当前位置:文档之家› SD8001 4.2V 800mA 线性锂电池充电管理IC

SD8001 4.2V 800mA 线性锂电池充电管理IC

SD8001 4.2V 800mA 线性锂电池充电管理IC
SD8001 4.2V 800mA 线性锂电池充电管理IC

SD8001SD8001SD8001SD8001SD8001SD8001SD8001SD8001线性锂离子电池充电器

描述 是一款完整的单节锂离子电池采用恒定电流/恒定电压线性充电器。其SOT 封装与较少的外部元件数目使得成为便携式应用的理想选择。可以适合USB 电源和适配器电源工作。 由于采用了内部PMOSFET 架构,加上防倒充电路,所以不需要外部检测电阻器和隔离二极管。热反馈可对充电电流进行调节,以便在大功率操作或高环境温度条件下对芯片温度加以限制。充电电压固定于4.2V ,而充电电流可通过一个电阻器进行外部设置。当充电电流在达到最终浮充电压之后降至设定值1/10时,将自动终止充电循环。当输入电压(交流适配器或USB 电源)被拿掉时,自动进入一个低电流状态,将电池漏电流降至2uA 以下。也可将置于停机模式,以而将供电电流降至45uA 。的其他特点包括充电电流监控器、欠压闭锁、自动再充电和一个用于指示充电结束和输入电压接入的状态引脚。 特点 ·高达800mA 的可编程充电电流; ·无需MOSFET、检测电阻器或隔离二极管;

·用于单节锂离子电池、采用SOT23-5封装的完

整线性充电器;

·恒定电流/恒定电压操作,并具有可在无过热危

险的情况下实现充电速率最大化的热调节功能;

·直接从USB 端口给单节锂离子电池充电; ·精度达到±1%的4.2V 预设充电电压; ·用于电池电量检测的充电电流监控器输出; ·自动再充电;

·充电状态输出引脚; ·C/10充电终止;

·待机模式下的供电电流为45uA; ·2.9V涓流充电器件版本; ·软启动限制了浪涌电流; ·采用5引脚SOT-23封装。 应用 ·蜂窝电话、PDA、MP3播放器; ·充电座; ·蓝牙应用。 典型应用典型应用

600mA 单节锂离子电池充电器 完整的充电循环(750mAh 电池)

绝对最大额定值 ·输入电源电压(V CC ):-0.3V~10V ·PROG:-0.3V~V CC +0.3V ·BAT:-0.3V~7V ·:-0.3V~10V

·BAT 短路持续时间:连续 ·BAT 引脚电流:800mA ·PROG

引脚电流:800uA ·最大结温:125℃

·工作环境温度范围:-40℃~85℃ ·贮存温度范围:-65℃~125℃ ·引脚温度(焊接时间10秒):260℃

SD8001

1

凡表注●表示该指标适合整个工作温度范围,否则仅指T A=25℃,V CC=5V,除非特别注明。

2

典型性能特征

恒定电流模式下PROG引脚PROG引脚电压与温度的充电电流与PROG引脚电

电压与电源电压的关系曲线关系曲线压的关系曲线

和电源电压的关系曲线电压的关系曲线(上拉电流)电压的关系曲线(箝位电流)

电电流的关系曲线度的关系曲线压的关系曲线

脚I-V曲线 脚电流与温度的关系曲线 I-V曲线

3

弱下拉状态下的

引 涓流充电电流与温度的关系 涓流充电电流与电源电压的 脚电流与温度的关系曲线 曲线 关系曲线

涓流充电门限与温度的关系 充电电流与电池电压的关系 充电电流与电源电压的关系 曲线 曲线 曲线

充电电流与环境温度的关 再充电电压门限与温度的关 功率FET“导通”电阻与温 系曲线 系曲线 度的关系曲线

SD8001SD8001引脚功能

CHRG (引脚1):漏极开路充电状态输出。

在电池的充电过程中,由一个内部N 沟道MOSFET 将CHRG 引脚拉至低电平。当充电循环结束时,一个约20μA 的弱下拉电流

源被连接至CHRG 引脚,

指示一个“AC 存在”状态。当检测到一个欠压闭锁

条件时,CHRG 引脚被强制为高阻抗状态。

GND (引脚2:):地 BAT (引脚3):充电电流输出。该引脚向电池提供充电电流并将最终浮充电压调节至4.2V 。该、引脚的一个精准内部电阻分压器设定浮充电压,在停机模式中,该内部电阻分压器断开。 V CC (引脚4):

:正输入电源电压。该引脚向充电器供电。V CC 的变化范围在 4.25V 至6.5V 之间,并应通过至少一个1μF 电容器进行旁路。当V CC 降至BAT 引脚电压的30mV 以内,进入停机模式,从而使

I BAT 降至2μA 以下。 PROG (引脚5):充电电流设定、充电电流监控和停机引脚。在该引脚与地之间连接一个精度为1%的电阻器P PROG 可以设定充电电流。当在恒定电流模式下进行充电时,该引脚的电压被维持在1V 。在所有的模式中都可以利用该引脚上的电压来测算充电电流,公式如下:

I BAT =(V PROG /R PROG )×1000

PROG 引脚还可用来关断充电器。将设定电阻器与地断接,内部一个2.5μA 电流将PROG 引脚拉至高电平。当该引脚的电压达到1.22V 的停机门限电压时,充电器进入停机模式,充电停止且输入电源电流降至45μA 。重新将R PROG 与地相连将使充电器恢复正常操作状态。

方框图

SD8001

SD8001处于一个充电循环SD8001即终止充电循环并停止通过6SD8001处于欠压闭锁模式SD8001处于充电就绪状态,SD8001对BAT 引脚电压SD8001进入待机模式SD8001SD8001SD8001SD8001工作原理

是一款采用恒定电流/恒定电压算法的单节锂离子电池充电器。它能够提供800mA 的充电电流(借助一个热设计良好的PCB 布局)和一个内部P 沟道功率MOSFET 和热调节电路。无需隔离二极管或外部电流检测电阻器;因此,基本充电器电路仅需要两个外部元件。不仅如此,还能够从一个USB 电源获得工作电源。

正常充电循环

当Vcc 引脚电压升至UVLO 门限电平以

上且在PROG 引脚与地之间连接了一个精度为1%的设定电阻器或当一个电池与充电器输出端相连时,一个充电循环开始。如果BAT 引脚电平低于 2.9V ,则充电器进入涓流充电模式。在该模式中,提供约1/10的设定充电电流,以便将电流电压提升至一个安全的电平,从而实现满电流充电。

当BAT 引脚电压升至2.9V 以上时,充电器进入恒定电流模式,此时向电池提供恒定的充电电流。当BAT 引脚电压达到最终浮充电压(4.2V )时,进入恒定电压模式,且充电电流开始减小。当充电电流降至设定值的1/10,充电循环结束。

充电电流的设定

充电电流是采用一个连接在PROG 引脚与地之间的电阻器来设定的。电流充电电流是PROG 引脚输出电流的1000倍。设定电阻器和充电电流采用下列公式来计算:

PROG

CHG CHG PROG R V

I I V R 1000,1000==

从BAT 引脚输出的充电电流可通过监视PROG 引脚电压随时确定,公式如下:

1000?=

PROG

PROG

BAT R V I 充电终止

当充电电流在达到最终浮充电压之后降

至设定值的1/10时,充电循环被终止。该条件是通过采用一个内部滤波比较器对PROG 引脚进行监控来检测的。当PROG 引脚电压降至100mV 以下的时间超过TERM t (一般为1.8ms)时,充电被终止。充电电流被锁断,,此时输入电源电流降至45μA。(注:C/10终止在涓流充电和热限制模式中失效)。

充电时,BAT 引脚上的瞬变负载会使PROG 引脚电压在DC 充电电流降至设定值的1/10之间短暂地降至100mV 以下。终止比较器上的1.8ms 滤波时间(TERM t )确保这种性质的瞬变负载不会导致充电循环过早终止。一旦平均充电电流降至设定值的1/10以下,BAT 引脚提供任何电流。在这种状态下,BAT 引脚上的所有负载都必须由电池来供电。

在待机模式中进行连续监控。如果该引脚电压降到4.05V 的再充电电门限(RECHRG V )以下,则另一个充电循环开始并再次向电池供应电流。当在待机模式中进行充电循环的手动再启动时,必须取消然后再施加输入电压,或者必须关断充电器并使用PROG 引脚进行再启动。图1示出了一个典型充电循环的状态图。

充电状态指示器充电状态指示器(()

充电状态输出具有三种不同的状态:强下拉(约10mA)、弱下拉(约20μA)和高阻抗。强下拉状态表示中。一旦充电循环被终止,则引脚状态由欠压闭锁条件来决定。弱下拉状态表示Vcc 满足UVLO 条件且。高阻抗状态表示:要么Vcc 高出BAT 引脚电压的幅度不足100mV,要么施加在Vcc 引脚上的电压不足。可采用一个微处理器来区分这三种状态――在“应用信息”部分将对此方法进行讨论。

热限制热限制

如果芯片温度试图升至约75℃的预设值以上,则一个内部热反馈环路将减小设定的充电电流,直到 120℃以上停止充电。该功能可

,SD8001立即采用SD8001处于SD8001SD8001的SD8001过热防止,并允许用户提高给定电路板功率处理能力的上限而没有损坏风险。在保证充电器将在最坏情况条件下自动减小电流的前提下,可根据典型(而不是最坏情况)环境温度来设定充电电流。有关ThinSOT 功率方面的考虑将在“应用信息”部分做进一步讨论。

欠压闭锁欠压闭锁

一个内部欠压闭锁电路对输入电压进行监控,并在Vcc 升至欠压闭锁门限以上之前使充电器保持在停机模式。UVLO 电路将使充电器保持在停机模式。如果UVLO 比较器发生跳变,则在Vcc 升至比电池电压高100mV 之前充电器将不会退出停机模式。

手动停机

在充电循环中的任何时刻都能通过去掉R PROG (从而使R PROG 引脚浮置)来把置于停机模式。这使得电池漏电流降至2μA 以下,且电源电流降至50μA 以下。重新连接设定电阻器可启动一个新的充电循环。 在手动停机模式中,只要Vcc 高到足以超过UVLO 条件,CHRG 引脚都将处于弱下拉状态。如果欠压闭锁模式,则

CHRG 引脚呈高阻抗状态:要么Vcc 高出BAT

引脚电压的幅度不足100mV,要么施加在Vcc 引脚上的电压不足。

自动再启动自动再启动

一旦充电循环被终止一个具有1.8ms 滤波时间(RECHARGE t )的比较器来对BAT 引脚上的电压进行连续监控。当电池电压降至4.05V(大致对应于电池容量的80%至90%)以下时,充电循环重新开始。这确保了电池被维持在(或接近)一个满充电

状态,并免除了进行周期性充电循环启动的需要。在再充电循环过程中,CHRG 引脚输出进入一个强下拉状态。

图1:一个典型充电循环的状态图

稳定性的考虑

只要电池与充电器的输出端相连,恒定电压模式反馈环路就能够在未采用一个外部电容器的情况下保持稳定。在没有接电池时,为了减小纹波电压,建议采用一个输出电容器。当采用大数值的低ESR 陶瓷电容器时,建议增加一个与电容器串联的1Ω电阻器。如果使用的是钽电容,则不需要串联电阻器。

在恒定电流模式中,位于反馈环路中的是PROG 引脚,而不是电池。恒定电流模式的稳定性受PROG 引脚阻抗的影响。当PROG 引脚上没有附加电容会减小设定电阻器的最大容许阻值。PROG 引脚上的极点频率应保持在C PROG ,则可采用下式来计算R PROG 的最大电阻值:

PROG

PROG C R ??≤

51021

π

对用户来说,他们更感兴趣的可能是充电电流,而不是瞬态电流。例如,如果一个运行在低电流模式的开关电源与电池并联,则从BAT 引脚流出的平均电流通常比瞬态电流脉冲更加重要。在这种场合,电流通常比瞬态电流脉冲更加重要。在这种场合,可在PROG 引脚上采用一个简单的RC 滤波器来测量平均的电池电流(如图2所示)。在PROG 引脚和

滤波电容器之间增设了一个10k 电阻器以确保稳定性。

SD8001SD8001SD8001SD8001SD8001

图2:隔离PROG 引脚上的容性负载

和滤波电路

功率损耗

因热反馈的缘故而减小充电电流的条件可通过IC 中的功率损耗来估算。这种功率损耗几乎全部都是由内部MOSFET 产生的――这可由下式近似求出:

BAT BAT CC D I V V P ??=)(

式中的P D 为耗散的功率,V CC 为输入电源电压,V BAT 为电池电压,I BAT 为充电电流。当热反馈开始对IC 提供保护时,环境温度近似为:

JA D A P C T θ?°=120

JA BAT BAT CC A I V V C T θ????°=)(120

实例:通过编程使一个从5V USB 电源获得工作电源的向一个具有3.75V 电压的放电锂离子电池提供400mA 满幅度电流。假设

JA θ为150℃/W (请参见电路板布局的考虑),

当开始减小充电电流时,环境温度近似为:

W C mA V V C T A /150)400()75.35(120°????°=C C W C W C T A °?°=°??°=75120/1505.0120C T A °=45

可在45℃以上的环境温度条件下使用,但充电电流将被降至400mA 以下。对于一个给定的环境温度,充电电流可有下式近似求出:

JA

BAT CC A

BAT V V T C I θ???°=

)(120

再以60℃的环境温度来考虑前面的例子。充电电流将被大约减小至:

mA

I A C C

W C V V C C I BAT

BAT 320/5.18760/150)75.35(60120=°°=

°??°?°=不仅如此,正如工作原理部分所讨论的那样,当热反馈使充电电流减小时,PROG 引脚上的电压也将成比例地减小。

切记不需要在应用设计中考虑最坏的热条件,这一点很重要,因为该IC 将在结温达到120℃左右时自动降低功耗。

热考虑热考虑

由于SOT23-5封装的外形尺寸很小,因此,需要采用一个热设计精良的PC 板布局以最大幅度地增加可使用的充电电流,这一点非常重要。用于耗散IC 所产生的热量的散热通路从芯片至引线框架,并通过峰值后引线(特别是接地引线)到达PC 板铜面。PC 板铜面为散热器。引脚相连的铜箔面积应尽可能地宽阔,并向外延伸至较大的铜面积,以便将热量散播到周围环境中。至内部或背部铜电路层的通孔在改善充电器的总体热性能方面也是颇有用处的。当进行PC 板布局设计时,电路板上与充电器无关的其他热源也是必须予以考虑的,因为它们将对总体温升和最大充电电流有所影响。

