当前位置:文档之家› 机械CADChapter 4 Modelling of Solids

机械CADChapter 4 Modelling of Solids

机械CADChapter 4  Modelling of Solids
机械CADChapter 4  Modelling of Solids

Chapter 4 Modeling of Solids

4.1 Introduction

So far we have represented objects with wireframe and surface modeling. Another method of geometric modeling is to use vertices, edges and surfaces to define a solid. Solid modeling systems allow users to create, store and manipulate unambiguous models of physical solid objects, In recent years, solid modeling has become the prevalent and favorable tool for applications in design and manufacturing.

Some of the major advantages of solid modeling are listed here.

(1) Visualization of components in 3D space or in realistic surroundings can be made easier.

(2) Solid models can be used as data input to other systems, like FE-systems, integration between solid model and FE-model provides great possibility to cut short the product development process.

(3) Components can be machined straight from the files created by these systems.

A solid model contains both the geometry data and topological data. Topological data describe the connectivity and associability of the object entities. Solid model generation is often not unique, that is, there are often several different ways to create a solid model. CAD users need to generate solid models which can make the computer storage small and suited for later utilize.

Boundary representation (B-rep) and Constructive Solid Geometry (CSG) are two most popular schemes for solid modeling. B-reps are based on the topological notion that an object is bounded by faces. CSG is based on that an object can be divided into

a set of primitives. Table 4.1 shows some widely used CAD systems.

4.2 Solid Representation

Most geometric objects we see every day are solids. Solids can be very simple like a cube or very complex like a piston engine. To be processed by computers, solids must have some representations that can describe the geometry and characteristics completely. In fact, a good representation should address the following issues.

①Domain: While no representation can describe all possible solids, a representation should be able to represent a useful set of geometric objects. Domain should give a useful set of physical objects that can be represented.

②Unambiguity: A solid should be represented without any doubt. An unambiguous representation is usually referred to as a complete one. Figure 4.1 shows an example of ambiguous solids.

③Uniqueness: There is only one way to represent a particular solid. If a representation is unique, then it is easy to determine if two solids are identical since one can just compare their representations.

④Accuracy: A representation is said accurately if no approximation is required.

⑤Validity: A representation should not create any invalid or impossible solids. More precisely, a representation will not represent an object that does not correspond to a solid.

⑥Closure; Solids will be transformed and used with other operations such as union and intersection, "Closure" means that transforming a valid solid always yields a valid solid.

⑦Compactness and efficiency: A good representation should be compact enough for saving space and allow for efficient algorithms to determine desired physical characteristics.

There are different methods to create models, such as half-space, boundary representation (B-rep), constructive solid geometry (CSG), sweeping, analytic solid modeling, cell decomposition. Following concepts are important in solid modeling: solid primitives, Boolean operations, geometry closure and regularized set operations.

(1) Primitives

Solid primitives are frequently used in solid modeling. CAD/CAM systems provide various primitives such as block, cylinder, cone, and sphere. Figure 4.2 shows an example of these solid entities.

(2) Boolean operations

Union, difference, complement and intersection are essential Boolean operations. Figure 4.3 shows Boolean operations used in the solid modeling. Boolean operations are intuitive to use and easy to understand, and they provide for rapid manipulation of large amounts of data. Because of this, Boolean operations are also used in many non-CSG systems.

(3) Interior, exterior and closure

We need the concepts of interior, exterior and closure to understand regularized Boolean operators. Intuitively, the interior of a solid consists of all points lying inside of the solid; the closure consists of all interior points and all points on the surface of solids; and the exterior of a solid is the set of all points that do not belong to the closure.

A open ball with centre (a, b, c) and radius r consists of all points that satisfy the following relation,

(x-a)2+(y-b)2+(z-c)2

A point P is an interior point of a solid S if there exists a radius r such that the open ball with centre P and radius r is contained in the solid S. The set of all interior points of solid S is the interior of S, written as int (S). Based on this definition, the interior of an open ball is the open ball itself.

On the other hand, a point Q is an exterior point of a solid S if there exists a radius r such that the open ball with centre Q and radius r does not intersect S. The set of all exterior point of solid S is the exterior of solid S, written as ext(S).

Those points that are neither in the interior nor in the exterior of a solid S constitutes the boundary of solid S, written as b(S). Therefore, the union of interior, exterior and boundary of a solid is the whole space.

The closure of a solid S is defined to be the union of the interior and the boundary of S, written as closure (S). Or, equivalently, the closure of solid S contains all points that are not in the exterior of S.

(4) Regularized set operations

When set operations are used in geometry modeling, unwanted geometry may be

got. In Fig. 4.4, two cubes touch each other and their intersection is a rectangle shown on the right. A rectangle is not a three-dimensional object and hence not a solid.

To eliminate these lower dimensional branches, the three set operations are regularized as follows. The idea is simple.

Compute the result as usual and lower dimensional components may be generated. Compute the interior of the result. This step removes all the lower dimensional components.

Compute the closure of the result obtained in the above step. This adds the boundary back.

Let op* be the regularized operator and let A and B be two solids. Then, A∪* B , A ∩*B and A-* B can be defined mathematically based on the above description.

A∪* B - c1osure(int(the set union of A and B))

A∩*B - c1osure(int(the set intersection of A and B))

A-* B - c1osure (int (the set difference of A and B))

Based on this definition, the intersection of the two cubes shown in Fig. 4.4 is empty. The intersection of these two cubes is a rectangle, which is a two-dimensional object and has no interior. Hence, after taking interior (i.g. , int()), we get an empty set, whose closure is also empty. Consequently, the intersection is empty.

4.3 Boundary Representation

Boundary models have a hierarchical format. As mentioned earlier, B-reps describe objects bounded by a set of faces. Each face has its underlying closed (continuous) and oriented surface as shown in Fig. 4.5 and the face is bounded by edges. Each edge is bounded by vertices. A boundary model of an object is comprised of faces, edges and vertices.

The surface of a solid consists of a set of well-organized faces, each of which is a piece of some surface (e. g., a surface patch). Faces may share vertices and edges that are curve segments. Therefore, a B-rep is an extension to the wireframe model by adding face information to the later.

The orientation of each face is important. Normally, a face is surrounded by a set of vertices. Using the right-handed rule, the ordering of these vertices for describing a particular face must guarantee that the normal vector of that face is pointing to the exterior of the sol-id. Normally, the order is counter clockwise. Therefore, by inspecting normal vectors one can immediately tell the inside and outside of a solid under B-rep. This orientation must be done for all faces.

The database of a boundary model contains both topological and geometric data. Topological data provide the relationships among vertices, edges and faces similar to that used in a wireframe model. In addition to connectivity, topological information also includes orientation of edges and faces. Geometric information is usually equations of the edges and faces. Topology is created by performing Euler operations and geometry is created by per-form Euclidean calculations. Both the topological and geometry validity should be checked to avoid nonsense object. Euler operators also provide designers with drafting functionality.

Boolean operators are often used to create and edit models. Since B-rep requires

explicit representation of the boundary of the solid, boundaries must be evaluated after the operation. For CSG model, the Boolean operation is simply an addition to the CSG tree.

The main advantage of B-rep is its ability to construct solids that are difficult to build u-sing primitives. The main disadvantage is that it requires large amounts of storage because it stores the boundary explicitly.

4.3.1 Euler Formula

Objects that are often encountered in engineering are polyhedral or curved objects. Figure 4.6 shows examples of polyhedral.

Eu1er (or Euler-Poincare) law is that a polyhedron is topologically valid if they satisfy the following equation,

F-E+V-L=2(B-G) (4.1) Where F, E, V, L, B and G are the number of faces, edges, vertices, faces’ inner loop bodies and genus (handles or through holes) respectively. For a simple polyhedron, we have: F-E+V=2.

Euler law can be used to check the object’s validity, the system commands (Euler operators) are based on Euler law and thus ensure the validity simultaneously. Euler law given above applies to closed polyhedral objects. For open polyhedron, we have: P-E+V-L=B-G (4.2)

If objects have curved surface, such as cylinders and spheres, Euler law is still valid. Topologically, one can always stretch curved edges and faces so that they become flat without changing the relationships among them.

4.3.2 Euler Operators

Once a polyhedron model is available, one might want to edit it by adding or deleting vertices, edges and faces to create a new polyhedron. These operations are called Euler operators.

Recall from the discussion of the Euler formula that the following holds for all polyhedra:

V-E+F-(L-F)-2(B-G) =0 (4.3) Based on this relation, some Euler operators have been selected for editing a polyhedron so that the Euler formula is always satisfied. There are two groups of such operators: the Make group and the Kill group. Operators starting with M and K are operators of the Make and Kill groups, respectively.

