当前位置:文档之家› 固定污染源排气中二氧化硫的测定

固定污染源排气中二氧化硫的测定

固定污染源排气中二氧化硫的测定
固定污染源排气中二氧化硫的测定

固定污染源排气中二氧化硫的测定碘量法

1. 适用范围

本方法规定了碘量法测定固定污染源排气中二氧化硫浓度以及测定二氧化硫排放速率的方法。

2. 引用方法

下列标准所包含的条文,在本方法中引用构成本方法的条文,与本方法同效。

3. 测定方法原理、测定范围及测定误差

烟气中的二氧化硫被氨基磺酸铵混合溶液吸收,用碘标准溶液滴定。按滴定量计算二氧化硫浓度。反应式如下:

SO2+H2O==H2SO4

H2SO3+H2O+I2==H2SO4 + 2HI

测定范围:100?6000 mg/m3;在测定范围内,方法的批内误差不大于±6%。

4. 影响因素

4.1 锅炉燃料在正常工况燃烧时,烟气中H2S等还原性物质含量极少,对测定的影响可忽略不计。

4.2 吸收液中氨基磺酸铵可消除二氧化氮的影响。

4.3 采样管应加热至120℃,以防止二氧化硫被冷凝水吸收,使测定结果偏低。

5. 仪器

5.1 烟气采样器

5.2 多孔玻板吸收瓶

5.3 棕色酸式滴定管

5.4 大气压力计

5.5 烟尘测试仪或能测定管道气体参数的其他测试仪

6. 试剂

除特殊规定外,本标准采用试剂均为分析纯,水为去离子水或蒸馏水。

6.1吸收液

称取11.0 g氨基磺酸铵,7.0 g硫酸铵,溶入少量水中,加水至1000ml,再加入5ml稳定剂(6.2),摇匀,贮存于玻璃瓶中,冰箱保存。有效期三个月。

空气中二氧化硫监测

空气中二氧化硫(SO2)监测 甲醛缓冲溶液吸收—盐酸副玫瑰苯胺分光光度法 一.监测目的 1、掌握大气采样器的使用方法。 2、用分光光度法测定SO2的方法。 3、通过对环境空气中二氧化硫的监测,判断空气质量是否符合标准,为空气质量状况评价提供标准。 4、根据校园SO2分布情况,追踪寻找污染源,并提出规划建议。 二.基础资料收集 改革开发以来,我国经济社会得到了全面发展,与此同时,由于污染物排放大量增加,大气环境面临着巨大的压力。而SO2作为环境空气污染的主要因子之一,每次都是环境空气质量监测中的必测项目。成都市位于四川省中部,四川盆地西缘,成都平原的腹心地。它东西长192km,南北宽166km,幅员总面积12,378km2。成都市是四川省省会,全省政治、经济、金融、科学文化和交通信息的支撑中心。本市属亚热带湿润季风气候。其特点:四季分明,冬无严寒,夏无酷暑;风速小、日照少、阴天多、湿度大;多年平均降水量900~1000mm,多年平均相对湿度82%,平均气压956hpa;常年主导风向为北北东风,平均风速在112m/s以下,多年静风频率46%。本市区范围内热岛效应明显,逆温频繁,城市区域大气气象条件对大气污染物的扩散存在明显的不利影响。成都主要污染物为二氧化硫,二氧化氮,可吸入颗粒物。实验室目前常用的测定环境空气中SO2主要方法为甲醛缓冲溶液吸-盐酸副玫瑰苯胺分光光度法。自从1990年此方法在全国推广应用以来,取代了我国监测领域只能用四氯汞钾法测定的历史。甲醛法与汞法相比具有试剂无剧毒、价廉易得、甲醛标准溶液和样品溶液稳定性好等优点。 三.监测内容 监测空气中的二氧化硫浓度。我们小组负责二氧化硫的监测。是利用甲醛吸收-副玫瑰苯胺分光光度法监测SO2。通过监测数据绘制标准曲线,并分析校区二氧化硫的含量及污染情况。最后汇总空气质量情况。 四.监测方案的制定 1.采样地点 根据布设采样点原则。要离污染源50m以外,同时附近要有适当的车辆通道。校园的污染源主要有锅炉房。考虑各方面的综合因素(仪器电源,污染源距离等)将不布点设在校门口的警务室附近10m远处。 2.采样频率及采样时间 根据天气预报的情况,确定采样时间。采样连续三天,每天采样三次,时间分别为8:30-9:30;10:30-11:30,13:30-14:30。每次采样1h 3.采样方法 采用内装10ml 吸收液的多孔玻板吸收管,以0.3L/min 的流量采气60min。吸收液温度保持在23℃~29℃范围。样品采集过程中应避免阳光照射。 现场空白:将装有吸收液的采样管带到采样现场,除不采气之外,其他环境条件与样品相同。

14.实验十四.大气中二氧化硫物质的采集与测试

实验十四.大气中二氧化硫物质的采集与测试 二氧化硫是主要大气污染物之一,为大气环境污染例行监测的必测项目。它来源于煤和石油等燃料的燃烧,含硫矿石的冶炼硫酸等化工产品生产排放的废气。二氧化硫是一种无色、易溶于水、有刺激性气味的气体,能通过呼吸进入气管,对局部组织产生刺激和腐蚀作用,是诱发支气管炎等疾病的原因之一,特别是当其它烟尘等气溶胶共存时,可加重对呼吸道粘膜的损害。废气与空气中二氧化硫都是必测内容之一。 表14-1.常用废气二氧化硫手工分析方法及性能比较 测定空气中SO2常用方法有四氯汞盐吸收一副玫瑰苯胺分光光度法、甲醛吸收一副玫瑰苯胺分光光度法等。 两种方法的对比见表14-2

表14-2.环境空气二氧化硫分析方法及性能比较 本实验采用四氯汞盐吸收—副玫瑰苯胺分光光度法。 一.实验目的: 掌握四氯汞钾溶液吸收,盐酸副玫瑰苯胺分光光度法测定大气中二氧化硫浓度的分析原理和操作技术,掌握采样器的使用。 二.实验原理: 空气中的二氧化硫被四氯汞钾溶液吸收后,生成稳定的二氯亚硫酸盐络合物,此络合物再与甲醛及盐酸副玫瑰苯胺发生反应,生成紫红色的络合物,据其颜色深浅,用分光光度法测定。按照所用的盐酸副玫瑰苯胺使用液含磷酸多少,分为两种操作方法。方法一:含磷酸