下表罗列了几种不同电路板尺寸和铜面积条件下的热阻。所有的测量结果都是在静止空气中的3/32″FR-4电路板上(器件安装于其顶面)获得的。

SD8001

8

SD8001包括一个用于在充电循环开始时

SD8001SD8001增加热调节电流

降低内部MOSFET 两端的压降能够显著减少IC 中的功耗。在热调节期间,这具有增加输送至电池的电流的作用。对策之一是通过一个外部元件(例如一个电阻器或二极管)将一部分功率耗散掉。

实例:通过编程使一个从5V 交流适配器获得工作电源的向一个具有3.75V 电压的放电锂离子电池提供800mA 的满幅充电电流。假设JA θ为125℃/W ,则在25℃的环境温度条件下,充电电流近似为:

mA W

C V V C

C I BAT 608/125)75.35(25120=°??°?°=

通过降低一个与5V 交流适配器串联的电阻器两端的电压(如图3所示),可减少片上功耗,从而增大热调整的充电电流:

JA

BAT CC BAT S BAT V R I V C

C I θ???°?°=

)(25120

利用二次方程可求出2

BAT I 。

CC

JA

A CC BAT S BAT S BAT R T C R V V V V I 2)120(4)()(2

θ?°???=

取R CC =0.25Ω、V S =5V 、V BAT =3.75V 、T A =25℃且/W ℃125JA =θ,我们可以计算出热调整

的充电电流:

I BAT =708.4mA

虽然这种应用可以在热调整模式中向电池输送更多的能量并缩短充电时间,但在电压模式中,如果V CC 变得足够低而使处于低压降状态,则它实际上有可能延长充电时间。图4示出了该电路是如何随着R CC 的变大而导致电压下降的。

当为了保持较小的元件尺寸并避免发生压降而使R CC 值最小化时,该技术能起到最佳的作用。请牢记选择一个具有足够功率处理能力的电阻器。

V CC 旁路电容器旁路电容器

输入旁路可以使用多种类型的电容器。然而,在采用多层陶瓷电容器时必须谨慎。由于有些类型的陶瓷电容器具有自谐振和高Q 值的特点,因此,在某些启动条件下(比如将充电器输入与一个工作中的电源相连)有可能产生高的电压瞬态信号。增加一个与X5R 陶瓷电容器串联的 1.5Ω电阻器将最大限度地减小启动电压瞬态信号。

充电电流软启动充电电流软启动

最大限度地减小涌入电流的软启动电路。当一个充电循环被启动时,充电电流将在20μs 左右的时间里从0上升至满幅全标度值。在启动过程中,这能够起到最大限度地减小电源上的瞬变电流负载的作用。

SD8001

9

SD8001SD8001

状态输出引脚状态输出引脚

CHRG 引脚能够提供一个输入电压高于欠压闭锁门限电平的指示。一个约20μA 的弱下拉电流表示V CC 引脚上施加了开始充电循环所需的足够电压。当一个放电电池被连接到充电器时,充电循环的恒定电流部分开始,

CHRG 引脚电平被拉至地。CHRG 引脚能够

吸收高达10mA 的电流,以驱动一个用于指示充电循环正在进行之中的LED。

当电池接近充满时,充电器进入充电循环的恒定电压部分,充电电流开始下降。当充电电流降至不足设定电流的1/10时,充电循环结束且强下拉被一个20μA 下拉所取代,表示充电循环已经结束。如果输入电压被拿掉或降至欠压闭锁门限以下,则CHRG 引脚变成高阻抗。利用两个不同阻值的上拉电阻器,一个微处理器能够从该引脚检测出所有三种状态,如图5所示。

图5:采用一个微处理器来确定

引脚状

为了在处于充电模式时进行检测,将数字输出引脚(OUT )强制为高电平并测量CHRG 引脚上的电压。即使在采用2k 上拉电阻器的情况下,N 沟道MOSFET 也将把该引脚拉至低电平。一旦充电循环终止,N 沟道MOSFET 即被关断,并且一个20μA 的电流源被连接至CHRG 引脚。

IN 引脚随后将由2K 上拉电阻器拉至高电平。为了确定是否存在一个弱下拉电流,应将OUT 引脚强制为高阻抗状态。弱电流源将通过一个800K 电阻器将IN 引脚引脚拉至低电平;如果CHRG 引脚为高阻抗,则IN 引脚将被拉至高电平,表示器件处于一个UVLO 状态。

反向极反向极性输入电压保护性输入电压保护性输入电压保护

在有些应用中,需要在V CC 上进行反向极

性电压保护。如果电源电压足够高,则可采用一个串联隔离二极管。在其他必须保持低降压的场合,可以采用一个P 沟道MOSFET (如图6所示)。

USB 和交流适配器电源

允许从一个交流适配器或一个USB 端口进行充电。图7示出了如何将交流适配器与USB 电源输入加以组合的一个实例。一个P 沟道MOSFET (MP1)被用于防止交流适配器接入时信号反向传入USB 端口,而一个肖特基二极管(D1)则被用于防止USB 功率在经过1K 下拉电阻器时产生损耗。

一般来说,交流适配器能够提供比电流限值为500mA 的USB 端口大得多的电流。因此,当交流适配器接入时,可采用一个N 沟道MOSFET (MN1)和一个附加的10K 设定电阻器来把充电电流增加至600mA 。

SD8001

SD8001

SD8001

10

封装描述

S5封装

5引脚塑料SOT-23-5封装

54b*

典型应用

SD8001

SD8001

SD8001

SD8001

了解一下锂电池充电IC的选择方案

随着手持设备业务的不断发展,对电池充电器的要求也不断增加。要为完成这项工作而选择正确的集成电路 (IC),我们必须权衡几个因素。在开始设计以前,我们必须考虑诸如解决方案尺寸、USB标准、充电速率和成本等因素。必须将这些因素按照重要程度依次排列,然后选择相应的充电器IC。本文中,我们将介绍不同的充电拓扑结构,并研究电池充电器IC的一些特性。此外,我们还将探讨一个应用和现有的解决方案。 锂离子电池充电周期 锂离子电池要求专门的充电周期,以实现安全充电并最大化电池使用时间。电池充电分两个阶段:恒定电流 (CC) 和恒定电压 (CV)。电池位于完全充满电压以下时,电流经过稳压进入电池。在CC模式下,电流经过稳压达到两个值之一。如果电池电压非常低,则充电电流降低至预充电电平,以适应电池并防止电池损坏。该阈值因电池化学属性而不同,一般取决于电池制造厂商。一旦电池电压升至预充电阈值以上,充电便升至快速充电电流电平。典型电池的最大建议快速充电电流为1C(C=1 小时内耗尽电池所需的电流),但该电流也取决地电池制造厂商。典型充电电流为~0.8C,目的是最大化电池使用时间。对电池充电时,电压上升。一旦电池电压升至稳压电压(一般为4.2V),充电电流逐渐减少,同时对电池电压进行稳压以防止过充电。在这种模式下,电池充电时电流逐渐减少,同时电池阻抗降低。如果电流降至预定电平(一般为快速充电电流的10%),则终止充电。我们一般不对电池浮充电,因为这样会缩短电池使用寿命。图1 以图形方式说明了典型的充电周期。 线性解决方案与开关模式解决方案对比 将适配器电压转降为电池电压并控制不同充电阶段的拓扑结构有两种:线性稳压器和电感开关。这两种拓扑结构在体积、效率、解决方案成本和电磁干扰(EMI) 辐射方面各有优缺点。我们下面介绍这两种拓扑结构的各种优点和一些折中方法。 一般来说,电感开关是获得最高效率的最佳选择。利用电阻器等检测组件,在输出端检测充电电流。充电器在CC 模式下时,电流反馈电路控制占空比。电池电压检测反馈电路控制CV 模式下的占空比。根据特性集的不同,可能会出现其他一些控制环路。我们将在后面详细讨论这些环路。电感开关电路要求开关组件、整流器、电感和输入及输出电容器。就许多应用而言,通过选择一种将开关