Euler operators are written as Mxyz and Kxyz for operations in the Make and Kill groups, respectively, where x, y and z are elements of the model (e.g., a vertex, edge, face, loop, shell and genus). For example, MEV means adding an edge and a vertex while KEV means deleting an edge and a vertex. The user is not free to construct faces, edges or vertexes. For example, there are no such operators such as ME, MV or MF as they violate Euler law.

Every topologically valid polyhedron can be constructed from an initial polyhedron by a finite sequence of Euler operators. Therefore, Euler operators are powerful operations.

4.3.2.1 The Make Group of Euler Operators

The Make group consists of four operators for adding some elements into the

existing model creating a new one, and a Make-Kill operator for adding and deleting some elements at the same time. The operators are as shown in Table 4. 2.

Table 4.2 shows the change of values of V, E, F, L. B and C. Note that adding a face produces a loop, the outer loop of that face. Therefore, when F is increased, L should also be increased. This new loop and the new face will cancel each other in the sub expression of L-F. Please verify that none of these operators would cause the Euler formula to fail.

MBFV is often used to begin constructing the boundary models, so it could be through as the first vertex of the model. Table 4.3 illustrates the way of using Euler operators to construct a tetrahedron, in seven steps or seven Euler operators a tetrahedron is created.

MBG simply makes a body with a hole. After this, one can add vertices, edges, faces, and loops. There must be loops, because the new hole penetrates at least one face.

MEKL makes an edge and at the same time kills a loop. A commonly used MEKL is adding an edge connecting the outer loop and the inner loop of a face. In this case, the number of edges E is increased by 1and the number of loops L is decreased by 1 since that loop is killed.

Higher level Euler operators can be developed, such as MCUBE (create a cube), MCYL(create a cylinder).

4.3.2.2 The Kill Group of Euler Operators

The Kill group just performs the opposite of what the Make group does. In fact, replacing the M and K in all Make operators with K and M, respectively, would get the operators of the Kill group. Therefore, the Kill group consists of the five operators as shown in Table 4.4.

With these operators, one can start with a tetrahedron and reduce it to nothing. These operators are the opposites of the Make operators. The advantages of Euler operators are that they ensure creating valid topology and reasonable is simple. Euler operators offer a mechanism to check the topological validity of the models. However the models are not unique because the boundary of any object can be divided into faces, edges and vertices in many ways. Euler operators are difficult for designers to use and usually not available to users at interface, only exist internal to software. Earlier user interfaces used commands such as "make edge/face" or "kill edge/face", although such interfaces are not convenient. Object-oriented (feature-based) user interfaces are more acceptable by users. For example, command "create hole" is better than "subtract cy-linder".

4.3.3 The Winged-edge Data Structure

The winged data structure is useful data structure in B-rep. In this structure, all the adjacency relations of each edge are described explicitly. The winged-edge data structure uses edges to keep track almost everything.

For each edge, the following information is important: vertices of this edge, its left and right faces, the predecessor and successor of this edge when traversing its left face, the predecessor and successor of this edge when traversing its right face.

Each entry in the edge table contains above information mentioned earlier: edge

name, start vertex and end vertex, left face and right face, the predecessor and successor edges for left and right faces. Note that clockwise ordering (viewing from outside of the polyhedron) is used for traverse.

Figure 4.9 shows the information for the entry of edge a. The four edges b, c, d and e 1are the wings of edge a an d hence edge a is “winged”.

Figure 4.10 is a tetrahedron with four vertices A, B, C and D, six edges a, b, c, d, e and f, and four faces 1,2,3 (back) and 4 (bottom), whose edges are listed in Table 4.5. The winged-edge data structure requires two more tables, the vertex table and the face table. The vertex table has one entry for each vertex, which contains an edge, that is incident to this vertex. The face table has one entry for each face, which contains an edge i.e. one of this face's boundary edges.

With this data structure, one can easily answer the question; which vertices, edges, faces are adjacent to each face, edge, or vertex. However, it may take longer time to answer other adjacency queries. Note also that once the numbers of vertices, edges and faces are known, the size of all three tables are fixed and will not change.

If some faces of a solid have holes, the above form of winged-edge data structure does not work. There are two ways for resolving this problem:

(1) For a face with inner loops, the outer boundary is ordered clockwise, while its inner loops, if any, are ordered counter clockwise as shown in Fig. 4.11.

(2) Alternatively, a special auxiliary edge can be us ed to join each hole’s boundary to the outer boundary, as shown in Fig. 4. 12. Since each edge will have the same face on both of its sides, it can be easily identified.

4.4 Constructive Solid Geometry

A physical object can be divided into a set of primitives and can be combined by Boolean operations. CSG model is based on this principle.

CSG is a solid modeling method that combines simple solid shapes called primitives to build more complex models, using the Boolean operators.

The database of a CSG model, similar to B-rep, stores its topology and geometry. Topology is created via the regularized Boolean operations that combine primitives. Checking the used primitives can ensure the validity. The geometry stored in the database of a CSG includes configuration parameters of its primitives and rigid motion.

A CSG model requires minimum storage to store solid definitions (graphs/trees) , as it does not store explicitly the faces, edges and vertices. It evaluates them whenever they are needed, e. g. generation of line drawings. This makes it slow to retrieve the model because it has to build a boundary. Due to the same reason, it is also slow to generate wireframes.

4.4.1 CSG Primitives

The standard CSG primitives consist of the block (i.e. cube), triangular prism, sphere, cylinder, cone and torus as shown in Fig. 4. 13. All these primitives have their own local coordinate systems. These six primitives must be instantiated by the user to be used in his/her design. Moreover, the instantiated primitive may require transformations such as scaling translation and rotation to be positioned at the desired place.

1. Block. A block is defined by its width, height and depth. The signs of W, H and

D can be negative.

2. Cylinder. This primitive is defined by its radius (or diameter) R and length H. the length H is usually taken along the direction of the z L axis. H can be positive or negative.

3. Cone. The indata to define a cone is its base radius R. top radius (for truncated cone), and height H.

4. Sphere. The indata is its radius.

5. Wedge. A right-angled wedge is defined by its height H, width W. and base depth

D.

6. Torus. This primitive is generated by the revolution of a circle about an axis. It can be defined by the radius of its body R1, and the radius of the centre line of the torus body R2.

4.4.2 Boolean Operators

A solid can be considered as the result of applying Boolean operators to a set of instantiated and transformed CSG primitives. However, simple set operators may create problems as discussed in regularized Boolean operators. Let us just use set operations on following example.

Let us construct a bracket with a hole, as shown on the right-most of Fig. 4.14. We start with two instantiations of blocks and one instantiation of a cylinder (the left-most figure). These three instantiations are then rotated or/and transformed to their desired

positions. The final product is obtained by subtracting the cylinder from block 1, and then computing the union with block 2.

Please note that the design of the above solid is not unique. For example, one may compute the union of block l and block 2, and then compute the difference.

4.4.3 CGS Tree

Trees and graphs are used for the CSG representation as in winged-edge structure usedin B-rep.

A tree is defined as a data structure accessed from the root node. Each node is either a leaf or an internal node. An internal node has one or more child nodes and is called the parent of its child nodes. Figure 4.15 shows a tree. A binary tree is defined as a tree with at most two children for each node.

A CSG tree is defined as an inverted ordered binary tree whose leafs are primitives and interior nodes are regularized set operations.

The procedure to build the bracket with Boolean operators can be written as: union(diff(trans(block 1), trans(cylinder)), trans(block2)) , where union(A,B) and diff(A,B) are the union and difference of A and B, and trans( ) indicates appropriate transformations This procedure can be converted to a CSG tree of the design, as shown in Fig. 4. 16.

In fact, every solid constructed using the CSG technique has a corresponding CSG tree. The expression of the CSG tree is a representation of the final design.

The total number of nodes in a CSG tree of a solid depends on the number of primitives the solid is decomposed to. If a solid has n primitives, then there are (n-1) Boolean operations for a total of (2n-1) nodes in its tree.

Balanced trees are preferred in various applications. A balanced tree is defined as a tree whose left and right subtrees have almost an equal number of nodes, that is, the absolute value of the difference (n L-n R) is as small as possible, where (n L+ n R) = 2n-2. The general rule to create balanced trees is to start to build the model from an almost central position and branch out in two opposite directions.

To transverse a tree means to pass through the tree and visit each of its nodes. There are mainly three methods to transverse a CSG tree: preorder, in order and postorder. To transverse a tree in preorder, we have he following recursive definition:

①Visit the root;

②Transverse the left subtree in preorder;

③Transverse the right subtree in preorder.