量少,最后溶液的pH值为1.6±0.1,呈红紫色,最大吸收峰在548nm 处,方法灵敏度高,但试剂空白值高。方法二:含磷酸量多,最后溶液的pH值为1.2±0.1,呈蓝紫色,最大吸收峰在575nm处,方法灵敏度较前者低,但试剂空白值低,是我国广泛采用的方法。本实验采用方法二测定。方法原理的反应式: HgCl2+2NaCL=Na2HgCl4(四氯汞钠) HgCl2+2KCL=K2HgCl4(四氯汞钾)〔HgCl4〕2-+SO2+H2O→〔HgCl2SO3〕2-+2Cl-+2H+(二氯亚硫酸汞的络离子)此结合物中加入盐酸付玫瑰苯胺和甲醛的溶液后,先与甲醛反应:〔HgCl2SO3〕2+HCHO十2H+→HgCl2+HOCH2SO3H(羟基甲基磺酸) 盐酸付玫瑰苯按在有盐酸存在时,首先褪色成PRA无色酸。 PRA无色酸与HO-CH2-SO3H进一步反应,形成PRA甲基磺酸,呈现玫瑰紫红色。 三.实验仪器与试剂:

HJT 31-1999 固定污染源排气 光气 方法证实

1方法依据 本方法依据HJ/T 31-1999固定污染源排气中光气的测定 2仪器和设备 紫外可见分光光度计 3.分析步骤 参考HJ/T 31-1999固定污染源排气中光气的测定苯胺紫外分光光度法 4.验证结果 4.1校准曲线及线性范围 按HJ/T 31-1999方法操作,数据见表1 表1校准曲线数据 浓度(μg) 0.000.200.50 1.00 2.00 5.0010.0吸光度(As) 0.0020.0070.0170.0330.0630.1600.315吸光度(As-Ao) 0.0000.0050.0150.0310.0610.1580.313 回归方程:y=0.0314x-0.0006 r=0.9999

4.2 检出限实验 在10个空白样品中分别加入5倍检出限浓度的标准物质(即0.24μg/mL ),以15L 采样体积进行测定,按HJ 168-2010规定MDL=S n t ?-)99.0,1(进行计算,结果如下: 表2 方法检出限测定结果(N=10) 根据光气,0 *a *)3/(V Vnd V W m mg C = 计算得出方法检出限。 其中:C —光气含量(mg/m 3); Va —样品溶液总体积(mL ); W —测定时所分取的样品溶液中光气含量(g ); V 0—分析时所分取的样品溶液体积(mL ); Va —所采气体换算成标准状态下的干采气体积(L ); 4.3精密度实验 取2个高低浓度水平的样品,低浓度样品1浓度为1.00μg /ml ,高浓度样品2浓度为6.00μg /ml ,按照步骤3,分别做6次平行实验,计算出样品的浓度平均值,标准偏差并求出相对标准偏差,结果见表3

环境空气二氧化硫的测定--甲醛吸收-盐酸副玫瑰苯胺分光光度法及空气中颗粒物的测定

实验报告 课程名称:环境监测实验 指导老师:王凤平 成绩:________ ___ 实验名称:环境空气二氧化硫的测定--甲醛吸收-盐酸副玫瑰苯胺分光光度法及空气中颗粒物的测定 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1、了解并掌握环境空气二氧化硫的测定--甲醛吸收-盐酸副玫瑰苯胺分光光度法的原理和操作。 2、了解并掌握空气中颗粒物的测定的原理及方法。 二、实验原理 1、环境空气二氧化硫的测定--甲醛吸收-盐酸副玫瑰苯胺分光光度法: 本标准适用于环境空气中二氧化硫的测定。当用10 ml 吸收液采样30 L 时,本法测定下限为0.007 mg /m 3;当用50 ml 吸收液连续24 h 采样300 L 时,空气中二氧化硫的测定下限为0.003 mg /m 3。 测定中主要干扰物为氮氧化物、臭氧及某些重金属元素。样品放置一段时间可使臭氧自动分解;加入氨磺酸钠溶液可消除氮氧化物的干扰;加入CDTA 可以消除或减少某些金属离子的干扰。在10 ml 样品中存在50μg 钙、镁、铁、镍、镉、铜等离子及5μg 二价锰离子时,不干扰测定。 二氧化硫被甲醛缓冲溶液吸收后,生成稳定的羟甲基磺酸加成化合物。在样品溶液中加入氢氧化钠使加成化合物分解,释放出二氧化硫与副玫瑰苯胺、

甲醛作用,生成紫红色化合物,用分光光度计在577 nm处进行测定。 结果表示 计算空气中二氧化硫的浓度按下式计算: 式中:A——样品溶液的吸光度; A0——试剂空白溶液的吸光度; Bs——校正因子,μg·SO2/12mL/A; Vt——样品溶液总体积,mL; Va——测定时所取样品溶液体积,mL; Vs——换算成标准状况下(0℃,101.325kPa)的采样体积,L。 二氧化硫浓度计算结果应准确到小数点后第三位。 2、空气中颗粒物的测定: 本方法适合于用大流量或中流量总悬浮颗粒物采样器进行空气中总悬浮颗粒物的测定。本方法的检测限为0.001mg/m3。总悬浮颗粒物含量过高或雾天采样使滤膜阻力大于10kPa时,本方法不适用。 通过具有一定切割特征的采样器,以恒速抽取定量体积的空气,空气中粒径小于100μm的悬浮颗粒物被阻留在已恒重的滤膜上。根据采样前后滤膜重量之差及采样体积,计算总悬浮颗粒物的浓度。滤膜经处理后,进行组分分析。 结果计算 总悬浮颗粒物含量

(环境管理)环境空气二氧化硫的测定

环境空气二氧化硫的测定 甲醛吸收-副玫瑰苯胺分光光度法 GB/T 15262-94 Ambient air—Determination of sulfur dioxide— Formaldehyde absorbing-pararosaniline spectrophotometry 1 主题内容与适用范围 1.1 主题内容 本标准规定了甲醛副玫瑰苯胺分光光度法测定环境空气中的二氧化硫。 1.2 适用范围 1.2.1 本标准适用于环境空气中二氧化硫的测定。 1.2.2 测定下限: 当用10mL吸收液采样30L时,本法测定下限为0.007mg/m3;当用50mL吸收液连续24h采样300L时,空气中二氧化硫的测定下限为0.003mg/m3。 1.2.3 干扰与消除: 主要干扰物为氮氧化物、臭氧及某些重金属元素。样品放置一段时间可使臭氧自动分解;加入氨磺酸钠溶液可消除氮氧化物的干扰;加入CDTA可以消除或减少某些金属离子的干扰。在10mL样品中存在50μg钙、镁、铁、镍、镉、铜等离子及5μg二价锰离子时,不干扰测定。 2 原理 二氧化硫被甲醛缓冲溶液吸收后,生成稳定的羟甲基磺酸加成化合物。在样品溶液中加入氢氧化钠使加成化合物分解,释放出二氧化硫与副玫瑰苯胺、甲醛作用,生成紫红色化合物,用分光光度计在577nm处进行测定。 3 试剂 除非另有说明,分析日十均使用符合国家标准的分析纯试剂和蒸馏水或同等纯度的水。 3.1 氢氧化钠溶液,c(NaOH)=1.5mo1/L。 3.2 环已二胺四乙酸二钠溶液,c(CDTA-2Na)=0.05mo1/L。

