当前位置:文档之家› (完整版)数列通项的十一种求法

(完整版)数列通项的十一种求法

(完整版)数列通项的十一种求法
(完整版)数列通项的十一种求法

数列通项公式的十一种方法

知识概要

一.利用递推关系式求数列通项的11种方法:

累加法、

累乘法、

待定系数法、

阶差法(逐差法)、

迭代法、

对数变换法、

倒数变换法、

换元法(目的是去递推关系式中出现的根号)、

数学归纳法、

不动点法(递推式是一个数列通项的分式表达式)、

特征根法

二。四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法

1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。 2.若1()n n a a f n +-=(2)n ≥,

21321(1)

(2) ()

n n a a f a a f a a f n +-=-=-=L L

两边分别相加得 111

()n

n k a a f n +=-=

例1 已知数列{}n a 满足1121

1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则

11232211

2

()()()()[2(1)1][2(2)1](221)(211)1

2[(1)(2)21](1)1

(1)2(1)1

2

(1)(1)1n n n n n a a a a a a a a a a n n n n n n n

n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2

n a n =。

例2 已知数列{}n a 满足112313n

n n a a a +=+?+=,,求数列{}n a 的通项公式。

解法一:由1231n n n a a +=+?+得1231n

n n a a +-=?+则

11232211

122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)3

13

331331

n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=?++?+++?++?++=+++++-+-=+-+-=-+-+=+-L L L 所以3 1.n

n a n =+-

评注:已知a a =1,)

(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函

数、分式函数,求通项

n

a .

①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;

③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。

例3.已知数列

}

{n a 中,

>n a 且

)(21n n n a n

a S +=

,求数列}{n a 的通项公式.

解:由已知

)(21n n n a n a S +=

得)(2111---+-=n n n n n S S n

S S S ,

化简有

n

S S n n =--2

12,由类型(1)有

n

S S n ++++=Λ32212

,

又11a S =得11=a ,所以

2)

1(2

+=

n n S n ,又0>n a ,

2)

1(2+=

n n s n ,

2)

1(2)1(2--+=

n n n n a n

此题也可以用数学归纳法来求解.

二、累乘法

1.适用于: 1()n n a f n a += ----------这是广义的等比数列 累乘法是最基本的二个方法之二。

2.若

1()n n a f n a +=,则31212(1)(2)()n n

a a a

f f f n a a a +===L L ,,, 两边分别相乘得,1

11

1()n

n k a a f k a +==?∏

例4 已知数列{}n a 满足112(1)53n

n n a n a a +=+?=,,求数列{}n a 的通项公式。

解:因为112(1)53n

n n a n a a +=+?=,,所以0n a ≠,则

1

2(1)5n n n

a n a +=+,故13211221

12211(1)(2)21(1)

1

2

[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]5332

5!

n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=

?????=-+-+??+?+??=-?????=???L L L L 所以数列{}n a 的通项公式为(1)1

2

325

!.n n n n a n --=???

例5.设{}n a 是首项为1的正项数列,且

()0

112

21=+-+++n n n n a a na a n (n =1,2, 3,…),

则它的通项公式是n a =________.

解:已知等式可化为:

[]0

)1()(11=-++++n n n n na a n a a

Θ0>n a (*

N n ∈)∴(n+1)01=-+n n na a , 即

11+=+n n

a a n n ∴2

≥n 时,

n

n a a n n 1

1-=-

112211a a a

a a a a a n n n n n ????=

---Λ=121121??--?-Λn n n

n =n 1. 评注:本题是关于

n

a 和

1

+n a 的二次齐次式,可以通过因式分解(一般情况时用求根公式)得到

n

a 与

1

+n a 的更为明显的关系式,从而求出

n

a .

练习.已知

1

,111->-+=+a n na a n n ,求数列{an}的通项公式.

答案:

=n a )

1()!1(1+?-a n -1.

评注:本题解题的关键是把原来的递推关系式

,

11-+=+n na a n n 转化为

),

1(11+=++n n a n a 若令

1

+=n n a b ,则问题进一步转化为

n

n nb b =+1形式,进而应用累乘法求

出数列的通项公式.

三、待定系数法 适用于1()n n a qa f n +=+

基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。

1.形如

(,1≠+=+c d ca a n n ,其中a a =1)型

(1)若c=1时,数列{

n a }为等差数列;

(2)若d=0时,数列{n

a }为等比数列;

(3)若01≠≠且d c 时,数列{n

a }为线性递推数列,其通项可通过待定系数法构造辅助数列

来求.

待定系数法:设

)

(1λλ+=++n n a c a ,

λ

)1(1-+=+c ca a n n ,与题设

,

1d ca a n n +=+比较系数得

d c =-λ)1(,所以

)0(,1≠-=

c c

d λ所以有:)1(11-+=-+-c d a c c d a n n

因此数列????

??-+1c d a n 构成以11-+c d a 为首项,以c 为公比的等比数列, 所以

11)1(1-?-+=-+

n n c c d a c d a 即:

1)1(11--?-+=-c d c c d a a n n . 规律:将递推关系

d

ca a n n +=+1化为

)1(11-+=-+

+c d

a c c d a n n ,构造成公比为c 的等比数列

}1{-+

c d a n 从而求得通项公式)1(1111-++-=-+c d

a c c d a n n

逐项相减法(阶差法):有时我们从递推关系d

ca a n n +=+1中把n 换成n-1有

d

ca a n n +=-1,

两式相减有

)

(11-+-=-n n n n a a c a a 从而化为公比为c 的等比数列

}

{1n n a a -+,进而求得通项公式.

)

(121a a c a a n n n -=-+,再利用类型(1)即可求得通项公式.我们看到此方法比较复杂.

例6已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。 解法一:121(2),n n a a n -=+≥Q 112(1)n n a a -∴+=+

又{}112,1n a a +=∴+Q 是首项为2,公比为2的等比数列

12n

n a ∴+=,即21n n a =-

解法二:121(2),n n a a n -=+≥Q 121n n a a +∴=+

两式相减得112()(2)n n n n a a a a n +--=-≥,故数列{}1n n a a +-是首项为2,公比为2的等

比数列,再用累加法的……

2.形如:

n

n n q a p a +?=+1 (其中q 是常数,且n ≠0,1)

①若p=1时,即:

n

n n q a a +=+1,累加即可.