Then the reversed preorder is defined by reversing the above operations, that is, visit the right subtree, then the left subtree, and the root

The order to transverse a tree in inorder is,

①Transverse the left subtree in inorder;

②Visit the root;

③Transverse the right subtree in inorder.

And the order to transverse a tree in postorder is,

①Transverse the left subtree in postorder;

②Transverse the right subtree in postorder.

③Visit the root

To get the reversed inorder and postorder, operations in respective method are reversed.

4.5 Sweep Generation

There are three types of sweep operation: linear, nonlinear and hybrid sweeps. Path in a linear sweep is linear or circular vector describe by a linear parametric equation. Path in a nonlinear sweep is a curve described by a higher-order equation. Hybrid sweep combines linear and/or nonlinear sweep via set operations.

Many commands in CAD/CAM software are based on sweeping.

4.6 Modeling of Analytic Solid

A short introduction of analytic solid is given below. The definition of a parametric solid can be extended from curves and surfaces. Points in the interior or on the boundary of a solid are given by

[][])w ,v ,u (z )w ,v ,u (y )w ,v ,u (x z y x )v ,u (P ==

,w w w ,v v v ,u u u max min max min max min ≤≤≤≤≤≤ (4.4) As shown in Fig. 4.18 hyperpatch is a geometric entity, which defines a volume in 3Dspace. It is represented internally as a parametric tricubic solid.

A tricubic hyperpatch can be given by

∑∑∑====30i 30j 3

0k k j i ijk w v u C )w ,v ,u (P ,1w 0,1v 0,1u 0≤≤≤≤≤≤ (4.5)

By substituting proper value of the parameters, we can get face surface, edge curve and corner vertices. For example, P (0,u,w) and P(1,u, w) are two faces, P(u, 0, 0) is an edge and P(0, 0, 0) is a vertex. The tricubic hyperpatch has the same disadvantages of cubic curve and bicubic surface, and it even requires the input of w v u /P 3????.

A tricubic Bezier Hyperpatch is defined by the following equation,

∑∑∑====30i 30j 3

0k k j ijk )w (B )v (B )u (Bi P )w ,v ,u (P (4.6)

4.7 Solid Manipulation

(1) Displaying

There are two methods to display a solid; wire display and shaded display. Shaded display provides realistic visual images. Shaded images can be generated from B-reps by visible-surface algorithms. Shading can be performed from CSG by means of ray-casting or z-buffer algorithms. More on shading will be discussed in Chapter 5.

(2) Evaluating points, curves and surfaces on solid

Evaluating points and curves on solids can be viewed as intersection problem. Points and curves are generated by finding curve/solid and surface/solid intersections. Evaluating surfaces on a solid can be regarded as extracting the underlying surfaces of the solid faces. These surfaces can be bonded by the proper solid edges or

user-defined boundaries.

(3) Segmentation

Segmentation of a solid is to split it into two or more valid subsolids. Each resulting subsolid should have its own topology and geometry, In a B-rep model, new vertices, edges and faces are created, In a CSG model, splitting the solid would also require splitting its CSG graph and tree.

(4) Trimming and intersection

Trimming a solid is using trimming boundaries to split a solid and removing the portions outside these boundaries. Intersection can be performed by Boolean operations.

(5) Transformation

Solids can be translated, rotated by using homogeneous transformation.

(6) Editing

Editing a solid involves changing its existing topological and geometrical information. For CGS models, graphs and trees are used to edit the model. For B-rep model, a graph or tree can be created and modified.

人教版八年级下册 第十二章 简单机械 第3节 机械效率 同步练习(含答案)

机械效率同步练习 一、选择题 1、下列关于机械效率的说法正确的是() A.越省力的机械,机械效率越高 B.做功越少的机械,机械效率越低 C.做功越慢的机械,机械效率越低 D.总功相同,有用功越大的机械,机械效率越高 2、在生产和生活中经常使用各种机械,下列说法正确的是(). A.使用机械可以省力、省距离,也可以省功 B.机械做功越快,机械效率越高 C.功率越大的机械,做功越快 D.机械做功越多,机械效率越高 3、如图所示的滑轮组中,动滑轮重1N,小强用6N的拉力F通过该滑轮组匀速拉起重10N的物体,物体沿竖直方向上升0.4m.此过程中,额外功和机械效率分别是() A.0.4J 83.3% B.0.8J 91.7% C.0.8J 83.3% D.0.4J 91.7% 4、分别使用定滑轮、动滑轮、两个定滑轮和两个动滑轮组成的滑轮组,匀速提升同一物体到同一高度处,其机械效率分别为η定、η动、η组(不计绳重和摩擦,设每个滑轮质量相等),则下列选项中正确的是() A.η组<η动<η定 B.η动<η定<η组 C.η定<η动<η组 D.η定<η组<η动 5、小文同学采用如图2所示的甲、乙两种不同的方式将同一货物从地面匀速搬运到同一辆汽车上,其中说法正确的是( ) A.甲种方法克服重力做功多 B.乙种方法更省力 C.两种方法机械效率相等D.两种情况下,货物机械能都增加

6、如图,已知斜面倾角为30°,斜面高2m。小明沿斜面将重为400N的货物由底端匀速拉到顶端,用时10s。已知拉力大小为300N,绳重不计,则下列说法中正确的是( ) A.小明对货物做的有用功是1200J B.小明对绳的拉力的功率是80W C. 斜面的机械效率是66.7% D.物体受到斜面的摩擦力是90N 7、如图所示,不计摩擦,把重力为G=16 N的物体匀速提起所用的拉力F=10 N,则关于该动滑轮的说法错误的是() A.动滑轮重力为4 N B.使用该动滑轮要费距离 C.该动滑轮的机械效率为80% D.提升物体的速度越快,机械效率越高 8、甲、乙两个滑轮组如图所示,其中每一个滑轮重力都相同,用它们分别将重物G1、G2提高相同的高度,不计滑轮组的摩擦,下列说法正确的是() A.若G1=G2,拉力做的额外功相同 B.若G1=G2,拉力做的总功相同 C.若G1=G2,甲的机械效率大于乙的机械效率 D.用甲、乙其中的任何一个滑轮组提起不同的重物,机械效率不变 9、如图所示,工人用250N的力将重400N的物体匀速提升2m,共用了10秒,若在此过程中(忽略绳重 和摩擦),下列说法正确的是 A.绳子自由端移动的距离是6m B.动滑轮的重是10N C.工人做功的功率是80W D.滑轮组的机械效率是80% 10、用图甲、乙两种方式匀速提升重为100N的物体,已知滑轮重20N、绳重和摩擦力不计.则() A.手的拉力:F甲=F乙;机械效率:η甲=η乙 B.手的拉力:F甲<F乙;机械效率:η甲<η乙 C.手的拉力:F甲>F乙;机械效率:η甲<η乙 D.手的拉力:F甲>F乙;机械效率:η甲>η乙

静液压传动工程机械的制动系统

静液压传动工程机械的制动系统 摘要国内外研制和应用静液压传动的工程机械越来越多,本文简要介绍了其制动系统的特点、类型,分析了不同工况下制动系统的作用以及不同制动系统的应用范围。 关键词:静液压传动工程机械制动系统 根据技术要求及通行安全,采用静液压传动的工程机械与常规机械一样,需要具备行走制动、停车制动和应急制动等3套制动系统。它们的操纵装置必须是彼此独立的。 1 行车制动系统 行车制动系统应能在所以运行状态下发挥作用。它首先用以使运动中的车辆减速,继而在必要时使车辆完全停止运动处于静止状态。对行走制动系统的要求是:第一,在车辆运动的整个速度范围内均能产生足够的制动阻力,使车辆减速直至停车;第二,具有足够的耗能或贮能容量来吸收车辆的动能;第三,行走制动装置的作用必须是渐进的;第四,行走制动系统的操纵功能必须是独立的,不应受其它正常操纵机构的影响,不能在离合器分离或变速器空档时丧失制动能力。从原则上说,凡是能完全满足上述要求的装置,均可用于行走制动系统。行走制动是使用最频繁的制动装置,一般称为主制动系统。 现代工程机械行走制动系统除普遍采用带有较大容量的制动盘、鼓等摩擦式机械制动器作为主执行元件外,也越来越多地利用发动机排气节流、电涡流、液涡流等作为辅助的吸能装置。后几种装置的优点是本身没有产生磨损的元件,能更好地控制减速力(矩),从而减少主制动元件(刹车盘、片等)的磨损和延长其使用寿命。但它们的制动力都与行走速度有关,一般无法独立使车辆完全停止,只能作为辅助制动装置(缓速装置)来使用。 静液压传动系统由连接在一个闭式回路中的液压泵和液压马达构成。对这种传动装置所选用的泵和马达,除了有与一般液压元件相同的高功率密度、高效率、长寿命等性能要求外,还要求两者均能在逆向工况下运行,即在必要时马达可作为泵运行,泵可成为马达运行,使整个系统具备双向传输功率或能量的能力。这样当泵的输出流量大于马达在某一转速下需要的流量时,多余的流量就使马达驱动车辆加速,而加速力的反作用力通过马达使入口压力升高,液压能转化为车辆的动能增量;反之,如调节变量泵的排量使其通过流量不敷于马达的需求时,马达出口阻力增大,在马达轴上建立起反向扭矩阻止车辆行驶,车辆动能将通过车轮反过来的驱动马达使其在泵的工况下运行,并在马达出油口建立起压力,迫使泵按马达工况拖动发动机运转,车辆的动能将转化为热能由发动机和液压系统中的冷却器吸收并耗散掉。由于静液压传动系统产生的阻力(矩)原则上只取决于系统压力和马达排量而与行走速度无关,所以这种系统既能象上述“缓速器”那样使车辆减速,又能使其完全停止运动,不仅能满足行走制动全部功能要求,而且在制动过程中没有元件磨损且可控性良好。因此,静液压传动系统本身完全可以作为行走制动装置使用。装有静液压传动系统的车辆一般无须另行配置机械制动器,但系统中不能有驾驶员可随意操纵的使功率流中断的装置(如液压系统中的短路阀、马达与驱动之间的离合器或机械换