称取1.82g反式1,2-环已二胺四乙酸[(trans-l,2-cyclohexylen edinitilo) tetraacetic acid,简称CDTA,加入氢氧化钠溶液(3.4)6.5mL,用水稀释至100mL。 3.3 甲醛缓冲吸收液贮备液。吸取36%~38%的甲醛溶液5.5mL,CDTA-2Na溶液(3.2)20.00mL;称取2.04g邻苯二甲酸氢钾,溶于小量水中;将三种溶液合并,再用水稀释至100mL,贮于冰箱可保存1年。 3.4 甲醛缓冲吸收液。 用水将甲醛缓冲吸收液贮备液(3.3)稀释100倍而成。临用现配。 3.5氨磺酸钠溶液,0.608/100mL。 称取0.60g氨磺酸(H2NS03H)置于100mL容量瓶中,加入4.0mL氢氧化钠溶液(3.1),用水稀释至标线,摇匀。此溶液密封保存可用10天。 3.6 碘贮备液,c=(1/2I2);0.1mol/L。 称取12.7g碘(I2)于烧杯中,加入40g碘化钾和25mL水,搅拌至完全溶解,用水稀释至1000mL,贮存于棕色细口瓶中。 3.7 碘溶液,c(1/2I2)=0.05mol/L。 量取碘贮备液(3.6)250mL,用水稀释至500mL,贮于棕色细口瓶中。 3.8 淀粉溶液,0.58/100mL。 称取0.5g可溶性淀粉,用少量水调成糊状,慢慢倒入100mL沸水中,继续煮沸至溶液澄清,冷却后贮于试剂瓶中。临用现配。 3.9 碘酸钾标准溶液,c(1/6KIO 3 )=0.1000mol/L。 称取3.5667g碘酸钾(KIO3优级纯,经110℃干燥2h)溶于水,移入1000m1容量瓶中,用水稀释至标线,摇匀。 3.10 盐酸溶液(1+9)。 3.11 硫代硫酸钠贮备液,c(Na 2S 2 O 3 )=0.10mol/L。 称取25.0g硫代硫酸钠(Na 2S 2 O 3 ·5H 2 O),溶于1000mL新煮沸但已冷却的水中,加 入0.2g无水碳酸钠,贮于棕色细口瓶中,放置一周后备用。如镕液呈现混浊,必须过滤。 3.12 硫代硫酸钠标准溶液,c(Na 2S 2 O 3 )=0.05mol/L。

大气中二氧化硫的去除方法

大气中二氧化硫的去除方法 一、实验背景: 二氧化硫是我国工矿城市最主要的大气污染物之一。严重的大气二氧化硫污染会对人体健康产生危害,也是形成酸雨的主要原因。对此,一方面应加强对工厂二氧化硫废气治理工程的建设,另一方面应积极开展绿化,大力推广种植对二氧化硫抗性和吸收都强的树种,以净化大气,保护和改善环境质量。 二、实验目的: 通过本实验,学习植物叶片中二氧化硫含量的测定方法以及测定不同植物对二氧化硫的吸收效果。 三、实验原理: 二氧化硫是当前污染大气的主要有害因子之一, 它主要来源于烟气中二氧化硫的排放, 烟气中二氧化硫以气态和尘态两种形式存在。据国内外有关资料报道, 植物叶片中硫主要从大气中吸收, 一般主要积累在叶片中, 不转移到其他部位。而植物的根从土壤中吸收的硫, 一般很少向叶片转移。因此, 测定出植物叶片中硫含量, 就可判断出大气二氧化硫污染情况。本文对包头市区内的多种植物叶片含硫量进行测定, 同时测定大气中二氧化硫的污染状况。 四、实验材料 杨树叶、桑树叶、龙柏树叶、槐树叶、聚乙烯塑料袋、甲醛缓冲溶液、U型玻板吸收管、玻璃珠、浓硝酸、小漏斗、酒精灯、滤纸五、实验步骤

1、采样点的设置 根据包头市大气污染状况, 选择4个采样点, 并以其中一处作为对照点。选取4种包头市区常见、并对二氧化硫有较强吸附累积性的植物叶片为测试对象, 依次为杨树叶、桑树叶、龙柏树叶、槐树叶。 2、样品的采集与制备 (1)植物样品采集与制备 将每个采样点采集的样品分装在不同的聚乙烯塑料袋, 将每种样品(30g)分为2份, 其中1份清洗, 晾干备用; 另1份不清洗。将样品在空气中风干后, 去除主脉, 经粉碎机磨碎, 过80目筛, 储存于干燥的聚乙烯塑料瓶中备用。 (2)大气样品的采集 用内装10ml甲醛缓冲溶液作为吸收液的U型玻板吸收管, 以0.5l/min的流量采样, 采样时吸收液温度应保持在23-29c范围内。3、样品含硫量的测定 (1)植物叶片含硫量的测定 称量0.2500g样品(0.5mm)于50ml 刻度试管, 加人玻璃珠两个和浓硝酸3ml 。管口加盖小漏斗, 放置过夜。 将试管插入消煮器中加热至150c, 消煮1h,通过小漏斗加人60%-70%HCLO4 2ml, 慢慢加温至235c消煮2h。 除去漏斗, 加HCL 1ml , 在150c下加热20min。自消煮器中取出试管, 冷却, 加35c水和10ml缓冲盐溶液, 定容至50ml。 用滤纸过滤至150ml 烧杯中, 加0.3gBaCl2.2H2O 晶粒, 于