②若1≠p 时,即:n n n q a p a +?=+1,

求通项方法有以下三种方向:i. 两边同除以1

+n p

.目的是把所求数列构造成等差数列

即:

n

n

n n n q

p p q a p a )(11

1

?+

=

++,令

n n

n p a b =

,则

n n n q p p b b )

(11?=

-+,然后类型1,累加求通项.

ii.两边同除以1+n q . 目的是把所求数列构造成等差数列。

即:

q

q a q p q a n n n n 1

1

1

+?=

++,

n n

n q a b =

,则可化为

q b q p b n n 11+?=

+.然后转化为类型5来解,

iii.待定系数法:目的是把所求数列构造成等差数列 设

)

(11n n n n p a p q a ?+=?+++λλ.通过比较系数,求出λ,转化为等比数列求通项.

注意:应用待定系数法时,要求p ≠q ,否则待定系数法会失效。 例7已知数列

{}

n a 满足

1112431

n n n a a a -+=+?=,,求数列

{}n a 的通项公式。

解法一(待定系数法):设

11123(3n n n n a a λλλ-++=+?),比较系数得

124,2λλ=-=,

则数列

{}

143n n

a --?是首项为111435

a --?=-,公比为2的等比数列,

所以

11

4352n n n a ---?=-?,即

11

4352n n n a --=?-?

解法二(两边同除以1

+n q

): 两边同时除以13n +得:

112

24

3333n n n n a a ++=?+,下面解法略 解法三(两边同除以1+n p ): 两边同时除以12+n 得:n

n n n n a a )23(3422

11?+=++,下面解法略 练习.

设0a 为常数,且

)(2311

N n a a n n n ∈-=--.证明对任意n ≥1,0

12)1(]2)1(3[51

a a n n n n n n ?-+?-+=-;

3.形如

b

kn pa a n n ++=+1 (其中k,b 是常数,且0≠k )

方法1:逐项相减法(阶差法) 方法2:待定系数法 通过凑配可转化为 )

)1(()(1y n x a p y xn a n n +-+=++-;

解题基本步骤: 1、确定()f n =kn+b

2、设等比数列

)

(y xn a b n n ++=,公比为p

3、列出关系式

)

)1(()(1y n x a p y xn a n n +-+=++-,即

1

-=n n pb b

4、比较系数求x,y

5、解得数列

)

(y xn a n ++的通项公式

6、解得数列

{}n a 的通项公式

例8 在数列}

{n a 中,

,

23,111n a a a n n +==+求通项

n

a .(逐项相减法)

解:Θ,

,

231n a a n n +=+ ①

∴2≥n 时,)1(231-+=-n a a n n ,

两式相减得

2

)(311+-=--+n n n n a a a a .令

n

n n a a b -=+1,则

2

31+=-n n b b

利用类型5的方法知2

351+?=-n n b 即

1

3511-?=--+n n n a a ②

再由累加法可得213251--?=

-n a n n . 亦可联立 ① ②解出213251--?=-n a n n .

例9. 在数列{}n a 中,

362,23

11-=-=

-n a a a n n ,求通项n a .(待定系数法)

解:原递推式可化为

y

n x a y xn a n n ++-+=++-)1()(21

比较系数可得:x=-6,y=9,上式即为

1

2-=n n b b

所以

{}n b 是一个等比数列,首项

299611=

+-=n a b ,公比为21.1

)21

(29-=∴n n b 即:

n

n n a )21

(996?=+-

故9

6)21

(9-+?=n a n n .

4.形如

c

n b n a pa a n n +?+?+=+21 (其中a,b,c 是常数,且0≠a )

基本思路是转化为等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。

例10 已知数列{}n a 满足2

1123451n n a a n n a +=+++=,,求数列{}n a 的通项公式。

解:设22

1(1)(1)2()n n a x n y n z a xn yn z ++++++=+++

比较系数得3,10,18x y z ===,

所以22

13(1)10(1)182(31018)n n a n n a n n ++++++=+++

由213110118131320a +?+?+=+=≠,得2

310180n a n n +++≠

则212

3(1)10(1)18231018

n n a n n a n n ++++++=+++,故数列2

{31018}n a n n +++为以21311011813132a +?+?+=+=为首项,以2为公比的等比数列,因此2131018322n n a n n -+++=?,则42231018n n a n n +=---。

5.形如21 n n n a pa qa ++=+时将n a 作为()f n 求解

分析:原递推式可化为211()() n n n n a a p a a λλλ++++=++的形式,比较系数可求得λ,数列

{}1n n a a λ++为等比数列。

例11 已知数列

{}

n a 满足

211256,1,2

n n n a a a a a ++=-=-=,求数列

{}

n a 的通项公式。

解:设

211(5)()

n n n n a a a a λλλ++++=++

比较系数得3λ=-或2λ=-,不妨取2λ=-,(取-3 结果形式可能不同,但本质相同)

21123(2)

n n n n a a a a +++-=-,则

{}12n n a a +-是首项为4,公比为3的等比数列

1

1243n n n a a -+∴-=?,所以

11

4352n n n a --=?-?

四、迭代法

r

n

n pa a =+1(其中p,r 为常数)型

例12 已知数列

{}

n a 满足

3(1)2

115n

n n n a a a ++==,,求数列{}n a 的通项公式。 解:因为

3(1)21n

n n n

a a

++=,所以

1

2

1

2(2)(1)

3

2

(2)(1)

3

(3)(2)(1)

1

12(3)(32

3(1)2323(1)2

1

2

2

3(2)2

3(1)23

3(2)(1)23

323(2)(1)21[] [] n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n a a a a a a a ----+---+--+-+--+++-+?-??-??----?-??---?-??-?-??=======L L L L L 2)(1)

(1)

12

3!21

n n n n n a

-+---??=

15

a =,所以数列

{}

n a 的通项公式为

(1)12

3!2

5

n n n n n a --??=。

注:本题还可综合利用累乘法和对数变换法求数列的通项公式。

例13.已知数列:,}{且满足的各项都是正数n a N n a a a a n n n ∈-==+),4(21

,110

(1)证明

12,;

n n a a n N +<<∈ (2)求数列

}

{n a 的通项公式an.