简单机械及机械效率 知识点突破

物理第十一章延伸 杠杆的定义: 一根在力的作用下能绕着固定点转动的硬棒就叫杠杆。 和杠杆的五要素: ①支点:杠杆绕着转动的点(o) ) ②动力:使杠杆转动的力(F 1 ③阻力:阻碍杠杆转动的力(F ) 2 )。 ④动力臂:从支点到动力的作用线的距离(L 1 )。 ⑤阻力臂:从支点到阻力作用线的距离(L 2 一根硬棒成为杠杆的条件: ①要有力的作用 ②能绕某固定点转到 对概念的理解: (1)杠杆可以是直的,也可以是弯的。,但在外力的作用下不能变形。例如:撬棒、跷跷板、抽水机、手柄等。 (2)定义中的力,是指作用在杠杆上的动力和阻力,且动力和阻力使杠杆转动的方向一定是相反的,但动力和阻力不一定相反。 (3)杠杆在力的作用下,绕固定点转动而不是平动。 (4)不论动力和阻力,杠杆都是受力物体,作用于杠杆的物体都是施力物体。 (5)阻力绕支点转动的方向与动力绕支点转动的方向相反。 杠杆的平衡条件: 动力×动力臂=阻力×阻力臂。 即 在杠杆平衡时,动力臂是阻力臂的几倍,动力就是阻力的几分之几。 利用杠杆平衡条件来分析和计算有关问题,一般遵循以下步骤: (1)确定杠杆支点的位置。

(2)分清杠杆受到的动力和阻力,明确其大小和方向,并尽可能地作出力的示意图。 (3)确定每个力的力臂。 (4)根据杠杆平衡条件列出关系式并分析求解。 各类杠杆的特点: 要求最小动力,必须先画出最大动力臂。 1.寻找最大动力臂的方法 (1)当动力作用点确定后,支点到动力作用点的线段即为最大动力臂; (2)动力作用点没有规定时,应看杠杆上哪一点离支点最远,则这一点到支点的距离即为最大动力臂。 2.作最小动力的方法 (1)找到最大动力臂后,过作用点作动力臂的垂线; (2)根据实际,动力能使杠杆沿阻力作用的反方向转动,从而确定动力的方向。 组装滑轮组。口诀:“奇动偶定”。确定好了动滑轮和定滑轮的个数后,再确定绳子的起始点。 (1)当n为奇数时,绳子的起始点从动滑轮开始,经定滑轮依次按画螺旋线的方法绕线。(2)当n为偶数时,绳子的起始点从定滑轮开始,经动滑轮依次按画螺旋线的方法绕线。在中考中此类问题包括以下几种类型: (1)已知滑轮组的省力情况 (2)未知滑轮组的省力情况 (3)根据特定要求绕线确定滑轮组绕线时要注意一些特殊的要求,比如“最省力”、“人要站在地面上”、“向上拉”等,还要符合一定的物理情景。 轮轴定义: 由两个半径不等的圆柱固定在同一轴线上组成,大的称为轮,小的称为轴。斜面定义:

第1章 机械制造技术概论习题及答案

第1章练习作业题 1. 单项选择 1-1 按照系统的观点,可将生产定义为使生产(③)转变为生产财富并创造效益的输入输出系统。 ①对象②资料③要素④信息 1-2 度量生产过程效率的标准是(④)。 ①产量②产值③利润④生产率 1-3 制造从广义上可理解为(②)生产。 ①连续型②离散型③间断型④密集型 1-4 精良生产是对(④)公司生产方式的一种描述。 ①波音②通用③三菱④丰田 1-5 在先进的工业化国家中,国民经济总产值的约(③)来自制造业。 ① 20% ② 40% ③ 60% ④ 80% 1-6 在机械产品中,相似件约占零件总数的(③)。 ① 30% ② 50% ③ 70% ④ 90% 1-7 零件分类编码系统是用(③)对零件有关特征进行描述和识别的一套特定的规则和依据。 ①文字②数字③字符④字母 1-8 成组技术按(④)组织生产。 ①产品②部件③零件④零件组 1-9 CIM是(②)和生产技术的综合应用,旨在提高制造型企业的生产率和响应能力。 ①高新技术②信息技术③计算机技术④现代管理技术 1-10 并行工程是对产品及(④)进行并行、一体化设计的一种系统化的工作模式。 ①零件②设备③工艺装备④相关过程 1-11 实行并行工程的企业多采用(③)的组织形式。 ①直线式②职能式③矩阵式④自由式 1-12 在多变的市场环境下,影响竞争力的诸要素中(①)将变得越来越突出。 ①时间②质量③成本④服务

2. 多项选择 2-1 生产要素包括(①②③④)和生产信息。 ①生产对象②生产资料③能源④劳动力 2-2 21世纪机械制造业发展趋向是(①②③)智能化和清洁化。 ①自动化②柔性化③集成化④批量化 2-3 专业化协作与扩散生产的形式有(①②③)等。 ①组织各种专业化基础零部件生产厂②组织专业化毛坯生产厂 ③实行工艺性协作④实行主机装配协作 2-4 机械零件之间的相似性主要表现在(②③④)等几方面。 ①零件名称相似性②零件结构特征相似性③零件材料特征相似性④零件制 造工艺相似性 2-5 采用生产流程分析法划分零件组的优点是(②④)。 ①无须编制零件工艺规程②可保证同一零件组内的零件的工艺相似性③可由 零件编码直接划分零件组④可在划分零件组的同时形成机床组 2-6 成组生产单元按其规模、自动化程度和机床布置形式,可分为(①②③)和成组柔性制造系统等几种类型。 ①成组单机②成组单元③成组流水线④成组刚性自动线 2-7 产品、部件、零件标准化的内容包括(①②④)。 ①名称标准化②结构标准化③材料标准化④零部件标准化 2-8 CIMS功能模型中质量信息系统包括(①②④)等。 ① CAI ② CAT ③ CAE ④ CAQC 2-9 实施并行工程可以(①③④)等。 ①缩短产品开发周期②减少制造工作量③降低产品制造成本④减少工程变更次数 2-10 并行工程在产品设计过程中必须同时考虑下游的(①②)过程。 ①制造②支持③销售④使用 2-11 敏捷制造的通讯基础结构包括(①②③④)等。 ①建立大范围的信息传输网络②建立统一的产品信息模型③建立企业信息模 型和管理信息模型④制定信息传输标准 2-12 敏捷制造的特征有(①②③)。 ①快捷的需求响应②动态的组织形式③集成的制造资源④稳定的人员编制

工程机械动力传动系统的优化配置

工程机械动力传动系统的优化配置 摘要:机械动力传动系统的优化配置是改善机械性能和提高燃油经济性的重要手段。对动力传动系统进行优化配置,其技术经济效果显著。本文结合笔者多年工程机械教学经验,重点研究了改善工程机械的动力性能和燃料经济性。 关键词:工程机械动力传动优化 动力传动系统是工程机械的重要组成部分,它决定了整机的动力性能、作业性能、行驶性能和经济性等重要参数。工程机械不仅需要良好的机动性能,而且需要较高的作业率。特别是工程机械的动力传动系统比较复杂,有的机械需要边行驶、边作业,如装载机等;有的机械的作业装置具有多种作业机构,如:挖壕挖坑机的作业装置有铣刀和抛土器等。获取工程机械传动系统的载荷谱,才能得到合理、高效的动力传动系统功率。 一、采用新型装置组成传动系统 工作现场实践证明,采用微粒捕集器可以有效控制发动机工作过程中烟尘微粒的排放。特别是对于速度较低和中等以下载荷的工程机械,当所选微粒捕集器的负载参数选为 K54时,可以降低NO和CO的排放量,在一定程度上提高发

