当前位置:文档之家› 放大器反馈分析

放大器反馈分析

判断一个电路是何种反馈类型的步骤:

1)先找出在输入输出回路之间起联系作用的反馈元件或反馈网络;

2)根据反馈信号的取出方式,判定是电压还是电流反馈;

3)根据反馈的接入方式判定是串联反馈还是并联反馈;

4)最后看反馈对输入信号的影响,判定是正反馈还是负反馈。

具体分析如下:

1)先找出在输入输出回路之间起联系作用的反馈元件或反馈网络;

2)根据反馈信号的取出方式,判定是电压还是电流反馈;

方法1:将输出端短路,若反馈信号不存在,为电压反馈;反之为电流反馈。

方法2:当反馈信号与输出信号由同一端引出时(如输出信号从集电极取出,反馈网络的输入端也接在集电极)是电压反馈;反之为电流反馈。

3)根据反馈的接入方式判定是串联反馈还是并联反馈;

反馈信号Vf与输入信号Vi在输入回路串接,以电压形式叠加,为串联反馈。反馈信号If与输入信号Ii在输入回路并接,以电流形式叠加,为并联反馈。

方法1:输入信号与反馈信号在不同节点引入(例如三极管b和e极,或运放的反向端和同向端)为串联反馈;输入信号与反馈信号在同一节点引入(例如三极管b极,或运放的反向端)为并联反馈。

方法2:将输入回路的反馈点对地短路,若输入信号仍能加到放大电路中去,为串联反馈;若输入信号不能加到放大电路中去,为并联反

馈。

4)最后看反馈对输入信号的影响,判定是正反馈还是负反馈

采用“瞬时极性法”

从输入端加入任意极性(正或负)的信号,使信号沿着信号传输路径向下传输(从输入到输出)。再从输出反向传输(反馈)到输入端。反馈信号在输入端与原输入信号相比较,看净输入信号是增加还是减小(极性相同还是极性相反)。极性相同(增加)是正反馈,极性相反(减小)是负反馈。

具体判别时可以将输入和反馈两个信号,接到输入回路的同一极上,则两者极性相反为负反馈,极性相同为正反馈。同样的道理也可以将输入和反馈两个信号,接到输入回路的两个不同的电极上,则两者极性相反为正反馈,极性相同为负反馈

为了迅速准确地判断反馈极性,应该注意以下几点:

(1)正确理解电路中各点瞬时极性的含义。所谓正极性,在输入正弦波时,可以指正弦波的正半周;在输入非正弦波时,表示该点的电位增大或该支路的瞬时电流增大。反之,所谓负极性指交流信号的负半周或瞬时量减少。

(2)熟悉常用放大电路输入输出之间的相位关系。在共射组态中,信号由基极输入,集电极输出,输入与输出之间相位相反。在共基组态中,信号由发射极输入,集电极输出,输入与输出之间相位相同。在共集组态中,信号由基极输入,发射极输出,输入与输出之间相位相同。同理也不难确定差分放大电路和集成运算放大电路中的相位关

系。

(3)理解放大器件中输入输出间的控制原理,以确定净输入量。如对于运算放大器,不难看出运放两个输入端之间的差模输入电压或输入电流可以控制运放的输出电压或电流;对于三极管组成的放大电路来说,三极管的基极输入电流或发射结电压的大小控制输出电压或电流;对于差分放大电路来说,差模输入电压或基极输入电流控制输出电压或电流。因此,根据输入回路中输入信号与反馈信号的接法,可以判断净输入信号是增加还是减小,从而确定电路中的反馈极性是正反馈还是负反馈。

