当前位置:文档之家› 常微分方程习题答案(6)

常微分方程习题答案(6)

常微分方程习题答案(6)
常微分方程习题答案(6)

习题5.2

02412—02 02412—03

1.试验证()t Φ=??

?

???122t t t

是方程组x '=???

?????-t t 22

10

2

x,x=???

???21x x ,在任何不包含原点的区间a b t ≤≤上

的基解矩阵。

解:令()t Φ的第一列为1?(t)=???? ??t t 22,这时'1?(t)=???? ??22t =???

?

??-t t 22102

1?(t)故1?(t)是一个解。同样如果以2?(t)表示()t Φ第二列,我们有2?(t)=???

? ??01=

???

?

??-t t

221022?(t)这样2?(t)也是一个解。因此()t Φ是解矩阵。又因为det ()t Φ=-t 2故()t Φ是基解矩阵。

2.考虑方程组x '=A(t)x (5.15)其中A(t)是区间a b t ≤≤上的连续n ?n 矩阵,它的元素为a ij (t),i ,j=1,2,…,n

a) 如果x 1(t),x 2(t),…,x n (t)是(5.15)的任意n 个解,那么它们的伏朗斯基行列式W[x 1(t),x 2(t),…,x n (t)]≡W(t)满足下面的一阶线性微分方程W '=[a 11(t)+a 22(t)+…+a nn (t)]W

b) 解上面的一阶线性微分方程,证明下面公式:W(t)=W(t 0)e

ds s a s a s a nn t t )](...)()([22110++? t 0,t ∈[a,b]

解:w '

(t)=

nn n n n

n x x x x x x x x x ....

...

(2)

1

222

'21

'1'12'11+'......

(2)

1

2'22'21112

11nn n n n n x x x x x x x x x +…+nn

n

n

n

n x x x x x x x x x '''....

...

(2122221)

11211 =

nn

n n n nn n n n n n n n x x x x x x x a x a x a x a x a x a x a x a x a (2)

1

2222112121112

1221212111

121121111+++++++++…+nn

nn nn n n nn n n nn n n n x a x a x a x a x a x a x x x x x x ++++++..............

.

(122111)

1112222111211=

nn n n n x x x x x x n x a x a x a ..........1 (2)

1

222211112111111+…+

nn

nn n nn n nn n n x a x a x a x x x x x x ....

.

(2)

1

2222111211

整理后原式变为

(a 11+…+a nn )

nn

n n n

n

x x x x x x x x x (2)

1

2222111211

=(a 11+…+a nn )w(t) =(a 11(t)+…+a nn (t))w(t)

b)由于w '(t)=[ a 11(t)+…+a nn (t)] w(t),即)

()

(t w t dw =[ a 11(t)+…+a nn (t)]dt 两边从t

到t 积分ln )(t w -ln )(0t w =

?++t

t nn ds s a s a

)](...)([11

w(t)=w(t 0)e ds

s a s a t

t nn ])(...)([0

11?

++,t ∈[a,b]

3.设A(t)为区间a b t ≤≤上的连续n ?n 实矩阵,()t Φ为方程x '=A(t)x 的基解矩阵,而x=?(t)为其一解,试证:

a) 对于方程y '=-A T (t)y 的任一解y=ψ(t)必有ψT (t) ?(t)=常数; b)ψ(t)为方程y '=-A T (t)y 的基解矩阵的充要条件是存在非奇异的常数矩阵C ,使ψT (t) ?(t)=C.

解a)[ ψT (t) ?(t)]'= ψ'

T ?(t)+ ψT ?'(t)= ψT '?(t)+ ψT (t)A(t)? 又因为ψ'=-A T (t) ψ(t),所以ψT '=-ψT (t) A(t) [ ψT (t) ?(t)]'=- ψT (t) ?(t)A(t)+ ψT (t) A(t) ?(t)=0,

所以对于方程y'=-A T(t)y的任一解y=ψ(t)必有ψT(t) ?(t)=常数

b)“?”假设为方程y'=-A T(t)y的基解矩阵,则

[ ψT(t) ?(t)]'=[ψT(t)]'()tΦ+ψT(t) 'Φ(t)=[- A T(t) ψ(t)]()tΦ+ ψT(t) A T(t) )()tΦ+ ψT(t)[ A(t) ?(t)]=- ψT(t) A T(t) ()tΦ+ψT(t) A T(t) ()tΦ=0,故ψT(t) ?(t)=C

“?”若存在非奇异常数矩阵C,detc≠0,使ψT(t) ?(t)=C,

则[ ψT(t) ?(t)]'=ψ'T?(t)+ ψT?'(t)=0,故ψ'T(t)?(t)=-ψT(t) ?(t)A(t)ψ'T(t)=- ψT(t) A(t) 所以ψT'(t)=- ψT(t) A(t),ψ'(t)=- ψT(t)

A T(t)即ψ(t)为方程y'=-A T(t)y的基解矩阵

4.设()tΦ为方程x'=Ax(A为n?n常数矩阵)的标准基解矩阵(即Φ(0)=E),证明:

()tΦ1-Φ(t

0)=Φ(t- t

)其中t

为某一值.

证明:(1)()t

Φ,Φ(t- t

)是基解矩阵。

(2)由于()tΦ为方程x'=Ax的解矩阵,所以()tΦ1-Φ(t0)也是

x'=Ax的解矩阵,而当t= t

0时,Φ(t

)1-Φ(t

)=E, Φ(t- t

)=Φ(0)

=E. 故由解的存在唯一性定理,得()tΦ1-Φ(t0)=Φ(t- t0)

5.设A(t),f(t)分别为在区间a b

t≤

≤上连续的n?n矩阵和n维列向量,证明方程组x'=A(t)x+f(t)存在且最多存在n+1个线性无关解。

证明:设x

1,x

2

, (x)

n

是x'=A(t)x的n个线性无关解,x是

x'=A(t)x+f(t)的一个解,则x

1+x, x

2

+x,…, x

n

+x,x都是非齐线性

方程的解,下面来证明它们线性无关,假设存在不全为零的常数

C

i ,(I=1,2,…,n)使得)