动机的功率,降低油耗,改善发动机的动力性能和经济性。 近年来国内外开发了一种成套高效传动装置(如德国的“ZF-EFFI”型),它包括主变速器、辅助变速器、轮边减速器、前桥、后桥、快速圆盘制动器和离合器等,同时装有停机待装管理系统。该系统可以在等待作业时处于睡眠状态,使之节能减耗。整个系统采用先进的信息化、数字化技术,配有智能化控制模块,种智能化控制模块是提高动力传动系统效率和节能降耗的核心技术。它能根据液力偶合器或变矩器的实时工况,控制变速器的相应工作,进而通过超越离合器装置控制发动机的转速,使发动机始终处于高效工况区段内,充分有效地利用发动机功率,从而达到降耗减排、经济运行的要求。 这套传动装置可代替工程机械的常规传动系统。在同等工作条件下完成相同的作业量,发动机的油耗可减少5%-20%,排放的污染物可减少10%-15%,设备生产效率可提高35%-40%;而且操作简便舒适,工作可靠性较高,使用寿命较长。 二、配置高效可靠的冷却系统 (一)采用自控系统控制温度 工程机械的载荷是不断变化的,因而工作油温也不断变化;通常情况下,工作油温在40-60℃范围内比较合适。传统的冷却系统,其风扇多为恒速运转,不能按照油温变化随

物理简单机械练习题及答案

物理简单机械练习题及答案 一、简单机械选择题 1.如图所示,是自卸车的示意图,车厢部分可视为杠杆,则下列分析正确的是 A.B点是支点,液压杆施的力是动力,货物重力是阻力 B.B点是支点,物体A放在车厢前部可省力 C.C点是支点,物体A放在车厢后部可省力 D.C点是支点,物体A放在车厢前部可省力 【答案】C 【解析】 【详解】 由图可知车厢绕着点C转动,所以点C为支点; 当物体放在车厢的后部时,动力臂大于阻力臂,因此省力,所以选项ABD都不正确,故答案为 C. 2.山区里的挑夫挑着物体上山时,行走的路线呈“S”形,目的是 A.加快上山时的速度 B.省力 C.减小对物体的做功 D.工作中养成的生活习惯 【答案】B 【解析】 斜面也是一种简单机械,使用斜面的好处是可以省力. 挑物体上山,其实就是斜面的应用,走S形的路线,增加了斜面的长,而斜面越长,越省力,所以是为了省力. 故选B. 3.用图中装置匀速提升重为100N的物体,手的拉力为60N,滑轮的机械效率为()

A.16.7% B.20% C.83.3% D.100% 【答案】C 【解析】 【详解】 由图可知,提升重物时滑轮的位置跟被拉动的物体一起运动,则该滑轮为动滑轮; ∴拉力移动的距离s=2h, η=====≈83.3%. 4.如图所示,工人利用动滑轮吊起一袋沙的过程中,做了300J的有用功,100J的额外功,则该动滑轮的机械效率为() A.75% B.66.7% C.33.3% D.25% 【答案】A 【解析】 试题分析:由题意可知,人所做的总功为W总=W有+W额=300J+100J=400J,故动滑轮的机械效率为η=W有/W总=300J/400J=75%,故应选A。 【考点定位】机械效率 5.用如图所示滑轮组提起重G=320N的物体,整个装置静止时,作用在绳自由端的拉力F=200N,则动滑轮自身重力是(绳重及摩擦不计) A.120N B.80N C.60N

简单机械练习题(含答案)经典

简单机械练习题(含答案)经典 一、简单机械选择题 1.如图所示,属于费力杠杆的是 A .用镊子夹物品 B .用汽水扳子开瓶盖 C .用手推车推货物 D .用羊角锤起钉子 【答案】A 【解析】 【详解】 A 、用镊子夹物品时,动力臂小于阻力臂,是费力杠杆; B 、汽水扳子开瓶盖时,动力臂大于阻力臂,是省力杠杆; C 、用手推车推货物,动力臂大于阻力臂,是省力杠杆; D 、用羊角锤起钉子,动力臂大于阻力臂,是省力杠杆. 故选A . 【点睛】 此题考查的是杠杆的分类和特点,主要包括以下几种:①省力杠杆,动力臂大于阻力臂;②费力杠杆,动力臂小于阻力臂;③等臂杠杆,动力臂等于阻力臂. 2.如图是抽水马桶水箱进水自动控制的结构原理图,AOB 为一可绕固定点O 转动的轻质杠杆,已知:1:2OA OB =,A 端用细线挂一空心铝球,质量为2.7kg . 当铝球一半体积浸在水中,在B 端施加3.5N 的竖直向下的拉力F 时,杠杆恰好在水平位置平 衡.(33 2.710/kg m ρ=?铝,10/g N kg = )下列结果正确的是 A .该铝球空心部分的体积为33110m -? B .该铝球的体积为33310m -? C .该铝球受到的浮力为20N D .该铝球受到的浮力为40N 【答案】C 【解析】

根据密度的公式得到铝球实心部分的体积,根据杠杆的平衡条件得到A 端的拉力,铝球在水中受到的浮力等于重力减去A 端的拉力,根据阿基米德原理求出排开水的体积,从而得出球的体积,球的体积减去实心部分的体积得到空心部分的体积. 【详解】 铝球实心部分的体积:3333 2.71102.710/m kg V m kg m ρ -= = =??实, 由杠杆平衡的条件可得:F A × OA=F B ×OB ,2 3.571 A B OB F F N N OA ==?=, 铝球受到的浮力: 2.710/720F G F mg F kg N kg N N =-=-=?-=浮, 铝球排开水的体积:33 3320210110/10/F N V m g kg m N kg ρ-= ==???浮排水, 铝球的体积:3 3 3 3 22210410V V m m --==??=?球排, 则空心部分的体积:4 3 3 3 3 3 410110310V V V m m m ---=-=?-?=?空球实. 【点睛】 本题考查杠杆和浮力的题目,解决本题的关键知道杠杆的平衡条件和阿基米德原理的公式. 3.如图所示,小丽分别用甲、乙两滑轮把同一桶沙从一楼地面提到二楼地面,用甲滑轮所做的总功为W 1, 机械效率为η1;用乙滑轮所做的总功为W 2, 机械效率为η2, 若不计绳重与摩擦,则 A .W 1 = W 2 η1 = η2 B .W 1 = W 2 η1 < η2 C .W 1 < W 2 η1 > η2 D .W 1 > W 2 η1 < η2 【答案】C 【解析】 【分析】 由图可知甲是定滑轮,乙是动滑轮,利用乙滑轮做的额外功多,由“小明分别用甲、乙两滑轮把同一桶沙从一楼地面提到二楼地面”可知两种情况的有用功,再根据总功等于有用功加上额外功,可以比较出两种情况的总功大小.然后利用100%W W 有总 η=?即可比较出二者机 械效率的大小.