一款基于BQ24610的智能锂电池充电方案

一款基于BQ24610的智能锂电池充电方案 1.概述 随着移动电话、笔记本电脑、平板电脑等众多便携式电子设备的迅速普及应用,与之配套的小型锂离子电池、锂聚合物电池等二次电池的生产及需求量与 日俱增,特别是锂离子电池体积小、重量轻;循环寿命长、充电可达几百次甚至 上千次;自放电率低等优点广泛应用于可移动便携式电子产品中。因此,设计一 套高精度锂离子充电管理系统对于锂离子电池应用是至关重要的,严格防止在 电池的使用中出现过充电、过放电等现象。 目前比较成熟的锂电池充电管理方案就是基于笔记本电脑的方案,该类电源 管理方案已经接近成熟,但是往往成本较高,不太符合应用于便携式分子筛制 氧机设计中。结合成本与性能的考虑,最后我们选择BQ24610 芯片作为主芯片,结合外围电路,来设计便携式分子筛制氧机电源管理模块。 BQ24610 是TI 公司生产,可以实现5V-28V 锂电池充电管理。充电控制器与传统的控制器相比较,效率更高,散热更少;充电电压及电流的准确度接近百分 之百,有助于延长电池使用寿命;集成型独立解决方案可提高设计灵活性,缩小 整体解决方案尺寸,更有利于广泛应用于便携式设备中;动态电源管理可在电池 充电时仍可为系统供电,最大限度地提高适配器功率[3].本文就通过在实际中的 探索,对电池充电控制器和选择器芯片BQ24610 的基本性能、工作原理、参数设置及应用中出现的问题进行了分析,给出了相应的典型应用电路设计。 2.BQ24610 功能及特性 2.1 引脚介绍 ACN(引脚1):适配器电流误差放大器负输入。ACP (引脚2):适配器电流误差放大器正输入。ACDRV (引脚3):AC 或适配器电源选择输出。CE(引脚4):

LT8490锂电池充电器电路设计详解

LT8490 锂电池充电器电路设计详解 标签:LT8490(3) 低功耗(190)电源管理(505) LT8490( $12.5700)是降压升压开关稳压电池充电器,实 现恒流恒压( CCCV )充电模式,适用于大多数电池,包括密封铅酸电池( SLA )、溢流电池、胶体电池和锂电池。片上 逻辑在太阳能应用时提供自动最大功率点跟踪( MPPT),并 具有自动温度补偿功能。主要用在太阳能电池充电器、多种类型铅酸电池充电、锂电池充电器以及电池供电的工业或手持军用设备。 状态和故障引脚含有充电器的信息可以被用来驱动 LED指示灯。该器件采用扁平(高度仅0.75mm)7mm x 11mm 64 引脚QFN 封装。 图1 LT8490 框图 LT8490 主要特性

-VIN 范围:6V?80V - VBAT 范围:1.3V?80V ?单 电感器允许VIN高于,低于或等于VBAT ?自动MPPT,用于太阳能充电?自动温度补偿?无需任何软件或固件开发?从 太阳能电池板或直流电源供电?输入和输出电流监视器销弓 脚?四位一体的反馈回路?同步固定频率: 100kHz?400kHz 的-64 引脚(7mm X 11mm x 0.75mm 高度)QFN 封装LT8490 应用?太阳能电池充电器?多种铅酸蓄电池充电?锂离子电池充电器?电池供电工业产品或便携式军用设备 图2 LT8490 27.4V 锂电池充电器电路图 DC2069A( $195.9800)-LT8490 演示板高效率MPPT 电池充电器控制器17V?54V ,最高200W 太阳能电池板的输入电压。12V SLA 电池,最高16.6A 充电电流。演示电路2069A采用了LTR8490 (高性能降压-升压型转换器),实现了最大功率点跟踪功能和灵活的充电特性,适用于大多数类型的电池,如水淹电池,密封铅酸电池和锂离子电池,可在输入电压高于、低于或等于电池电压的情况下工作。 该演示板配置为17V~54V 的输入电压范围,电源可以 是太阳能电池板36?72单元(最高200W),或直流电压源。 提供两种输入接口。LTC4359($2.5500)理想的二极管控制器可以保护直流电源的输出(不受太阳能电池板回流的影响)这使得,例如在 24VDC 电源接通的同时,又可以使具有更高的电压的太阳能电池板,被用于对电路供电。

锂离子电池充电控制器的设计与实现

锂电池充电控制器的设计与实现 班级650705 姓名李波 指导教师杨大鹏

一本课题研究的目的和意义 随着社会的发展,各种便携式设备已经逐步走进了我们的生活:手机,MP3,笔记本电脑,数码相机,便携式dvd等已经成为了我们日常生活的一部分。伴随着便携式电子产品的发展,其用电问题也越来越受到大家的关注。目前,市场上有一次电池和二次电池,一次电池是一次性应用的电池,二次电池是可以反复使用的电池。随着便携式设备的发展,无论从节约成本来说,还是从环境保护的角度来说,二次电池都比一次电池更有优势,因此二次电池的市场需求量也越来越大。 锂离子电池自20世纪90年代上市以来,它以能量密度高,使用寿命长的特点倍受重视。基于市场的要求,世界各大电池生产商为了在市场领域里取得优势,无不致力于开发具有能量密度高,小型化,薄型化,轻量化,安全性高,循环寿命长,低成本的新型电池。对此,聚合物锂离子电池具有上述各项优点,是各厂商致力研究的目标。聚合物锂离子电池基于安全、轻薄等特性,广泛应用于便携式设备,所以聚合物锂离子电池是21世纪移动设备最佳的电源解决方案。 然而,锂离子电池已易受到过充电、深放电以及短路的损害。单体锂离子电池的充电电压必须严格限制。充电速率通常不超过1C,最低放电电压为2.7~3.0V,如再继续放电,则会损害电池。锂离子电池以恒流转恒压方式进行充电。采用1C充电速率充电至4.1V时,充电器应立即转入恒压充电,充电电流逐渐减小;当电池充足电后,进入涓流充电过程。为避免过充电或过放电,充电器必须采取安全保护措施,以监测锂离子电池的充放电状态。 二本课题的主要工作内容和预期达到的目标 主要工作内容: (1)了解并掌握锂离子电池的各种充电方式 1.恒流充电 充电器的交流电源电压通常会波动,充电时需采用一个直流恒流电源(充电器)。当采用恒流充电时,可使电池具有较高的充电效率,可 方便地根据充电时间来决定充电是否终止,也可改变电池的数目。恒 流电源充电电路如图2-1所示。

