用

1、设计规则和输入

2、设计参数的设定

2.1 尺寸及重量

2.2 排气背压

2.3 功率损失比

2.4 净化效率

2.5 加速行驶车外噪声

2.6 插入损失以及传递函数

2.6.1 插入损失

2.6.2 传递函数

2.7 尾管噪声

2.8 定置噪声

2.9 振动

3、系统及零部件的设计

3.1 系统布置

3.1.1 布置原则

3.1.2 间隙要求

3.1.3 吊钩位置的选取

3.1.4 氧传感器孔的布置

3.2 消声器的容积确定

3.3 排气管径的选取

3.4 消声器

3.4.1 消声器的截面形状

3.4.2 消声器内部结构

3.5 净化装置

3.6 补偿器

3.6.1 波纹管

3.6.2 球形连接

3.7 橡胶吊环

3.8 隔热部件

3.9 材料选择

3.9.1 排气管、消声器内组件

3.9.2 消声器外壳体

四、排气消声系统的设计开发流程

五、修订说明

六、参考文献列表

一、主题与适用范围

1、主题:

本指南规定了与汽车发动机相匹配的排气消声系统的系统匹配,零部件设计以及开发的流程等。

2、适用范围:

本指南适用于奇瑞所有装汽油或柴油发动机的M1类车的排气消声系统设计二、排气消声系统的总成说明及功用

排气系统包括排气歧管、排气管、排气净化装置、排气消声装置、隔热部件、弹性吊块等。一般地,排气系统具有以下一些功用:

(1)、引导发动机排气,使各缸废气顺畅的排出;

(2)、由于排气门的开闭与活塞往复运动的影响,排气气流呈脉动形式,排气门打开时存

在一定的压力,具有一定的能量,气体排出时会产生强烈的排气噪声,气体和声波在管道中摩擦也会产生噪声,因此在排气系统装有排气消声器来降低排气噪声;

(3)、降低排气污染物CO,HC,NO X等的含量,达到排气净化的作用;

注:在本指南中,我们将只介绍排气管和排气消声装置的详细设计,对排气歧管和排气净化装置的详细设计见其他设计指南。

典型的排气消声系统如图1所示:

图1

三、设计应用

1、设计规则和输入:

1.1 排气系统能很好的将废气顺畅排出,满足发动机的排气背压,功率损失比的要

求。

1.2 排气系统设计能满足现行中华人民共和国法规要求,具体如下:

QC/T 57-93 汽车匀速行使车内噪声测量方法

GB16170-1996 汽车定置噪声限制

QC/T 631-1999 汽车排气消声器技术条件

QC/T 630-1999 汽车排气消声器性能试验方法

GB1495-2002 汽车加速行使车外噪声限值及测量方法

QC/T 58-93 汽车加速行使车外噪声测量方法

GB18352 轻型汽车污染物排放限值及测量方法

GB14365-93 声学机动车辆定置噪声测量方法

GB/T 4759-95 内燃机排气消声器测量方法

JB/T 5081-91 中小型柴油机消声器技术条件

1.3 排气系统零部件必须能经受1000℃的高温要求以及气流冲击,并保证排气系统可靠性达到10万公里或者三年(先到者为准)的要求,并要求在三包期内插入损失不得减少6dB(A)以上,功率损失不得增加3%以上。

1.4 排气系统必须满足顾客对噪声的要求,在整个频率范围内应有足够的消声量,

同时力求避免产生气流再生噪声。

1.5 消声器在满足消声量的前提下要体积小,重量轻,便于安装和维修,有一个较好的价格性能比。除消声器几何尺寸和管路走向应符合装车的要求外,消声器的尾管应美观大方,表面装饰应与车的总体造型相协调。

2、设计参数的设定

2.1 尺寸及重量

尺寸和重量需根据产品所要达到的性能要求以及底盘空间位置来确定,但是在满足性能要求的基础上,做到尽量小为最好。

2.2 排气背压

排气背压指发动机装上整套排气系统后,按QC/T 524-1999设定测点测得的压强(离发动机排气歧管出口或涡轮增压器出口下游75mm处,在排气连接管里测量,测压头与管内壁齐平,误差不大于±0.2kPa)。排气背压越高,排气阻力越大,充气效率也就越低,发动机功率、扭矩损失也越大。一般来说,考虑到发动机的功率和扭矩要求,会对排气系统提出一个具体的排气背压要求。

对自然吸气发动机,排气背压一般设定在30±5kPa。

对增压发动机,排气背压一般设定在40±10kPa。

对于我公司开发的A VL发动机,具体的排气背压要求见表一

表一:

发动机型号排气背压目标值

1.6L CBR VVT <350mbar@rated speed

1.6L Low Cost <350mbar@rated speed

2.0L TCI GDI <500mbar@rated speed

2.0L TCI MPI <500mbar@rated speed

2.0L CBR VVT <350mbar@rated speed

2.0L Low Cost <350mbar@rated speed

3.0L V6 CBR VVT <350mbar@rated speed

2.4L V6 CBR VVT <350mbar@rated speed

4.0L V8 CBR VVT <350mbar@rated speed

1.3L CBR VVT <350mbar@rated speed

1.3L Low Cost <350mbar@rated speed

1.0L CBR VVT <350mbar@rated speed

0.8L CBR VVT <350mbar@rated speed

1.9L TCI HSDI <300mbar@rated speed

1.9L TC HSDI <300mbar@rated speed 1.9L NA HSDI <250mbar@rated speed 1.3L TCI HSDI <300mbar@rated speed

2.9L TCI HSDI

<300mbar@rated speed

一般认为消声器的压力损失由两部分构成:一是局部压力损失;二是管壁沿程摩擦阻力损失,两者都是由于流体运动时克服粘性切应力作功引起的。

局部阻力损失发生在消声器内收缩、扩张等截面突变的地方,大小取决于局部结构型式、管道直径和气流速度,与消声器截面扩张比有关,即1

2

s s m =

。沿程阻力损失发生在消声器管道壁面,其大小取决于管壁粗糙度及气流速度V的大小,而管道直径和气流速度是密切相关的,所以管径的选取至关重要。

所以,通常排气系统应该尽可能地设计成简单的走向,而避免过度弯曲的形状。 2.3 功率损失比

消声器的功率损失比是发动机在标定工况下,使用消声器前后的发动机功率的差值

和没有使用消声器时功率值的百分比。

γ=[(P1-P2)/ P1]×100%

对于γ值,QC/T 631-1999《汽车排气消声器技术条件》规定为<8%,我们一般设定为<5%。 2.4 净化效率

根据尾气排放标准的要求,一般要求排气系统对发动机排气的净化率(净化前后排气的污染物HC 、CO 、NOx 含量之比)要求在90%以上。(具体内容见电控科编制《三元催化器设计指南》)

2.5 加速行驶车外噪声

汽车加速行驶车外噪声需满足现行中华人民共和国的法规规定要求,其具体测量方法和限值见GB1495-2002《汽车加速行使车外噪声限值及测量方法》和QC/T 58-93《汽车加速

行使车外噪声测量方法》。汽车加速行使车外噪声是一个整车噪声衡量标准,影响汽车加速行使车外噪声的因素主要有三/四个:发动机本体噪声,进气系统噪声、排气系统噪声和车胎-路面摩擦噪声,并且将来车胎-路面摩擦噪声会越来越重要。各系统在满足各自的要求的基础上尽量做到更好的噪声水平。

现行标准规定2005.1月以后生产的M1类汽车加速行驶车外噪声限值是74dB(A),以下几点要特别说明:

1、M1类汽车如果装用直喷式柴油机,其限值增加1dB(A)

2、对于越野汽车,其最大总质量大于2t,如果额定功率<150kW,限值增加1dB(A),如果额定功率≥150kW,限值增加2dB(A)。

3、M1类汽车,变速箱前进档多于四个,P>140kW,P/GVM>75kW/t,并且用第三档测试时其尾端出线的速度大于61km/h,其限值增加1dB(A)

通过噪声在汽车产品开发中非常重要,针对不同的市场,要达到不同的通过噪声标准,所以在产品概念设计阶段就必须要确定通过噪声的目标值。同时还要考虑到未来几年的规定变化,这方面可参照欧美法规,欧共体的标准是最严格的,不远的将来汽车通过噪声标准可能为71dB(A)。