第13章 机械传动系统的设计

第十三章一般机械传动系统设计 现代机器由原动机部分、传动部分、执行部分三个基本部分组成。原动机部分是驱动整部机器以完成预定功能的动力源。通常,一部机器只用一个原动机,复杂的机器也可能有几个动力源。它们都是把其它形式的能量转换为可以利用的机械能。现代机器中使用的原动机多是以各式各样的电动机和热力机为主。执行部分是用来完成机器预定功能的组成部分。一部机器可以只有一个执行部分,也可以把机器的功能分解成好几个执行部分。传动部分由图13-1可知,是把原动机的运动形式、运动及动力参数转变为执行部分所需要的运动形式、运动及动力参数的中间传动装置。机器的传动部分多数使用机械传动系统。它是绝大多数机器不可缺少的重要组成部分,其质量和成本在整台机器的质量和成本中占有很大的比例。机器的工作性能在很大程度上取决于传动装置的优劣。因此,本章仅对机械传动系统的设计作一个简单的介绍。 →→???→传动机构传动机构 传动机构→ 图13-1 单路传动 §13.1机械传动方案的设计 传动系统方案设计是在完成了执行系统的方案设计和原动机的选型后进行的。机械传动系统除了进行运动和动力传递外,还可实现增速、减速或变速传动;变换运动形式;进行运动的合成和分解;实现分路传动和较远距离传动等。满足原动机和工作机性能要求的传动方案,是由不同的组合方式和布置顺序构成的。 13.1.1传动类型的选择 传动机构的类型很多,选择不同类型的传动机构,将会得到不同形式的传动系统方案。为了获得理想的传动方案,需要合理选择传动机构类型。常用传动机构及其性能见表13-l。 表13-1 常用传动机构及其性能

选择传动类型时,应根据主要性能指标:效率高、外廓尺寸小、质量小、运动性能良好、成本低以及符合生产条件等。选择传动类型的基本原则是: ①当原动机的功率、转速或运动形式完全符合执行系统的工况要求时,可将原动机的输出轴与执行机构的输入轴用联轴器直接联接。这种联接结构最简单,传动效率最高。但当原动机的输出轴与执行机构的输入轴不在同一轴线上时,就需要采用等传动比的传动机构。 ②原动机的输出功率满足执行机构要求,但输出的转速、转矩或运动形式不符合执行机构的需要,此时则需要采用能变速或转换运动形式的传动机构。 ③高速、大功率传动时,应选用承载能力大、传动平稳、效率高的传动类型。 ④速度较低,中、小功率传动,要求传动比较大时,可选用单级蜗杆传动、多级齿轮传动、带——齿轮传动、带——齿轮——链传动等多种方案,进行分析比较,选出综合性能较好的方案。 ⑤工作环境恶劣、粉尘较多时,尽量采用闭式传动,以延长零件的寿命。 ⑥尽可能采用结构简单的单级动装置。中心距较大时,可采用带传动、链传动。传动比较大时,优先选用结构紧凑的蜗杆传动和行星齿轮传动。 ⑦当执行机构的载荷频繁变化、变化量大且有可能过载时,为保证安全运转,可选用有过载保护的传动类型。 ⑧单件、小批量生产的传动,尽量采用标准的传动装置以降低成本,缩短制造周期。 13.1.2传动方案的设计 相同的传动机构按不同的传动路线及不同的顺序布置,就会产生出不同效果的传动方案。只有合理的安排传动路线,恰当布置传动机构,才能使整个传动系统获得理想的性能。 1.传动路线的选择

九年级物理 简单机械与机械效率

图 3 图 4 图5 第一部分:杠杆 【考点诊察】 1.下列应用杠杆原理工作的工具中, 费力的是 〔 〕 A .铡刀 B .汽水瓶起盖器的使用 C . 钓鱼杆 D .剪铁皮的剪子 2.下列关于杠杆的说法中,错误的是 〔 〕 A .杠杆可以是直的,也可以是弯的 B .动力、阻力使杠杆转动方向相反,但他们的方向不一 定相反 C .支点可以在杠杆的端点,也可以在力的作用线之间 D .杠杆的长度等于动力臂和阻力臂之和 3.如图3所示。把一把米尺,在O 点支起,两边分别挂相同砝码各4个和2个,下列情况下,哪种情况还能保持平衡( ) A .两边砝码组各向支点处移近一个格 B .两边砝码组各向支点处移远一个格 C .两边钩码组各减少一个钩码 D .两边钩码组各减少一半钩码 4.如图4所示的轻质杠杆OA 上悬挂着一重物G ,O 为支点,在A 端用力使杠杆平衡。下列叙述正确的是( ) A .此杠杆一定是省力杠杆 B .沿竖直向上方向用力最小 C .此杠杆可能是省力杠杆,也可能是费力杠杆; D .沿杆OA 方向用力也可以使杠杆平衡 5.图5中,O 为一根轻质杠杆的支点,OA=2m ,OB=2.5m ,A 点处挂着重100N 的物体。若在B 端施加一个竖直方向的力,使 杠杆在水平位置上保持静止,则这个力的大小和方向是 〔 〕 A .20N ,竖直向上 B .20N ,竖直向下 C .80N ,竖直向上 D .80N ,竖直向下 6、如图所示的轻质杠杆,AO 小于BO .在A 、B 两端悬挂重物G 1和G 2后杠杆平衡.若将G 1和G 2 课题 简单机械与机械效率 学生姓名 年级 日期

简单机械知识点梳理及经典练习(超详细)1

简单机械知识点梳理及经典练习(超详细)1 一、简单机械选择题 1.如图所示,工人用250N 的力F 将重为400N 的物体在10s 内匀速提升2m ,则此过程中 A .工人做的有用功为800J B .工人做的总功为500J C .滑轮组的机械效率为60% D .拉力做功的功率为20W 【答案】A 【解析】 【详解】 A .工人做的有用功: 400N 2m 800J Gh W ==?=有 , A 选项正确。 B .绳子的自由端移动的距离是4m ,工人做的总功: 250N 4m 1000J W Fs ==?=总 , B 选项错误。 C .滑轮组的机械效率: 800J 80%1000J W W = = =有总 η, C 选项错误。 D .拉力做功的功率: 1000J 100W t 10s W P = ==, D 选项错误。 2.山区里的挑夫挑着物体上山时,行走的路线呈“S”形,目的是 A .加快上山时的速度 B .省力 C .减小对物体的做功 D .工作中养成的生活习惯 【答案】B

【解析】 斜面也是一种简单机械,使用斜面的好处是可以省力. 挑物体上山,其实就是斜面的应用,走S形的路线,增加了斜面的长,而斜面越长,越省力,所以是为了省力. 故选B. 3.某商店有一不等臂天平(砝码准确),一顾客要买2kg白糖,营业员先在左盘放一包白糖右盘加1Kg砝码,待天平平衡后;接着又在右盘放一包白糖左盘加1kg砝码,待天平平衡后.然后把两包白糖交给顾客.则两包白糖的总质量 A.等于2Kg B.小于2Kg C.大于2Kg D.无法知道 【答案】C 【解析】 解答:由于天平的两臂不相等,故可设天平左臂长为a,右臂长为b(不妨设a>b),先称得的白糖的实际质量为m1,后称得的白糖的实际质量为m2 由杠杆的平衡原理:bm1=a×1,am2=b×1,解得m1=,m2= 则m1m2=因为(m1+m2)2=因为a≠b,所以(m1+m2)-2>0,即m1+m2>2这样可知称出的白糖质量大于2kg.故选C. 点睛:此题要根据天平的有关知识来解答,即在此题中天平的臂长不等,这是此题的关键. 4.在生产和生活中经常使用各种机械,在使用机械时,下列说法中正确的是 A.可以省力或省距离,但不能省功 B.可以省力,同时也可以省功 C.可以省距离,同时也可以省功 D.只有在费力情况时才能省功 【答案】A 【解析】 【详解】 使用机械可以省力、省距离或改变力的方向,但都不能省功,故A选项正确; 使用任何机械都不能省功,故B、C、D选项错误; 5.用如图所示滑轮组提起重G=320N的物体,整个装置静止时,作用在绳自由端的拉力 F=200N,则动滑轮自身重力是(绳重及摩擦不计)

机械传动系统设计实例

机械传动系统设计实例 设计题目:V带——单级斜齿圆柱齿轮传动设计。 某带式输送机的驱动卷筒采用如图14-5所示的传动方案。已知输送物料为原煤,输送机室内工作,单向输送、运转平稳。两班制工作,每年工作300天,使用期限8年,大修期3年。环境有灰尘,电源为三相交流,电压380V。驱动卷筒直径350mm,卷筒效率0.96。输送带拉力5kN,速度2.5m/s,速度允差±5%。传动尺寸无严格限制,中小批量生产。 该带式输送机传动系统的设计计算如下:

例9-1试设计某带式输送机传动系统的V 带传动,已知三相异步电动机的额定功率P ed =15 KW, 转速n Ⅰ=970 r/min ,传动比i =2.1,两班制工作。 [解] (1) 选择普通V 带型号 由表9-5查得K A =1.2 ,由式 (9-10) 得P c =K A P ed =1.2×15=18 KW ,由图9-7 选用B 型V 带。 (2)确定带轮基准直径d 1和d 2 由表9-2取d 1=200mm, 由式 (9-6)得 ()6.41102.012001.2)1(/)1(12112=-??=-=-=εεid n d n d mm , 由表9-2取d 2=425mm 。 (3)验算带速 由式 (9-12)得 11π970200π 10.16100060100060 n d v ??= ==?? m/s , 介于5~25 m/s 范围内,合适。 (4)确定带长和中心距a 由式(9-13)得