BQ24072 TI 锂电池 电源管理芯片

bq24072,bq24073 bq24074,bq24075,bq24079 https://www.doczj.com/doc/6a5979509.html, SLUS810E–SEPTEMBER2008–REVISED JULY2010 1.5A USB-FRIENDLY Li-Ion BATTERY CHARGER AND POWER-PATH MANAGEMENT IC Check for Samples:bq24072,bq24073,bq24074,bq24075,bq24079 FEATURES DESCRIPTION ?Fully Compliant USB Charger –Selectable100mA and500mA Maximum The bq2407x series of devices are integrated Li-ion linear chargers and system power path management Input Current devices targeted at space-limited portable –100mA Maximum Current Limit Ensures applications.The devices operate from either a USB Compliance to USB-IF Standard port or AC adapter and support charge currents up to –Input based Dynamic Power Management 1.5A.The input voltage range with input overvoltage (V IN-DPM)for Protection Against Poor USB protection supports unregulated adapters.The USB Sources input current limit accuracy and start up sequence allow the bq2407x to meet USB-IF inrush current ?28V Input Rating with Overvoltage Protection specification.Additionally,the input dynamic power ?Integrated Dynamic Power Path Management management(V IN -DPM)prevents the charger from (DPPM)Function Simultaneously and crashing incorrectly configured USB sources. Independently Powers the System and The bq2407x features dynamic power path Charges the Battery management(DPPM)that powers the system while ?Supports up to1.5A Charge Current with simultaneously and independently charging the Current Monitoring Output(ISET)battery.The DPPM circuit reduces the charge current when the input current limit causes the system output ?Programmable Input Current Limit up to1.5A to fall to the DPPM threshold;thus,supplying the for Wall Adapters system load at all times while monitoring the charge ?System Output Tracks Battery Voltage current separately.This feature reduces the number (bq24072) of charge and discharge cycles on the battery,allows ?Programmable Termination Current(bq24074)for proper charge termination and enables the system to run with a defective or absent battery pack.?Battery Disconnect Function with SYSOFF Input(bq24075,bq24079) Typical Application Circuit ?Programmable Pre-Charge and Fast-Charge Safety Timers ?Reverse Current,Short-Circuit and Thermal Protection ?NTC Thermistor Input ?Proprietary Start Up Sequence Limits Inrush Current ?Status Indication–Charging/Done,Power Good ?Small3mm×3mm16Lead QFN Package APPLICATIONS ?Smart Phones ?Portable Media Players ?Portable Navigation Devices ?Low-Power Handheld Devices Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright?2008–2010,Texas Instruments Incorporated Products conform to specifications per the terms of the Texas

bq2057锂电池充电芯片应用

先进的锂电池线性充电管理芯片BQ2057及其应用 北京理工大学机电工程学院魏维伟李杰 摘要:本文介绍美国TI公司生产的先进锂电池充电管理芯片BQ2057,利用BQ2057系列芯片及简单外围电路可设计低成本的单/双节锂电池充电器,非常适用于便携式电子仪器的紧凑设计。本文将在介绍BQ2057芯片的特点、功能的基础上,给出典型充电电路的设计方法及应用该充电芯片设计便携式仪器的体会。 关键词:锂电池充电器BQ2057 1 引言 BQ2057系列是美国TI公司生产的先进锂电池充电管理芯片,BQ2057系列芯片适合单节(4.1V或4.2V)或双节(8.2V或8.4V)锂离子(Li-Ion)和锂聚合物(Li-Pol)电池的充电需要,同时根据不同的应用提供了MSOP、TSSOP和SOIC的可选封装形式,利用该芯片设计的充电器外围电路及其简单,非常适合便携式电子产品的紧凑设计需要。BQ2057可以动态补偿锂电池组的内阻以减少充电时间,带有可选的电池温度监测,利用电池组温度传感器连续检测电池温度,当电池温度超出设定范围时BQ2057关闭对电池充电。内部集成的恒压恒流器带有高/低边电流感测和可编程充电电流,充电状态识别可由输出的LED指示灯或与主控器接口实现,具有自动重新充电、最小电流终止充电、低功耗睡眠等特性。 2.功能及特性 2.1 器件封装及型号选择 BQ2057系列充电芯片为满足设计需要,提供了多种可选封装及型号,其封装形式如图2-1所示,有MSOP、TSSOP和SOIC三种封装形式。其型号如表2-1所示,有BQ2057、BQ2057C、BQ2057T和BQ2057W四种信号,分别适合4.1V、4.2V、8.2V和8.4V的充电需要。 元件型号充电电压 BQ2057 4.1V BQ2057C 4.2V BQ2057T 8.2V BQ2057W 8.4V BQ2057的引脚功能描述如下: ?VCC (引脚1):工作电源输入; ?TS (引脚2):温度感测输入,用于检测电池组的温度; ?STA T(引脚3):充电状态输出,包括:充电中、充电完成和温度故障三个状态; ?VSS (引脚4):工作电源地输入; ?CC (引脚5):充电控制输出; ?COMP(引脚6):充电速率补偿输入; ?SNS (引脚7):充电电流感测输入; ?BA T (引脚8):锂电池电压输入;

正确选择锂电池充电系统

正确选择锂电池充电系统 正确选择锂电池充电系统 中心议题:决定锂离子充电系统注意事项电池锂离子电池">锂离子电池充电终止方法锂 离子充电应用实例 解决方案:锂离子充电线性解决方案锂离子充电周期波形分析开关式充电解决方案 在有些应用中,较长的电池寿命电池寿命、较多的充电次数或较安全的电池比电池容量更重要。本文介绍几种可以极大延长电池寿命的锂离子电池充电和放电方法。几乎所有高性能便携式产品都会使用包括锂离子聚合物电池在内的可再充电锂离子电池,这是因为与其他可再充电电池相比,锂离子电池有较高的能量密度、较高的电池电压、自放电少、周期寿命非常长,而且环保,且充电和维护简单。另外,由于其具有相对高的电压 (2.9V至4.2V),因此很多便携式产品都能用单节电池工作,从而简化了产品总体设计。C速率等于特定条件下的充电或放电电流,定义如下:I=M×Cn其中:I=充电或放电电流,单位为A;M=C的倍数或分数;C=额定容量的数值,单位为Ah;N=小时数(对应于C)。以1倍C速率放电的电池将在一个小时内释放标称的额定容量。例如,如果标称容量是1000mAhr,那么1C的放电速率对应于1000mA的放电电流,C/10的速率对应100mA的放电电流。通常生产商标定的电池容量都是指n=5时,即5小时放电的容量。例如,上述电池在200mA恒流放电时能够提供5小时的工作时间。理论上该电池在1000mA恒流放电时能够提供1小时的工作时间。然而实际上由于大电池放电时效能降低,此时的工作时间将小于1小时。 给锂离子电池充电的推荐方法是,向电池提供一个±1%限压的恒定电流,直到电池充满电,然后停止充电。用来决定电池何时充满电的方法包括:给总的充电时间定时、监视充电电流或兼用这两种方法。第一种方法采用限压恒定电流,变化范围从C/2到1C,持续2.5至3小时,使电池达到100%充电。也可以使用较低的充电电流,但是 将需要更长时间。第二种方法与第一种方法类似,只是需要监视充电电流。随着电池的充电,电压上升,这与采用第一种方法时完全相同。电池电压达到编程限压值(也称为 浮动电压)时,充电电流开始下降。电流一开始下降时,电池约充电至容量的50%至60%.浮动电压继续提供,直到充电电流降至足够低的水平(C/10至C/20),这时电池