解:(1)略(2)

],4)2([21

)4(2121+--=-=

+n n n n a a a a 所以 21)2()2(2--=-+n n a a

n

n n n n n n n n b b b b b a b 222121

22222112)21()21(21)21(2121,2-+++----==?-=--=-=-=ΛΛ则令又bn=-1,

所以1

212)21(22,)21(---=+=-=n

n n n n b a b 即.

方法2:本题用归纳-猜想-证明,也很简捷,请试一试.解法3:设c n

n b -=,则c

2

121-=

n n c ,转化为上

面类型(1)来解

五、对数变换法 适用于

r

n

n pa a =+1(其中p,r 为常数)型 p>0,

>n a

例14. 设正项数列{}n a 满足11=a ,2

12-=n n a a (n ≥2).求数列{}n a 的通项公式.

解:两边取对数得:122log 21log -+=n n a a ,)1(log 21log 1

22+=+-n n a a ,设1log 2+=n a n

b ,则1

2-=n n b b {}n b 是以2为公比的等比数列,11log 1

21=+=b 11221--=?=n n n b ,

1221log -=+n a n

,12log 12-=-n a n ,∴

1

21

2--=n n a

练习 数列

{}n a 中,11=a ,1

2

-=n n a a (n ≥2),求数列

{}n a 的通项公式.

答案:

n

n a --=22

22

例15 已知数列{}n a 满足5

123n n n a a +=??,17a =,求数列{}n a 的通项公式。

解:因为5

11237n n n a a a +=??=,,所以100n n a a +>>,。

两边取常用对数得1lg 5lg lg3lg 2n n a a n +=++

设1lg (1)5(lg )n n a x n y a xn y ++++=++ (同类型四)

比较系数得, lg3lg3lg 2

,4164

x y ==+

由1lg3lg3lg 2lg3lg3lg 2lg 1lg 71041644164a +

?++=+?++≠,得lg3lg3lg 2lg 04164

n a n +++≠, 所以数列lg3lg3lg 2{lg }4164n a n +

++是以lg3lg3lg 2

lg 74164

+++

为首项,以5为公比的等比数列,则1

lg3lg3lg 2lg3lg3lg 2lg (lg 7)541644164

n n a n -+++=+++,因此111111111

16

164

4

44

1111

15

16

16

4

44

4

5415151164

lg 3lg 3lg 2lg 3lg 3lg 2

lg (lg 7)54164464

[lg(7332)]5lg(332)

lg(7332)lg(332)lg(73

2

)

n n n n n n n n n n a n --------=+

++---=???-??=???-??=??

则11

54151516

4

73

2

n n n n n a -----=??。

六、倒数变换法 适用于分式关系的递推公式,分子只有一项 例16 已知数列{}n a 满足112,12

n

n n a a a a +=

=+,求数列{}n a 的通项公式。 解:求倒数得11111111111,,22n n n n n n a a a a a a +++??=+∴-=∴-????

为等差数列,首项111a =,公差为1

2,

112

(1),21

n n n a a n ∴

=+∴=+

七、换元法 适用于含根式的递推关系 例17 已知数列{}n a

满足111

(14116n n a a a +=

+=,,求数列{}n a 的通项公式。

解:令n b =2

1(1)24

n n a b =-

代入11

(1416

n n a a +=

++得 22

1111(1)[14(1)]241624

n n n b b b +-=+-+ 即2214(3)n n b b +=+

因为0n b =≥, 则123n n b b +=+,即11322

n n b b +=+, 可化为11

3(3)2

n n b b +-=

-, 所以{3}n b -

是以13332b -===为首项,以

2

1

为公比的等比数列,因此121132()()22n n n b ---==,则21()32n n b -=+

21

()32n -=+,得

2111

()()3423

n n n a =++。

八、数学归纳法 通过首项和递推关系式求出数列的前n 项,猜出数列的通项公式,再用数学归纳

法加以证明。 例18 已知数列{}n a 满足11

228(1)8

(21)(23)9

n n n a a a n n ++=+

=++,,求数列{}n a 的通项公式。 解:由122

8(1)(21)(23)n n n a a n n ++=+

++及189

a =,得 2122

3222

43228(11)88224

(211)(213)992525

8(21)248348

(221)(223)25254949

8(31)488480

(231)(233)49498181a a a a a a +?=+

=+=?+?+?+?=+=+=?+?+?+?=+=+=

?+?+? 由此可猜测22

(21)1

(21)n n a n +-=+,下面用数学归纳法证明这个结论。 (1)当1n =时,212

(211)18

(211)9

a ?+-==?+,所以等式成立。 (2)假设当n k =时等式成立,即22(21)1

(21)k k a k +-=+,则当1n k =+时,

122

2222222

222222

8(1)(21)(23)[(21)1](23)8(1) (21)(23)(21)(23)(21) (21)(23)(23)1 (23)[2(1)1]1 [2(1)1]k k k a a k k k k k k k k k k k k k k k k ++=+