2.6 插入损失以及传递函数:

2.6.1插入损失:

消声器的插入损失为装置消声器前后,通过排气口辐射声功率级(或者声压级)之差。

D=L1-L2

对于D值,由于各发动机的噪声水平以及整车类型不同,所以插入损失的目标值也不同。QC/T 631-1999《汽车排气消声器技术条件》规定为>28dB,JB/T 5081-91《中小功率柴油机消声器技术条件》规定功率损失在小于5%时,插入损失应≥25dB。我们要求在发动机各个转速下的插入损失均大于32 dB。

与传递损失只考虑消音元件本身不同,插入损失是考虑一个系统。也就是说除了消音元件本身外,插入损失还包括了声源和出声口(如进气口和排气尾管)的声学特征,因此这种方

法是描述整个系统消音效果的最佳表达方式。

2.6.2 传递函数:

排气系统传递函数是指空气介质传播所引起的声功率的差值,传递损失没有包括声源和管道终结端的声学特性,它只与自身的结构有关。在评价单个消音元件的消音效果或者初步评估系统的消音性能时,通常用传递损失。传递损失是评价消音元件消音效果最简单的一种方法,具体测量方法如下:

图2

排气系统由排气管,副消声器、主消声器组成,如果有三元催化器,则应该同时带上;

激励体声源(能发出频率为20Hz-20000Hz的声源)放置于排气管的入口端,并用橡胶管与排气管相连。

参考麦克风放置与前端橡胶管上,并在内部接受体声源发出的声功率级;

接收麦克风放置于消声器的尾部,接收经过排气系统传递后的声功率级;

两个麦克风所测数值的差值即为排气系统的传递函数的值。

对于传递函数的目标值,根据整车对噪声水平的要求,其设定值也不相同,一般的,我们设定按图3:

图中红线为传递损失的限值,在每个频率下的传递函数的值均在红线下部。根据整车的噪声水平和发动机的类型不同,可对该红线位置进行调整。

2.7尾管噪声(三档节气门全开加速)

排气系统尾管噪声是衡量排气系统消声效果的一个主要性能指标。

尾管噪声的测量方法见图4:

图4

尾管噪声的目标设定如下:

(1)、在急加速和急减速的情况下,整车载荷为70KgX2,按上述方法进行测量的尾管噪声见图5:当发动机转速为1000-2000rpm时,噪声值为82 dB(A),当发动机转速为5000rpm 时,噪声值为92 dB(A),当发动机转速为6000rpm时,噪声值为97 dB(A)。

图5

在急加速和急减速的情况下,整车载荷为70KgX2,按上述方法进行测量的二阶尾管噪声见图6,四阶尾管噪声见图7,六阶尾管噪声见图8,八阶尾管噪声见图9。

图6

图7

图8

图9

对于以上尾管噪声曲线,可以根据不同车型所要达到的噪声水平的不同进行调整。

2.8 定置噪声

定置噪声限值按国标GB16170-1996《汽车定置噪声限制》执行,我们要求定置噪声≤85dB(A)。试验方法按国标GB14365-93《声学 机动车辆定置噪声测量方法》进行;定置是指车辆不行使,发动机处于空载运转状态,定置噪声可评价、检查机动车辆的排气噪声水平,不能表征车辆行使最大噪声级。 2.9 振动

排气系统一端与发动机相连,一端通过挂钩与车体相连。发动机的振动传递给排气系统,然后在通过挂钩传给车体。车体的振动通过座椅、方向盘和地板直接传给顾客,同时车体的振动也会幅射出去,在车内产生噪声,所以控制传到车体的力是排气系统振动控制的最重要的目标之一。

排气系统的振动源主要有四个:发动机的机械振动、发动机的气流冲击、声波激励和车体的振动,车体的振动传递方向与前面三种相反,车体振动会通过挂钩传递到排气系统,这种传递会逆向传递到发动机,从而加大了发动机的振动。

为了控制排气系统的振动,在进行排气系统设计时要注意以下几点:

1、要避免与整车固有频率范围重合,应尽量做到差距越大越好,一般地,车身固有频率在25Hz -34Hz 之间,因此排气系统振动频率不能设计在这个范围内。

2、在设计排气系统时,要使得其模态越少越好。如果模态太多,那么系统某些频率很容易被激励起来,振动容易被传递到车体。通常排气系统应该尽可能地设计成一条直线,而尽量避免弯曲的形状

3、合理选择挂钩的位置,且挂钩的刚度要满足下面的要求: ≥发动机最大转速发动机的汽缸数目

x

120支架频率

4、波纹管和橡胶吊块的设计对排气系统的振动控制至关重要,这部分内容将在波纹管和橡胶吊块的设计指南中进行介绍。 3 系统及零部件的设计

3.1、系统布置

3.1.1 布置原则

对一个完整的排气系统,从前到后,一般布置次序是:预催化器、补偿器(波纹管)、主

催化器、前消声器、后消声器。

排气管用于连接以上不同部件。排气管分段以及连接方式主要根据安装和维修方便确定。

如果补偿器采用球面法兰,一般不把球面法兰布置在催化器之前。

对于满足欧Ⅱ及以下排放标准的排气系统,由于欧Ⅱ标准不涉及冷启动阶段的排放限制,所以一般可不采用预催化器而只采用一个主催化器。对于满足欧Ⅲ及以上排放标准的排气系统,一般在排气歧管出口处布置预催化器(即CCC,Closed Couple Catalyst)或者在预催化器前的排气管段采取良好的保温措施。主催化器一般布置在车身底板下,所以又叫底板下催化器(Under Floor Catalyst)。

消声器有一级、二级、三级之分。二级消声应用最多,SUV、跑车等追求动力性的车辆一般才采用一级消声器。对于二级消声,我们将其分别称为前消声器和后消声器。根据声学原理,消声器摆放在不同的位置,将产生不同的消声效果,一般地,推荐如下的消声器摆放位置(见图10):

图10

3.1.2 间隙要求

排气系统与各相邻部件地间隙关系见图11:

图11

各相邻部件耐温在150℃以下的越远离排气系统越好,相对产生运动部件最少保证与排气系统的间隙大于25mm,同时要保证最小离地间隙符合整车布置要求(目前我公司车型的离地间隙范围是125-155mm,与其他公司的设计有些差异,具体各种车型的最小离地间隙的合理值有待进一步确认)。

3.1.3吊钩位置的选取

排气系统吊钩位置的选择遵循以下原则:

(1)、吊钩应该位于振动的节点上;

(2)、吊钩应该在纵向能够延伸;

(3)、吊耳应该位于车身结构的刚性处。

对于排气系统吊钩位置的选取必须借助CAE分析来进行,首先对排气系统进行各阶模态分析(见图12)来确定排气系统上的最佳吊钩位置,根据此位置来确定车身吊钩位置,并增加车身吊钩位置处的刚性。

图12

3.1.4氧传感器孔的布置

有时氧传感器孔需要布置在前管总成或前消声器总成上,由电控部门确认氧

Vm =k ×P

Vm =消声器的容量(L ) K =0.14 P =输出功率(Ps ) 功率单位是马力,1Ps=1.36×1kW

根据不同车型对噪声的要求水平,K 可选0.10~0.20之间不同的值。图13为消声器容积与发动机功率之间的关系。我们尽量将消声器的容积控制在红线附件,不能超出蓝

线范围。

图13

通常讲,消音容积越大,消音效果就越好,当然其背压也就越大,功率损失增加。但是当消音容积增加到一定的时候,其消音效果的增加慢慢趋缓,如下图所示。

3.3排气管径的选取

为获得良好的噪声和低的背压,在排气管和消声器内的排气流速应分别低于0.35c 和0.25c (c ——声速),我们可根据此要求来计算排气管的最小管径。

假设某发动机最大排气流量为m(kg/h),排气温度为T (K),压力为P(Pa),在温度T 和下

气流密度为ρ(kg/m 3),声速

为c (m/s )。则排气管最小流通面积S min 为:

S min =m/900c ρ。

排气管最小内径为π

min

S 2

d =。 3.4、消声器

消声器一般要求有大的消声量和消声频率范围,小的排气阻力(即排气背压)和良好的耐久性(3年或者10万公里无异常)。

3.4.1消声器的截面形状

消声器的截面形状尽量避免扁平状,并尽可能往圆形靠近,其设计方案的选择如图14的规则

图14

3.4.2消声器内部结构

消声器内部结构的设计是一个很复杂的课题。

按消声器的消声机理,可分为阻性消声器、抗性消声器和阻抗复合型消声器三类。

阻性消声器是利用在管道内适当的布置吸声材料,利用声波在多孔性吸声材料中传播时,因摩擦将声能转化为热能而散发掉,部分的吸收管道中传播的声能从而达到消声的目的,类似电路中的电阻的作用。这类消声器的特性是在中、高频范围内有良好的消声效果,对低频消声性能较差。阻性消声器的传声损失与吸声材料的声学性能、气流通道周长、断面面积以及管道长度等因素有关,结构示意如下所示:

抗性消声器是利用各种形状、尺寸的管道或共振腔,靠管道截面的突变或旁接共振腔等在声传播过程中引起引起阻抗的改变而产生声能的反射、干涉,一部分声能被反射回声源,这样传递声能减少,从而降低所输出的声能,达到消声目的。抗性消声器的消声频带较窄,在中、低频消声效果较好,高频较差。抗性消音器主要包括扩张消音器和旁支管消音器,旁支消音器通常包括赫尔姆兹消音器、四分之一波长管。赫尔姆兹消音器传递损失频带比四分之一波长管的消音频带要宽一些。赫尔姆兹消音器通常用来消除低频噪声,而四分之一波长管用来消除频率比较高的噪声。

扩张室式消声器是抗性消声器最常用的结构形式,也称膨胀式消声器。它是由一个主要腔室和两边与之相连接的管道组成的,其最基本的形式是单节扩张室消声器,如下图所示:

x=

x L

=

扩张消音器的传递损失取决于扩张比和扩张腔室的长度,同时也是波长(或者频率)的函数。

赫尔姆兹消音器是旁支消音器的一种,它由一个消音容器和一根短管组成,短管与主管连接,如图所示:

影响赫尔姆兹消音器消音频率和传递损失的参数有:容器的容积V、连接管道的长度、连接管道截面积和主管的截面积。传递损失还取决于消音器的频率,其峰值在共振频率处,但是传递损失与消音容积的形状没有关系。

四分之一波长管是安装在主管道上的一个封闭的管子,如下图所示:

影响四分之一波长管传递损失的参数有两个,一个是旁支管的截面积与主管截面积的比值m,另一个是波长管的长度。

阻抗复合型消声器是将阻性和抗性消声器结合起来,故从低频到高频都有较好的消声效果。在实际噪声控制工程中,噪声以宽频带居多,通常将阻性和抗性两种结构消声器组合起来使用,以控制高强度的宽频带噪声。目前的汽车消声器的设计中,主要结构采用抗性消声原理,而在其中某些结构则采用阻性原理,而这些阻性消音器也往往是与抗性消音器做成一体而成为混合消音器。典型如图15所示:

排气系统消声器设计技术规范标准

排气消声系统设计技术规范 目录 一、主题与适用范围 1、主题 2 、适用范围 二、排气消声系统的总称说明及功用 三、设计应用 1 、设计规则和输入 2 、设计参数的设定 2.1 尺寸及重量 2.2 排气背压 2.3 功率损失比

2.4 净化效率 2.5 加速行驶车外噪声 2.6 插入损失及传递函数 2.6.1 插入损失 2.6.2 传递函数 2.7 尾管噪声 2.8 定置噪声 2.9 振动 3 、系统及零部件的设计

3.1 系统布置 3.1.1 布置原则 3.1.2 间隙要求 3.1.3 吊钩位置的选取 3.1.4 氧传感器孔的布置 3.2 消声器的容积确定 3.3 排气管径的选取 3.4 消声器 3.4.1 消声器的截面形状 3.4.2 消声器内部结构 3.5 补偿器 3.5.1 波纹管 3.5.2 球形连接 3.6 橡胶吊环 3.7 隔热部件 3.8 材料选择 3.8.1 排气管、消声器内组件 3.8.2 消声器外壳体四、参考文献列表

一、主题与适用范围 1、主题: 本指南规定了与汽车发动机相匹配的排气消声系统的系统匹配,零部件设计。 2、适用范围: 本指南适用于装汽油M1 、N1 类车的排气消声系统设计。 二、排气消声系统的总成说明及功用 排气系统包括排气歧管、排气管、排气净化装置、排气消声装置、隔热部件、弹性吊块等。一般地,排气系统具有以下一些功用: (1) 引导发动机排气,使各缸废气顺畅的排出; (2) 由于排气门的开闭与活塞往复运动的影响,排气气流呈脉动形式,排气门打开时存在一定的压力,具有一定的能量,气体排出时会产生强烈的排气噪声,气体和声波在管道中摩擦也会产生噪声,因此在排气系统装有排气消声器来降低

新排风系统设计说明书

工程文件第 1 页贵州省铜仁市皇玛浴都中央空调工程项目新排风系统设计说明一、工程概况本工程位于贵州省铜仁市建筑功能用途为洗浴中心空调区域为本建筑负一第一层。其中负一层为休息大厅包房和浴室二层休息包房。负一层男浴室面积为330平方女浴面积为140平方米根据甲方提供的建筑平面图估算浴室不考虑空调其它功能房间均设计空调空调面积为1750平方入户大厅空调面积为130平方一层为休息包房空调面积为600平方。入户大厅为负一层与一层之间的夹层。负一层洗浴区由于在使用时产生大量的水蒸汽客人在里面消费时会很不舒服同时水蒸汽会串向其它房间为了把洗浴区的水蒸汽排出故设计新排风系统由于包房没有外窗室内空气较闷故需设计新排风系统。二、新排风系统设计洗浴区排风按换气次数法进行设计每小时进行8次排风新风设计必须保证洗浴区内与周围房间形成负压的形式不让洗浴区内的水蒸汽串入其它房间。负一层男洗浴区设计排风量为8000m3/h 余压为200Pa的轴流风机一台进行排风为了保证洗浴区内形成负压不让水蒸汽串入其它房间同时保证洗浴区空气的舒适度故新风设计5000m3/h 余压180Pa的轴流风机一台供男洗浴区的新风女洗浴区设计排风量为4000m3/h 余压为70Pa的轴流风机一台进行排风为了保证洗浴区内形成负压不让水蒸汽串入其它房间同时保证洗浴区空气的舒适度故新风设计2500m3/h 余压70Pa的轴流

风机一台供男洗浴区的新风包房和休息大厅的新风设计按每人30m3/h进行设计排风采用夹层负压法进行排风也就用排气扇将房间空气排到夹层然后采用轴流风机将夹层的空气排出室外。从面节省排风管节省工程的投资。根据设计计算负一层包房新风量为8000m3/h由于新风进口位置的限制新风管的阻力很大如果采用普通的轴流风机无法将新风送入房间故设计8000m3/h 余压400Pa的风机箱一台给负一层包房送新风负一层排风采用4000m3/h的轴流风机3台从夹层排风同时采用排气扇从房间进行排风将房间空气排至夹层。根据设计计算一层包房新风量为6000m3/h由于新风进口位置的限制和房间分布情况新风管的阻力很大故设计3000m3/h 余压300Pa的风机箱二台即两个新风系统给一层包房送新风一层排风采用6500m3/h的轴流风机从夹层排风同时采用排气扇从房间进行排风将房间空气排至夹层。新风口采用双层百叶风口下送风的形式室外新风进口采用防雨百叶工程文件第2 页贵州省铜仁市皇玛浴都中央空调工程项目风口带过滤网室内排风采用单层百叶风口或排气扇排至排风排风管由排风机排出室外从面保证房间的舒适。