锂离子电池充电控制器的设计与实现

锂电池充电控制器的设计与实现 一本课题研究的目的和意义 随着社会的发展,各种便携式设备已经逐步走进了我们的生活:手机,MP3,笔记本电脑,数码相机,便携式dvd等已经成为了我们日常生活的一部分。伴随着便携式电子产品的发展,其用电问题也越来越受到大家的关注。目前,市场上有一次电池和二次电池,一次电池是一次性应用的电池,二次电池是可以反复使用的电池。随着便携式设备的发展,无论从节约成本来说,还是从环境保护的角度来说,二次电池都比一次电池更有优势,因此二次电池的市场需求量也越来越大。 锂离子电池自20世纪90年代上市以来,它以能量密度高,使用寿命长的特点倍受重视。基于市场的要求,世界各大电池生产商为了在市场领域里取得优势,无不致力于开发具有能量密度高,小型化,薄型化,轻量化,安全性高,循环寿命长,低成本的新型电池。对此,聚合物锂离子电池具有上述各项优点,是各厂商致力研究的目标。聚合物锂离子电池基于安全、轻薄等特性,广泛应用于便携式设备,所以聚合物锂离子电池是21世纪移动设备最佳的电源解决方案。 然而,锂离子电池已易受到过充电、深放电以及短路的损害。单体锂离子电池的充电电压必须严格限制。充电速率通常不超过1C,最低放电电压为2.7~3.0V,如再继续放电,则会损害电池。锂离子电池以恒流转恒压方式进行充电。采用1C充电速率充电至4.1V时,充电器应立即转入恒压充电,充电电流逐渐减小;当电池充足电后,进入涓流充电过程。为避免过充电或过放电,充电器必须采取安全保护措施,以监测锂离子电池的充放电状态。 二本课题的主要工作内容和预期达到的目标 主要工作内容:

(1)了解并掌握锂离子电池的各种充电方式 1.恒流充电 充电器的交流电源电压通常会波动,充电时需采用一个直流恒流电源(充电器)。当采用恒流充电时,可使电池具有较高的充电效率,可 方便地根据充电时间来决定充电是否终止,也可改变电池的数目。恒 流电源充电电路如图2-1所示。 图2-1 恒流电源充电电路 2.恒压充电 恒压充电电路如图2-3所示。恒压充电是指每只单体电池均以某一恒定电压进行充电。当对电池进行这一充电时,电池两端的电压决定了充电电流。这种充电方式的充电初期电流较大,末期电流较小。充电电流会随着电压的波动而变化,因此充电电流的最大值应设置在充电电压最高时,以免时电池过充电。 另外,这种充电方式的充电末期电压在达到峰值后会下降。电池的充电电流将变大,会导致电池温度升高。随着电池温度升高,电压下降,将造成电池的热失控,损害电池的性能。 图2-3 恒压充电电路

锂电池充电控制器MAX1811的引脚参数及电路

锂电池充电控制器MAX1811的引脚参数及电路 MAX1811是美信公司生产的USB接口单节锂电池充电控制器,它可以直接由USB端口供电,或由其他外部电源供电,电源电压可达+6.5V。 1 特性 MAX1811无须微处理器控制,最大充电电压可由引脚设置为4.1 V或4.2 V (引脚一接地输出4.1v 接高电平则输出4.2v),最大误差为0.5%。 MAX1811对电池充电电流可通过逻辑控制电路置为100mA或500mA,符合USB的电流标准。MAX1811工作于线性模式,无须外部电感,内置的MOSFE T功率开关有效节省了线路板尺寸。 当采用U部端口电源给电池充电时,对于低功率USB端口,应将MAX1811芯片的SETI端电位拉低,其充电电流设定为100mA,对于高功率的USB端口,应将MAX1811芯片的SETI引脚接高电平,此时充电电流设定为500mA;将5 ETV端接高电平或接低电平,锂电池的充电电压分别被设置为4.2 V或4.1 V。MAX1811的CHG端允许芯片在充电期间点亮LED。 2 引脚功能 MAX1811采用增强散热型8引脚SO封装,允许耗散功率为1.4 W:另外,MAX1811内部还带有热保护二极管,进而降低了充电器的成本与尺寸。MAX1 811引脚功能如下表。 3 MAX1811锂电池充电控制电路

该电路的充电电流有100mA (图中开关SB断开时)、500mA(图中开关S闭合时)两挡可供选择。电路允许的MAX1811的第1脚按图连接时,最高充电电压为4.2V;第1脚与电源负端连接时,最高充电电压为4.1V。一旦达到最高充电电压时,充电电流就急剧减少,并维持最高充电电压不变。图中,VD1作为电源指示,VD2作为充电指示,灯亮表示正在充电,灯灭表示充电结束。 3充电曲线:

BQ24040 TI 锂电池 电源管理芯片

bq24040 bq24041 https://www.doczj.com/doc/6a5979509.html,....................................................................................................................................SLUS941A–SEPTEMBER2009–REVISED SEPTEMBER2009 800mA,Single-Input,Single Cell Li-Ion Battery Charger With Auto Start Check for Samples:bq24040bq24041 FEATURES–Fixed10Hour Safety Timer ?CHARGING?SYSTEM –1%Charge Voltage Accuracy–Automatic Termination and Timer Disable Mode(TTDM)for Absent Battery Pack With –10%Charge Current Accuracy Thermistor,bq24040 –Pin Selectable USB100mA and500mA –Status Indication–Charging/Done Maximum Input Current Limit –Available in Small2×2mm2DFN-10Package –Programmable Termination and Precharge Threshold,bq24040–Integrated Auto Start Function for Production Line Testing,bq24041?PROTECTION –30V Input Rating;with6.6V or7.1V Input APPLICATIONS Overvoltage Protection ?Smart Phones –Input Voltage Dynamic Power Management ?PDAs –125°C Thermal Regulation;150°C Thermal ?MP3Players Shutdown Protection ?Low-Power Handheld Devices –OUT Short-Circuit Protection and ISET short detection –Operation over JEITA Range via Battery NTC–1/2Fast-Charge-Current at Cold, 4.06V at Hot,bq24040 DESCRIPTION The bq2404x series of devices are highly integrated Li-ion linear chargers devices targeted at space-limited portable applications.The devices operate from either a USB port or AC adapter.The high input voltage range with input overvoltage protection supports low-cost unregulated adapters. The bq2404x has a single power output that charges the battery.A system load can be placed in parallel with the battery as long as the average system load does not keep the battery from charging fully during the10hour safety timer. The battery is charged in three phases:conditioning,constant current and constant voltage.In all charge phases, an internal control loop monitors the IC junction temperature and reduces the charge current if an internal temperature threshold is exceeded. Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date.Copyright?2009,Texas Instruments Incorporated Products conform to specifications per the terms of the Texas Instruments standard warranty.Production processing does not necessarily include testing of all parameters.