+++-+++=

++++-+=

+++-=

+++-=

++

由此可知,当1n k =+时等式也成立。

根据(1),(2)可知,等式对任何*

n N ∈都成立。

九、阶差法(逐项相减法) 1、递推公式中既有n S ,又有n a

分析:把已知关系通过11,1

,2n n

n S n a S S n -=?=?-≥?转化为数列{}n a 或n S 的递推关系,然后采用相应的

方法求解。

例19 已知数列{}n a 的各项均为正数,且前n 项和n S 满足1

(1)(2)6

n n n S a a =++,且249,,a a a 成等比数列,求数列{}n a 的通项公式。 解:∵对任意n N +

∈有1

(1)(2)6

n n n S a a =++ ⑴ ∴当n=1时,11111

(1)(2)6

S a a a ==++,解得11a =或12a = 当n ≥2时,1111

(1)(2)6

n n n S a a ---=

++ ⑵ ⑴-⑵整理得:11()(3)0n n n n a a a a --+--= ∵{}n a 各项均为正数,∴13n n a a --=

当11a =时,32n a n =-,此时2

429a a a =成立

当12a =时,31n a n =-,此时2

429a a a =不成立,故12a =舍去

所以32n a n =-

练习。已知数列}{n a 中, 0>n a 且2)1(2

1

+=

n n a S ,求数列}{n a 的通项公式. 答案:n n n a S S =--1 2

12)1()1(+=--n n a a 12-=n a n

2、对无穷递推数列

例20 已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥L ,,求{}n a 的通项公式。

解:因为123123(1)(2)n n a a a a n a n -=++++-≥L ①

所以1123123(1)n n n a a a a n a na +-=++++-+L ②

用②式-①式得1.n n n a a na +-=

则1(1)(2)n n a n a n +=+≥ 故

1

1(2)n n

a n n a +=+≥ 所以13222122![(1)43].2

n n n n n a a a n a a n n a a a a a ---=

????=-???=L L ③

由123123(1)(2)n n a a a a n a n -=++++-≥L ,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!

13452

n n a n =?????=L 。 所以,{}n a 的通项公式为!.2

n n a =

十、不动点法 目的是将递推数列转化为等比(差)数列的方法

不动点的定义:函数()f x 的定义域为D ,若存在0()f x x D ∈,使00()f x x =成立,则称0x 为

()f x 的不动点或称00(,())x f x 为函数()f x 的不动点。

分析:由()f x x =求出不动点0x ,在递推公式两边同时减去0x ,在变形求解。 类型一:形如1 n n a qa d +=+

例21 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。 解:递推关系是对应得递归函数为()21f x x =+,由()f x x =得,不动点为-1

∴112(1)n n a a ++=+,……

类型二:形如1n n n a a b

a c a d

+?+=

?+

分析:递归函数为()a x b

f x c x d

?+=

?+

(1)若有两个相异的不动点p,q 时,将递归关系式两边分别减去不动点p,q ,再将两式相除得

11n n n n a p a p k a q a q ++--=?--,其中a pc k a qc -=-,∴1111

11()()

()()

n n n a q pq k a p pq a a p k a q -----=--- (2)若有两个相同的不动点p ,则将递归关系式两边减去不动点p ,然后用1除,得

111n n k a p a p +=+--,其中2c

k a d

=+。

例22. 设数列{}n a 满足7

24

5,211++=

=+n n n a a a a ,求数列{}n a 的通项公式.

分析:此类问题常用参数法化等比数列求解. 解:对等式两端同时加参数t,得:

7

2524

7)52(727)52(72451

++++

+=+++=+++=++n n n n n n n a t t a t a t a t t a a t a , 令5

24

7++=

t t t , 解之得t=1,-2 代入72)52(1+++=++n n n a t a t t a 得

7213

11+-=-+n n n a a a ,7

22

921++=++n n n a a a ,

相除得

21312111+-?=+-++n n n n a a a a ,即{21+-n n a a }是首项为

4

1

2111=+-a a , 公比为31

的等比数列, 21+-n n a a =n -?1341, 解得1

3423411-?+?=--n n n a .

方法2:,Λ

7

213

11+-=-+n n n a a a ,

两边取倒数得

1

3

32)1(39)1(2)1(3721

11-+=-+-=-+=

-+n n n n n n a a a a a a ,

令b 1

1

-=

n n a ,则b =n n b 33

2

+,,Λ转化为累加法来求. 例23 已知数列{}n a 满足112124

441

n n n a a a a +-=

=+,,求数列{}n a 的通项公式。

解:令212441x x x -=

+,得2

420240x x -+=,则1223x x ==,是函数2124()41

x f x x -=+的两个不

动点。因为

112124

2

24121242(41)13262

132124321243(41)92793341

n n n n n n n n n n n n n n a a a a a a a a a a a a a a ++---+--+--====----+---+。所以数列23n n a a ??-??-??

112422343a a --==--为首项,以913

为公比的等比数列,故12132()39

n n

n a a --=-,则11313

2()19

n n a -=

+-。

练习1:已知{}n a 满足1112

2,(2)21

n n n a a a n a --+==

≥+,求{}n a 的通项n a

答案:3(1)3(1)n n

n n n

a --∴=+-

练习2。已知数列{}n a 满足*1121

2,()46

n n n a a a n N a +-==

∈+,求数列{}n a 的通项n a

答案:135106

n n

a n -∴=-

练习3.

已知数列{}n a 满足, *1

1212,,2

n n n a a a a a n N ++=∈’+2=

=. ()I 令1n n n b a a +=-,证明:{}n b 是等比数列;

(Ⅱ)求{}n a 的通项公式。 答案:(1){}n b 是以1为首项,12-

为公比的等比数列。(2)1*

521()()332

n n a n N -=--∈。

十一。特征方程法 形如21(,n n n a pa qa p q ++=+是常数)的数列

形如112221,,(,n n n a m a m a pa qa p q ++===+是常数)的二阶递推数列都可用特征根法求得通项

n a ,其特征方程为2x px q =+…①

若①有二异根,αβ,则可令1212(,n n

n a c c c c αβ=+是待定常数) 若①有二重根αβ=,则可令1212()(,n

n a c nc c c α=+是待定常数)

再利用1122,,a m a m ==可求得12,c c ,进而求得n a

例24 已知数列{}n a 满足*

12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a 解:其特征方程为2

32x x =-,解得121,2x x ==,令1212n n n a c c =?+?,

由1122122243a c c a c c =+=??=+=?,得121

12

c c =???=??, 112n n a -∴=+

例25 已知数列{}n a 满足*

12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a

解:其特征方程为2

441x x =-,解得1212x x ==,令()1212n

n a c nc ??