图4 反馈极性的判断

(a) 通过净输入电压的变化判断反馈极性

(b) 通过净输入电流的变化判断反馈极性

(c)电路引入了正反馈

图4(a)所示电路中,设输入电压的瞬时极性对地为正,由于

从同相端输入,则输出电压对地也为正,由此得反馈电压对地也为正,因此集成运放的净输入电压减小,说明电路引入了负反馈。

图4(b)所示电路中,设输入电压的瞬时极性对地为正,由于从反相端输入,则输出电压对地为负,由此可得三个支路中、、

的瞬时流向,并由此判断出集成运放的净输入电流减小,说明电路引入了负反馈。

将图4(a) 电路中运放的同相输入端和反相输入端互换,得图4(c) 电路,设输入电压的瞬时极性对地为正,由于从反相端输入,则输

出电压对地为负,由此得反馈电压对地也为负,因此集成运放的净输入电压增大,说明电路引入了正反馈。

放大电路中的负反馈

放大电路中的负反馈 放大电路是主要的电子电路类型,为了确保放大电路能够正常工作,提供稳定的增益、良好的线性,以及其他的一些特殊目的,一般实用的放大电路都加上了负反馈的网络。 在各种系统的控制分析中,电路中的负反馈研究应该是最为深入和细致的了,详细的内容请参阅“电子技术”或“电路分析”专业教科书,本文仅仅是想通过对放大电路中反馈的简单介绍,阐述系统中反馈控制的基本原理。 1、为什么要在电路中设置反馈 半导体技术发展到今天,为电子电路的设计提供了极大的施展空间。现在要设计或制作一个高性能的放大器,在如何提高放大倍数方面已经不是问题,最普通的集成电路运算放大器(LM324,其内部包含了4个相同的独立放大器,价格在1元左右,如下图),其开环电压放大倍数也可以做到几十万倍(80dB~140dB)之高,对于一般的要求来说,这几乎就是无限大的放大倍数了。 然而,在多数的应用中,都要求电路的放大倍数是一个固定不变的有限值。所谓固定不变是指:当工作环境的温度变化;电路输入、输出连接状态发生改变;器件因常时间工作性能老化;因故障更换了主要半导体器件之后,等等的内在的和外部的干扰因素下,放大器的放大倍数都维持在设定值不会变化。这个稳定增益(放大倍数)的要求,其实才是现代电子电路设计的难点,而在电路中使用负反馈技术,是解决这个难题的主要方法。 此外,电路中的负反馈还能解决以下问题: 提高输入阻抗,降低输出阻抗(提高负载能力),优化频率响应,稳定静态工作点,减少线性失真等等,本文不做叙述。 2、电路中最主要的两种负反馈应用示例 ①反相交流放大器 电路见附图。此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。电路无需调试。放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。 放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。负号表示输出信号与输入信号相位相反。按图中所给数值,Av=-10。此电路输入电阻为Ri。一般情况下先取Ri 与信号源内阻相等,然后根据要求的放大倍数在选定Rf。Co和Ci为耦合电容。 ②同相交流放大器 电路见附图。同相交流放大器的特点是输入阻抗高。其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。R4的阻值范围为几千欧姆到几十千欧姆。以上两种基本的反馈放大器,共同点是都具有反馈,而且从输出端取出的反馈信号经过反馈网络后,都加到了运算放大器的负输入端,反馈信号的作用是抵消了输入信号,因此称为负反馈;另一个共同点是,经过分析计算发现,两种放大电路由于反馈网络的加入,使得放大器的放大倍数(增益)的大小,只由反馈网络的电阻参数值决定(Av=-Rf/Ri;Av=1+Rf/R4),只要这几个电阻的阻值是稳定的放大倍数就不会变化,而要确保电阻的阻值始终稳定在规定的范围内,是比较容易做到的。 3、电路中反馈的基本模型概括 4、电路中反馈的类型及其作用: 直流反馈:反馈只对直流分量起作用,反馈元件只能传递直流信号;目的:稳定静态工作点。

负反馈放大器实验报告

实验2.4 负反馈放大电路 一、实验目的 加深理解放大电路中引入负反馈的方法和负反馈各项性能指标的影响。 二、实验原理 放大器中采用负反馈,在降低放大倍数的同时,可以使放大器的某些性能大大改善。所谓负反馈,就是以某种方式从输出端取出信号,再以一定方式加到输入回路中。若所加入的信号极性与原输入信号极性相反,则是负反馈。 根据取出信号极性与加入到输入回路的方式不同,反馈可分为四类:串联电压反馈、串联电流反馈、并联电压反馈与并联电流反馈。 下图为带有电压串联负反馈的两极阻容耦合放大器电路,在电路中通过Rr把输出电压Uo引回到输入端,家在晶体管T1的发射极上,在发射极电阻Rf1上形成反馈电压Uf。 主要性能指标如下: (1)闭环电压放大倍数Ar=Av/1+AvFv ,Av为开环放大倍数。 (2)反馈系数 Fv=RF1/Rf+RF1 (3)输入电阻 R1f=(1+AvFv)Rf Rf 为基本放大器的输入电阻 (4)输出电阻 Rof=Ro/(1+AvoFv) Ro 为基本放大器的输出电阻 Avo为基本放大器Rl=∞时的电压放大倍数。 三、实验设备与器件 模拟实验箱,函数信号发生器,双踪示波器,交流伏安表,数字万用表。 四、实验内容 1、静态工作点的测量 按图连接好电路,取Ucc=+12V,Ui=0V,用直流电压表分别测量第一级、第二级的静态工作点,记入表格中:

测得的结果如图:

记入表格中: U B(V) U E(V) U C(V) 第一级 2.49 1.746 8.218 第二级 2.801 2.047 7.124 2、测量基本放大器的各项性能指针 1、减小电压放大倍数的验证 按上图连接电路,设置信号发生器参数为F=1KHz,U=30Mv,选择正弦波形,由示波器读出波形: A、无负反馈放大电路放大倍数仿真结果:

放大器反馈分析

判断一个电路是何种反馈类型的步骤: 1)先找出在输入输出回路之间起联系作用的反馈元件或反馈网络; 2)根据反馈信号的取出方式,判定是电压还是电流反馈; 3)根据反馈的接入方式判定是串联反馈还是并联反馈; 4)最后看反馈对输入信号的影响,判定是正反馈还是负反馈。 具体分析如下: 1)先找出在输入输出回路之间起联系作用的反馈元件或反馈网络; 2)根据反馈信号的取出方式,判定是电压还是电流反馈; 方法1:将输出端短路,若反馈信号不存在,为电压反馈;反之为电流反馈。 方法2:当反馈信号与输出信号由同一端引出时(如输出信号从集电极取出,反馈网络的输入端也接在集电极)是电压反馈;反之为电流反馈。 3)根据反馈的接入方式判定是串联反馈还是并联反馈; 反馈信号Vf与输入信号Vi在输入回路串接,以电压形式叠加,为串联反馈。反馈信号If与输入信号Ii在输入回路并接,以电流形式叠加,为并联反馈。 方法1:输入信号与反馈信号在不同节点引入(例如三极管b和e极,或运放的反向端和同向端)为串联反馈;输入信号与反馈信号在同一节点引入(例如三极管b极,或运放的反向端)为并联反馈。 方法2:将输入回路的反馈点对地短路,若输入信号仍能加到放大电路中去,为串联反馈;若输入信号不能加到放大电路中去,为并联反

馈。 4)最后看反馈对输入信号的影响,判定是正反馈还是负反馈 采用“瞬时极性法” 从输入端加入任意极性(正或负)的信号,使信号沿着信号传输路径向下传输(从输入到输出)。再从输出反向传输(反馈)到输入端。反馈信号在输入端与原输入信号相比较,看净输入信号是增加还是减小(极性相同还是极性相反)。极性相同(增加)是正反馈,极性相反(减小)是负反馈。 具体判别时可以将输入和反馈两个信号,接到输入回路的同一极上,则两者极性相反为负反馈,极性相同为正反馈。同样的道理也可以将输入和反馈两个信号,接到输入回路的两个不同的电极上,则两者极性相反为正反馈,极性相同为负反馈 为了迅速准确地判断反馈极性,应该注意以下几点: (1)正确理解电路中各点瞬时极性的含义。所谓正极性,在输入正弦波时,可以指正弦波的正半周;在输入非正弦波时,表示该点的电位增大或该支路的瞬时电流增大。反之,所谓负极性指交流信号的负半周或瞬时量减少。 (2)熟悉常用放大电路输入输出之间的相位关系。在共射组态中,信号由基极输入,集电极输出,输入与输出之间相位相反。在共基组态中,信号由发射极输入,集电极输出,输入与输出之间相位相同。在共集组态中,信号由基极输入,发射极输出,输入与输出之间相位相同。同理也不难确定差分放大电路和集成运算放大电路中的相位关

放大电路中的反馈

第六章放大电路中的反馈 6.1 反馈的基本概念及判断方法 6.1.1 反馈的基本概念 一、反馈(回授)的概念(图6.1.1) 将输出量的一部分或全部,通过一定电路形式作用到输入回路,用来影响其输入量的措施称为反馈。 二、正反馈与负反馈 1.净输入量:基本放大电路的输入信号; 2.正反馈:使放大电路净输入量增大的反馈;反馈结果使输出量的变化增大的反 馈。 3.负反馈:使放大电路净输入量减小的反馈;反馈结果使输出量的变化减小的反 馈。(图2.4.2) 三、直流反馈与交流反馈 1.直流反馈:(图 2.4.2)反馈量中只含有直流量;直流通路中存在的反馈;影响 静态工作点。 2.交流反馈:(图2.4.2中去掉旁路电容)反馈量中只含有交流量;交流通路中存 在的反馈;影响放大电路性能。 6.1.2 反馈的判断 一、反馈存在与否的判断(图6.1.2) 1.是否存在将输出回路与输入回路相连接的反馈通路; 2.反馈通路是否影响了放大电路的净输入。利用叠加定理可以理解输入端有无输 出量的作用结果。 二、反馈极性的判断(瞬时极性法)(图6.1.3)(图6.1.4) 1.规定电路输入信号在某一时刻对地的极性; 2.逐级判断电路中各相关点的电流流向和电位极性; (1)三极管:若基极正极性,则动态电流从c到e; (2)运放:同相端加正极性,输出端输出正极性; 3.判断输出信号的极性; 4.判断反馈信号的极性; 5.反馈信号使放大电路的净输入信号增大与否。 6.注:反馈量仅仅决定于输出量,而与输入量无关,分析反馈极性时,可将输出 量视为作用于反馈网络的独立源。 三、直流反馈与交流反馈的判断(图6.1.5)(图6.1.6) 根据交直流通路来判断