(

1

=

+

n

i

i

i

x

x

c+c1-n x=0,从而x1+x, x2+x,…,

x n +x ,x 在a b t ≤≤上线性相关,此与已知矛盾,因此x 1+x , x 2+x ,…, x n +x ,x 线性无关,所以方程组x '=A(t)x+f(t)存在且最多存在n+1个线性无关解。

6、试证非齐线性微分方程组的叠加原理:

)()(1't f x t A x += )()(2't f x t A x +=

的解,则)()(21t x t x +是方程组

)()()(21't f t f x t A x ++=

的解。

证明:)()(1't f x t A x += (1) )()(2't f x t A x += (2) 分别将)(),(21t x t x 代入(1)和(2) 则)()(11'1t f x t A x +=)()(2'2t f x t A x += 则)()()]()()[(2121'2'1t f t f t x t x t A x x +++=+

)()()]()()[()]()([2121'21t f t f t x t x t A t x t x +++=+

令)()(21t x t x x +=

即证 )()()(21't f t f x t A x ++= 7.考虑方程组)('t f Ax x +=,其中

??????=2012A ?

?????=21x x x ???

???=t t t f cos sin )( a)试验证 ??

??

??=Φt

t t

e te e t 2220

)(是Ax x ='

的基解矩阵; b)试求)('t f Ax x +=的满足初始条件??

????-=11)0(?的解)(t ?。

证明:a)首先验证它是基解矩阵

以)(1t ?表示)(t φ的第一列 ???

?

??=0)(21t e t ?

则)(20120201202)(122'

1t e e t t t ??????

??=???? ?????? ?

?=???? ??= 故)(1t ?是方程的解

如果以)(2t ?表示)(t φ的第二列 ????

??=t t e te t 222)(? 我们有)(2012201222)(222222'

2t e te e te e t t t t t t ?????

?

??=?

??? ?????? ??=???? ??+= 故)(2t ?也是方程的解 从而)(t φ是方程的解矩阵

又00

)(det 4222≠==

t

t t t

e e

te e t φ 故)(t φ是Ax x ='的基解矩阵;

b)由常数变易公式可知,方程满足初始条件??

?

???-=11)0(?的解

?--+=t

ds s f t t t 0

1`

1)()()0()()(φφηφφ?

而t

t t t t e t e e te e t 242221

1010)(--???

? ??-=????

?

?-=φ ?

????

? ??+----+-=???? ?????? ?

?-???? ?

?+???? ??--=∴?---t t e t t e t ds s s e se e e te e e e

t t t t

t s

s

s

t

t

t

t

t

sin 51cos 5253sin 251cos 251)2715(251cos sin 00)1()(22022222222?8、试求)('t f Ax x +=,其中

??????=2012A ??

????=21x x x ?

??

???=t e t f 20)( 满足初始条件

??

?

?

??-=11)0(? 的解)(t φ。

解:由第7题可知Ax x ='

的基解矩阵 ??

?

?

??=Φt t t

e te e t 2220

)( 则s s s s s

e s e e se e s 242221

1010)(--???

? ??-=????

?

?-=φ 若方程满足初始条件0)0(=?

则有????

? ??=???? ?????? ??-???? ?

?==--??t t s s t t t t

t

te e t ds e e s e te e ds s f s t t 22222022201

2101010

)()()()(φ?? 若??

?

???-=11)0(?

则有

????

?

??-+-=????? ??+???? ??-???? ?

?=+???? ??-=?--t t t t t t t t e t e t t te e t e te e ds s f s t t t 22222222201

1)1()211(21110

)()()(11)0()()(φφφφ?9、试求下列方程的通解: a)2

2,sec ''π

π

<

<-

=+t t x x

解:易知对应的齐线性方程0''=+x x 的基本解组为

t t x t t x sin )(,cos )(21==

这时1cos sin sin cos ]0(),([21=-=t

t t

t t x t x W

由公式得

??+=-=-=t t

t t t t ds s t t sds s

t s t t 00cos ln cos sin )tan cos (sin sec 1

sin cos cos sin )(? ∴通解为t t t t t c t c x ln cos sin sin cos 21+++=

b)t e x x 2'''8=-

解:易知对应的齐线性方程08'''=-x x 的基本解组为.)(21t e t x =

t e t x t e t x t t 3sin )(,3cos )(32--==

2=λ 是方程的特征根

故方程有形如t Ate x 2=的根 代入得12

1=

A 故方程有通解t

t t te e c e t c t c x 2232112

1)3sin 3cos (+++=- c)t e x x x =+-96'''

解:易知对应的齐线性方程096'''=+-x x x 对应的特征方程为

3,.0962,12==+-λλλ故方程的一个基本解组为t t te t x e t x 3231)(,)(==

t t t s

t

s

s

t

s t t

t

t t

t t

e

te e ds e e se e e te t e

te e e

te e t x t x W 3306333363333321412141)(33)](),([-+=??-==+=?

?

因为t t e te 33,是对应的齐线性方程的解 故t e t 4

1)(1=?也是原方程的一个解 故方程的通解为t t t e te c e c x 4

1

3231++=

10、给定方程)(78'''t f x x x =++其中f(t)在+∞<≤t 0上连续,试利用常数变易公式,证明:

a)如果f(t)在+∞<≤t 0上有界,则上面方程的每一个解在+∞<≤t 0上有界;

b)如果当∞→t 时,0)(→t f ,则上面方程的每一个解∞→)(t ?(当

∞→t 时)

。 证明:a))(t f +∞<≤t 0上有界

∴存在M>0,使得),0[,)(+∞∈?≤t M t f

又t t e x e x 7,--== 是齐线性方程组的基本解组

∴非齐线性方程组的解 ∴ds s f e

e e e e ds s

f e e e e e e e e t t

s s

t s s t

s

s

s s s t s t )(6)(7)(08770

7777??

---------------=---=? ∴M e e M ds e e e e M

t t t t

s t s t 21

4)7178(66

)(70

77≤--≤

-≤

----?