空气中二氧化硫含量的简易测定方法

空气中二氧化硫含量的简易测定方法 作者/收集者:张锦耀 空气中的二氧化硫是造成大气污染的主要有害气体之一。在工业生产上规定空气中的二氧化硫,允许排放量不得超过0.02mg/L。否则将危害人类的健康,造成环境污染。通过本实验来对学生进行环保教育,增强环保意识。 一、实验原理 二氧化硫有还原性,能使碘(I2)还原成碘离子(I—),当二氧化硫通入碘一淀粉溶液中,则溶液由蓝色变为无色。 SO2 + I2 + 2H2O === H2SO4 + 2HI I2——淀粉呈蓝色 I———淀粉无色 二、测定装置 1.进气玻璃导管; 2.试管; 3.I2—淀粉溶液; 4.100mL注射器。 三、实验试剂 碘(I2)(AR级)、碘化钾、0.5%淀粉溶液。 四、实验步骤: 1.碘标准溶液的配制 准确称取1.27g粉末状纯碘(AR级),并称4g碘化钾,用少量水使之完全溶解,转入1000mL容量瓶中,定容1000mL,摇匀,取此溶液稀释10倍,即得5×10-4mol/L的碘溶液。 2.准确移取5mL5×10-4mol/L的碘溶液,注入测定装置图中的试管中,加2~3滴淀粉指示剂,此时溶液呈蓝色。按图连接好各仪器,在测定地点(如实验室或锅炉附近)徐徐抽气,每次抽气100mL,直到溶液的蓝色全部褪尽为止。记录抽气次数。 3.计算二氧化硫含量 设抽气次数为n,则空气中二氧化硫的含量为1.6/n mol/L。 五、注意事项 1.若空气中二氧化硫的允许含量以0.02mg/L为标准,则抽气次数n≥80次,才合符标准,否则超标。 2.抽气时应慢慢抽拉活塞,否则因抽拉太快,造成空气中二氧化硫未反应完全,产生误差。 3.碘的浓度以5×10-4mol/L为宜。若太稀不易观察化学计量点前后的颜色变化,若太浓,碘易挥发。 4.只要改变合适的吸收液,用该装置还可以测定空气中的其他有害气体(如一氧化碳)的含量。

环境监测实验 大气中二氧化硫的测定

实验五 大气中二氧化硫的测定 (盐酸副玫瑰苯胺分光光度法) 一、原 理 大气中的二氧化硫被四氯汞钾溶液吸收后,生成稳定的二氯亚硫酸盐络合物,此络合物再与甲醛及盐酸副玫瑰苯胺发生反应,生成紫红色的络合物,其颜色深浅与SO 2含量成正比,用分光光度法在波长575 nm 处测吸光度。 HgCl 2 + 2KCl = K 2[HgCl 4] [HgCl 4]2- + SO 2 + H 2O = [HgCl 2SO 3]2- + 2H + + 2Cl - [HgCl 2SO 3]2- + HCHO + 2H + = HgCl 2 + HOCH 2SO 3H (羟基甲基磺酸) 二、仪器 (方法二测定) 1.多孔玻板收吸管(用于短时间采样),多孔玻板吸收瓶(用于24h 采样)。 2.空气采样器:流量0~1L/min 。 按照所用的盐酸副玫瑰苯胺使用液含磷酸多少分 方法一:(含H 3PO 4少):最终显色PH = 1.6±0.1,显色后溶液呈红紫色,最大吸收波长在548 nm 处,最低检 方法二:(含H 3PO 4多):最终显色PH = 1.2±0.1,显 色后容液呈蓝紫色,最大吸收波长575nm 处,最低检C Cl HCl ·H 2N NH 2HCl NH 2·HCl+HOCH 2SO 3H → H 2N C NH 2 H -N +-CH 2SO 3H (紫红色络合物) Cl+H 2O+3H ++3Cl - SO 2↑、颜色↑、吸光值↑ 0.75μg/25m L

3.分光光度计。 三、试剂 1.0.04 mol/L四氯汞钾(K2[HgCl4])吸收液:称取10.9gHgCl2、6.0gKCl和0.070g乙二胺四乙酸二钠盐(EDTA-Na,用于消除或减少某些金属离子的干扰)溶于水,稀释至1000mL,密闭贮存,可稳定6个月,如发现沉淀,不能再用。 2.2.0 g / L甲醛溶液:量取36 ~ 38 %甲醛溶液1.1mL,用水稀释至200mL,临用现配。 3.6.0 g / L氮基磺酸铵溶液:称取0.60 g氨基磺酸铵(H2NSO3NH4),溶于100mL水中,临用现配。 4.碘贮备液(C1/2I2= 0.10mol/L):称取12.7g碘于烧杯中,加入40g碘化钾和25mL 水,搅拌至全部溶解后,用水稀释至1000mL,贮于棕色试剂瓶中。 5.碘使用液(C1/2I2= 0.010mol/L):量取50mL碘贮备液,用水稀释至500mL,贮于棕色试剂瓶中。 6.2g/L淀粉指示剂:称取 0.20g可溶性淀粉,用少量水调成糊状,慢慢倒入100mL 沸水中,继续煮沸直至溶液澄清,冷却后贮于试剂瓶中。 7.碘酸钾标准溶液(C1/6KIO3= 0.1000mol/L): 称取3.5668g碘酸钾(KIO3,优级纯,110℃烘干2h),溶解于水,移入1000mL容量瓶中,用水稀释至标线。 8.盐酸溶液(HCl = 1.2mol/L):量取100mL浓盐酸,用水稀释至1000mL。 9.硫代硫酸钠贮备液(Na2S2O3 ≈0.1 mol / L),称取25g硫代硫酸钠(Na2S2O3、5H2O),溶于1000mL新煮沸并已冷却的水中,加0.20g无水碳酸钠,贮于棕色瓶中,放置一周后标定其浓度。若溶液呈现浑浊时,应该过滤。 *标定方法:吸取碘酸钾标准溶液25.00mL,置于250mL碘量瓶中,加70mL新煮沸并已冷却的水,加1.0 g碘化钾,振荡至完全溶解后,再加1.2mol/L盐酸溶液10.0mL,立即盖好瓶塞,混匀。在暗处放置5min后,用硫化硫酸钠溶液滴定至淡黄色,加淀粉指标剂5mL,继续滴定至蓝色刚好消失。