)(2)(7.021021d d a d d +≤≤+, )425200(2)425200(7.00+≤≤+a , 所以有12505.4370≤≤a 。初定中心距a 0=800 mm , 由式(9-14)得带长 2 122 1004)()(2 2a d d d d a L -+++=π, 2 (425200)2800(200425)2597.62 4800 π -=?+ ++ =?mm 。 由表9-2选用L d =2500 mm ,由式(9-15)得实际中心距 2.7512/)6.25972500(8002/)(00=-+=-+=L L a a d mm 。 (5)验算小带轮上的包角1α 由式(9-16)得 012013.57180?--=a d d α 000042520018057.3162.84120,751.2 -=-?=> 合适。 (6)确定带的根数z 由式(9-17)得 00l α ()c P z P P K K = +?, 由表9-4查得P 0 = 3.77kW,由表9-6查得ΔP 0 =0.3kW;由表9-7查得K a =0.96; 由表9-2查得K L =1.03, 47.403 .196.0)3.077.3(18 =??+= z , 取5根。 (7)计算轴上的压力F 0 由表9-1查得q =0.17kg/m,故由式(9-18)得初拉力F 0 2c 0α 500 2.5 (1)P F qv zv K = -+

【物理】简单机械知识点梳理及经典练习(超详细)

【物理】简单机械知识点梳理及经典练习(超详细) 一、简单机械选择题 1.皮划艇是我国奥运优势项目之一,如图所示,比赛中运动员一手撑住浆柄的末端(视为支点),另一手用力划浆.下列说法正确的是( ) A .为省力,可将用力划浆的手靠近支点 B .为省力,可将用力划浆的手远离支点 C .为省距离,可将用力划浆的手远离支点 D .将用力划浆的手靠近支点,既能省力又能省距离 【答案】B 【解析】 【分析】 结合图片和生活经验,判断杠杆在使用过程中,动力臂和阻力臂的大小关系,再判断它是属于哪种类型的杠杆. 【详解】 运动员一手撑住浆柄的末端(视为支点),另一手用力划浆. 根据杠杆平衡条件F 1L 1=F 2L 2可知,船桨在使用过程中,动力臂小于阻力臂,是费力杠杆. AB .为省力,可将用力划浆的手远离支点,故A 错误,B 正确; CD .为省距离,可将用力划浆的手靠近支点,但费距离,故CD 错误; 2.如图,小明分别用甲、乙两滑轮把同一沙桶从1楼地面缓慢地提到2楼地面,用甲滑轮所做的功为W 1,机械效率为1η;用乙滑轮所做的总功率为W 2,机械效率为2η,若不计绳重与摩擦,则( ) A .W 1<W 2,η1>η2 B. W 1=W 2,η1<η2 C .W 1>W 2 , 1η<2η D .W 1=W 2 , 1η=2η 【答案】A 【解析】因为用甲、乙两滑轮把同一桶沙从一楼地面提到二楼地面,所以两种情况的有用

功相同;根据η=W W 有 总 可知:当有用功一定时,利用机械时做的额外功越少,则总功越 少,机械效率越高。而乙滑轮是动滑轮,所以利用乙滑轮做的额外功多,则总功越多,机械效率越低。即W1η2.故选C. 3.如图所示,利用动滑轮提升一个重为G的物块,不计绳重和摩擦,其机械效率为60%.要使此动滑轮的机械效率达到90%,则需要提升重力为G的物块的个数为() A.3 个B.4 个C.5 个D.6 个 【答案】D 【解析】 【详解】 不计绳重和摩擦,,,要使,则 . 4.物体做匀速直线运动,拉力F=60N,不计滑轮间的摩擦和动滑轮的自重,则物体受到的摩擦力是 A.60 N B.120 N C.20 N D.180 N 【答案】D 【解析】 【分析】 分析滑轮组的动滑轮绕绳子的段数,不计滑轮间的摩擦和动滑轮的自重,根据得到物体受到的摩擦力。 【详解】 从图中得到动滑轮上的绳子段数为3,不计滑轮间的摩擦和动滑轮的自重,物体受到的摩擦力:f=3F=3×60N=180N。 故选D。 【点睛】 本题考查滑轮组的特点,解决本题的关键要明确缠绕在动滑轮上的绳子的段数。

工程机械总复习题 - 副本

工程机械总复习题 一、填空题 1、推土机主要用来(开挖路堑)、(构筑路堤)、(回填基坑)、(铲除障碍)、(清除积雪)、(平整场地)等。 2、推土机可按(功率等级)、(行走装置)、(推土铲安装形式)、(传动方式)、(用途)等进行分类。 3、按推土机装备的发动机功率等级不同可分为(超小型)、(小型)、(中型)、(大型)和(特大型)五类。 4、按行走装置不同,推土机可分为(履带式)和(轮胎式)两种类型。 5、按推土铲安装方式不同,推土机可分为(固定式)和(回转式)两种类型。 6、按传动方式不同,推土机可分为(机械式传动)、(液力机械式传动)、(静液压传动)和(电传动)四种类型。 7、按用途分,推土机可分为(标准型)和(专用型)。 8、推土机作业过程可分为(铲土作业)、(运土作业)、(卸土作业)和(空驶回程)四个过程。 9、履带式推土机行走装置由(驱动链轮)、(支重轮)、(托轮)、(引导轮/张紧轮)、(履带)、(台车架)、(张紧装置)等组成。 10、推土机由发动机、(传动系统)、(行走系统)、(工作装置)、操纵控制系统等几部分组成。 11、推土机的机械传动系统由主离合器、联轴器、(变速器)、(中央传动装置)、(转向离合器)、(制动器)和终传动机构组成。 12、推土机常用的传动方式有(机械)传动、(液力机械)传动、(静夜压)传动。 13、液力机械传动由液力变矩器、动力换挡变速器、(中央传动装置)、(转向离合器)、(制动器)和终传动机构组成。 14、液力机械式传动系统与机械传动系统的区别在于前者用(液力变矩器)和(动力换挡变速器)取代了主离合器和机械式换挡变速器,可不停机换挡。 15、推土机液压传动系统由(双向变量液压泵)、(变量液压马达)和终传动机构组成。 16、采用机械传动和液力机械传动的推土机,通常采用(转向离合器)加(转向制动器)实现转向与制动。 17、采用液压传动方式的推土机,无需(转向器)和(行车制动器),只要控制每一侧液压马达的输出转速或旋转方向,就可实现转向和原地转向。 18、推土机的行走系统包括(机架)、(悬架)和(行走装置)。 19、推土机的工作装置包括(推土装置)和(松土器)。 20、推土机的推土铲由(推土板)和(推架)两部分组成。 21、采用固定式铲刀的推土机,其铲刀正对前进方向安装,成为(直铲)或(正铲)。 22、通常,向前推挖土石方、平整场地或堆积松散物料时,广泛采用(正铲)作业;傍山铲土或单侧弃土,常采用(斜铲)作业:在斜坡上铲削硬土或挖边沟,采用侧铲作业。 23、推土板主要由(曲面面板)和(可卸式切削刃)组成。 24、推土板的外形结构参数主要有(宽度)、(高度)和(积土面曲率半径)。 25、推土板的积土面形状常采用在(抛物线)或(渐开线)曲面。 26、推土板的外形结构常用的有(直线形)和(U形)两种。 27、推土板断面结构有(开式)、(半开式)和(闭式)三种形式。 28、松土器结构分为铰链式、(平行四边形)式、(可调式平行四边形)式和径向可调式四种基本形式。 29、松土器按松土齿的数量可分为(单齿)式和(多齿)式松土器。 30、松土齿由齿杆、(护套板)、(尖齿镶块)及固定销组成。 31、松土齿的齿杆形状有(曲齿形)、(直尺形)和折齿形三种基本结构。

机械传动系统方案设计

机械传动系统方案设计 一、传动系统的功能 传动系统是连接原动机和执行系统的中间装置。其根本任务是将原动机的运动和动力按执行系统的需要进行转换并传递给执行系统。传动系统的具体功能通常包括以下几个方面: (1)减速或增速; (2)变速; (3)增大转矩; (4)改变运动形式; (5)分配运动和动力; (6)实现某些操纵和控制功能。 二、机械传动的分类和特点 1、机械传动的分类 1) 按传动的工作原理分类 2) 按传动比的可变性分类 机械传动 动 啮合传动 摩擦传动 有中间挠性件 齿轮传动 蜗杆传动 螺旋传动 齿轮系传动 定轴轮系传动 周转轮系传动 链传动 同步带传动 普通带传动 绳传动 摩擦轮传动