车辆排气系统设计规范

车辆排气系统设计规范

车辆排气系统设计规范 1、目的 随着环保法规对车辆排放的要求越来越高,排气系统在车辆的系统组成和系统设计中,越来越占有重要的地位。为使排气系统满足各阶段国家及地方法规的要求,提高对排气系统的设计和制造质量水平,需对车辆的排气系统的设计提出较规范的要求,以便在设计和制造过程中,参照执行。 2、设计规范 2.1 排气系统及消声器的设计输入 2.1.1 车辆产品的排气系统的配置和走向,依所配车辆的总体结构布置的需要来设计。而消声器的性能开发则需要依所配发动机及其对排气系统的具体要求。在初步设计选型时,应将发动机的有关性能参数及其上的关键件的基准要素等(如曲轴箱后端面与曲轴主轴线的交点坐标、动力线偏移量及倾角等),作为设计条件输入设计,作为消声器选型及性能开发的依据之一。并根据国家、地方及企业有关法规和标准的要求,对系统和消声器的性能设计目标提出要求,见附录1。 2.1.2 排气系统及其消声器在进行初步选型设计时,必须对系统进行结构方案分析和匹配计算分析,并提供选型设计分析报告,见附录2。 2.2 设计原则 2.2.1 排气系统及其消声器的设计,应使排气阻力尽可能的小,以使其对发动机的功率损失尽可能小。 2.2.2 排气系统及其消声器要有较好的音质和较低的音强,即应有较大的插入损失。 2.2.3 排气系统及其消声器要有较好的外观和内在质量及较长的使用寿命。 2.3 排气系统的设计要求和布置 2.3.1 排气管内径的确定在结构布置允许的情况下,排气管内径应尽可能大些,以降低管道内得气流速度,减少气流阻力产生的功率损失和再生噪声。一般应≥发动机排气歧管出口内径。或根据发动机排量等参数,按公式(1) 计算初步确定排气管内径。 D=2 √Q/(πV) (1) 式中:Q—发动机排量;V—气流速度,一般取50~60 m/s 。 2.3.2 排气管的布置和转弯,应使排气尽可能顺畅。管的中心转弯半径一般应≥(1.5~2)D,其折弯成型角应大于90o,以大于120o为宜。整个系统的管道转弯数应尽可能少,一 1

汽车排气系统CADCAE集成开发方法

汽车排气系统CAD/CAE集成开发方法 华中科技大学张杰金国栋钟绍华傅强 摘要:本文探讨了一种新颖的汽车排气系统CAD/CAE 集成开发的思路和方法,此法将传统的经验设计理论与先进的专业软件应用结合起来。首先明确系统的需求和目标,然后建立起排气系统集成开发的环境,运用软件工程的思想进行整体规划和程序开发的模块化,这种设计方法在很大程度上提高了设计精度和功效。文中以消声器为例给出了其设计方法和在软件上实现的流程图。 关键词:排气系统集成开发催化转换器消声器 1 排气系统开发现状分析 日益严格的排放法规和人类环境意识的增强对汽车节能净化提出了高标准的要求,而排气系统作为现代内燃机动力汽车的一个重要总成,其性能直接决定了发动机排气损失以及污染物和气动噪声的排放量,因此如何对排气系统进行有效的设计分析,如何使其与发动机合理匹配等,就成为现代汽车节能与净化的关键技术之一。 在我国长期以来,汽车排气系统的开发仍然停留在各部件单一设计,依赖简单理论估算、经验设计和大量试验的基础上[1],这样不仅费时费力,给排气系统结构和性能的进一步优化带来困难;而且,单独对消声器或催化器局部分散设计不能完全反映排气系统的整体耦合特征,难以设计出令人满意的产品。随着计算机软硬件技术以及计算流体力学(CFD)等仿真分析软件的飞速发展,一些商用软件逐渐完善,成为研究设计人员的有效工具。例如通过对催化器和消声器进行数值模拟研究其阻力特性等[2],这一方面为结构优化提供充分的理论指导,另一方面也大大降低了实际试验的工作量,缩短设计周期,并且可以探索多种可能设计。 然而单一的商用软件往往不能满足复杂系统的整体开发,而需要选择相关软件进行二次开发和科学集成。目前针对整个排气系统进行集成开发研究的还未见报道。为满足排气系统模块供应商产品开发的需要,我们选择了一些有专业特点的设计与分析软件,以数据库管理系统为纽带,以VC++为开发语言,对这些软件进行了集成和二次开发,初步完成了汽车排气系统CAD/CAE 软件,使其能在一个用户界面下完成整个排气系统的设计(CAD)与分析(CAE)功能,使传统的经验设计向精确的理论设计过渡,很大程度上提高了设计精度和功效。 2 排气系统CAD/CAE 系统的任务和功能 2.1 任务要求

发动机排气系统设计规范

发动机排气系统设计规范 1 范围 本规范规定了柴油车发动机排气系统的设计。 本标准适用于所有新开发的带发动机的车型。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 13094-2017 《客车结构安全要求》 GB 7258-2017 《机动车运行安全技术条件》 JB/T 1094 《营运客车安全技术条件》 3 定义 本文件所指排气系统,其定义为搭载传统汽、柴油或者天然气发动机的发动机排气系统,包括混合动力车型的发动机排气系统。 发动机排气系统由排气管路、催化消声器、后处理系统(包含尿素泵、填蓝罐、填蓝加热电磁阀、氮氧化物传感器等部件)、消声器悬置系统等组成。随着环保法规对车辆排放的要求越来越高,排气系统在车辆的系统组成和系统设计中,越来越占有重要的地位。为使排气系统满足各阶段国家及地方法规的要求,提高对排气系统的设计和制造质量水平,需对车辆的排气系统的设计提出较规范的要求,以便在设计和制造过程中,参照执行。 3.1 催化消声器 用于汽车尾气处理,是集气体净化、气体减噪等多功能于一体的设备。一般情况下,设备前部设置曲面造型多孔盘片将会有利于降低气动噪音;而尾气净化(即NOx脱除),则依赖于尿素溶液喷雾蒸发和后部催化剂层的共同作用下的SCR反应工艺。 3.2 插入损失 对于消音器来说,插入损失是指空间某固定点所测得的安装消声器前后的声压级或者声功率级之差。 3.3 排气背压 指发动机排气的阻力压力。一般在增压器废气口至消声器入口的管段处测得。 4 要求

排气系统设计开发指南

汽车有限公司 . 01 页次:1/7 版次:

1. 主题与适用范围 1.1 主题 本指南制订了与汽车发动机相匹配的消声排气系统的开发流程及设计指南; 1.2 适用范围 本指南适用于汽车消声排气系统的设计开发 2. 参考标准和相关文件 QC/T 631—1999 汽车排气消声器技术条件 QC/T 630—1999 汽车排气消声器性能试验方法 QC/T 58—1993 汽车加速行驶车外噪声测量方法 QC/T 10125—1997人造气氛腐蚀试验盐雾试验 3.定义 3.1 排气消声器 排气消声器是具有吸声衬里或特殊形式的气流管道,可有效的降低气流噪声的装置。 3.2 插入损失 消声器的插入损失为装消声器前后,通过排气口辐射的声功率级之差。 3.3 排气背压 按QC/T524设置排气背压测量点,当分别带消声器和带空管时,测点处的相对压力值之差。 3.4 功率损失比 消声器的功率损失比是指发动机在标定的工况下,使用消声器前后的功率差值和没有使用消声器时功率的百分比。 4.开发流程及设计指南 4.1 接受产品开发任务并做好开发前的准备工作 开发之初,需要了解如下信息,作为设计输入: 1、发动机的排量、额定功率、额定扭矩等相关参数; 2、整车底盘走向,空间布局; 3、发动机对排气背压、功率损失比的要求; 4、噪声标准的制定; (1)、插入损失大于35dB; (2)、整车车外加速噪声小于74 dB;

4.2 方案设计 1、消声器的容量设计计算 消声器的容量关系到发动机的功率和扭矩,因此容量的设计将决定整车的动力性。一般地,消声器的容量有如下的计算公式: Vm=k×P Vm=消声器的容量(L) K=0.14 P=输出功率(Ps) 2、消声器的位置确定