放大电路中反馈的基本概念与类型判断方法

壹 放大电路中反馈的基本概念与类型判断方法(教案) 反馈在电路中的应用十分广泛,特别是在精度、稳定性等方面要求较高的场合,往往通过引入含有负反馈的放大电路,以达到提高输出信号稳定度、改善电路工作性能(例如,提高放大倍数的稳定性、改善波形失真、增加频带宽度、改变放大电路的输入电阻和输出电阻等)的目的。 反馈是指将电路输出信号(电压或电流)的一部分或全部,通过一定形式的反馈网络送回到输入回路,使得净输入信号发生变化从而影响输出信号的过程。 引入反馈的放大电路称为反馈放大电路,它由基本放大电路A 和反馈网络F 构成,如图所示。 图1 反馈放大电路的组成框图 反馈放大电路中,i x 是反馈放大电路的原输入信号,o x 为输出信号,f x 是反馈信号,id x 是基本放大电路的净输入信号。基本放大电路A 实现信号的正向传输,反馈网络F 则将部分或全部输出信号反向传输到输入端。 判断一个放大电路中是否存在反馈的方法是:观察放大电路中有无反馈通路,即观察放大电路输出回路与输入回路之间是否有电路元件起桥梁作用。若有,则存在反馈通路,即电路为反馈放大电路;反之,则无反馈通路,即电路为开环放大电路。 根据反馈信号与原输入信号的合成类型(相加或相减,反馈极性),可将反馈电路分为正反馈与反馈;根据反馈信号中所含成分的不同,可将反馈电路分为直流反馈与交流反馈;根据反馈信号与原输入信号在放大电路输入端合成方式的不同,可将反馈电路分为串联反馈与并联反馈;根据输出信号反馈端采样方式的不同,可将反馈电路分为电压反馈与电流反馈。为了正确分析反馈对电路性能的影响,首先必须知道如何来区别和判断反馈的类型。 1.直流反馈与交流反馈的判断 仅在放大电路直流通路中存在的反馈称为直流反馈。直流反馈影响放大电路的直流性能,如直流负反馈能稳定静态工作点。 仅在放大电路交流通路中存在的反馈称为交流反馈。交流反馈影响放大电路

负反馈放大器实验报告

电工电子实验报告 学生姓名:朱光耀 学生学号:201324122225 系别班级:13电气2 报告性质: 课程名称:电工电子实验实验项目:负反馈放大器实验地点:实验楼206 实验日期:11月23号 成绩评定: 教师签名:

实验四 负反馈放大器 一、实验目的 加深理解放大电路中引入负反馈的方法和负反馈对放大器各项性能指标的影响。 二、实验原理 负反馈在电子电路中有着非常广泛的应用,虽然它使放大器的放大倍数降低,但能在多方面改善放大器的动态指标,如稳定放大倍数,改变输入、输出电阻,减小非线性失真和展宽通频带等。因此,几乎所有的实用放大器都带有负反馈。 负反馈放大器有四种组态,即电压串联,电压并联,电流串联,电流并联。本实验以电压串联负反馈为例,分析负反馈对放大器各项性能指标的影响。 1、图4-1为带有负反馈的两级阻容耦合放大电路,在电路中通过R f 把输出电压u o 引回到输入端,加在晶体管T 1的发射极上,在发射极电阻R F1上形成反馈电压u f 。根据反馈的判断法可知,它属于电压串联负反馈。 主要性能指标如下 1) 闭环电压放大倍数 V V V Vf F A 1A A += 其中 A V =U O /U i — 基本放大器(无反馈)的电压放大倍数,即开环电压放 大倍数。

图4-1 带有电压串联负反馈的两级阻容耦合放大器 2) 反馈系数 F1 f F1 V R R R F += 3) 输入电阻 R if =(1+A V F V )R i R i — 基本放大器的输入电阻 4) 输出电阻 V VO O Of F A 1R R += R O — 基本放大器的输出电阻 A VO — 基本放大器R L =∞时的电压放大倍数 1) 在画基本放大器的输入回路时,因为是电压负反馈,所以可将负反馈放大器的输出端交流短路,即令u O =0,此时 R f 相当于并联在R F1上。 2) 在画基本放大器的输出回路时,由于输入端是串联负反馈,因此需将反馈放大器的输入端(T 1 管的射极)开路,此时(R f +R F1)相当于并接在输出端。