? 又对于非齐线性方程组的满足初始条件的解x(t),都存在固定的常数21,c c

使得)()(271t e c e c t x t t ?++=--

从而M c c t e c e c t x t t 21

4

)()(21271+

+≤++≤--? 故上面方程的每一个解在+∞<≤t 0上有界 b) ∞→t 时,0)(→t f

N ?>?∴,0ε当t>N 时ε<)(t f

由a)的结论

)(,21

4

214)()(21271∞→≤+

+≤++≤--t M c c t e c e c t x t t ? 故∞→t 时,原命题成立

11、给定方程组 x t A x )('= (5.15)

这里A(t)是区间b x a ≤≤上的连续n n ?矩阵,设)(t φ是(5.15)的一个基解矩阵,n 维向量函数F(t,x)在b x a ≤≤,∞

证明初值问题:?

??=+=η?)()

,()(0't x t F x t A x (*)

的唯一解)(t ?是积分方程组

ds s x s F s t t t t x t

t ))(,(0()()()()(0101?--+=φφηφφ (**)

的连续解。反之,(**)的连续解也是初值问题(8)的解。 证明:若)(t ?是(*)的唯一解

则由非齐线性方程组的求解公式

?--+=t

t ds s s F s t t t t 0))(,()()()()()(101?φφηφφ?

即(*)的解满足(**)

反之,若)(t ?是(**)的解,则有

?--+=t

t ds s s F s t t t t 0))(,()()()()()(101?φφηφφ?

两边对t 求导:

))

(,()()())

(,(]))(,()()()[()())

(,(]))(,()()()[())

(,()()())(,()()()()()(0

1010

101'101'01''t t F t t A t t F ds s s F s t t t A t t F ds s s F s t t t t F t t ds s s F s t t t t t

t

t

????φηφφ??φηφφ?φφ?φφηφφ?+=++=++=++=???-------

即(**)的解是(*)的解

常微分方程练习题及答案复习题)

常微分方程练习试卷 一、 填空题。 1. 方程23 2 10d x x dt +=是 阶 (线性、非线性)微分方程. 2. 方程 ()x dy f xy y dx =经变换_______,可以化为变量分离方程 . 3. 微分方程 3230d y y x dx --=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程 x y y y e αβγ'''++=的一个特解*2()x x x y x e e xe =++,则此方程的系数α= ,β= ,γ= . 5. 朗斯基行列式 ()0W t ≡是函数组12(),(),,()n x t x t x t 在a x b ≤≤上线性相关的 条件. 6. 方程 22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 . 7. 已知 ()X A t X '=的基解矩阵为()t Φ的,则()A t = . 8. 方程组 20'05??=???? x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程. 10 .是满足方程 251y y y y ''''''+++= 和初始条件 的唯一解. 11.方程 的待定特解可取 的形式: 12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是 二、 计算题 1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直. 2.求解方程13 dy x y dx x y +-=-+. 3. 求解方程 222()0d x dx x dt dt += 。 4.用比较系数法解方程. . 5.求方程 sin y y x '=+的通解. 6.验证微分方程 22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.

常微分方程试题库

常微分方程试题库 二、计算题(每题6分) 1. 解方程:0cot tan =-xdy ydx ; 2. 解方程:x y x y e 2d d =+; 3. 解方程:; 4. 解方程: t e x dt dx 23=+; 5. 解方程:0)2(=+---dy xe y dx e y y ; 6. 解方程:0)ln (3=++dy x y dx x y ; 7. 解方程:0)2()32(3222=+++dy y x x dx y x xy ; 8. 解方程:0485=-'+''-'''x x x x ; 9. 解方程:02)3()5()7(=+-x x x ; 10. 解方程:02=-''+'''x x x ; 11. 解方程:1,0='-'='+'y x y x ; 12. 解方程: y y dx dy ln =; 13. 解方程:y x e dx dy -=; 14. 解方程:02)1(22=+'-xy y x ; 15. 解方程:x y dx dy cos 2=; 16. 解方程:dy yx x dx xy y )()(2222+=+; 17. 解方程:x xy dx dy 42=+; 18. 解方程:23=+ρθ ρ d d ; 19. 解方程:22x y xe dx dy +=; 20. 解方程:422x y y x =-'; 选题说明:每份试卷选2道题为宜。

二、计算题参考答案与评分标准:(每题6分) 1. 解方程:0cot tan =-xdy ydx 解: ,2,1,0,2 ,±±=+==k k x k y π ππ是原方程的常数解, (2分) 当2 ,π ππ+ ≠≠k x k y 时,原方程可化为: 0cos sin sin cos =-dx x x dy y y , (2分) 积分得原方程的通解为: C x y =cos sin . (2分) 2. 解方程: x y x y e 2d d =+ 解:由一阶线性方程的通解公式 ? ? +? =-),)(()()(dx e x f C e y dx x p dx x p (2分) x x x x dx x dx e Ce dx e C e dx e e C e 3 1 )() (23222+=+=?+?=---?? 分) (分) (22 3. 解方程: 解:由一阶线性方程的通解公式 ??+?=-))(()()(dx e x f C e y dx x p dx x p (2分) =??+?-)sec (tan tan dx xe C e xdx xdx (2分) ?+=)sec (cos 2xdx C x x x C sin cos +=. (2分) 4. 解方程: t e x dt dx 23=+ 解:由一阶线性方程的通解公式 ??+? =-))(()()(dt e t f C e x dt t p dt t p (2分) =??+?-)(323dt e e C e dt t dt (2分) ?+=-)(53dt e C e t t

常微分方程习题及答案

第十二章 常微分方程 (A) 一、是非题 1.任意微分方程都有通解。( ) 2.微分方程的通解中包含了它所有的解。( ) 3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( ) 4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( ) 5.微分方程0ln =-'x y x 的通解是()C x y += 2ln 2 1 (C 为任意常数)。( ) 6.y y sin ='是一阶线性微分方程。( ) 7.xy y x y +='33不是一阶线性微分方程。( ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。( ) 9. 221xy y x dx dy +++=是可分离变量的微分方程。( ) 二、填空题 1.在横线上填上方程的名称 ①()0ln 3=-?-xdy xdx y 是 。 ②()()022=-++dy y x y dx x xy 是 。 ③x y y dx dy x ln ?=是 。 ④x x y y x sin 2+='是 。 ⑤02=-'+''y y y 是 。 2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。 3.x e y 2-=''的通解是 。 4.x x y cos 2sin -=''的通解是 。 5.124322+=+'+'''x y x y x y x 是 阶微分方程。 6.微分方程()06 ='-''?y y y 是 阶微分方程。 7.y 1 = 所满足的微分方程是 。