排气系统设计开发指南

1.1 主题 本指南制订了与汽车发动机相匹配的消声排气系统的开发流程及设计指南; 1.2 适用范围 本指南适用于汽车消声排气系统的设计开发

2. 参考标准和相关文件 QC/T 631—1999 汽车排气消声器技术条件 QC/T 630—1999 汽车排气消声器性能试验方法 QC/T 58—1993 汽车加速行驶车外噪声测量方法 QC/T 10125—1997 人造气氛腐蚀试验盐雾试验 3.定义 3.1 排气消声器 排气消声器是具有吸声衬里或特殊形式的气流管道,可有效的降低气流噪声的装置。 3.2 插入损失 消声器的插入损失为装消声器前后,通过排气口辐射的声功率级之差。 3.3 排气背压 按QC/T524设置排气背压测量点,当分别带消声器和带空管时,测点处的相对压力值之差。 3.4 功率损失比 消声器的功率损失比是指发动机在标定的工况下,使用消声器前后的功率差值和没有使用消声器时功率的百分比。 4.开发流程及设计指南 4.1 接受产品开发任务并做好开发前的准备工作 开发之初,需要了解如下信息,作为设计输入: 1、发动机的排量、额定功率、额定扭矩等相关参数; 2、整车底盘走向,空间布局; 3、发动机对排气背压、功率损失比的要求; 4、噪声标准的制定; (1)、插入损失大于35dB; (2)、整车车外加速噪声小于74 dB; 4.2 方案设计 1、消声器的容量设计计算 消声器的容量关系到发动机的功率和扭矩,因此容量的设计将决定整车的动力性。一般地,消声器的容量有如下的计算公式: Vm=k×P Vm=消声器的容量(L) K=0.14 P=输出功率(Ps) 2、消声器的位置确定

设计说明书

油壶盖模具设计说明书

目录 一、塑件成型工艺分析 1、塑料成型特性 2、塑件的结构工艺性 3、计算塑件的体积和重量 4、确定型腔数目 5、塑件注射工艺参数的确定 二、注射模的结构设计 1、确定分型面 2、浇注系统的设计 (1)主流道设计 (2)分流道的设计 (3)点浇口设计 (4)冷料穴设计 3、型腔、型芯的结构设计 4、推出机构的确定 5、冷却系统的设计论证 三、主要零部件的设计计算 1、成型零件的成型尺寸计算 2、模具型腔壁厚的确定 3、模具型腔模板总体尺寸的确定 4、标准模架的确定 四、塑料注射机有关参数的校核 1、模具闭合高度的确定 2、模具闭合高度的校核 3、模具安装部分的校核 4、模具开模行程的校核 5、注射量的校核 五、小结

一、塑件成型工艺分析 1、塑料成型特性 低密度聚乙烯(LDPE)又称高压聚乙烯,为支链型线型分子结构的热塑性塑料。结晶度为45%~65%,相对分子质量较小,密度为0.91~0.94g/cm3,压缩比为1.84~2.3,比热容为2.30J/(g﹒℃)。低密度聚乙烯的化学稳定性较高,能耐大多数酸、碱及盐的侵蚀,但不耐强氧化性酸的腐蚀,除苯及汽油外,一般不溶于有机溶剂。耐低温性能好,在-60℃下仍具有较好的力学性能,但使用温度不高,LDPE的使用温度在80℃以下。低密度聚乙烯在热、光及氧的作用下会发生老化变脆,力学性能和电性能下降。在成型时,氧化会引起熔体黏度下降和变色,产生条纹,影响塑件质量。因此,需添加抗氧剂及紫外线吸收剂等。 低密度聚乙烯的成型特性为: (1)成型性好,可用注射、挤出及吹塑等成型加工方法。 (2)熔体黏度小,流动性好,溢边值为0.02mm;流动性对压力敏感,宜用较高压力注射。 (3)质软易脱模,当塑件有浅侧凹(凸)时,可强行脱模。本塑件的螺纹成型即采用强行脱模方式。 (4)易产生应力集中,严格控制成型条件,塑件成型后退火处理,消除内应力;塑件壁厚宜小,避免有尖角,脱模斜度宜取1°~3°。 (5)可能发生熔体破裂,与有机溶剂接触可发生开裂。 (6)冷却速度慢,必须充分冷却,模具设计时应有冷却系统。 (7)成型温度范围:169~240℃.熔融温度低、熔体黏度小且塑件的质量小,塑件可采用柱塞式塑料注射机成型。严格控制模具温度,一般在35~65℃为宜,模具应采用调质处理。 (8)收缩率大且波动范围大,方向性明显(取向),不宜采用直浇口,易翘曲,结晶度及模具冷却条件对收缩率影响大,应控制模温,保证冷却均匀稳定。 (9)吸湿性小,成型前可不干燥。 2、塑件的结构工艺性 产品如下图: 三维模型图

发动机排气管设计原理

发动机消音排气管设计 活塞式发动机排气系统主要由排气管、消音器、触媒转换器及其他附属元件构成。 工作原理和功能: 一般排气管材质大多为铁管,但在高温及湿度的反复作用下容易氧化生锈。而排气管属于外观部件,所以大都在表面喷上耐热的高温漆或者电镀。但是无行之中也增加了重量,因此现在许多改用不锈钢材质,甚至是竞技用钛合金排气管。 四冲程多缸发动机大多采用集合型式排气管,就是将各缸的排气管集结,再由一支尾管排出废气。 以四缸车举例,通常用4 in 1的型式,优点不仅是可以扩散消音更可以利用各缸的排气惯性提高排气效率来增加马力输出。 但这一效果只能在某个转速范围内有明显的发挥。因此必须从骑乘的需求目的来设置集合管实际发挥发动机马力的转速区域。 早期多缸摩托车的排气设计均采用各缸独立的排气系统。以此避免各缸的排气干涉,利用排气惯性与排气脉冲来提高效率。缺点是:在所设定的转速范围以外,扭力值下降比集合管更多。这是独立排气系统被集合管取代的最大之原因。 排气干涉 集合管在整体上表现优于独立管,但在设计上要有更高的技术含量来降低各缸的排气干涉。通常做法是先把点火相对缸(1~4;2~3)的两支排气管集中在一起,再集合两组点火相对缸的排气管。就是4 in 2 in 1型式,这是避免排气干涉的基本的设计方式。 理论上4 in 2 in 1比4 in 1要更有效率,外观上也不同。但实际上两者的排气效率区别很小,因为4 in 1的排气管里有导向隔离板,所以使用效果区别不大。不管是怎样设计都是为了使发动机有更大的马力输出和更宽广的动力范围。 4 in 2 in 1形式排气管 排气惯性 气体在流动过程中具有一定惯性,排气惯性比进气惯性来的大。因此可以利用排气惯性的能量来提高排气效率,在高性能发动机上排气惯性具有很大的作用。一般人认为废气是在排气行程时由活塞推挤出去的,当活

汽车电气系统设计说明书

电气系统设计说明书 一、设计依据 根据奇瑞MMPV运动型多功能轿车开发目标的要求及其系列配置的要求,参考国内同类型的车型,结合奇瑞公司的生产制造能力进行开发设计。 二、达到目标 该车型的电气设计从按整车的最高配置进行设计,设计过程中把所有的电气选装件都纳入设计范围内,从而满足该车型的从经济型到豪华型的系列配置。 三、设计方案 根据设计任务书的要求,结合电气系统的分类,就整车的电气系统进行以下方案的确定。首先把电气系统按基本配置和选装配置进行分类确定。 (一)、基本配置: 1、电源启动系 电源起动系主要是确定起动机、蓄电池、发电机、电压调节器等电器件的类型和型号型号和规格大小。 (1)起动机的确定 a、起动机类型的确定 首先根据选定的发动机确定启动机(如果发动机未带启动机),起动机按控制装置一般分为: ①接操纵式起动机发动机 ②电磁操纵式起动机 我们选用流行的电磁操纵式起动机。 b、起动机功率的确定 选定后我们可以根据以下的计算公式确定启动机的大小: P=Mn/716.2(马力) (1马力=735W) 起动机的输出功率P可以通过测量电枢轴上的输出转矩M和电枢的转速n来确定。 M是发动机的起动阻力矩,单位Kg.m(1Kg.m=9.8N.m),也可以通过发动机的工作容积V求出,其经验公式为: 汽油发动机:M=(3.5~4)V 但目前的发动机大多直接配带起动机,因此需要选型的较少。