实验三 负反馈放大器带数据的

实验二负反馈放大器 一、实验目的 加深理解放大电路中引入负反馈的方法和负反馈对放大器各项性能指标的影响。 二、实验原理 负反馈在电子电路中有着非常广泛的应用。虽然它使放大器的放大倍数降低,但能在多方面改善放大器的动态指标,如稳定放大倍数,改变输入、输出电阻,减小非线性失真和展宽通频带等。因此.几乎所有的实用放大器都带有负反馈。负反馈放大器有四种组态,即电压串联,电压并联,电流串联,电流并联。本实验以电压串联负反馈为例,分析负反馈对放大器各项性能指标的影响。 1.图1为带有负反馈的两级阻容耦合放大电路,在电路中通过Rf把输出电压Uo的一部分引回到输入端, 加在晶体管T1的发射极上,在发射极电阻RF1上形成反馈电压Uf。根据反馈的判断法可知,它属电压串联负反馈。主要性能指标如下 1)闭环电压放大倍数Avf=Av÷(1+ AvF V) 其中 Av=U。/Ui——基本放大器(无反馈)的电压放大倍数,即开环电压放大倍数。 1+AvF V——反馈深度,它的大小决定了负反馈对放大器性能改善的程度。 2)反馈系数 Fv=R F1÷(R f+ R F1), 3)输人电阻 Rif=(1十A V Fv)Ri’ Ri’——基本放大器的输入电阻(不包括偏置电阻) 4)输出电阻 R O f=R O÷(1+A VO Fv), Ro为基本放大器的输出电阻,A VO为基本放大器负载RL开路时的电压放大倍数 2.本实验还需要测量基本放大器的动态参数,怎样实现无反馈而得到基本放大器呢?不能简单地断开反馈支路,而是要去掉反馈作用,但又要把反馈网络的影响(负载效应)考虑到基本放大器中去。为此 1)在画基本放大器的输入回路时,因为是电压负反馈,所以可将负反馈放大器的输出端交流短路,此时Rf当于并联在R F1上; 2)在画基本放大器的输出回路时,由于输入端是串联负反馈,因此需将反馈放大器的输入端(T1的射极)开路,此时(R f + R F1)相当于并接在输出端。根据以上规律可得以下等效的基本放大器:

放大电路中反馈及类型的判断

放大电路中反馈及类型的判断 【摘要】负反馈在电子电路中的应用非常广泛,引入负反馈后,电路的放大倍数降低了,但稳定性得以提高,并且减小放大电路的非线形失真,拓宽电路的通频带,对输入输出电阻也有一定的影响,所以熟练地判断放大电路中的反馈类型具有重要的意义。 【关键词】放大电路;反馈;电压;电流;串联;并联 1.反馈回路的判断 电路的放大部分就是晶体管或运算放大器组成的基本电路。而反馈则是把放大电路输出端信号的一部分或全部送回到输入端的电路,反馈回路就应该是从放大电路的输出端引回到输入端的一条回路。这条回路通常是由电阻和电容构成。寻找这条回路时,要特别注意不能直接经过电源端和接地端,这是初学者最容易犯的问题。例如图1如果只考虑极间反馈则放大通路是由T1的基极到T1的集电极再经过T2的基极到T2的集电极;而反馈回路是由T2的集电极经Rf至T1的发射极。反馈信号uf=ve1影响净输入电压信号ube1。 图1 电压串联负反馈 2.交直流的判断 根据电容“隔直通交”的特点,我们可以判断出反馈的交直流特性。如果反馈回路中有电容接地,则为直流反馈,其作用为稳定静态工作点;如果回路中串连电容,隔开直流,则为交流反馈,改善放大电路的动态特性;如果反馈回路中只有电阻或只有导线,则反馈为交直流共存。图1中的反馈即为交直流共存。 3.正负反馈的判断 正负反馈的判断使用瞬时极性法。瞬时极性是一种假设的状态,它假设在放大电路的输入端引入一瞬时增加的信号。这个信号通过放大电路和反馈回路回到输入端。反馈回来的信号如果使引入的信号增加则为正反馈,否则为负反馈。在这一步要搞清楚放大电路的组态,是共发射极、共集电极还是共基极放大。每一种组态放大电路的信号输入点和输出点都不一样,其瞬时极性也不一样。如表1所示。相位差1800则瞬时极性相反,相位差00则瞬时极性相同。运算放大器电路也同样存在反馈问题。运算放大器的输出端和同相输入端的瞬时极性相同,和反相输入端的瞬时极性相反。 依据以上瞬时极性判别方法,从放大电路的输入端开始用瞬时极性标识,沿放大电路、反馈回路再回到输入端。这时再依据负反馈总是减弱净输入信号,正反馈总是增强净输入信号的原则判断出反馈的正负。