锂电池线性充电管理芯片LTC4065及其应用

锂电池线性充电管理芯片LTC4065及其应用 摘要锂电池具有体积小、能量密度高、无记忆效应、循环寿命高、高电压电池和自放电率低等优点,近年来已经成为微型移动终端设备的首选电源。本文介绍了基于LTC4065芯片的线性充电管理方案,仅需要非常少的外围元件配合,就可以实现低成本、超小尺寸的单节锂电池充电管理。 关键词锂电池充电管理LTC4065 SG2003 随着移动计算技术和无线通信技术的发展,微型移动终端设备在移动数据采集、传输、处理及个人信息服务等领域得到越来越多的应用。锂电池因其体积小、能量密度高、无记忆效应、循环寿命高、高电压电池和自放电率低等优点,近年来已经成为微型移动终端设备的首选电源。锂电池的特性以及应用环境的需求,对微型移动终端设备充电方案的设计提出了更高的要求。因此在充电方案的设计中需要综合考虑成本、体积、噪声、效率等因素。 LTC4065是一款用于单节锂电池的完整恒定电流/恒定电压线性充电管理芯片,可提供高达750 mA且准确度为5%的可设置的充电电流,并支持直接使用USB端口对单节锂电池进行充电。同时其热反馈功能可调节充电电流,以便在大功率工作或高环境温度条件下对芯片温度加以限制,确保安全工作。由于采用了内部MOSFET架构,因此无需使用外部检测电阻器或隔离二极管。很少的外部元件数目加上其2 mm×2 mm DFN封装,使得LTC4065尤其适合无线PDA、蜂窝电话、无线传感器终端等应用。功能齐全的LTC4065还包括自动再充电、低电池电量充电调节、软启动等丰富功能。 1 LTC4065的引脚功能 LTC4065采用了热处理能力较强的6引脚小外形封装(DFN),且实现产品无铅化,底部采用裸露衬垫,直接焊接至PCB以实现电接触和额定散热性能。引脚排列如图1所示。 各引脚功能如下: 引脚1,GND,接地端。 引脚2,CHRG,漏极开路充电状态输出。充电状态指示引脚具有三种状态:下拉、2 Hz 脉动和高阻抗状态。该输出可以被用作一个逻辑接口或一个LED驱动器。对电池进行充电时,有一个内部N沟道MOSFET将GHRG引脚拉至低电平。当充电电流降至全标度电流的10%时,CHRG引脚被强制为高阻抗状态。如果电池电压处于2.9 V以下的持续时间达到充电时间的1/4,则认为电池失效,而且CHRG引脚将以2 Hz的频率脉动。 引脚3,BA T,充电电流输出。该引脚向电池供应充电电流,并将最终浮动电压调节至4.2 V。该引脚上的一个内部精确电阻分压器负责设定此浮动电压,并在停机模式时断接。 引脚4,VCC,正输入电源。该引脚向充电器供电。VCC的变化范围是3.75~5.5 V。该引脚应通过一个最小1μF的电容器进行旁路。当VCC处于BA T引脚电压的32 mV以内时,LTC4065进入停机模式,从而使IBA T降至约1μA。 引脚5,EN,使能输入引脚。把该引脚拉至手动停机门限(一般为O.82 V)以上,将把LTC4065置于停机模式。在停机模式中,LTC4065的电源电流低于20μA。使能为缺省状态,但不用时应将该引脚连至GND。 引脚6,PROG,充电电流设置和充电电流监视引脚。充电电流是通过连接一个精度为1%的接地电阻器RPROG来设置的。 2 工作原理 LTC4065主要是为实现对单节电池充电而设计的线性电池充电管理芯片。该芯片利用其内部功率MOSFET对电池进行恒流和恒压充电。充电电流可利用外部电阻编程设定,最大

最新锂电池充电系统说明书

总线型锂电池充电系统设计说明书 2012年8月 天津大学电气与自动化工程学院

目录 第一章技术规范和要求 (2) 第二章系统概述 (3) 第三章各模块功能实现 (5) 第四章性能和技术保障 (12) 第五章项目实施和产品报价 (13)

第一章技术规范和要求 一、技术指标 1.运行环境条件:海拔小于2500m(室内/室外),环境温度-40℃~+55℃; 相对湿度≤95%; 2.运输和贮存环境条件:海拔小于3500m(室内/室外)温度-45℃~+80℃; 相对湿度≤95%; 3.防护等级:IP45; 4.输入电源:180V~250V,50±5Hz; 5.单模块技术指标:输出电压0~7V,输出电流20A,效率>0.9,纹波<100mv; 6.输入输出隔离电压Vrms≥3500V/1mA 1min。 二、电源充电指标 1.采取全并充充电模式;具备恒流、恒压和限流充电功能; 2.充电电流3A~7A;控制精度±0.2A;检测精度±0.05A,恒流充电电流值 可以在其允许的范围内任意设置(设置的最小单位为0.05A); 3.单体电池恒压充电值为3V至 4.15V,精度为±0.02V,恒压充电电压值可 以在其允许的范围内任意设置(设置的最小单位为0.02V); 4.截止充电电流值为0.5A,截止充电电压值为4.17V,截止充电时间为1-8h 可设定; 5.充电机具备双总线通讯接口,可冗余通讯故障,通过配套的控制软件和上 位计算机通讯。上位计算机软件可以获取电池组各单体每次充电的充电时间、电流、单体电压、充电量等各种信息。 三、技术规范 1.HJB68-92 《舰艇电子装备显控台,机箱,机柜通用规范》 2.QJ201A-99 《印制电路板通用规范》 3.QJ165A-95 《航天电子电气产品安装通用技术要求》 4.GB2421 《电工电子产品基本环境试验规程总则》 5.JB/TS234-91 《工业控制计算机系统验收大纲》 6.GB/T15532-2008 《计算机软件单元测试》

锂电池保护芯片均衡充电设计

锂电池保护芯片均衡充电设计 常用的均衡充电技术包括恒定分流电阻均衡充电、通断分流电阻均衡充电、平均电池电压均衡充电、开关电容均衡充电、降压型变换器均衡充电、电感均衡充电等。成组的锂电池串联充电时,应保证每节电池均衡充电,否则使用过程中会影响整组电池的性能和寿命。而现有的单节锂电池保护芯片均不含均衡充电控制功能;多节锂电池保护芯片均衡充电控制功能需要外接CPU,通过和保护芯片的串行通讯(如I2C总线)来实现,加大了保护电路的复杂程度和设计难度、降低了系统的效率和可靠性、增加了功耗。 ?本文针对动力锂电池成组使用,各节锂电池均要求充电过电压、放电欠电压、过流、短路的保护,充电过程中要实现整组电池均衡充电的问题,设计了采用单节锂电池保护芯片对任意串联数的成组锂电池进行保护的含均衡充电功能的电池组保护板。仿真结果和工业生产应用证明,该保护板保护功能完善,工作稳定,性价比高,均衡充电误差小于50mV。 ?锂电池组保护板均衡充电基本工作原理 ?采用单节锂电池保护芯片设计的具备均衡充电能力的锂电池组保护板示意图如图1所示。其中:1为单节锂离子电池;2为充电过电压分流放电支路电阻;3为分流放电支路控制用开关器件;4为过流检测保护电阻;5为省略的锂电池保护芯片及电路连接部分;6为单节锂电池保护芯片(一般包括充电控制引脚CO,放电控制引脚DO,放电过电流及短路检测引脚VM,电池正端VDD,电池负端VSS等);7为充电过电压保护信号经光耦隔离后形成并联关系驱动主电路中充电控制用MOS管栅极;8为放电欠电压、过流、短路保护信号经光耦隔离后形成串联关系驱动主电路中放电控制用MOS管栅极;9为充电控制开关器件;10为放电控制开关器件;11为控制电路;12为主电路;