(2)蓄电池的确定 a、蓄电池类型的确定 蓄电池的主要作用是向起动机提供大的起动电流、整车用电器供电和在发电机发电时蓄能。蓄电池分为普通蓄电池和改进型铅(酸)蓄电池。我们根据该车型的特点选用免维护铅蓄电池。 b、蓄电池容量的确定: 现起动机的额定功率为P S k W,根据经验公式 Q20=(500-600)P S/U得知, Q20MAX=500×P S /12×735= (A.h) Q20MIN=600×P S /12×735= (A.h) 根据初步选用的DA465 16M/C1发动机我们可以却动确定起动机功率为0.8k W。蓄电池容量为45A.h (3)发电机的确定 a、发电机类型的确定 发电机是汽车的主要电源,其功用是:在发动机正常工作转速范围内,向汽车的用电设备(起动机除外)供电,当蓄电池的电量不足时向蓄电池供电。目前汽车上的发电机大都采用交流发电机,交流发电机可分为普通型和改进型两大类。改进型的如内装调节器(整体式)、带泵型、永磁型等。根据该类型车的特点及整车电器件的情况我们选用整体式交流发电机(JFZ型)。 b、发电机功率大小的确定 根据整车用电设备功率的大小,为了保证整车的电量平衡,我们需要确定发电的功率大小,此外还要考虑发电机的大小,使发电机能得到合理的利用。 发电机的功率确定主要按以下方式进行: 1)、首先测定所有持久耗电和长期耗电电器在14V时的功率需用量。根

排气再循环(EGR)系统原理说明

排气再循环系统(EGR) 燃烧原理:燃烧温度越高,NOx产生越多,在最适合于燃烧的点火时期点火及最经济的空燃比时,产生的NOx最多。为了减少NOx的排放,应该考虑不利于燃烧的空燃比及点火时期,可是这样又容易产生不完全燃烧,增加HC及CO的排放,还会使发动机的功率下降。可以较好地解决这一矛盾的技术称为排气再循环技术 (Exhaust Gas Recirculation),缩写为EGR。EGR可使发动机排出气体的一部分重新进入进气系统,引入不活性气体(主要是CO2)到燃烧室,增加燃烧室内气体的热容量,使最高燃烧温度下降,故可抑制 NOx的生成。 下面简单介绍一下EGR系统的工作原理: EGR(废气再循环系统),主要用来降低废气中氮氧化合物的排放量。其原理如上图所示。

ECU根据发动机转速、负荷(节气门开度)、温度、进气流量、排气温度控制电磁阀适时地打开,进气管真空经电磁阀进入EGR阀真空膜室,膜片拉杆将EGR阀门打开,排气中的少部分废气经EGR阀进入进气系统,与混合气混合后进入气缸参与燃烧,降低了燃烧时气缸中的温度,因NOx是在高温富氧的条件下生成的,故抑制了NOx的生成,从而降低了废气中的NOx 的含量。EGR系统的主要元件是位于进气歧管上的EGR阀。在发动机暖机运转和转速超过怠速时,EGR阀开启,使少量的废气进入进气歧管,与可燃混合气一起进入燃烧室;当发动机在怠速、低速、小负荷、及冷机时,为了避免发动机的动力性能受到影响,ECU控制EGR阀关闭。 EGR阀中有一与其做成一体的EGR阀位置传感器(EVP Sensor),该传感器是一电位计式位移传感器,用于检测EGR阀的实际位置,输出相应电压信号给控制器,控制器据此判断阀门是否对ECU的指令做出正确响应。同时,它的信号输出也是发动机ECU计算废气再循环流量的依据。通常,EVP 传感器是一个三线传感器,一条是发动机ECU提供的电源电压,另外一条是传感器的接地线,第三条是传感器给发动机ECU的反馈信号输出线;在EGR 阀关闭时产生1V以下的电压,在EGR阀打开时产生5V以下的电压。它是EGR系统中的重要传感器,一个损坏的EVP传感器会造成喘车现象、发动机产生爆震、怠速不良和其他行驶性能故障,甚至检查维护(I/M)尾气测试也不正常。 过度的废气参与再循环,将会影响混合气的着火、性能,从而影响发动机的动力性,特别是在发动机怠速、低速、小负荷及冷机时,再循环的废气会明显地影响发动机性能。所以,当发动机在怠速、低速、小负荷及冷机时,电脑控制废气不参与再循环,避免发动机性能受到影响;当发动机超过一定的转速、负荷及达到一定的温度时,电脑才控制少部分废气参与再循环。而且,参与再循环的废气量根据发动机转速、负荷、温度及废气温度的不同而不同,以达到废气中的NOx最低。

汽车排气系统设计原则分析

汽车排气系统设计原则分析 摘要:汽车排气系统是传统燃油发动机管理系统的重要组成部分之一。排气系统承担了控制排气污染、降低排气噪声的重要功能,同时排气系统承受着500℃到900℃的高温,是汽车构造中最主要的热源之一。为了减少排气系统高温对周边件功能、耐久性能的影响,文章从总布置设计角度出发,分析了排气系统与周边件间隙确定方法及周边件隔热防护措施,从而避免了由于间隙过小及隔热防护不到位引发的火烧车现象和周边件功能、耐久性能失效问题。 关键词:排气系统;周边件;隔热防护;间隙 1引言 汽车排气系统是传统燃油发动机管理系统的重要组成部分之一,其负责将发动机工作过程中燃烧的废气排放到大气中,对尾气净化、噪声降低起着非常关键的作用[1]。排气系统与发动机增压器出口相连,布置在底盘下方,且承受着500℃到900℃的高温,是汽车构造中最主要的热源之一。排气系统主要分为热端和冷端。热端由三元催化转化器总成、颗粒捕捉器和支架等组成。冷端由消声器总成、连接管路和橡胶吊挂等组成。排气系统热端与增压器出口相连,最高温度可达到900℃以上,排气系统冷端通过法兰与热端相连,温度相对较低,但靠近热端处的最高温度也可达到500℃以上。排气系统周边件复杂多样,汽车工作时,排气系统表面温度很高,由于受到车身、底盘等系统的影响,排气系统周边难免会布置一些耐受温度较低的零部件。受周边件耐热、耐久性能要求的影响,周边件与排气系统的设计间隙在排气系统设计布置中至关重要。间隙过小,排气系统辐射到周边件上的温度超过其耐温要求易导致周边件功能失效、耐久老化,严重者可引发火烧车问题。间隙过大,易造成布置空间的浪费。为了更好地避免由于间隙问题及隔热防护不到位引发的火烧车现象和周边件功能、耐久性能失效问题,本文着重阐述了总布置设计时,排气系统与周边件间隙确定原则及周边件隔热防护措施。 2排气系统与周边件设计间隙确定原则 2.1设计要求对标法。总布置设计初期,排气系统与周边件间隙应满足保安防灾要求,如表1所示[2]。排气系统与周边件间隙要求主要是经过前期大量的设计验证及对标标杆车并参考各大车企设计要求总结而来。总布置设计初期,保安防灾要求是校核并确定数据设计间隙的第一依据。 2.2温度场仿真分析法。总布置设计初期,由于受整车布置空间的影响,排气系统与周边件间隙无法满足设计要求的方案是不可避免的。为了保证方案的可行性,需进行温度场仿真分析,以验证排气系统辐射到周边件上的温度是否满足其耐温要求,确保周边功能件正常

排气系统设计开发指南

在对本指南进行任何复印之前必须查阅有效程序清单,确认本程序版次的有效性。 1. 主题与适用范围 1.1主题 本指南制订了与汽车发动机相匹配的消声排气系统的开发流程及设计指南; .专业

汽车有限公司 版次: 01 页次: 2/8 1.2适用范围 本指南适用于汽车消声排气系统的设计开发 2. 参考标准和相关文件 QC/T 631 —1999汽车排气消声器技术条件 QC/T 630 —1999汽车排气消声器性能试验方法 QC/T 58 —1993 汽车加速行驶车外噪声测量方法 QC/T 10125 —1997 人造气氛腐蚀试验盐雾试验 3.定义 3.1排气消声器 排气消声器是具有吸声衬里或特殊形式的气流管道,可有效的降低气流噪声的装置。 3.2插入损失 消声器的插入损失为装消声器前后,通过排气口辐射的声功率级之差。 3.3排气背压 按QC/T524设置排气背压测量点,当分别带消声器和带空管时,测点处的相对压力值之 差。 3.4功率损失比 消声器的功率损失比是指发动机在标定的工况下,使用消声器前后的功率差值和没有使用 消声器时功率的百分比。 4.开发流程及设计指南 4.1接受产品开发任务并做好开发前的准备工作 开发之初,需要了解如下信息,作为设计输入: 1、发动机的排量、额定功率、额定扭矩等相关参数; 2、整车底盘走向,空间布局; 3、发动机对排气背压、功率损失比的要求; 4、噪声标准的制定;