最新14实验十四大气中二氧化硫物质的采集与测试汇总

14实验十四大气中二氧化硫物质的采集与 测试

实验十四.大气中二氧化硫物质的采集与测试二氧化硫是主要大气污染物之一,为大气环境污染例行监测的必测项目。它来源于煤和石油等燃料的燃烧,含硫矿石的冶炼硫酸等化工产品生产排放的废气。二氧化硫是一种无色、易溶于水、有刺激性气味的气体,能通过呼吸进入气管,对局部组织产生刺激和腐蚀作用,是诱发支气管炎等疾病的原因之一,特别是当其它烟尘等气溶胶共存时,可加重对呼吸道粘膜的损害。废气与空气中二氧化硫都是必测内容之一。 表14-1.常用废气二氧化硫手工分析方法及性能比较 测定空气中SO2常用方法有四氯汞盐吸收一副玫瑰苯胺分光光度法、甲醛吸收一副玫瑰苯胺分光光度法等。 两种方法的对比见表14-2 表14-2.环境空气二氧化硫分析方法及性能比较

本实验采用四氯汞盐吸收—副玫瑰苯胺分光光度法。 一.实验目的: 掌握四氯汞钾溶液吸收,盐酸副玫瑰苯胺分光光度法测定大气中二氧化硫浓度的分析原理和操作技术,掌握采样器的使用。二.实验原理: 空气中的二氧化硫被四氯汞钾溶液吸收后,生成稳定的二氯亚硫酸盐络合物,此络合物再与甲醛及盐酸副玫瑰苯胺发生反应,生成紫红色的络合物,据其颜色深浅,用分光光度法测定。按照所用的盐酸副玫瑰苯胺使用液含磷酸多少,分为两种操作方法。方法一:含磷酸量少,最后溶液的pH值为1.6±0.1,呈红紫色,最大吸收峰在548nm处,方法灵敏度高,但试剂空白值高。方法二:含磷酸量多,最后溶液的pH值为1.2±0.1,呈蓝紫色,最大吸收峰

在575nm处,方法灵敏度较前者低,但试剂空白值低,是我国广泛采用的方法。本实验采用方法二测定。方法原理的反应式: HgCl2+2NaCL=Na2HgCl4(四氯汞钠) HgCl2+2KCL=K2HgCl4(四氯汞钾)〔HgCl4〕2-+SO2+H2O→〔HgCl2SO3〕2-+2Cl-+2H+(二氯亚硫酸汞的络离子)此结合物中加入盐酸付玫瑰苯胺和甲醛的溶液后,先与甲醛反应:〔HgCl2SO3〕2+HCHO十2H+→HgCl2+HOCH2SO3H(羟基甲基磺酸) 盐酸付玫瑰苯按在有盐酸存在时,首先褪色成PRA无色酸。

固定污染源排气中丙烯腈的测定-气相色谱法 HJT 37-1999

1 适用范围 1.1 本标准适用于固定污染源有组织排放和无组织排放的丙烯腈测定。 1.2 当采样体积为30L时,方法的检出限为0.2 mg/m3。方法的定量测定浓度范围为0.26~33.0 mg/m3。 2 方法原理 丙烯腈(CH 2=CHCH 2 CN)用活性炭常温吸附富集,再经二硫化碳常温解吸,解吸 液中各组分通过色谱柱得到分离后进人氢火焰离子化检测器(FID),从测得的丙烯腈色谱峰高(或面积),对解吸液中丙烯腈浓度定量,最后由解吸液体积、浓度和采样体积计算出气体样品中丙烯腈的浓度。 3 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文: GB 16297-1996 大气污染物综合排放标准 GB 16157-1996 固定污染源排气中颗粒物测定和气态污染物采样方法 4 试剂和材料 4.1 丙烯腈:色谱纯(或分析纯,但必须对丙烯腈无色谱干扰峰)。 4.2 二硫化碳:分析纯(对丙烯腈的色谱测定无干扰峰,否则需进行蒸馏,取46~47℃的馏分)。 4.3 气相色谱固定相:GDX-502, 60~80目。 4.4 氮气:纯度99.99%,并用分子筛或活性氧化铝净化. 4.5 氢气:纯度99.99%,并用分子筛或活性氧化铝净化。 4.6 空气。 4.7 活性炭吸附管 活性炭吸附管的结构如图1所示。玻璃管的两端熔封密闭,并配有两个塑胶帽盖,以备采样完毕后盖紧密闭用。管内填装活性炭粒度为20~40目,A段含100mg, B段含50mg。A段活性炭前的玻璃棉上压着一个V字型弹簧钩,以免炭粒松动。活性炭应对气态丙烯腈有很强的吸附能力,并可用二硫化碳解吸被吸附的丙烯腈。目前市售的用于采集空气中有机蒸气,并以二硫化碳作解吸溶剂的活性炭吸附管能满足要求。 4.8 丙烯腊标准储备液:c=10. 0 mg/ml。 用分析天平准确称取一定t的丙烯腈(4.1)于容量瓶中,小心加人二硫化碳至刻度,配制成溶液的丙烯腈浓度为10.0 mg/ml,作为储备液,密闭存放于低温(4~8℃)下,备用。存放期不得超过一个月。 4.9 丙烯腈标准使用液:c=1.00 mg/ml。 取1.00ml丙烯睛标准储备液(4.8)于10ml容量瓶中,用二硫化碳稀释至刻度。 5 仪器 5.1 气相色谱仪:附氢火焰离子化检测器。 5.2 色谱柱