8.x y y 2='的通解为 。 9. 0=+x dy y dx 的通解为 。 10.()2511 2+=+-x x y dx dy ,其对应的齐次方程的通解为 。 11.方程()012=+-'y x y x 的通解为 。 12.3阶微分方程3x y ='''的通解为 。 三、选择题 1.微分方程()043 ='-'+''y y y x y xy 的阶数是( )。 A .3 B .4 C .5 D . 2 2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( )。 A .3 B .5 C .4 D . 2 3.下列函数中,哪个是微分方程02=-xdx dy 的解( )。 A .x y 2= B .2x y = C .x y 2-= D . x y -= 4.微分方程3 23y y ='的一个特解是( )。 A .13+=x y B .()3 2+=x y C .()2 C x y += D . ()3 1x C y += 5.函数x y cos =是下列哪个微分方程的解( )。 A .0=+'y y B .02=+'y y C .0=+y y n D . x y y cos =+'' 6.x x e C e C y -+=21是方程0=-''y y 的( ),其中1C ,2C 为任意常数。 A .通解 B .特解 C .是方程所有的解 D . 上述都不对 7.y y ='满足2|0==x y 的特解是( )。 A .1+=x e y B .x e y 2= C .2 2x e y ?= D . x e y ?=3 8.微分方程x y y sin =+''的一个特解具有形式( )。 A .x a y sin *= B .x a y cos *?= C .()x b x a x y cos sin *+= D . x b x a y sin cos *+= 9.下列微分方程中,( )是二阶常系数齐次线性微分方程。

3.1 常微分方程 课后答案

习题3.1 1 求方程dx dy =x+y 2通过点(0,0)的第三次近似解; 解: 取0)(0=x ? 20020012 1)()(x xdx dx y x y x x x ==++=??? 522200210220 121])21([])([)(x x dx x x dx x x y x x x +=+=++=???? dx x x x y x x ])20 121([)(252003+++=?? = 118524400 1160120121x x x x +++ 2 求方程dx dy =x-y 2通过点(1,0)的第三次近似解; 解: 令0)(0=x ? 则 20020012 1)()(x xdx dx y x y x x x ==-+=??? 522200210220 121])21([])([)(x x dx x x dx x x y x x x -=-=-+=???? dx x x x y x x ])20 121([)(252003--+=?? =118524400 1160120121x x x x -+- 3 题 求初值问题: ?????=-=0 )1(2y x dx dy R :1+x ≤1,y ≤1 的解的存在区间,并求解第二次近似解,给出在解的存在空间的误差估计; 解: 因为 M=max{22y x -}=4 则h=min(a,M b )=4 1 则解的存在区间为0x x -=)1(--x =1+x ≤4 1 令 )(0X ψ=0 ; )(1x ψ=y 0+?-x x x 0)0(2dx=31x 3+31;

)(2x ψ =y 0+])3131([2132?-+-x x x dx=31x 3-9x -184x -637x +4211 又 y y x f ??),(2≤=L 则:误差估计为:)()(2x x ψ-ψ≤32 2 )12(*h L M +=2411 4 题 讨论方程:31 23y dx dy =在怎样的区域中满足解的存在唯一性定理的条件, 并求通过点(0,0)的一切解; 解:因为y y x f ??),(=3221-y 在y 0≠上存在且连续; 而312 3y 在y 0 σ≥上连续 由 3123y dx dy =有:y =(x+c )23 又 因为y(0)=0 所以:y =x 2 3 另外 y=0也是方程的解; 故 方程的解为:y =?????≥00023 x x x 或 y=0; 6题 证明格朗瓦耳不等式: 设K 为非负整数,f(t)和g(t)为区间βα≤≤t 上的连续非负函数,

常微分方程试题(卷)

一单项选择题(每小题2分, 共40分) 1. 下列四个微分方程中, 为三阶方程的有( )个. (1) (2) (3) (4) A. 1 B. 2 C. 3 D. 4 2. 为确定一个一般的n阶微分方程=0的一个特解, 通常应给出的初始条件是( ). A. 当时, B. 当时, C. 当时, D. 当时, 3. 微分方程的一个解是( ). A. B. C. D.

4. 下列方程中, 既是齐次方程又是线性方程的是( ). A. B. C. D. 5. 若方程是恰当方程, 则(). A. B. C. D. 6. 若方程有只与y有关的积分因子, 则可取为( ). A. B. C. D. 7. 可用变换( )将伯努利方程化为线性方程. A. B. C. D. 8. 是满足方程和初始条件( )的唯一解. A. B. C. D. 9. 设是n阶齐线性方程的解,

其中是某区间中的连续函数. 如下叙述中, 正确的是( ). A.若的伏朗斯基行列式为零, 则线性无关 B.若的伏朗斯基行列式不为零, 则线性相关 C.若的伏朗斯基行列式不为零, 则线性无关 D.由的伏朗斯基行列式是否为零, 不能确定的线性相关性 10. 设线性无关的函数和是方程的解,则方程 的通解是( ) A.(是任意常数, 下同) B. C. D. 11. 三阶系数齐线性方程的特征根是( ). A. 0, 1, 1 B. 0, 1, -1 C. 1, D. 1, 12. 方程的基本解组是( ).