汽车有限公司 版次: 01 页次: 3/8 (1)、插入损失大于35dB ; (2)、整车车外加速噪声小于74 dB ;

汽车有限公司 版次: 01 页次: 4/8 4.2方案设计 1、消声器的容量设计计算 消声器的容量关系到发动机的功率和扭矩,因此容量的设计将决定整车的动力性。一般地,消声器的容量有如下的计算公式: V m = k x P V m =消声器的容量(L) K= 0.14 卩=输出功率(Ps) 2、消声器的位置确定 根据声学原理,消声器摆放在不同的位置,将产生不同的消声效果,一般地,推荐如下的消声器摆放位置: 3、消声器的截面形状的设计 消声器的截面形状尽量避免扁平状,并尽可能往圆形靠近,推荐长度和截面积之比为 L/D=3-4 ■■■ 三元催化器预消声器主消声器 IL

汽车排气系统毕业设计

汽车排气系统毕业设计 篇一:车辆排气系统设计规范 车辆排气系统设计规范 车辆排气系统设计规范 1、目的 随着环保法规对车辆排放的要求越来越高,排气系统在车辆的系统组成和系统设计中,越来越占有重要的地位。为使排气系统满(本文来自:小草范文网:汽车排气系统毕业设计)足各阶段国家及地方法规的要求,提高对排气系统的设计和制造质量水平,需对车辆的排气系统的设计提出较规范的要求,以便在设计和制造过程中,参照执行。 2、设计规范 2.1 排气系统及消声器的设计输入 2.1.1 车辆产品的排气系统的配置和走向,依所配车辆的总体结构布置的需要来设计。而消声器的性能开发则需要依所配发动机及其对排气系统的具体要求。在初步设计选型时,应将发动机的有关性能参数及其上的关键件的基准要素等(如曲轴箱后端面与曲轴主轴线的交点坐标、动力线偏移量及倾角等),作为设计条件输入设计,作为消声器选型及性能开发的依据之一。并根据国家、地方及企业有关法规和标准的要求,对系统和消声器的性能设计目标提出要求,

见附录1。 2.1.2 排气系统及其消声器在进行初步选型设计时,必须对系统进行结构方案分析和匹配计算分析,并提供选型设计分析报告,见附录2。 2.2 设计原则 2.2.1 排气系统及其消声器的设计,应使排气阻力尽可能的小,以使其对发动机的功率损失尽可能小。 2.2.2 排气系统及其消声器要有较好的音质和较低的音强,即应有较大的插入损失。 2.2.3 排气系统及其消声器要有较好的外观和内在质量及较长的使用寿命。 2.3 排气系统的设计要求和布置 2.3.1 排气管内径的确定在结构布置允许的情况下,排气管内径应尽可能大些,以降低管道内得气流速度,减少气流阻力产生的功率损失和再生噪声。一般应≥发动机排气歧管出口内径。或根据发动机排量等参数,按公式 (1) 计算初步确定排气管内径。 D=2 Q/(πV) ????????????????????(1) 式中:Q—发动机排量; V—气流速度,一般取 50~60 m/s 。 2.3.2 排气管的布置和转弯,应使排气尽可能顺畅。

紧急避险系统设计说明书

紧急避险系统设计说明书 一、设计依据 1、《煤矿井下紧急避险系统建设管理暂行规定》; 2、《煤矿井下安全避险“六大系统”建设完善基本规范(试行)》。 3、《煤矿安全规程》。 二、设计方案 (一)基本方案 1、第一级避险系统 现在15分钟化学氧自救器更换为45分钟压缩氧自救器,重新购置压缩氧自救器1800台发放到每个下井职工手中,并留有备用。 2、第二级避险系统 拟在井下设置永久避难硐室2个,分别设置在:三采区改造石门至三采区上部车场挂口处、+475东翼边界放水巷。 设置临时避难硐室3个,分别设置在:二采区226车场、三采区中部车场、1321放水巷下平巷。 (二)紧急避险系统类型 煤矿井下紧急避险系统设计中的紧急避险设施建设主要包括永久避难硐室及临时避难硐室建设,由于我公司矿井井下区域已施工的巷道在设计之初时未考虑摆放可移动式救生舱,造成已掘巷道断面尺寸不够,因此在此次设计中,

只考虑了设计硐室作为永久避难硐室和临时避难硐室建设。紧急避险系统建设的主要内容包括为入井人员提供自救器、建设井下紧急避险设施、合理设置避灾路线、科学制定应急预案等。紧急避险设施应具备安全防护、氧气供给保障、有害气体去除、环境监测、通讯、照明、人员生存保障等基本功能。 (三)紧急避险设施分布地点依据 1、紧急避险设施布置依据 根据安监总煤装【2011】15号文件《国家安全监管总局国家煤矿安监局关于印发煤矿井下紧急避险系统建设管理暂行规定的通知》中第5条“永久避难硐室是指设置在井底车场、水平大巷、采区(盘区)避灾路线上,具有紧急避险功能的井下专用巷道硐室,服务于整个矿井、水平或采区,服务年限一般不低于5年;临时避难硐室是指设置在采掘区域或采区避灾路线上,具有紧急避险功能的井下专用巷道硐室,主要服务于采掘工作面及其附近区域,服务年限一般不大于5年”的规定。另外考虑到避难硐室不宜设置在变电所、火药库或者停车点,因为它们存在火灾隐患;避难硐室还应该远离各种地质构造区域,如断层、岩层断裂破碎带,大的地下位移如地震有可能破坏避难硐室及其内部设备;避难硐室的位置还要考虑不能设置在井下容易积水的地点,避免水患,要选择在足够强度的煤层或者岩层中,并且要有足够的非可燃物保护厚度。 2、下井人员统计 根据现有人员定位系统和井口考勤人员校对,每班最大

排气系统设计

奇瑞汽车有限公司设计指南 编制: 审核: 批准: 发动机工程研究一院

目录 一、主题与适用范围 1、主题 2、适用范围 二、排气消声系统的总成说明及功用 三、设计应用 1、设计规则和输入 2、设计参数的设定 2.1 尺寸及重量 2.2 排气背压 2.3 功率损失比 2.4 净化效率 2.5 加速行驶车外噪声 2.6 插入损失以及传递函数 2.6.1 插入损失 2.6.2 传递函数 2.7 尾管噪声 2.8 定置噪声 2.9 振动 3、系统及零部件的设计 3.1 系统布置 3.1.1 布置原则 3.1.2 间隙要求 3.1.3 吊钩位置的选取

3.1.4 氧传感器孔的布置 3.2 消声器的容积确定 3.3 排气管径的选取 3.4 消声器 3.4.1 消声器的截面形状 3.4.2 消声器内部结构 3.5 净化装置 3.6 补偿器 3.6.1 波纹管 3.6.2 球形连接 3.7 橡胶吊环 3.8 隔热部件 3.9 材料选择 3.9.1 排气管、消声器内组件 3.9.2 消声器外壳体 四、排气消声系统的设计开发流程 五、修订说明 六、参考文献列表

一、主题与适用范围 1、主题: 本指南规定了与汽车发动机相匹配的排气消声系统的系统匹配,零部件设计以及开发的流程等。 2、适用范围: 本指南适用于奇瑞所有装汽油或柴油发动机的M1类车的排气消声系统设计二、排气消声系统的总成说明及功用 排气系统包括排气歧管、排气管、排气净化装置、排气消声装置、隔热部件、弹性吊块等。一般地,排气系统具有以下一些功用: (1)、引导发动机排气,使各缸废气顺畅的排出; (2)、由于排气门的开闭与活塞往复运动的影响,排气气流呈脉动形式,排气门打开时存 在一定的压力,具有一定的能量,气体排出时会产生强烈的排气噪声,气体和声波在管道中摩擦也会产生噪声,因此在排气系统装有排气消声器来降低排气噪声; (3)、降低排气污染物CO,HC,NO X等的含量,达到排气净化的作用; 注:在本指南中,我们将只介绍排气管和排气消声装置的详细设计,对排气歧管和排气净化装置的详细设计见其他设计指南。 典型的排气消声系统如图1所示: 图1 三、设计应用