空气中二氧化硫的测定

空气中二氧化硫的测定 一、实验原理 将空气中的二氧化硫被四氯汞钾溶液吸收,生成稳定的络合物,再与甲醛和盐酸副玫瑰苯胺(PRA)反应生成紫红色化合物,比色定量。 二、器材 多孔玻板吸收管;气体采样器;具塞比色管25ml;分光光度计。 三、试剂 1、吸收液称取10.86g二氯化汞,5.96g氯化钾,0.066g乙二胺四乙酸二钠盐溶于水中,并稀释至1L。 2、6g/L氨基磺酸溶液称取0.6g氨基磺酸,溶于100ml水中,临用现配。 3、0.2%甲醛溶液量取1mL含量为36%~38%的甲醛,用水稀释到200ml。临用新配。 4、盐酸副玫瑰苯胺溶液储备溶液(2g/L)准确称取0.200g盐酸副玫瑰苯胺盐酸盐(PRA),其纯度不得少于95%,溶于100ml 1mol/L盐酸溶液中。 5、盐酸副玫瑰苯胺溶液使用液(0.16g/L)精确量取储备液20ml于250ml容量瓶中,加25ml 3mol/L磷酸溶液,并用水稀释到刻度。暗处保存,可保存6个月。 6、二氧化硫标准溶液称取0.20g亚硫酸钠(Na2SO3),溶解于250ml吸收液中,放置过夜,用滤纸过滤。此液1ml约含有相当于320~400μg二氧化硫,用下述碘量法标定浓度。标定后,立即用吸收液稀释成1.00ml含5μg的二氧化硫标准溶液。由于标准溶液不稳定,所以标定后当天使用。 四、采样 用一支内装10.0ml吸收液的U型多孔玻板吸收管,在采样点以0.5L/min流速,采气30L(大气)或10L(车间空气)。记录采样时的气温和气压。 五、分析步骤 1、样品处理将采样后的吸收液全部转入25ml比色管中,用吸收液洗涤吸收管3次,合并洗液于比色管中,定容至25ml,此为样品液。 2、取7支10ml具塞比色管,按下表配制二氧化硫标准系列: 管号0 1 2 3 4 5 6 标准应用液(ml)0 0.40 0.80 1.20 1.60 2.00 样品液1.00ml 吸收液(ml) 4.0 3.60 3.20 2.80 2.40 2.00 3.00 3、向样品管、标准管中各加入6.0g/L氨基磺酸溶液0.40mL,混匀,放置5min。 4、各加0.2%甲醛溶液0.50ml,0.16g/L盐酸副玫瑰苯胺应用液2.00ml,加蒸馏水至10ml,混匀,室温显色15min。 5、在波长548nm下,用1cm比色杯,以蒸馏水调零,测定吸光度值。 6、以标准系列管吸光度值对二氧化硫含量(μg)绘制标准曲线。 7、将测得样品管吸光度值,查标准曲线,即得二氧化硫含量(μg)。 六、计算 空气中二氧化硫的浓度(mg/m3)= (a/V0)×25 式中:a为样品管中二氧化硫含量,μg;V0为换算成标准状况下的采气体积,L。 七、注意事项 1、亚硫酸氢钠在存放过程中易氧化变质,若使用存放已久的亚硫酸氢钠,则应适当增加称取量。 2、盐酸副玫瑰苯胺不易溶于水,应先研细后,再用盐酸溶解。配制的溶液应放置3d后作用,才达到稳定状态。

实验一大气中二氧化硫的测定盐酸副玫瑰苯胺分光光度法

实验一大气中二氧化硫的测定(盐酸副玫瑰苯胺分光光度法)一、实验目的 1.掌握二氧化硫测定的基本方法; 2.熟练大气采样器和分光光度计的使用。 二、实验原理 大气中的二氧化硫被四氯汞钾溶液吸收后,生成稳定的二氯亚硫酸盐络合物,此络合物再与甲醛及盐酸副玫瑰苯胺发生反应,生成紫红色的络合物,据其颜色深浅,用分光光度法测定。按照所用的盐酸副玫瑰苯胺使用液含磷酸多少,分为两种操作方法。方法一:含磷酸量少,最后溶液的pH值为1.6±0.1;方法二:含磷酸量多,最后溶液的pH值为1.2±0.1,是我国暂选为环境监测系统的标准方法。本实验采用方法二测定。 三、仪器 1.多孔玻板吸收管(用于短时间采样);多孔玻板吸收瓶(用于24h采样)。 2.空气采样器:流量0—1L/min。 3.分光光度计。 四。、试剂 1.蒸馏水 25℃时电导率小于1.0μΩ/cm。pH值为6.0—7.2。检验方法为在具塞锥形瓶中加500mL蒸馏水,加1mL浓硫酸和0.2mL高锰酸钾溶液(0.316g/L),室温下放置1h,若高锰酸钾不褪色,则蒸馏水符合要求,否则应重新蒸馏(1000mL蒸馏水中加1gKMnO7及1gBa(OH)2,在全玻璃蒸馏器中蒸馏)。 2.甲醛吸收液(甲醛缓冲溶液) (1)环已二胺四乙酸二钠溶液C(CDTA-2Na)=0.050mol/L:称取1.82g反应-1,2-环已二胺四乙酸[(trans-1,2-Cyclohexylenedinitrilo)tetracetic acid简称CDTA],溶解于1.50mol/LNaOH 溶液6.5mL,用水稀释至100ml。 (2)吸收储备液:量取36%--38%甲醛溶液 5.5mL,加入 2.0g邻苯二甲酸氢钾及0.050mol/LCDTA-2Na20.0mL溶液,用水稀释至100mL,贮于冰箱中,可保存一年。 (3)甲醛吸收液:使用时,将吸收贮备液用水稀释100倍。此溶液每毫升含0.2mg甲醛。 3.0.60%(m/v)氨磺酸钠溶液 称取0.60g氨磺酸(H2NSO3H),加入1.50mol/L氢氧化钠溶液4.0mL,用水稀释至100mL密

固定污染源采样

第二节污染源采样 (一)固定污染源采样 一、填空题 1.对除尘器进出口管道内气体压力进行测定时,可采用校准后得标准皮托管或其她经过校正得非标准型皮托管(如S形皮托管),配压力计或倾斜式压力计进行测定。 2.按等速采样原则测定锅炉烟尘浓度时,每个断面采样次数不得少于次,每个测点连续采样时间不得少于 min,每台锅炉测定时所采集样品累计得总采气量应不少于1m3,取3次采样得算术均值作为管道得烟尘浓度值。 3。采集烟尘得常用滤筒有玻璃纤维滤筒与滤筒两种。 4。烟尘测试中得预测流速法,适用于工况得污染源。 5。固定污染源排气中颗粒物等速采样得原理就是:将烟尘采样管由采样孔插入烟道中,采样嘴气流,使采样嘴得吸气速度与测点处气流速度,并抽取一定量得含尘气体,根据采样管上捕集到得颗粒物量与同时抽取得气体量,计算排气中颗粒物浓度、 6。在烟尘采样中,形状呈弯成90°得双层同心圆管皮托管,也称型皮托管。 7。在矩形烟道内采集烟尘,若管道断面积〈0.1m2,且流速分布、对称并符合断面布设得技术要求时,可取断面中心作为测点。 8.蒸汽锅炉负荷就是指锅炉得蒸发量,即锅炉每小时能产生多少吨得,单位为比。9.测定锅炉烟尘时,测点位置应尽量选择在垂直管段,并不宜靠近管道弯头及断面形状急剧变化得部位、测点位置应在距弯头、接头、阀门与其她变径管段得下游方向大于倍直径处。 10。用S形皮托管与U形压力计测量烟气得压力时,可将S形皮托管一路出口端用乳胶管与U形压力计一端相连,并将S形皮托管插入烟道近中心处,使其测量端开口平面平行于气流方向,所测得得压力为。 11、通常在风机后得压入式管道中进行烟尘采样,管道中得静压与动压都为(填“正”或“负”),全压为 (填“正"或“负”)、