锂电池充电保护方案

方案一:BP2971 电源管理芯片 特点 ·输入电压区间(Pack+):~12V ·FET 驱动 CHG和DSG FET驱动输出 ·监测项 过充监测 过放监测 充电过流监测 放电过流监测 短路监测 ·零充电电压,当无电池插入·工作温度区间: Ta= -40~85℃·封装形式: 6引脚 DSE() 应用 ·笔记本电脑 ·手机 ·便携式设备 绝对最大额定值 ·输入电源电压:~7V

·最大工作放电电流:7A ·最大充电电流: ·过充保护电压(OVP): ·过充压延迟: ·过充保护电压(释放值):·过放保护电压(UVP):·过放压延迟:150ms ·过放保护电压(释放值): ·充电过流电压(OCC):-70mV ·充电过流延迟:9ms ·放电过流电压(OCD):100mV ·放电过流延迟:18ms ·负载短路电压:500mV ·负载短路监测延迟:250us ·负载短路电压(释放值):1V 典型应用及原理图

图1:BP2971应用原理图 引脚功能 NC(引脚1):无用引脚。 COUT(引脚2):充电FET驱动。此引脚从高电平变为低电平,当过充电压被V-引脚所监测到 DOUT(引脚3):放电FET驱动。此引脚从高电平变为低电平,当过放电压被V-引脚所监测到 VSS (引脚4):负电池链接端。此引脚用于电池负极的接地参考电压 BAT(引脚5):正电池连接端。将电池的正端连接到此管脚。并用的输入电容接地。 V-(引脚6):电压监测点。此引脚用于监测故障电压,例如过冲,过放,

过流以及短路电压。 芯片功能原理图 芯片功能性模式 监测参数 参数可变(选)区间过充监测电压~ 50mV steps V OVP

一款锂电池充电管理芯片的研究与设计

一款锂电池充电管理芯片的研究与设计 林超 【摘要】:锂离子电池是目前便携式电子产品中使用最为广泛的可充电电池。而且随着电池容量的不断提高,锂离子电池将成为21世纪电动汽车的主要动力电源之一,并将在人造卫星、航空航天和储能方面得到应用。由于锂离子电池本身电学特性的原因,几乎每一块锂离子电池都需要一个充电管理芯片来提供充放电保护以延长其使用寿命。本文设计并实现一款成本较低、应用广泛,性能优良的锂电池充电管理芯片。采用全定制设计思想,完成了从底层电路开始到整个芯片电路的正向设计,实现了过放电保护、过充电保护、短路保护、过温保护以及涓流充电、恒流充电、恒压充电等控制功能。芯片内部用来驱动充电晶体管的MOS管耐压高达30V以上,在不外加扩展电路的情况下,可设计成多节串联电池的充电电路。低压线性稳压器集成在芯片内部,提高了集成度,使芯片具有较小的面积,降低了成本。芯片的外围电路既可以设计成线性控制也可采用PFM控制,应用电路简单。 此外,改变芯片应用电路的外围电阻就可以调节芯片的恒流充电电流、预充电(涓流充电)截止电压、恒压充电电压和电池充满判断电流。这使得芯片具有很强的适用性,能够应用在很多不同的场合。芯片采用CSMC0.5um DPTM Mixed Signal工艺,使用Cadence工具完成电路设计、仿真、版图设计和验证。仿真结果表明,在电池温度端检测电压大于4.51 V时,充电终止,表明此时电池没有接入;当电池温度检测端电压大于0.05V且小于0.5V 时,充电电流为24mV/Rs;当电池温度检测端电压大于0.5V且小于4.51V时,芯片系统正常工作,此时涓流充电电流为24mv/Rs,预充电结束判断电压为0.61V,恒流充电电流为240mv/Rs,恒压充电判断电压为1.21V,充饱判断电流为24mV/Rs,这些参数均符合设计指标,并且电池充电曲线也符合设计预期。仿真成功后进行版图设计和验证,最终导出GDS文件去foundry流片。 【关键词】:锂电池锂电池充电管理芯片三阶段充电法锂电池充放电保护过温保护【学位授予单位】:西安电子科技大学 【学位级别】:硕士 【学位授予年份】:2012 【分类号】:TM912 【目录】: ?摘要3-4 ?ABSTRACT4-8 ?第一章绪论8-14 ? 1.1 课题研究背景及意义8-10 ? 1.2 锂电池充电管理芯片的研究现状及发展趋势10-11 ? 1.3 本文的主要工作及内容安排11-14 ?第二章锂电池充电管理芯片设计基础14-24 ? 2.1 锂电池工作原理14-15 ? 2.2 锂电池的电学性能及其充电保护要求15-17

锂电池保护芯片原理

锂电池保护原理 锂电池保护板是对串联锂电池组的充放电保护;在充满电时能保证各单体电池之间的电压差异小于设定值(一般±20mV),实现电池组各单体电池的均充,有效地改善了串联充电方式下的充电效果;同时检测电池组中各个单体电池的过压、欠压、过流、短路、过温状态,保护并延长电池使用寿命;欠压保护使每一单节电池在放电使用时避免电池因过放电而损坏。 成品锂电池组成主要有两大部分,锂电池芯和保护板,锂电池芯主要由正极板、隔膜、负极板、电解液组成;正极板、隔膜、负极板缠绕或层叠,包装,灌注电解液,封装后即制成电芯,锂电池保护板的作用很多人都不知道,锂电池保护板,顾名思义就是保护锂电池用的,锂电池保护板的作用是保护电池不过放、不过充、不过流,还有就是输出短路保护。 01锂电池保护板组成

1、控制ic, 2、开关管,另外还加一些微容和微阻而组成。控制ic 作用是对电池的保护,如达到保护条件就控制mos进行断开或闭合(如电池达到过充、过放、短路、过流、等保护条件),其中mos管的作用就是开关作用,由控制ic开控制。锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现。锂电池的保护功能通常由保护电路板和PTC协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下时刻准确的监视电芯的电压和充放回路的电流。 02保护板的工作原理 1、过充保护及过充保护恢复 当电池被充电使电压超过设定值VC(4.25-4.35V,具体过充保护电压取决于IC)后,VD1翻转使Cout变为低电平,T1截止,充电停止.当电池电压回落至VCR(3.8-4.1V,具体过充保护恢复电压取决于IC)时,Cout变为高电平,T1导通充电继续,VCR 必须小于VC一个定值,以防止频繁跳变。 2、过放保护及过放保护恢复 当电池电压因放电而降低至设定值VD(2.3-2.5V,具体过充保护电压取决于IC)时,VD2翻转,以短时间延时后,使Dout变为低电平,T2截止,放电停止,当电池被置于充电时,内部或门被翻转而使T2再次导通为下次放电作好准备。 3、过流、短路保护 当电路充放回路电流超过设定值或被短路时,短路检测电路动作,使MOS管关断,电流截止。

相关主题
文本预览
相关文档 最新文档