电路中的放大器稳定性分析

电路中的放大器稳定性分析放大器是电子电路中常见的设备,用于放大电信号的幅度。在电路设计中,放大器的稳定性是一个重要的考虑因素。稳定性指的是电路在各种运行条件下保持稳定的能力。本文将详细介绍电路中的放大器稳定性分析。 一、引言 在电子电路中,放大器是一种关键组件。它可以将电信号的弱信号放大至足够大的幅度,以便进行后续的处理或传输。放大器的稳定性对电路的整体性能至关重要。 二、放大器的稳定性问题 放大器的稳定性问题主要涉及到两个方面:反馈环路和频率响应。在放大器中,反馈环路是一个常见的设计策略,它可以控制放大器的增益,并提高放大器的稳定性。然而,反馈环路也可能引入稳定性问题,例如振荡。 1. 反馈环路的稳定性 反馈环路可以分为正反馈和负反馈两种类型。正反馈会增加放大器的输出,而负反馈则会减小放大器的输出。负反馈可以增加放大器的稳定性,但过多的负反馈可能导致放大器的带宽减小。因此,在设计反馈环路时,需要平衡增益和稳定性的要求。 2. 频率响应的稳定性

频率响应是衡量放大器性能的一个重要指标,它描述了放大器在不 同频率下的增益特性。放大器的频率响应可能受到电容、电感、阻抗 等元件的影响。在分析放大器的频率响应时,需要考虑这些元件的特性,并选择合适的组件以保持系统的稳定。 三、放大器稳定性分析的方法 在电路设计中,有几种常用的方法可以用来分析放大器的稳定性。 以下是一些常见的方法: 1. Nyquist准则 Nyquist准则是一种通过绘制频率响应曲线上的虚线轨迹来评估放 大器的稳定性的方法。当轨迹穿过-1点(点(-1,0)表示的是相位延迟 为180度,增益衰减为1的状态),放大器就处于稳定状态。如果轨 迹围绕-1点多次,则放大器可能会产生振荡。 2. 极点分析法 极点是放大器传递函数中的根,通过分析极点的位置和数量,可以 得出放大器的稳定性。通常情况下,放大器的极点应该位于开环增益 曲线上,并且具有负实部。如果放大器的极点位于稳定区域之外,那 么它可能是不稳定的。 3. 稳定裕度分析 稳定裕度是指系统在满足稳定性要求的条件下允许的性能变动范围。通过分析稳定裕度,可以评估放大器的稳定性及其对外界环境变化的 响应能力。

负反馈放大电路的分析方法

负反馈放大电路的分析方法 用 算负反馈放大电路的闭环增益比较精确但较麻烦,因为要先求得开环增益和反馈系数,就要先把反馈放大电路划分为基本放大电路和反馈网络,但这不是简单地断开反馈网络就能完成,而是既要除去反馈,又要考虑反馈网络对基本放大电路的负载作用①。所以,通常从工程实际出发,利用一定的近似条件,即在深度反馈条件下对闭环增益进行估算。一般情况下,大多数反馈放大电路特别是由集成运放组成的放大电路都能满足深度负反馈的条件。根据 和 的定义 , 在 中,若 ,则

,即 所以有 此式表明,当 入信号 甚小,因而有 时,反馈信号 与输入信号 相差甚微,净输 对于串联负反馈有 断) (虚短), ;对于并联负反馈有(虚。利用“虚短”、“虚断”的概念可以以快速方便地估算出负反馈 或闭环电压增益

。放大电路的闭环增益 ①通常称为“方框图”法。 前面讨论了在深度负反馈的条件下,近似计算反馈放大电路的增益,并定性地分析了电路的输入电阻和输出电阻。这在工程上的近似方法中有其重要的意义,并可建立和熟悉某些重要的概念。 这里将介绍用负反馈放大电路的小信号模型分析、计算闭环增益、输入电阻和输出电阻的方法及步骤。具体步骤如下: 1.画出反馈放大电路的小信号等效电路,其中包括基本放大电路的小信号等效电路和反馈网络的等效电路。 (1)基本放大电路的小信号等效电路的画法: 对于由分立元件(三极管和场效应管)组成的基本放大电路,按第3、4章的方法处理;对于集成运放组成的基本放大电路,可按本节的LT_01中的方法处理。但应注意,集成运放通常给出的参数为开环差模电压增益AVO、输入电阻ri和输出电阻ro,而放大电路有四种类型(电压放大、互阻放大、互导放大和电流放大),因此必须考虑这四种基本放大电路模型之间的相互转换关系,这在知识点0120201~0120204中已作过简要介绍。 (2)反馈网络的等效电路的画法: ①反馈网络的主要作用是传送反馈信号 (与 到放大电路的输入端,受 ;如进行比较),因此反馈网络的输出端口有一个含内阻的受控源 为