高中化学实验实操空气中二氧化硫含量的简易测定方法

空气中二氧化硫含量的简易测定方法 空气中的二氧化硫是造成大气污染的主要有害气体之一。在工业生产上规定空气中的二氧化硫,允许排放量不得超过0.02mg/L。否则将危害人类的健康,造成环境污染。通过本实验来对学生进行环保教育,增强环保意识。 一、实验原理 二氧化硫有还原性,能使碘(I2)还原成碘离子(I—),当二氧化硫通入碘一淀粉溶液中,则溶液由蓝色变为无色。 SO2 + I2 + 2H2O === H2SO4 + 2HI I2——淀粉呈蓝色 I———淀粉无色 二、测定装置 1.进气玻璃导管; 2.试管; 3.I2—淀粉溶液; 4.100mL注射器。 三、实验试剂 碘(I2)(AR级)、碘化钾、0.5%淀粉溶液。 四、实验步骤: 1.碘标准溶液的配制 准确称取1.27g粉末状纯碘(AR级),并称4g碘化钾,用少量水使之完全溶解,转入1000mL容量瓶中,定容1000mL,摇匀,取此

溶液稀释10倍,即得5×10-4mol/L的碘溶液。 2.准确移取5mL5×10-4mol/L的碘溶液,注入测定装置图中的试管中,加2~3滴淀粉指示剂,此时溶液呈蓝色。按图连接好各仪器,在测定地点(如实验室或锅炉附近)徐徐抽气,每次抽气100mL,直到溶液的蓝色全部褪尽为止。记录抽气次数。 3.计算二氧化硫含量 设抽气次数为n,则空气中二氧化硫的含量为1.6/n mol/L。 五、注意事项 1.若空气中二氧化硫的允许含量以0.02mg/L为标准,则抽气次数n≥80次,才合符标准,否则超标。 2.抽气时应慢慢抽拉活塞,否则因抽拉太快,造成空气中二氧化硫未反应完全,产生误差。 3.碘的浓度以5×10-4mol/L为宜。若太稀不易观察化学计量点前后的颜色变化,若太浓,碘易挥发。 4.只要改变合适的吸收液,用该装置还可以测定空气中的其他有害气体(如一氧化碳)的含量。

固定污染源排气中二氧化硫的测定 定电位电解法

固定污染源排气中二氧化硫的测定 定电位电解法 Determination of sulpur dioxide from exhausted gas of stationary source Fixed-potential electrolysis method HJ/T57-2000 1、范围 本标准规定了定电位电解法测定固定污染源排气中二氧化硫浓度以及测定二氧化硫排放总量的方法。 2、引用标准 下列标准所包含的条文,在本标准中引用构成本标准的条文,与本标准同效。 GB/TI6157—1996固定污染源排气中颗粒物测定和气态污染物采样方法 3、原理 烟气中二氧化硫(SO2)扩散通过传感器渗透膜,进入电解槽,在恒电位工作电极上发生氧化反应: SO2+2H2O=SO4-2+4H++2e 由此产生极限扩散电流i,在一定范围内,其电流大小与二氧化硫浓度成正比,即: 在规定工作条件下,电子转移数Z、法拉第常数F、扩散面积S、扩散系数D和扩散层厚度δ均为常数,所以二氧化硫浓度c可由极限电流i来测定。

测定范围:15mg/m3~14300mg/m3。测量误差±5%。 影响因素:氟化氢、硫化氢对二氧化硫测定有干扰。烟尘堵塞会影响采气流速,采气流速的变化直接影响仪器的测试读数。 4、仪器 41定电位电解法二氧化硫测定仪。 4.2带加热和除湿装置的二氧化硫采样管。 4.3不同浓度二氧化硫标准气体系列或二氧化硫配气系统。 4.4能测定管道气体参数的测试仪。 5、试剂 5.1二氧化硫标准气体。 6、步骤 不同测定仪,操作步骤有差异,应严格按照仪器说明节操作。 6.1开机与标定零点 将仪器接通采样管及相应附件。定电位电解二氧化硫测定仪在开机后,通常要倒计时,为仪器标定零点。标定结束后,仪器自动进入测定状态。 6.2测定 采样应在额定负荷或参照有关标准或规定下进行。 将仪器的采样管插入烟道中,即可启动仪器抽气泵,抽取烟气进行测定。待仪器读数稳定后即可读数。同一工况下应连续测定三次,取平均值作为测量结果。

二氧化硫和二氧化氮对大气的污染(上传教案)

二氧化硫和二氧化氮对大气的污染(上传教案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

二氧化硫和二氧化氮对大气的污染 英德中学高一化学组梁瑞朝 一、教学目标: 1.使学生从情感上认识到酸雨的危害、酸雨的来源以及成分 2.通过本节课的学习,使学生的爱国主义态度得到了增强; 3.帮助学生树立了正确的社会价值观。 二、教学重点:二氧化硫和二氧化氮对大气的污染 三、教学难点:酸雨的成分及形成 四、教学过程 【导入】同学们,平时你们尝过雨水的味道吗那味道如何呢通常雨水都是没有味道的,但是在某种特定的环境下,从大气中雨水却是酸的,pH 值也小于 5.6,那么在化学上我们称这中大气降雨是酸雨。那为什么雨水从无色无味变成了酸的呢这就是我们这节课所要探索的内容。 【演示】多媒体设备投影酸雨的影片(内容有关一场重庆的黑雨) 【提问】影片当中重庆的酸雨的pH 值居然达到了3.9,那么这场雨真是彻彻底底的一场酸雨了,那我有个问题想要提问大家,那么酸雨是怎么形成的呢( 学生回答) 【讲述】其实酸雨都是由于大气的主要污染物:二氧化硫和二氧化氮造成的,那么其中的作用机理是那些呢?请同学们互相讨论一下,酸雨中的“酸”究竟是什么呢? 【讨论】叫学生分成一个个四人小组,分别讨论酸雨是怎样形成的以及其中的酸是什么物质。 【讲述】经过大家的讨论,大家得出的结论是多种多样的,其中也不乏有创造性的思维得出的结论,这些答案虽然并不完全正确,但是都体现着大家的集体智慧;但是究竟酸雨在形成过程中出现什么样的作用机理呢? 【多媒体演示】酸雨形成的作用机理 3222SO H O H SO ?+ 4223222SO H O SO H =+ NO HNO O H NO +=+3223 【讲述】所以酸雨的幕后黑手就是二氧化硫和二氧化氮,但是酸雨中硫酸的成分较大。酸雨的危害非常巨大。它们能够直接危害人体健康,引起呼吸道疾病,严重时会使人死亡;还会直接破坏农作物、森林、草原、使土壤、湖泊酸化,还会加速建筑物、桥梁、工业设备、运输工具及电信电缆的腐蚀。