发动机进排气系统

汽车构造教案

空气滤清分为三种基本的滤清方法: 空气滤清器有惯性式、油浴式、过滤式三类。 惯性式是利用空气中所含尘土与杂质密度比空气大的特点,在空气吸入气缸的途径中使其急速旋转或改变方向,在离心力或惯性力的作用下,将尘土与杂质甩到外围而与空气分离; 油浴式它利用油浴把空气流在转折时甩出的尘土与杂质粘住,避免二次尘土与杂质吸入; 过滤式是引导气流通过带有细小孔的滤芯把尘土与杂质挡在滤芯外面,如纸质滤芯,金属丝滤芯.纤维,多孔瓷等。 惯性式空气滤清器以惯性原理构成的旋流器,它对清除空气中较大颗粒的尘土特别有效,其滤清效率约50%一60%,常用作多尘土地区工作的车用燃机上的空气粗滤器。 油浴式原理构成的油浴式空气滤清器,综合了惯性式和过滤式两种滤清原理,其滤清效率达95%~97%; 过滤式原理构成的纸质等空气滤清器,是在汽车,特别是在小轿车上用得十分广泛的一种,其滤清效率可达99.5%以上,且性能稳定。 纸质空气滤清器在标准含尘条件下正常使用寿命为2一5万千米。 二、进气管 1.进气管是连接空气滤清器和气缸盖进气道之间的管子。在汽油机上,有时把化油器或电子喷射节气门阀体与气缸盖进气道间的管子称为进气管。 进气管,特别是自然吸气车用高速燃机进气管,对燃机的油耗、功率、扭矩、排放等有重要。 2.分类:因而出现多种结构型式。大致可归结为:简单进气管、共振式进气管和带谐振腔的进气管三种(图6—13)。 简单进气管常用在车用柴油机和前几年的汽油机上,这种进气管结构简单,但

由于进入各气缸的气流阻力、路程长短和气流方向、速度的差异,致使各气缸进气不均匀。在电控喷射汽油机上由于喷油器直接在进气门附近喷射汽油,喷射的油雾颗粒细小,进气管无需采取预热措施。 共振式进气管较细长,与各气缸相连的各个管于长度大体一致,能很好的匹配。共振式进气管与各气缸单独连接,可利用进气气流的脉动效应以增强进气效果。进气效果的强弱取决于进气管长度,直径和燃机转速。 带谐振腔的进气管如图5-2c所示,有一个容积较大的谐振腔和无需过长的进气管,就可得到较低的谐振频率。它与共振式进气管的区别在于其谐振频率不必与进气冲程频率相同(或整数倍),但与谐振腔相连的各个短的进气管间的进气间隔必须相等。改变谐振腔的容积,可调节燃机的最大扭矩和相应的转速,但不可能在燃机整个转速围增加扭矩。带谐振腔的进气管还能降低进气噪声。 5.2.2排气消声器 1.组成; 排气系统常由排气歧管、排气总管、催化反应器、排气消声器、排气尾管等组成。 目前在轿车上流行的排气消声器(图5—4)由前消声器2,中消声器4和后消声器6以及连接管等组成,并焊接成一个整体,以保持消声器的坚固性。 2.消音器原理: 前消声器采用谐振原理(图5-4a).由三个大小不同的谐振室,彼此由穿孔管8贯通。穿孔管、隔板和断面的突变是谐振室的基本声学元件,它们作为声源的发射体.彼此间利用声波的相互干涉和在谐振室传播的声波又向这些声源反射,从而达到消声的效果。谐振器对抑制低频声波特别有效。中消声器采用谐振器和吸声原理(图5-4b)。两室之间为突然膨胀,从反射孔流出的气体再在穿孔管中折返后排出。采用吸声原理的后消声器(图5—4c),在穿孔管外面装填了吸声材料。轿车和载货汽车排气消声器的总容积分别相当于燃机排量的4~10倍和3~8倍燃机排

废气处理系统废气塔设计方案说明

电镀车间通风及废气治理工程设计方案 (方案编号:G-HO-002) 建设单位: 设计单位: 二○○四年一月五日

某某有限公司新增了锌合金双阴极电镀线,设备正在安装主,根据环保三同时原则,电镀车间的通风及废气治理需要规划设计,受其委托,本公司提供设计方案。 一、设计依据 1.《大气污染物综合排放标准》(GB16297-96)新污染源二级 标准。 2.《广东省大气污染物排放标准》(DB4427-2001) 3.《工业企业设计卫生标准》(TJ36-97) 4.《恶臭污染物的排放标准》(GB14554-93) 二、设计要求 1、治理过的气体达到《广东省大气污染物排放标准》(主 DB4427-2001)所规定的二级地区排放标准。 2、车间内的通风流畅,基本没有异味。 三、设计方案 (一)车间通风量计算 电镀车间的酸碱性气体较多、温度较高。通风不畅,很容易产生异味。根据以往的经验,总的换气次数以15次/小时计算,效果比较好,基本可以满足通风要求。 1、车间空间体积。 如图所示,电镀车间的总长82米,一层宽20米,高5米。则一层的空间体积为: V1=L×W×H=82×20×5=8200(m3)

电镀车间的二层总长82米,二层宽8米,高3.5米。则二层的空间体积为: V2=L×W×H=82×8×3.5=2296(m3) 则电镀车间的总体积为:V总=V1+V2=10496(m3) 2、车间的总通风量 车间的换气次数为15次,甲方要求电镀车间保持正压运行,则鲜风量大于排风量。 (1)车间的总鲜风量 车间的换气次数以15次/小时,则总的鲜风量为: Q鲜=nV=15×10496=157440m3/h (2)车间的总排风量 车间保持正压运行,排风量按鲜风量的85%计算,则车间内的总 的排风量为:Q排总=Q鲜×85%=133824m3/h A、车间的局部设备排风量 a、控制点1(氰化铜区) 氰化铜9臂,共9个槽,每个槽平面尺寸约为1800×760mm。9个槽的平面尺寸为1800×6840mm,槽的周长为17.28m。 镀槽上部废气收集采用的是上吸式排气罩。风量的计算公式如下:L=K·P·H·Vx m3/s 式中P—排风罩敞开面的周长,m; H—罩口至有害物源的距离,m;

大气设计说明书

课程设计 课程名称大气污染课程设计 题目名称__水泥厂配料车间粉尘污染治理 程(课程)设计 学生学院_ 环境科学与工程学院 专业班级_ 2010级环境工程(1)班 学号 3110007629 学生姓名葛蔚麒_________ _ 指导教师___王玉洁______________ 2013年6月30日

目录 课程设计题目要求 (2) 一概述 (3) 二粉尘来源与危害 (3) 2.1水泥厂粉尘源 (3) 2.2水泥厂粉尘的特点 (4) 2.3水泥生产作业粉尘危害 (4) 三集气罩工艺计算 (5) 3.1集气罩的设计 (6) 3.2抽尘罩罩口断面速度的确定 (6) 3.3密闭罩中的最小负压值 (6) 3.4粉体设备的除尘抽风量选取 (6) 3.5总风量计算 (7) 四旋风除尘器的选型与计算 (7) 4.1旋风除尘器的分类 (7) 4.2旋风除尘器选型计算 (8) 4.3二级除尘器的选型设计及总除尘效率的计算 (10) 五除尘系统管道设计及其压力计算 (12) 5.1除尘管道系统设计 (12) 5.2管径和管道压力损失计算 (12) 5.3各管道计算管径和摩擦压力损失 (12) 5.4管道计算总表 (16) 5.5电机风机的选型 (17) 5.6排气筒 (17) 六总结 (17) 七参考文献 (17)

课程设计题目要求 水泥厂配料车间粉尘污染治理工程(课程)设计 1. 设计基础资料 ●计量皮带宽度:450mm ●配料皮带宽度:700mm ●皮带转换落差:500mm ●设粉尘收集后,粉尘浓度为2000mg/m3,粉尘的粒径分布如下表. 2. 设计要求 ●排放浓度小于50 mg/m3 ●设计二级除尘系统,第一级为旋风除尘器,第二级为电除尘器或者袋式除尘器. ●计算旋风除尘器的分级除尘效率和除尘系统的总效率. ●选择风机和电机 ●绘制除尘系统平面布置图 ●绘制除尘系统立面布置图 ●绘制除尘器(二个)本体结构图 ●编制工艺设计说明书.

相关主题
文本预览
相关文档 最新文档