=+ ???

由1122121()121(2)2

4

a c c a c c ?

=+?=????=+?=??,得1246c c =-??=?, 1322n n n a --∴=

练习1.已知数列{}n a 满足*

12211,2,441()n n n a a a a a n N ++===--∈,求数列{}n a 的通项

练习2.已知数列{}n a 满足

*12211,2,444()n n n a a a a a n n N ++===---∈,求数列{}n a 的通项

说明:(1)若方程2

x px q =+有两不同的解s , t,

则)(11-+-=-n n n n ta a s ta a , )(11-+-=-n n n n sa a t sa a ,

由等比数列性质可得1121)(-+-=-n n n s ta a ta a , 1

121)(-+-=-n n n t sa a sa a ,

,s t ≠Θ由上两式消去1+n a 可得()()()

n

n n t t s t sa a s t s s ta a a ..1212-----=

.

(2)若方程2

x px q =+有两相等的解t s =,则

()()12121211)(ta a s ta a s ta a s ta a n n n n n n n -==-=-=-----+K ,

2

1211s ta a s a s a n n n n -=-∴

++,即?

??

???n n s a 是等差数列, 由等差数列性质可知

()2

1

21.1s sa a n s a s a n n --+=, 所以n n s n s sa a s sa a s a a ??

????-+??? ??--=.2

122121. 例26、数列{}n a 满足1512a =-,且2

125

42924

n n n a a a +-

=+求数列{}n

a 的通项。 解:22

11252925244429292244

n n n n n n n a a a a a a a λλλλ++-++-

+==

+=++

……① 令2

29254λλ-=,解得12251,4

λλ==,将它们代回①得,

()21112924

n n n a a a +++=

+

……②,2

12525429424n

n n a a a +??+ ???+=+……③, ③÷②,得2

1125254411n n n n a a a a ++??

++ ?= ?++ ?

??

, 则11252544lg 2lg 11n n n n a a a a +++

+=++,∴数列254lg 1n n a a ?

?+????+??

??

成等比数列,首项为1,公比q =2

所以1254lg 21n n n a a -+

=+,则12254101n n n a a -+=+,1

1

222510

4101

n n n a ---∴=-

十二、四种基本数列

1.形如)(1n f a a n n =-+型 等差数列的广义形式,见累加法。 2.形如

)(1

n f a a n

n =+型 等比数列的广义形式,见累乘法。 3.形如)(1n f a a n n =++型

(1)若d a a n n =++1(d 为常数),则数列{n a }为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论;

(2)若f(n)为n 的函数(非常数)时,可通过构造转化为)(1n f a a n n =-+型,通过累加来求出通项;或用逐差法(两式相减)得)1()(11--=--+n f n f a a n n ,,分奇偶项来分求通项. 例27. 数列{n a }满足01=a ,n a a n n 21=++,求数列{a n }的通项公式. 分析 1:构造 转化为)(1n f a a n n =-+型

解法1:令n n

n a b )1(-=

则n a a a a b b n n n n n n n n n n 2)1()()1()1()1(1

11111?-=+-=---=-++++++.

2

≥n 时,

????

?????=-=??-=--?-=--?-=-----01

2)1()2(2)1()1(2)1(11212

1

211a b b b n b b n b b n n n n n n Λ

Λ各式相

加:[]

1)1(2)1()2()1()1()1(22

31?-+?-++--+--=-Λn n b n n n

当n 为偶数时,n n n b n =??

?

???-?

-+-=22)1()1(2. 此时n b a n n == 当n 为奇数时,1)2

1

(2+-=--

=n n b n 此时n n a b -=,所以

1-=n a n .故

???-=.

,,,1为偶数为奇数n n n n a n 解法

2:

求数列通项公式的常用方法(有答案)

求数列通项公式的常用方法 一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之 一。 2.解题步骤:若1()n n a a f n +-=(2)n ≥, 则 21321(1) (2) () n n a a f a a f a a f n +-=-=-= 两边分别相加得 111 ()n n k a a f n +=-= ∑ 例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1(1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-++ +?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2 n a n =。 练习. 已知数列 } {n a 满足31=a , ) 2()1(1 1≥-+ =-n n n a a n n ,求此数列的通项公式. 答案:裂项求和 n a n 1 2- = 评注:已知a a =1,) (1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函

数、指数函数、分式函数,求通项 n a . ①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和; ③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。 二、累乘法 1. 适用于: 1()n n a f n a += ----------这是广义的等比数列,累乘法是最基本的二个方法之 二。 2.解题步骤:若 1()n n a f n a +=,则31212(1)(2)()n n a a a f f f n a a a +===,,, 两边分别相乘得,1 11 1()n n k a a f k a +==?∏ 例2 已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 解:因为112(1)53n n n a n a a +=+?=,,所以0n a ≠,则 1 2(1)5n n n a n a +=+,故1 32 112 21 12211(1)(2)21 (1)1 2 [2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53 32 5 ! n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--= ??? ??=-+-+??+?+??=-?????=??? 所以数列{}n a 的通项公式为(1)1 2 325 !.n n n n a n --=??? 练习. 已知 1 ,111->-+=+a n na a n n ,求数列{an}的通项公式 答案: =n a ) 1()!1(1+?-a n -1.