A. B. C. D. 13. 方程的待定特解可取如下( )的形式: A. B. C. D. 14. 已知是某一三阶齐线性方程的解, 则 和 的伏朗斯基行列式( ). A. 3 B. 2 C. 1 D. 0 15. 可将三阶方程化为二阶方程的变换为( ). A. B. C. D. 16. 方程组满足初始条件的解为( ). A. B. C. D. 17. n阶函数方阵在上连续, 方程组有基解矩阵,

常微分方程期末考试练习题及答案

一,常微分方程的基本概念 常微分方程: 含一个自变量x,未知数y及若干阶导数的方程式。一般形式为:F(x,y,y,.....y(n))=0 (n≠0). 1. 常微分方程中包含未知函数最高阶导数的阶数称为该方程的阶。如:f(x)(3)+3f(x)+x=f(x)为3阶方程。 2.若f(x)使常微分方程两端恒等,则f(x)称为常微分方程的解。 3.含有独立的任意个常数(个数等于方程的阶数)的方程的解称为常微分方程的通解。如常系数三阶微分方程F(t,x(3))=0的通解的形式为:x(t)=c1x(t)+c2x(t)+c3x(t)。 4.满足初值条件的解称为它的特解(特解不唯一,亦可能不存在)。 5.常微分方程之线性及非线性:对于F(x,y,y,......y(n))=0而言,如果方程之左端是y,y,......y(n)的一次有理式,则次方程为n阶线性微分方程。(方程线性与否与自变量无关)。如:xy(2)-5y,+3xy=sinx 为2阶线性微分方程;y(2)+siny=0为非线性微分方程。 注:a.这里主要介绍几个主要的,常用的常微分方程的基本概念。余者如常微分方程之显隐式解,初值条件,初值问题等概念这里予以略去。另外,有兴趣的同学不妨看一下教材23页的雅可比矩阵。 b.教材28页第八题不妨做做。 二.可分离变量的方程 A.变量分离方程

1.定义:形如 dx dy =f (x)φ(y)的方程,称为分离变量方程。这里f (x ),φ(x )分别是x ,y 的连续函数。 2.解法:分离变量法? ? +=c dx x f y dy )()(?. (*) 说明: a 由于(*)是建立在φ(y )≠0的基础上,故而可能漏解。需视情况补上φ(y )=0的特解。(有时候特解也可以和通解统一于一式中) b.不需考虑因自变量引起的分母为零的情况。 例1.0)4(2=-+dy x x ydx 解:由题意分离变量得:04 2=+-y dy x dx 即: 0)141(41=+--y dy dx x x 积分之,得:c y x x =+--ln )ln 4(ln 4 1 故原方程通解为:cx y x =-4)4( (c 为任意常数),特 解y=0包含在通解中(即两者统一于一式中)。 *例2.若连续函数f (x )满足 2 ln )2 ()(20 +=? dt t f x f x ,则f (x )是? 解:对给定的积分方程两边关于x 求导,得: )(2)('x f x f = (变上限求积分求导) 分离变量,解之得:x Ce x f 2)(= 由原方程知: f (0)=ln2, 代入上解析式得: C=ln2, B.可化为分离变量方程的类型。 解决数学题目有一个显而易见的思想:即把遇到的新问题,结合已知

常微分习题解答

《常微分方程》习题解答东北师范大学微分方程教研室(第二版) 高等教育出版社

习题 1 求下列可分离变量微分方程的通解: (1) xdx ydy = 解:积分,得 12 22 121c x y += 即 c y x =-22 (2) y y dx dy ln = 解: 1, 0==y y 为特解,当1, 0≠≠y y 时, dx y y dy =ln , 积分,得0ln ,ln ln 11≠=±=+=c ce e e y c x y x x c ,即x ce e y = (3) y x e dx dy -= 解: 变形得 dx e dy e x y =积分,得c e e x y =- (4) 0cot tan =-xdy ydx 解:变形得 x y dx dy cot tan = ,0=y 为特解,当0≠y 时,dx x x dy y y cos sin sin cos =. 积分,得11cos sin ln ,cos ln sin ln c x y c x y =+-=, 即0,cos sin 1 ≠=±=c c e x y c 2.求下列方程满足给定初值条件的解: (1) 1)0(),1(=-=y y y dx dy 解: 1, 0==y y 为特解,当1, 0≠≠y y 时,dx dy y y =--)1 11( , 积分,得 0,1 ,1 ln 11≠=±=-+=-c ce e e y y c x y y x x c 将1)0(=y 代入,得 0=c ,即1=y 为所求的解。 (2) 1)0(,02)1(2 2 ==+'-y xy y x 解: 0,1 222 =--=y x xy dx dy 为特解,当0≠y 时, dx x x y dy 1 222--=, 积分,得 c x y +--=- 1ln 1 2

常微分方程试题

常微分方程试题

一单项选择题(每小题2分, 共40分) 1. 下列四个微分方程中, 为三阶方程的有( )个. (1) (2) (3) (4) A. 1 B. 2 C. 3 D. 4 2. 为确定一个一般的n阶微分方程=0的一个特解, 通常应给出的初始条件是( ). A. 当时, B. 当时, C. 当时, D. 当时, 3. 微分方程的一个解是( ). A. B. C. D.

4. 下列方程中, 既是齐次方程又是线性方程的是( ). A. B. C. D. 5. 若方程是恰当方程, 则(). A. B. C. D. 6. 若方程有只与y有关的积分因子, 则可取为( ). A. B. C. D. 7. 可用变换( )将伯努利方程化为线性方程. A. B. C. D. 8. 是满足方程和初始条件( )的唯一解. A. B. C. D. 9. 设是n阶齐线性方程的解,

其中是某区间中的连续函数. 如下叙述中, 正确的是( ). A.若的伏朗斯基行列式为零, 则线性无关 B.若的伏朗斯基行列式不为零, 则线性相关 C.若的伏朗斯基行列式不为零, 则线性无关 D.由的伏朗斯基行列式是否为零, 不能确定的线性相关性 10. 设线性无关的函数和是方程的解,则方程 的通解是( ) A.(是任意常数, 下同) B. C. D. 11. 三阶系数齐线性方程的特征根是( ). A. 0, 1, 1 B. 0, 1, -1 C. 1, D. 1, 12. 方程的基本解组是( ).