负反馈放大器完整实验报告

负反馈放大器 一、实验目的 1.进一步了解负反馈放大器性能的影响。 2.进一步掌握放大器性能指标的测量方法。 二、实验原理 放大器中采用负反馈,在降低放大倍数的同时,可以使放大器的某些性能大大改善。所谓负反馈,就是以某种方式从输出端取出信号,再以一定方式加到输入回路中。若所加入的信号极性与原输入信号极性相反,则是负反馈。 根据取出信号极性与加入到输入回路的方式不同,反馈可分为四类:串联电压反馈、串联电流反馈、并联电压反馈与并联电流反馈。如图3-1所示。 从网络方框图来看,反馈的这四种分类使得基本放大网络与反馈网络的联接在输入、输出端互不相同。 从实际电路来看,反馈信号若直接加到输入端,是并联反馈,否则是串联反馈,反馈信号若直接取自输出电压,是电压反馈,否则是电流反馈。 1.负反馈时输入、输出阻抗的影响 负反馈对输入、输出阻抗的影响比较复杂,不同的反馈形式,对阻抗的影响也不一样,一般而言,凡是并联负反馈,其输入阻抗降低;凡是串联负反馈,其输入阻抗升高;设主网络的输入电阻为R i ,则串联负反馈的输入电阻为 R if =(1+FA V )R i 设主网络的输入电阻为R o ,电压负反馈放大器的输出电阻为 R of = F A R V O +1 可见,电压串联负反馈放大器的输入电阻增大(1+A V F )倍,而输出电阻则下降到1/(1+A V F )倍。 2.负反馈放大倍数和稳定度 负反馈使放大器的净输入信号有所减小,因而使放大器增益下降,但却改善了放大性能,提高了它的稳定性。 反馈放大倍数为 A vf = F A A V V +1(A v 为开环放大倍数) 反馈放大倍数稳定度与无反馈放大器放大倍数稳定度有如下关系:

多级负反馈放大器实验报告

2.5 多级负反馈放大器的研究 一. 实验目的 (1)掌握用仿软件研究多级负反馈放大电路。 (2)学习集成运算放大器的应用,掌握多级集成运放电路的工作特点。 (3)研究负反馈对放大器性能的影响,掌握负反馈放大器性能指标的测试方法。1)测试开环和闭环的电压放大倍数、输入电阻、输出电阻、反馈网络的电压反馈系数和通频带。 2)比较电压放大倍数、输入电阻、输出电阻、反馈网络的电压反馈系数和通频带。 3)观察负反馈对非线性失真的改善。 二.实验原理 1.实验基本原理及电路 (1)基本概念。在电子电路中,将输出量(输出电压或输出电流)的一部分或全部通过一定的电路形式作用到输出回路,用来影响其输出量(放大电路的输入电压或输入电流)的措施成为反馈。 若反馈的结果使净输入量减小,则称之为负反馈;反之,称之为正反馈。若反馈存在于直流通路,则称为直流反馈;若反馈存在于交流通路,则称为交流反馈。 交流负反馈有四种组态:电压串联负反馈,电压并联负反馈,电流串联负反馈,电流并联负反馈。若反馈量取自输出电压,则称之为电压反馈;以电流形式相叠加,称为并联反馈。 在分析反馈放大电路市,“有无反馈”决定于输出回路和输入回路是否存在反馈支路。“直流反馈或交流反馈”决定于反馈支路存在于直流通路还是交流通路:“正负反馈”的判断可采用瞬时极性法,反馈的结果使净输入量减小的为负反馈,使净输入量增大的为正反馈;“电压反馈或电流反馈”的判断可以看反馈支路与输出支路是否有直接接点,如果反馈支路与输出支路有直接接点则为电压反馈,否则为电流反馈;“串联反馈或并联反馈”的判断可以看反馈支路与输入支路是否有直接直接接点,如果反馈支路与输入支路有直接接点则为并联反馈,

反馈放大器

3.4 反馈放大器 一.实验目的 1. 掌握负反馈放大器的设计方法。 2. 研究各类型负反馈对放大器性能的影响。 3. 学掌握负反馈放大器技术指标的测试方法。 二.设计原理 1. 负反馈基本原理 反馈是指放大电路输出信号(输出电压或电流)的一部分或全部通过反馈网络回送到放大电路的输入端的过程。使放大器的放大倍数减小的反馈称为负反馈。反之则称为正反馈。如果反馈信号取自输出电压称为电压反馈;而取自输出电流称为电流反馈。根据反馈信号与放大器输入信号的关系,即反馈信号与输入信号并联接入称之为并联反馈,若为串联接入称之为串联反馈,可概括为四种基本类型:电压串联负反馈、电压并联负反馈、电流串联负反馈和电流并联负反馈。 所以负反馈反大器可以看作是有基本放大器和反馈网络两部分所组成,其方框图如图3-4-1 图3-4-1 反馈方框示意图 图3-3-1中,A 表示基本放大器的放大倍数或传递函数,也称为放大的开环放大倍数或开环增益。F 表示反馈网络的传递函数,简称为反馈系数;i X 表示反馈放大器的输入信号,o X 表示输出的信号,f X 表示o X 通过反馈网络F 反馈到输入端的反馈信号,i X '表示放大器的净输入量i X '=i X -f X 开环放大倍数 A = f o X X 3-4-1 反馈系数 F = o f X X 3-4-2