数列通项公式的求法集锦

数列通项公式的求法集锦 非等比、等差数列的通项公式的求法,题型繁杂,方法琐碎,笔者结合近几年的高考情况,对数列求通项公式的方法给以归纳总结。 一、累加法 形如1()n n a a f n --= (n=2、3、4…...) 且(1)(2)...(1)f f f n +++-可求,则用累加法求n a 。有时若不能直接用,可变形成这种形式,然后用这种方法求解。 例1. 在数列{n a }中,1a =1,11n n a a n --=- (n=2、3、4……) ,求{n a }的通项公式。 解:∵111n a ==时, 213243121 23.......1n n n a a a a a a a a n -≥-=??-=??-=???-=-?? 时, 这n-1个等式累加得:112...n a a -=+++(n-1)=(1)2n n - 故21(1)222n n n n n a a --+=+= 且11a =也满足该式 ∴222 n n n a -+= (n N *∈). 例2.在数列{n a }中,1a =1,12n n n a a +-= (n N *∈),求n a 。 解:n=1时, 1a =1212323431122 22.......2n n n n a a a a a a a a --≥-=??-=??-=????-=?时, 以上n-1个等式累加得 21122...2n n a a --=+++=12(12)12 n ---=22n -,故12221n n n a a =-+=- 且11a =也满足该式 ∴21n n a =- (n N *∈)。 二、累乘法 形如1 ()n n a f n a -= (n=2、3、4……),且(1)(2)...(1)f f f n +++-可求,则用累乘法求n a 。有时若不能直接用,可变形成这种形式,然后用这种方法求解。 例3.在数列{n a }中,1a =1,1n n a na +=,求n a 。

数列通项公式的求法(较全)

常见数列通项公式的求法 公式: 1、 定义法 若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或 11-=n n q a a 中即可. 例1、成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 的345,,b b b ,求数列{}n b 的的通项公式. 练习:数列{}n a 是等差数列,数列{}n b 是等比数列,数列{}n c 中对于任何* n N ∈都有 1234127 ,0,,,,6954 n n n c a b c c c c =-====分别求出此三个数列的通项公式.

2、 累加法 形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法. 方法如下:由()n f a a n n =-+1得 当2n ≥时,() 11n n a a f n --=-, () 122n n a a f n ---=-, ()322a a f -=, () 211a a f -=, 以上()1n -个等式累加得 ()()()()11+221n a a f n f n f f -=--+ ++ 1n a a ∴=+()()()()1+221f n f n f f --+ ++ (3)已知1a ,()n f a a n n =-+1,其中()f n 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项. ①若()f n 可以是关于n 的一次函数,累加后可转化为等差数列求和; ②若()f n 可以是关于n 的二次函数,累加后可分组求和; ③若()f n 可以是关于n 的指数函数,累加后可转化为等比数列求和; ④若()f n 可以是关于n 的分式函数,累加后可裂项求和求和. 例2、数列{}n a 中已知111,23n n a a a n +=-=-, 求{}n a 的通项公式.

(完整版)常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得:1-=k a A ,2 )1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

几种常见的数列的通项公式的求法

几种常见的数列的通项公式的求法 一. 观察法 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,1716 4,1093,542,211 (3) ,5 2 ,21,32 ,1(4) ,5 4 ,43,32,21-- 解:(1)变形为:101-1,102―1,103―1,104―1,…… ∴通项公式为:110-=n n a (2);1 2 2 ++=n n n a n (3);12 += n a n (4)1 )1(1+? -=+n n a n n .点评:关键是找出各项与项数n 的关系。 二、公式法 例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),(1)求数列{ a n }和{ b n }的通项公式; 解:(1)∵a 1=f (d -1) = (d -2)2,a 3 = f (d +1)= d 2,∴a 3-a 1=d 2-(d -2)2=2d , ∴d =2,∴a n =a 1+(n -1)d = 2(n -1);又b 1= f (q +1)= q 2,b 3 =f (q -1)=(q -2)2, ∴2 213)2(q q b b -==q 2 ,由q ∈R ,且q ≠1,得q =-2,∴b n =b ·q n -1=4·(-2)n -1 例 3. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是 ( ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 解析:设等差数列的公差位d ,由已知???==+??+12348)()(3 333a d a a d a , 解得 ?? ?±==2 4 3d a ,又 {} n a 是递减数列, ∴ 2 -=d , 8 1=a ,∴ =--+=)2)(1(8n a n 102+-n ,故选(D)。 例 4. 已知等比数列 {}n a 的首项11=a ,公比10<

高中数学数列通项公式的求法(方法总结)

(1)主题:求数列通项n a 的常用方法总结 一、 形如:特殊情况:当n+11,n n A B C A a a A =*+*+≠,常用累加法。 (n n a a +-,z 构建等比数列()1y n z *++z ; 的通项公式,进而求得n a 。 二、 形n a a * ;

三、 形 ()x f x =) 情形1:1n n A B a a +=*+型。设λ是不动点方程的根,得数列 {}n a λ-是 以公比为A 的等比数列。 情形2:1*n n n A B C D a a a +*+=+型。 设1λ和2λ 是不动点方程 *A x B x C x D *+=+的两个根; (1)当12λλ≠时,数列n 12n a a λλ??-?? ??-????是以12 A C A C λλ -*-*为公比的等比数列; (2)当12 =λλλ =时,数列1n a λ???? ??-???? 是以2*C A D +为公差的等差数列。 【推导过程:递推式为a n+1= d ca b aa n n ++(c ≠0,a,b,c,d 为常数)型的数列 a n+1-λ= d ca b aa n n ++-λ= d ca c a d b a c a n n +--+ -) )((λλλ,令λ=-λ λc a d b --,可得λ=d c b a ++λλ ……(1)。(1)是a n+1=d ca b aa n n ++中的a n ,a n+1都换成λ后的不动点方程。 ○ 1当方程(1)有两个不同根λ1,λ2时,有 a n+1-λ1= d ca a c a n n +--))((11λλ,a n+1-λ2=d ca a c a n n +--) )((22λλ ∴ 2111λλ--++n n a a =21λλc a c a --?21λλ--n n a a ,令b n =21λλ--n n a a 有b n +1= 2 1 λλc a c a --?b n ○ 2当方程(1)出现重根同为λ时, 由a n+1-λ= d ca a c a n n +--))((λλ得λ-+11n a =))((λλ--+n n a c a d ca =λ c a c -+))((λλλ--+n a c a c d ( “分离常数”)。设c n =λ-n a 1 得c n +1= λ λc a c d -+?c n + λ c a c -】