A. B. C. D. 13. 方程的待定特解可取如下( )的形式: A. B. C. D. 14. 已知是某一三阶齐线性方程的解, 则 和 的伏朗斯基行列式( ). A. 3 B. 2 C. 1 D. 0 15. 可将三阶方程化为二阶方程的变换为( ). A. B. C. D. 16. 方程组满足初始条件的解为( ). A. B. C. D. 17. n阶函数方阵在上连续, 方程组有基解矩阵,

常微分方程习题集

《常微分方程》测试题1 一、填空题30% 1、形如的方程,称为变量分离方程, 这里.分别为的连续函数。 2、形如-的方程,称为伯努利方程, 这里的连续函数.n 3、如果存在常数-对于所有函数称为在R上 关于满足利普希兹条件。 4、形如-的方程,称为 欧拉方程,这里 5、设的某一解,则它的任一解 - 。 二、计算题40% 1、求方程 2、求方程的通解。 3、求方程的隐式解。 4、求方程 三、证明题30% 1.试验证=是方程组x=x,x= ,在任何不包含原点的区间a上的基解矩阵。 2.设为方程x=Ax(A为nn常数矩阵)的标准基解矩阵(即(0)=E),证明: (t)=(t- t)其中t为某一值.<%建设目标%> 《常微分方程》测试题2

一、填空题:(30%) 1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的 8、已知是二阶齐次线性微分方程的一个非零解,则与线性无关的另一 10、线性微分方程组的解是的基本解组的充要条件是. 二、求下列微分方程的通解:(40%) 1、 2、 3、 4、 5、求解方程. 三、求初值问题的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计. (10分)

四、求解微分方程组 满足初始条件的解. (10%) 五、证明题:(10%) 设,是方程 的解,且满足==0,,这里在上连续,.试证明:存在常数C使得=C 《常微分方程》测试题3 1.辨别题 指出下列方程的阶数,是否是线性方程:(12%) (1)(2)(3) (4)(5)(6) 2、填空题(8%) (1).方程的所有常数解是___________. (2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________. (3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是 ________________. (4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________. 3、单选题(14%) (1).方程是().

2.5常微分方程课后答案(第三版)王高雄

习题2.5 2.ydy x xdy ydx 2=- 。 解: 2x ,得: ydy x xdy ydx =-2 c y x y d +-=221 即c y x y =+2 2 1 4. xy x y dx dy -= 解:两边同除以x ,得 x y x y dx dy - =1 令u x y = 则dx du x u dx dy += 即 dx du x u dx dy +=u u -=1 得到 ()2ln 2 1 1y c u -=, 即2 ln 21?? ? ??-=y c y x 另外0=y 也是方程的解。 6.()01=-+xdy ydx xy 解:0=+-xydx xdy ydx x d x y x d y y d x -=-2 得到c x y x d +-=??? ? ??2 21

即 c x y x =+2 2 1 另外0=y 也是方程的解。 8. 32 x y x y dx dy += 解:令 u x y = 则: 21u x u dx du x u dx dy +=+= 即2 1u x dx du x = 得到22x dx u du = 故c x u +-=-11 即 21 1x x c y += 另外0=y 也是方程的解。 10. 2 1?? ? ??+=dx dy dx dy x 解:令 p dx dy = 即p p x 2 1+= 而 p dx dy =故两边积分得到 c p p y +-=ln 2 12 因此原方程的解为p p x 21+=,c p p y +-=ln 212 。 12.x y xe dx dy e =?? ? ??+-1 解: y x xe dx dy +=+1

常微分方程第三版课后习题答案#(精选.)

习题1.2 1. dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解: y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2 x +e c =cex 2 另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2 x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-1 1+x dx 两边积分: - y 1 =-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y= | )1(|ln 1 +x c 3.dx dy =y x xy y 321++ 解:原方程为:dx dy =y y 21+3 1 x x + y y 21+dy=3 1 x x +dx 两边积分:x(1+x 2 )(1+y 2 )=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1 +dx 两边积分:ln|xy|+x-y=c 另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0

解:原方程为: dx dy =-y x y x +- 令 x y =u 则dx dy =u+x dx du 代入有: -1 12++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x | |-2)(1x y - 则令 x y =u dx dy =u+ x dx du 2 11u - du=sgnx x 1 dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为: tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny= x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32 +=0 解:原方程为:dx dy =y e y 2 e x 3 2 e x 3-3e 2 y -=c. 9.x(lnx-lny)dy-ydx=0 解:原方程为: dx dy =x y ln x y

常微分方程试题库.

常微分方程 一、填空题 1 .微分方程(立)n +业—VEX? = 0的阶数是 dx dx 答:1 2 .若M (x, V)和N (x, V)在矩形区域R内是(x, V)的连续函数,且有连续的一阶偏导数,则 方程M (x,y)dx + N(x, y)dy =0有只与V有关的积分因子的充要条件是 血 f N -1 答:(亏一寸M)= (V) 3. ^为齐次方程. 答:形如dV =g(V)的方程 dx x 4 .如果f (x, V) ___________________________________________ M ,业=f (x, V)存在 dx 唯一的解y = %x),定义丁区问x-x o

8. 若X i (t)(i =1,2,.....n)为齐次线性方程的一个基本解组,x(t)为非齐次线性方程的一个 特解,则非齐次线性方程的所有解可表为 答:X =' c i x i - X i 4 9. 若中(X)为毕卡逼近序列虬(X)}的极限,则有|%x)M n(x)W 答:MLh n1 (n 1)! 10. 为黎卡提方程,若它有一个特解y(x),则经过变换 ____________________ ,可化为伯努利方程. 答:形如—=p(x)y2+q(x)y + r (x)的方程y = z + y dx 11. 一个不可延展解的存在区间一定是区间. 答:开 12. ______________________________________________________________ 方程业=后〔满足解的存在唯一性定理条件的区域是_______________________________ . dx ' 答:D ={(x,y)在R2y >0},(或不含x轴的上半平■面) 13 .方程华=x2sin y的所有常数解是. dx 答:y =k二,k =0, —1, —2, 14. 函数组明(x)*2(x),…,气(x)在区间I上线性无关的条件是它们的朗 斯基行列式在区间I上不包等丁零. 答:充分 15. 二阶线性齐次微分方程的两个解y〔(x), y2(x)为方程的基本解组充分必要条件 是. 答:线性无关(或:它们的朗斯基行列式不等丁零) 16. 方程广-2y'+y=0的基本解组是 答:e x, xe X 17. 若y =%x)在(s,十8)上连续,则方程d^=