2、机械传动的特点 (1) 啮合传动的主要特点 优点:工作可靠、寿命长,传动比准确、传递功率大,效率高(蜗杆传动除外),速度范围广。 缺点:对加工制造安装的精度要求较高。 (2) 摩擦传动的主要特点 优点:工作平稳、噪声低、结构简单、造价低,具有过载保护能力。 缺点:外廓尺寸较大、传动比不准确、传动效率较低、元件寿命较短。 三、机械传动系统的组成及常用部件 1、传动系统的组成 减速或变速装置 起停换向装置 制动装置 安全保护装置 2、常用机械传动部件 1)减速器 减速器是用于减速传动的独立部件,它由刚性箱体、齿轮和蜗杆等传动副及若干附件组成,常用的减速器如图1所示。 2)有级变速装置 ① 交换齿轮变速装置 ② 离合器变速装置 机械传动 定传动比传动 齿轮传动 蜗杆传动 螺旋传动 链传动 带传动 有级变速传动 变传动比传动 无级变速传动 摩擦轮无级变速传动 带式无级变速传动 链式无级变速传动

简单机械和机械效率图文稿

简单机械和机械效率集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

简单机械和机械效率 1.一人站在地面上,要用滑轮组提升重力为G的物体,如图58所示,(1)如要求拉力最小,试在图上画出滑轮组的绕线;(2)忽略滑轮的重力及一切摩擦,则拉力F与G的大小关系是______;(3)如在实际情况下,拉力为F‘(F’>F),则该滑轮组的机械效率为______。 2.外力对水泵做了7×105焦耳的总功,水泵把5×103千克的水送到10米高处,计算: (1)水泵完成的有用功是多少 (2)水泵的机械效率是多少 3.图59中,一个重量为50牛顿的物体,在F=10牛顿的外力作用下,自底端A匀速运动到顶端B所需要时间为16秒,设斜面的高为12米,机械效率为75%,该物体从A运动到B的速度是多少? 4.如图60所示,用滑轮组提起重物的质量为36千克,若以0.5米/秒的速度向上拉动绳子自由端,使重物上升2米,求拉力F所做的功和功率( 不计滑轮组的重量及摩擦) 5.水平面上有一重20牛顿的物体,在水平拉力作用下,以v=1米/秒的速度作匀速直线运动,若物体所受摩擦阻力为5牛顿,求拉力在10秒内做的功和功率?6.如图61所示,用滑轮组将重量是120牛顿物体提高2米。求: (1)如不计滑轮组的重量及摩擦,弹簧秤的读数是多少?

(2)弹簧秤的实际读数是50牛顿,总功是多少滑轮组的机械效率是多少 7.要将货物在1分钟内提高10米,某人的拉力只能达到300牛顿,为了提升货物省力又方便,他利用机械效率为80%的滑轮组(如图62)。 (1)在图上画出绳子的绕法。 (2)某人使用该滑轮组,一次最多可提升多少重量的货物 (3)某人在匀速提升货物过程中最大的有用功率是多少? 8.用如图63所示的滑轮组匀速提起重物,当重物升高1米时,绳的自由端拉下4米。 (l)用笔画出此滑轮组绳子的绕法。(2)如果物重2400牛顿,所用拉力是800牛 顿, 那么,拉力做的总功是多少这滑轮组的机械效率是多少 9.货物重G为400牛顿,沿着长l为4米、高h为2米的斜面。(如图64,由底端匀速推到顶端,如果推力F是250牛顿,求:(1)推力所做的功;(2)有用功;(3)斜面的机械效率。 10.用10千瓦的电动机带动一台水泵给水塔抽水,水塔容积为20米3,水被提升的高度为20米,抽水系统的总效率为50%,问多长时间可以抽满?

常用机械传动系统的主要类型和特点

常用机械传动系统的主要类型和特点 2H310000 机电工程技术 2H311000 机电工程专业技术 2H311010 机械传动与技术测量 ――2H311011 掌握传动系统的组成 一、常用机械传动系统的主要类型和特点 机械传动的作用:传递运动和力; 常用机械传动系统的类型:齿轮传动、蜗轮蜗杆传动、轮系;带传动、链传动; (一)齿轮传动 1、齿轮传动的分类 (1)分类依据:按主动轴和从动轴在空间的相对位置形成的平面和空间分类 两平行轴之间的传动――平面齿轮传动(直齿圆柱齿轮传动、斜齿圆柱齿轮传动、人字齿轮传动;齿轮齿条传动) 用于两相交轴或交错轴之间的传动――空间齿轮传动(圆锥齿轮传动、螺旋齿轮传动(交错轴)) 用于空间两垂直轴的运动传递――蜗轮蜗杆传动 (2)传动的基本要求: 瞬间角速度之比必须保持不变。 (3)渐开线齿轮的基本尺寸: 齿顶圆、齿根圆、分度圆、模数、齿数、压力角等 2、渐开线齿轮的主要特点: 传动比准确、稳定、高效率; 工作可靠性高,寿命长; 制造精度高,成本高; 不适于远距离传动。

3、应用于工程中的减速器、变速箱等 (二)蜗轮蜗杆传动 1、用于空间垂直轴的运动传递――蜗轮蜗杆传动 2、正确传动的啮合条件――蜗杆的轴向与蜗轮端面参数的相应关系蜗杆轴向模数和轴向压力角分别等于蜗轮端面模数和端面压力角。 3、蜗轮蜗杆传动的主要特点: 传动比大,结构紧凑; 轴向力大、易发热、效率低; 一般只能单项传动。 (三)带传动 1、带传动――适于两轴平行且转向相同的场合。 带传动组成:主动轮、从动轮、张紧轮和环形皮带构成 2、带传动特点: 挠性好,可缓和冲击,吸振; 结构简单、成本低廉; 传动外尺寸较大,带寿命短,效率低; 过载打滑,起保护作用; 传动比不保证。 切记:皮带打滑产生一正一负的作用: 即过载打滑,起保护作用; 打滑使皮带传动的传动比不保证。 (四)链传动 1、链传动――适于两轴平行且转向相同的场合。 链传动组成:主动链轮、从动链轮、环形链构成

简单机械和机械效率

简单机械和机械效率 1.一人站在地面上,要用滑轮组提升重力为G的物体,如图58所示,(1)如要求拉力最小,试在图上画出滑轮组的绕线;(2)忽略滑轮的重力及一切摩擦,则拉力F与G的大小关系是______;(3)如在实际情况下,拉力为F‘(F’>F),则该滑轮组的机械效率为______。 2.外力对水泵做了7×105焦耳的总功,水泵把5×103千克的水送到10米高处,计算: (1)水泵完成的有用功是多少? (2)水泵的机械效率是多少 3.图59中,一个重量为50牛顿的物体,在F=10牛顿的外力作用下,自底端A匀速运动到顶端B所需要时间为16秒,设斜面的高为12米,机械效率为75%,该物体从A运动到B的速度是多少 4.如图60所示,用滑轮组提起重物的质量为36千克,若以米/秒的速度 向上拉动绳子自由端,使重物上升2米,求拉力F所做的功和功率(不计 滑轮组的重量及摩擦)

5.水平面上有一重20牛顿的物体,在水平拉力作用下,以v=1米/秒的速度作匀速直线运动,若物体所受摩擦阻力为5牛顿,求拉力在10秒内做的功和功率 6.如图61所示,用滑轮组将重量是120牛顿物体提高2米。求: (1)如不计滑轮组的重量及摩擦,弹簧秤的读数是多少 (2)弹簧秤的实际读数是50牛顿,总功是多少滑轮组的机械效率是多少 7.要将货物在1分钟内提高10米,某人的拉力只能达到300牛顿,为了提升货物省力又方便,他利用机械效率为80%的滑轮组(如图62)。 (1)在图上画出绳子的绕法。 (2)某人使用该滑轮组,一次最多可提升多少重量的货物? (3)某人在匀速提升货物过程中最大的有用功率是多少

8.用如图63所示的滑轮组匀速提起重物,当重物升高1米时,绳的自由端拉下4米。(l)用笔画出此滑轮组绳子的绕法。 (2)如果物重2400牛顿,所用拉力是800牛顿, 那么,拉力做的总功是多少这滑轮组的机械效率是多少? 9.货物重G为400牛顿,沿着长l为4米、高h为2米的斜面。(如图64,由底端匀速推到顶端,如果推力F是250牛顿,求:(1)推力所做的功;(2)有用功;(3)斜面的机械效率。 10.用10千瓦的电动机带动一台水泵给水塔抽水,水塔容积为20米3,水被提升的高度为20米,抽水系统的总效率为50%,问多长时间可以抽满 11.搬运工人沿着长4米,高2米的斜面,将质量为100千克的货物由斜面底端匀速推到顶端。(1)如果不考虑斜面摩擦,工人沿斜面方向的推力多大? (2)如果斜面的机械效率为80%,这时工人沿斜面方向的推力又是多大

相关主题
文本预览
相关文档 最新文档