几种常见的数列的通项公式的求法

几种常见的数列的通项公式的求法 一、观察法 1、根据数列的前4项,写出它的一个通项公式: (1) ,5 4,43,32,21-- (2) ,5 2,21,32,1 (3)9,99,999,9999,… 二、叠加法:对于型如)(1n f a a n n +=+类的通项公式 2、已知数列6,9,14,21,30,…求此数列的一个通项。 3、若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a 。 三、叠乘法:对于型如1+n a =f (n)·n a 类的通项公式 4、在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。 5、已知数列{}n a 中,3 11= a ,前n 项和n S 与n a 的关系是 n n a n n S )12(-= ,试求通项公式n a 。 四、S n 法利用1--=n n n S S a (n ≥2) 6、已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)13-+=n n S n 。 (2)12-=n s n 五、辅助数列法 7、已知数}{n a 的递推关系为121+=+n n a a ,且11=a 求通项n a 。 六、倒数法 8、已知数列{n a }中11=a 且11+=+n n n a a a (N n ∈),,求数列的通项公式。 1. 已知数列{}n a 的首项11a =,且13(2)n n a a n -=+≥,则n a = 3n-2 .

2.已知数列{}n a 的首项11a =,且123(2)n n a a n -=+≥,则n a 1433n -?-. 3.已知数列{}n a 的11a =,22a =且121()(3)2n n n a a a n --=+≥,则1lim n x n a a →∞+=

求数列通项公式常用的八种方法

求数列通项公式常用八种方法 一、 公式法: 已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+= 或11-=n n q a a 进行求解. 二、前n 项和法: 已知数列{}n a 的前n 项和n s 的解析式,求n a .(分3步) 三、n s 与n a 的关系式法: 已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a .(分3步) 四、累加法: 当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时, 就可以用这种方法. 五、累乘法:它与累加法类似 ,当数列{}n a 中有()1 n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法. 六、构造法: ㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面 形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的 方法:------+常数P

㈡、取倒数法:这种方法适用于1 1c --=+n n n Aa a Ba ()2,n n N * ≥∈(,,k m p 均为常数 0m ≠) ,两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子. ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a 分析:由()2113,2n n a a a n -==≥知0n a > ∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a a a --== 即1 lg 2lg n n a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列 故1 12lg 2lg3lg3n n n a --== ∴123n n a -= 七、“1p ()n n a a f n +=+(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a . 可以先在等式两边 同除以f(n)后再用累加法。 八、形如21a n n n pa qa ++=+型,可化为211a ()()n n n n q xa p x a a p x ++++=+++ ,令x=q p x + ,求x 的值来解决。 除了以上八种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这8种方法是经常用的,将其总结到一块,以便于学生记忆和掌握。

常见数列通项公式的求法(超好)

常见数列通项公式的求 法(超好) -CAL-FENGHAI.-(YICAI)-Company One1

常见数列通项公式的求法 1.定义法:①等差数列通项公式;②等比数列通项公式。 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列, 2 55a S =.求数列{}n a 的通项公式.n a n 53= 2.公式法:已知n S (即12()n a a a f n ++ +=)求n a ,用作差法:{ 11,(1) ,(2) n n n S n a S S n -== -≥。 例2:已知数列}{n a 的前n 项和s n ,12-=n s n 求}{n a 的通项公式。 解:(1)当n=1时,011 ==s a ,当2≥n 时 12]1)1[()1(221-=----=-=-n n n s s a n n n 由于1a 不适合于此等式 。 ∴? ??≥-==)2(12)1(0 n n n a n 练习:数列{a n }满足a n =5S n -3,求a n 。 答案:a n =34 (-14 )n-1 3.累加法: 若1()n n a a f n +-=求n a :11221()()()n n n n n a a a a a a a ---=-+-+ +-1a +(2)n ≥。 例3:(1)数列{a n }满足a 1=1且a n =a n -1+3n -2(n ≥2),求a n 。 (2)数列{a n }满足a 1=1且a n =a n -1+1 2n (n ≥2),求a n 。 解:(1)由a n =a n -1+3n -2知a n -a n -1=3n -2,记f (n )=3n -2= a n -a n -1 则a n = (a n -a n -1)+(a n -1-a n -2)+(a n -2-a n -3)+…(a 2-a 1)+a 1 =f (n )+ f (n -1)+ f (n -2)+…f (2)+ a 1 =(3n -2)+[3(n -1)-2]+ [3(n -2)-2]+ …+(3×2-2)+1 =3[n+(n -1)+(n -2)+…+2]-2(n -1)+1 =3×(n+2)(n -1)2 -2n+3=3n 2-n 2 (2)由a n =a n -1+12n 知a n -a n -1=12n ,记f (n )=1 2n = a n -a n -1 则a n =(a n -a n -1)+(a n -1-a n -2)+(a n -2-a n -3)+…(a 2-a 1)+a 1 =f (n )+ f (n -1)+ f (n -2)+…f (2)+ a 1 =12n +12n -1 +12 n -2 +…+122 +1=12 -12n 练习:已知数列{}n a 满足211=a ,n n a a n n ++=+211 ,求n a 。答案:n a n 1-23= 4.累乘法:已知1()n n a f n a +=求n a ,用累乘法:121121 n n n n n a a a a a a a a ---=????(2)n ≥。 例4:在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。 解:由(n+1)·1+n a =n ·n a 得 1 1+=+n n a a n n ,

高中数学数列通项公式的求法详解

数列通项公式的求法及数列求和方法详解 专题一:数列通项公式的求法 关键是找出各项与项数n 的关系.) 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,17 16 4,1093,542,211(3) ,5 2 ,21,32 , 1(4) ,5 4 ,43,3 2 ,21-- 答案:(1)110-=n n a (2);122++=n n n a n (3);12+=n a n (4)1 )1(1+?-=+n n a n n . 公式法1:特殊数列 例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),(1)求数列{ a n }和 { b n }的通项公式; 答案:a n =a 1+(n -1)d = 2(n -1); b n =b ·q n -1=4·(-2)n -1 例3. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是( ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n (D) 例4. 已知等比数列{}n a 的首项11=a ,公比10<