常微分方程习题

第一章习题 1-1求下列两个微分方程的公共解。 (1)422x x y y -+=' (2)2422y y x x x y --++=' 解 两方程的公共解满足条件 4224222x x y y y x x x -+=--++, 即 022224=-+-y x y x , 0))(122(22=-++y x y x , 所以2 x y =或2212 x y +-=。 代入检验可知2 212 x y +-=不符合,所以两方程的公共解为2x y =。 评注:此题是求解方程满足一定条件的解,即求两个微分方程的公共解。在求解时由于令其导数相等,很容易产生增解,因而要对所求结果回代原方程进行检验,舍去增解。 1-2 求微分方程02 =-'+'y y x y 的直线积分曲线。 解 设直线积分曲线为b ax y +=,则a y =',代入原方程得 02≡--+b ax xa a , 即0)()(2 ≡-+-b a a a x , 所以 ???=-=-0 02b a a a , 可得0==b a 或1==b a 。 因而所求直线积分曲线为0=y 或1+=x y 。 评注:此题是求解方程的部分解,采用的是待定系数法。待定系数法是求解常微分方程常用的方法之一,有待定常数法和待定函数法。本题首先设出满足题设条件的含有待定常数

的解,然后代入原方程来确定待定常数,解决此类问题的关键在于正确地设出解的形式。 1-3 微分方程32224xy y y x =-',证明其积分曲线是关于坐标原点成中心对称的曲线。 证 设)(x y ?=满足微分方程,只须证明)(x y --=?也满足方程即可。 作变换x t -=,则证明)(t y ?-=满足方程即可,代入方程两端,并利用)(x y ?=满足此方程,得 左=)())((42222t dx dt t t ??-', )()1)((42222t t t ??--'= )()(4222t t t ??-'=)(3t t ?==右 故)(t y ?-=也满足方程32224xy y y x =-'。 评注:为了验证)(x y --=?也满足方程,利用积分曲线的性质,进行变量代换x t -=,将)(x y --=?变换成)(t y ?-=后,问题就很容易解决了。 1-4 物体在空气中的冷却速度与物体和空气的温差成正比,如果物体在20分钟内由100℃冷却至60℃,那么,在多长时间内,这个物体由100℃冷却至30℃?假设空气的温度为20℃ 解 设物体在空气中时刻t 的温度为)(t T T =,则依牛顿冷却定理得 )20(--=T k dt dT , 其中k 是比例常数。 两边积分,得通解为kt Ce T -+=20。 由于初始条件为:,100)0(=T 故得80=C ,所以kt e T -+=8020。 将60,20==T t 代入上式后即得:202ln = k , 即 20202ln )2 1(80208020t t e T ?+=+=-。 故当30=T 时,有20)2 1(802030t ?+=,从中解出60=t (分钟),因此,在一小时内,可使物体由100℃冷却至30℃。

(完整版)常微分方程习题及解答

常微分方程习题及解答 一、问答题: 1.常微分方程和偏微分方程有什么区别?微分方程的通解是什么含义? 答:微分方程就是联系着自变量,未知函数及其导数的关系式。常微分方程,自变量的个数只有一个。偏微分方程,自变量的个数为两个或两个以上。常微分方程解的表达式中,可能包含一个或几个任意常数,若其所包含的独立的任意常数的个数恰好与该方程的阶数相同,这样的解为该微分方程的通解。 2.举例阐述常数变易法的基本思想。 答:常数变易法用来求线性非齐次方程的通解,是将线性齐次方程通解中的任意常数变易为待定函数来求线性非齐次方程的通解。 例:求 ()()dy P x y Q x dx =+的通解。 首先利用变量分离法可求得其对应的线性齐次方程的通解为()P x dx y c ?=l ,然后将 常数c 变易为x 的待定函数()c x ,令()()P x dx y c x ? =l ,微分之,得到 ()()()()()P x dx P x dx dy dc x c x P x dx dx ?? =+l l ,将上述两式代入方程中,得到 ()()()()()()()()() P x dx P x dx P x dx dc x c x P x dx c x P x Q x ??+?=+l l l 即 ()() ()P x dx dc x Q x dx -? =l 积分后得到()()()P x dx c x Q x dx c -?=+? %l 进而得到方程的通解 ()()(()) P x dx P x dx y Q x dx c -? ?=+?%l l 3.高阶线性微分方程和线性方程组之间的联系如何? 答:n 阶线性微分方程的初值问题 ()(1) 11(1) 01020()...()()()(),(),....()n n n n n n x a t x a t x a t x f t x t x t x t ηηη---'?++++=??'===?? 其中12()(),...(),()n a t a t a t f t ,是区间a t b ≤≤上的已知连续函数,[]0,t a b ∈, 12,,...,n ηηη是已知常数。它可以化为线性微分方程组的初值问题

最新常微分方程试题库试卷库

常微分方程试题库试 卷库

常微分方程期终考试试卷(1) 一、 填空题(30%) 1、方程(,)(,)0M x y dx N x y dy +=有只含x 的积分因子的充要条件是( )。有只含y 的积分因子的充要条件是______________。 2、_____________称为黎卡提方程,它有积分因子______________。 3、__________________称为伯努利方程,它有积分因子_________。 4、若12(),(),,()n X t X t X t 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是__________________________。 5、形如___________________的方程称为欧拉方程。 6、若()t φ和()t ψ都是' ()x A t x =的基解矩阵,则()t φ和()t ψ具有的关系是 _____________________________。 7、当方程的特征根为两个共轭虚根是,则当其实部为_________时,零解是稳定的,对应的奇点称为___________。 二、计算题(60%) 1、 3 ()0ydx x y dy -+= 2、sin cos2x x t t ''+=- 3、若 2114A ?? =?? -??试求方程组x Ax '=的解12(),(0)t η??ηη??==????并求expAt 4、32( )480 dy dy xy y dx dx -+= 5、求方程2 dy x y dx =+经过(0,0)的第三次近似解 6.求1,5 dx dy x y x y dt dt =--+=--的奇点,并判断奇点的类型及稳定性. 三、证明题(10%) 1、n 阶齐线性方程一定存在n 个线性无关解。 试卷答案 一填空题 1、()M N y x x N ???-??= ()M N y x y M ???-??=-