反馈放大器闭环放大倍数为 f A '= i o X X 3-4-3 将式(3-3-1)、 (3-3-3)联立求解,可以得到反馈放大器闭环放大倍数的一般表达式 f A ' = F A 1A X X i o += 3-4-4 (1) |1+F A |称为反馈深度,若反馈深度|1+F A |>1,则|F A |<|A |,放大倍数降低,为负反馈。若|1+F A |<1,则|F A |>A ,放大倍数增大,为正反馈。 (2) |1+F A |=0时,|F A |→∞,放大器此时不需要输入就有输出信号,电路变为自激振荡器。 (3) 若|1+AF|≥1,则放大器称为深度负反馈放大器。此时(3-4-4)式可简化为 f A = AF 1A +≈F F A 1= 3-4-5 由此可见,在深度负反馈条件下,闭环放大系数f A 几乎与放大网络的开环放大系数无关,而主要决定于反馈网络的反馈系数F 。实际的反馈网络通常由电阻电容等元件组成,基本不受温度等因素的影响。 2. 负反馈放大器性能指标的影响 引入负反馈后虽然放大倍数降低了,但是,付出这个代价换取的是对电路性能的改善。 (1) 电压负反馈能使输出电压稳定,电流负反馈能使输出电流稳定,而衡量放 大器放大倍数的稳定程度,常采用有无反馈时放大器的相对变化量来定。假设电路 在中频段工作,A 、F 、f A 都是实数,分别用A 、F 、f A 来表示。则闭环放大倍数一般表达式可表示为 f A = AF A +1 3-4-6 对上式求微分, 即 d f A = 2 2)1()1()1(AF dA AF AFdA dA AF += +-+ 3-4-7 两边同除以f A 得 A dA AF 11A dA f f = += 3-4-8 由此可见,引入负反馈后,放大倍数的相对变化量是开环时的1/(1+AF )倍,所以 电路工作状态更稳定。 (2)减小非线性失真 引入负反馈可以减小非线失真,例如,由于三极管输入特性曲线的非线性,可能

反馈放大电路的特性分析与仿真

反馈放大电路的特性分析与仿真

长春理工大学 国家级电工电子实验教学示范中心学生实验报告 2016 —— 2017 学年第一学期 实验课程反馈放大电路的特性分 析与仿真 实验地点 学院 专业 学号 姓名

实验项目反馈放大电路的特性分析与仿真 实验时间11.14 实验台号A10 预习成绩报告成绩

一、实验目的 1、熟悉利用软件平台来进行电路频率特性分析的方法; 2、通过仿真特性曲线分析来验证在放大电路中引入负反馈对其性能的影响。 二、实验原理 在应用方框图法分析反馈对放大电路性能的影响时,需要将反馈放大电路分解成基本放大电路和反馈网络两部分,在分解时既要除去反馈,又要保留反馈网络对基本放大电路的负载效应。为了考虑反馈网络对基本放大电路输入端和输出端的负载效应,在画出基本放大电路时,应按以下两条法则进行:1.求输入电路 如果是电压反馈,则令V =0,即将输出端对地短路; =0,即将输出回路开路。 如果是电流反馈,则令I 2.求输出电路 =0,即将输入端对地短路; 如果是并联反馈,则令V i 如果是串联反馈,则令I =0,即将输入回路开路。 i 【例】电流并联负反馈放大电路的性能分析与参数估算。 R5 7 8 3.9K R6 6 0 2K *R14 6 11 6.2K ; 注:以下二行,闭环时有*,开环时无* *V3 11 0 0.9687 C3 7 9 10U RL 9 0 3.9K ;注:在求输出电阻时,加*。 *VOUT 9 0 AC 1 ; 注:在求输出电阻时无*。在输出端接入电压源,代替RL。 VCC 8 0 9 .MODEL MQ1 NPN IS=2.5E-15 BF=120 RB=70 +CJC=2P TF=4E-10 VAF=80 .OP .AC DEC 10 10 100MEG .PROBE .END

相关主题
文本预览
相关文档 最新文档