大气中二氧化硫的危害

大气中二氧化硫的危害

大气中二氧化硫的危害 有关研究表明,大气中二氧化硫的浓度每增加1倍,总死亡率就会增加11%。二氧化硫的危害还在于它可以在高空中与水蒸气结合形成酸性降水,对生态环境造成危害。现在就跟着我一起来看一看,资料仅供参考。 二氧化硫吸入呼吸道之后,因其易溶于水,在湿润的粘膜上生成具有腐蚀性的亚硫酸、硫酸和硫酸盐。使刺激作用增强,使气管和支气管的管腔缩小,气道阻力增加。不过我们大家不必过于恐慌,主要还是针对一些有慢性疾病的患者影响比较大,例如慢性阻塞性肺疾病、支气管哮喘等呼吸道常见疾病,这些人群会增加急性发病可能。 建议大家在日常生活中,尽量使用清洁燃料,减少污染物的排放,在重污染天气下减少外出,出门戴防雾霾口罩,在家中可以使用空气净化器,气候条件允许下再开窗通风。 在红色预警期间,市二院呼吸内科增派医护人员值班,最大程度的保障市民的健康。 二氧化硫的专家建议

一是食品生产企业要严格遵守相关标准法规。相关食品生产企业应严格遵守GB2760的要求,在达到预期效果的前提下尽可能降低二氧化硫在食品中的使用量,不可超范围、超限量使用,更不可违规添加。积极通过革新工艺,采用新技术,从技术、工艺上控制褐变、有害微生物的污染和繁殖,减少含硫食品添加剂的使用量。如果在食品中添加了二氧化硫,生产企业应按照GB7718的规定进行规范标识。 二是监管部门需进一步加强对食品添加剂使用的监管。建议相关监管部门进一步加强对食品添加剂使用标准等相关规定的宣传力度,同时加大监管力度,对于超限量、超范围使用二氧化硫的企业应给予严厉处罚。 三是消费者应树立正确的消费观,认真研读食品标签。消费者要以正确心态选购食品,避免过度追求食品的外观,如色泽过分鲜亮的黄花菜、雪白的银耳等。此外,食品标签体现了该食品的名称、配料、食品添加剂等信息,按照GB7718的规定,生产企业如果在食品中添加了二氧化硫就应该在食品标签上标识。消费者在选择食品之前,可以通过研读食品标签辨认该食品中是否添加了二氧化硫。 二氧化硫的净化与回收 一高浓度二氧化硫气体

固定污染源排气中氯气的测定-甲基橙分光光度法

固定污染源排气中氯气的测定甲基橙分光光度法 HJ/T 30-1999 1.适用范围 1.1 本方法适用于固定污染源有组织排放和无组织排放的氯气测定。 1.2 当采集无组织排放样品体积为30L时,方法的检出限为0.03mg/m3,定量测定的浓度范围为0.086~3.3mg/m3,当采集有组织排气样品体积为5.0L时,方法的检出限为0.2mg/m3,定量测定的浓度范围为0.52~20mg/m3。 1.3 游离溴有和氯相同的反应而产生正干扰,微量二氧化硫对测定有明显负干扰。 2. 方法原理 含溴化钾、甲基橙的酸性溶液和氯气反应,氯气将溴离子氧化成溴,溴能在酸性溶液中将甲基橙溶液的红色减退,用分光光度法测定其退色的程度来确定氯气的含量。 3. 试剂和材料 除非另有说明,分析过程中均使用符合国家标准的分析纯试剂和蒸馏水。 3.1 浓硫酸:ρ=1.84g/ml。 3.2 甲基橙。 3.3 溴化钾。 3.4 溴酸钾:基准试剂。 3.5 硫酸溶液:1+6。 量取100ml浓硫酸,缓慢地、边倒边搅拌加入到600ml水中 3.6 甲基橙吸收贮备液 称取0.1000 g甲基橙,溶解于100ml 40~50℃的水中,冷却至室温,加无水乙醇20ml,移入1000ml容量瓶中,加水稀释至刻度,混匀。此溶液放置暗处可保存半年。 3.7 甲基橙吸收使用液 用吸管移取甲基橙吸收储备液250ml,置于1000ml容量瓶中,加入500ml 1+6硫酸溶液,再加入5.0g溴化钾,溶解后用水稀释至刻度,混匀。

3.8 溴酸钾标准贮备液:c(l/6KBrO3)1.41×10-1mol/L。 称取1.9627g溴酸钾,用少量水溶解,移入500ml容量瓶中,加水稀释至刻度,混匀。此溴酸钾标准贮备溶液每毫升相当于5.00mg氯。放置暗处,可保存半年。 3.9 溴酸钾标准使用液:c(l/6KBrO3)1.41×10-3mol/L。 用吸管移取溴酸钾标准贮备液10ml,移入1000ml容量瓶中,加水稀释至刻度,混匀。此溴酸钾标准使用液每毫升相当于50.0μg氯。 4. 仪器 4.1 分光光度计:具1cm比色皿。 4.2 采样仪器 4.2.1 有组织排放监测采样仪器 参照GB 16157—1996中9.3有关部分配置采样仪器。 4.2.1.1 采样管 以硬质玻璃、氟树脂或氯乙烯树脂为材质,具有适当尺寸的管料为采样管。 4.2.1.2 取样装置 25ml多孔玻板吸收管。 4.2.1.3 流量计量装置 按GB 16157—1996中9.3.6配置流量计量装置。 4.2.1.4 抽气泵 按GB 16157—1996中9.3.7配置抽气泵。 4.2.1.5 连接管 聚四氟乙烯软管或内衬聚四氟乙烯薄膜的硅橡胶管。 4.2.2 无组织排放监测采样仪器 4.2.2.1 引气管 以聚四氟乙烯或聚乙烯软管作引气管,在其头部接一玻璃漏斗。 4.2.2.2 取样装置 25ml多孔玻板吸收管。 4.2.2.3 流量计量装置 按GB 16157—1996中9.3.6配置流量计量装置。

相关主题
文本预览
相关文档 最新文档