常微分方程试题模拟试题(一)

常微分方程试题模拟试题(一) 一、填空题(每小题3分,本题共15分) 1 .方程d d y x =满足初值解的存在且惟一性的区域是 . 2.方程0d )1(d )1(=+++y x x y 所有常数解是 . 3.线性方程0y y ''+=的基本解组是 . 4.(,)y f x y '有界是保证方程d (,)d y f x y x =初值解惟一的 条件. 5.向量函数组在区间I 上的朗斯基行列式()0W x =是它们线性相关的 条件. 二、单项选择题(每小题3分,本题共15分) 6.积分方程11()1()d x y x y s s s =+?的解是( ) . (A )1y = (B )e x y = (C )0y = (D )y x = 7. 一阶线性微分方程d ()()d y p x y q x x +=的积分因子是( ). (A )?=x x p d )(e μ (B )?=x x q d )(e μ (C )?=-x x p d )(e μ (D )?=-x x q d )(e μ 8.方程 ?????≠==0 ,ln 00d d y y y y x y 当当, 在xoy 平面上任一点的解( ). (A )都不是惟一的 (B )都是惟一的 (C )都与x 轴相交 (D )都与x 轴相切 9.平面系统???????+=+=y x t y y x t x 43d d 2d d 的奇点类型是( ). (A )不稳定结点 (B )稳定焦点 (C )不稳定焦点 (D )鞍点 10.方程0y y ''+=的任一非零解在(,)x y 平面的x 轴上任意有限区间内( )零点. (A )无 (B )只有一个 (C )至多只有有限个 (D )有无限个 三、计算题(每小题8分,共40分) 求下列方程的通解或通积分: 11. 2211d d x y x y --= 12. ()d ()d 0x y x x y y +--= 13. 2y xy y ''=+ 14.012)(2=+'-'y x y 15.032 22=-'-''y x y y y 四、计算题(本题15分)

常微分方程题库

常微分方程试题库 (一)、填空题(每空3分) 1、 当_______________时,方程0),(),(=+dy y x N dx y x M 称为恰当方程,或称全微分方程,其原函数为: 。 2、形如________________的方程,称为齐次方程。 3、求),(y x f dx dy =满足00)(y x =?的解等价于求积分方程____________________的连续解。 4、设)(x y ψ=是一阶非齐次线性方程于区间I 上的任一解,)(x ?是其对应齐线性方程于区间I 上的一个非零解。则一阶非齐次线性方程的全部解的共同表达式为: 。 5、若)(),...(),(21t x t x t x n 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是__________________________________________。 6、方程组X t A dt dX )(=的_________________,称之为X t A dt dX )(=的一个基本解组。 7、若)(t Φ是常系数线性方程组 AX dt dX =的基解矩阵,则At exp = 。 8、方程 称为一阶线性方程,它有积分因子 ,其通解为 。 9、设)(),(21x x ??是与二阶线性方程: )()()(21x f y x a y x a y =+'+'',对应的齐次线性方程的基本解组,则的二阶线性方程全部解的共同表达式为: .10、形如 的方程称为欧拉方程。 11、若)(t Φ和)(t ψ都是X t A dt dX )(=的基解矩阵,则)(t Φ和)(t ψ具有的关系: 。 12、若向量函数);(y t g 在域R 上 ,则方程组0000),;(),;(y y t t y t g dt dy ==?的解?存在且惟一。 13、方程),,,,(y )1((n)-'=n y y y x f 经过变换 ,可化为含有n 个未知函数的一阶微分方程组。 14、方程04=+''y y 的基本解组是 . 15、向量函数组)(,),(),(21x x x n Y Y Y 在区间I 上线性相关的

常微分方程习题及解答

常微分方程习题及解答

常微分方程习题及解答 一、问答题: 1. 常微分方程和偏微分方程有什么区别?微分方程的通解是什么含义? 答:微分方程就是联系着自变量,未知函数及其导数的关系式。常微分方程,自变量的个数只有一个。偏微分方程,自变量的个数为两个或两个以上。常微分方程解的表达式中,可能包含一个或几个任意常数,若其所包含的独立的任意常数的个数恰好与该方程的阶数相同,这样的解为该微分方程的通解。 2. 举例阐述常数变易法的基本思想。 答:常数变易法用来求线性非齐次方程的通解,是将线性齐次方程通解中的任意常数变易为待定函数来求线性非齐次方程的通解。 例:求()()dy P x y Q x dx =+的通解。 首先利用变量分离法可求得其对应的线性齐次方程的通解为()P x dx y c ?=l ,然后将常 数c 变易为x 的待定函数()c x ,令()()P x dx y c x ? =l , 微分之,得到 ()()()()()P x dx P x dx dy dc x c x P x dx dx ??=+l l ,将上述两式代入

方程中,得到 ()()()()()()()()() P x dx P x dx P x dx dc x c x P x dx c x P x Q x ??+?=+l l l 即 ()() ()P x dx dc x Q x dx -? =l 积分后得到()()()P x dx c x Q x dx c -? =+?%l 进而得到方程 的通解 ()()(()) P x dx P x dx y Q x dx c -? ?=+?%l l 3.高阶线性微分方程和线性方程组之间的联系如何? 答:n 阶线性微分方程的初值问题 ()(1) 11(1)01020()...()()()(),(),....()n n n n n n x a t x a t x a t x f t x t x t x t ηηη---'?++++=??'===?? 其中1 2 ()(),...(),()n a t a t a t f t ,是区间a t b ≤≤上的已知 连续函数,[]0 ,t a b ∈,1 2 ,,...,n ηηη是已知常数。 它可以化为线性微分方程组的初值问题 12100100 00010000010()()()()()()n n n x x a t a t a t a t f t x t η--????????????????'????=+?????? ???? ? ?????----????? =?? L L M M M M M M L L 但是需要指出的是每一个n 阶线性微分方程可化为n 个一阶线性微分方程构成的方程组,反之却不成立。 4.若常系数线性方程组 Ax x ='和Bx x ='有相同的基本解矩阵, 则A

相关主题
文本预览
相关文档 最新文档