常见数列通项公式的求法

常见数列通项公式的求法-中学数学论文 常见数列通项公式的求法 邹后林 (会昌中学,江西赣州342600) 摘要:数列的通项求法灵活多样,需要充分利用化归与转化思想。非等比、等差数列的通项公式的求法,题型繁杂,方法琐碎,笔者结合近几年的高考情况,对数列求通项公式的方法给以归纳总结。现举数例。 关键词:数列;通项公式;求法 中图分类号:G633文献标识码:A文章编号:1005-6351(2013)-12-0031-01 例1:已知数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1 (n∈N*),等差数列{bn}中,bn0 (n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比数列。 (1)求数列{an}、{bn}的通项公式; (2)求数列{an·bn}的前n项和Tn。 解:(1)∵a1=1,an+1=2Sn+1 (n∈N*), ∴an=2Sn-1+1 (n∈N*,n1), ∴an+1-an=2(Sn-Sn-1), 即an+1-an=2an,∴an+1=3an (n∈N*,n1)。 而a2=2a1+1=3,∴a2=3a1。 ∴数列{an}是以1为首项,3为公比的等比数列,∴an=3n-1 (n∈N*)。∴a1=1,a2=3,a3=9,

在等差数列{bn}中,∵b1+b2+b3=15, ∴b2=5。 又∵a1+b1、a2+b2、a3+b3成等比数列,设等差数列{bn}的公差为d,则有(a1+b1)(a3+b3)=(a2+b2)2。 ∴(1+5-d)(9+5+d)=64,解得d=-10或d=2,∵bn0 (n∈N*),∴舍去d =-10,取d=2,∴b1=3,∴bn=2n+1 (n∈N*)。 (2)由(1)知Tn=3×1+5×3+7×32+…+(2n-1)3n-2+(2n+1)3n-1,①∴3Tn=3×3+5×32+7×33+…+(2n-1)·3n-1+(2n+1)3n,② ∴①-②得-2Tn=3×1+2×3+2×32+2×33+…+2×3n-1-(2n+1)3n=3+2(3+32+33+…+3n-1)-(2n+1)3n

史上最全的数列通项公式的求法13种

最全的数列通项公式的求法 数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。 一、直接法 根据数列的特征,使用作差法等直接写出通项公式。 二、公式法 ①利用等差数列或等比数列的定义求通项 ②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式 ?? ?≥???????-=????????????????=-2 1 11n S S n S a n n n 求解. (注意:求完后一定要考虑合并通项) 例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式. ②已知数列{}n a 的前n 项和n S 满足2 1n S n n =+-,求数列{}n a 的通项公式. ③ 已知等比数列{}n a 的首项11=a ,公比10<

常见递推数列通项公式的求法典型例题及习题

1 【典型例题】 [例 1] a n 1 (1)k (2) k 比较系数: {a n a n [例 2] a n 1 (1)k 例: 已知 解: a n a n a 3 a n 常见递推数列通项公式的求法典型例题及习题 ka n b 型。 1 时,a n 1 1时,设a n km m ka n 1 时, a n } 是等比数列, (a i f (n) 型。 a n 1 a n {a n }满足a i a n a n a n a 2 对这(n b {a n } 是等差数列, a n b n 佝 b) k(a n m) a n 1 ka n km 公比为 1) k ”1 f(n) k ,首项为 a n 1 a n a i a n (a 1 k n1 f (n )可求 和, 则可用累加消项的方 法。 n (n 1)求{a n }的通项公 式。 1 n(n 1 ) a 2 a n 1 a n a 1 1 个式子求和得: a n a 1 a n 2 - n

(2) k1时, 当f(n) an b则可设a n A(n 1) B k(a n An B) a n 1 ka n (k 1)A n (k 1)B A (k (k 1)A 1)B 解得: a 2 (k 1) ,? {a n An B}是 以 a1 B为首项, k为公比的等比数列 a n An (a1 B) k n1 a n (a1 B) k n1An B将A、B代入即可 (3) f(n) 0, 1) 等式两边同时除以 a n 1 1 c n 1 得q a n n q C n 令C n 1 {C n}可归为a n 1 ka n b型 [例3] a n f(n) a n型。 (1)f(n)是常数时, 可归为等比数 列。 f(n)可求积,可用累积约项的方法化简求通项。 例:已知: a1 2n 1 a n 1 2n 1 2)求数列{a n}的通项。 解: a n a n a n 1 a n 1 a n 2 a n a 1 a n 2 a n 3 k m a n 1 m a n 1 型。a3 a2 a2 a1 2n 1 2n 2n 1 2n 3 2n 5 5 3 3 2n 1 2n 3 7 5 2n 1 [例4]

数列通项公式、前n项和求法总结全

一.数列通项公式求法总结: 1.定义法 —— 直接利用等差或等比数列的定义求通项。 特征:适应于已知数列类型(等差或者等比). 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,2 55a S =.求数列{}n a 的通项公式. 变式练习: 1.等差数列{}n a 中,71994,2,a a a ==求{}n a 的通项公式 2. 在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比及前n 项和. 2.公式法 求数列{}n a 的通项n a 可用公式???≥???????-=????????????????=-21 11n S S n S a n n n 求解。 特征:已知数列的前n 项和n S 与n a 的关系 例2.已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)13-+=n n S n 。 (2)12 -=n s n

变式练习: 1. 已知数列{}n a 的前n 项和为n S ,且n S =2n 2 +n ,n ∈N ﹡,数列{b }n 满足n a =4log 2n b +3,n ∈N ﹡.求n a ,n b 。 2. 已知数列{}n a 的前n 项和2 12 n S n kn =-+(*k N ∈),且S n 的最大值为8,试确定常数k 并求n a 。 3. 已知数列{}n a 的前n 项和*∈+=N n n n S n ,2 2.求数列{}n a 的通项公式。 3.由递推式求数列通项法 类型1 特征:递推公式为 ) (1n f a a n n +=+ 对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法求解。 例3. 已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。

求数列通项公式常用的七种方法

求数列通项公式常用的七种方法 一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式 ()d n a a n 11-+=或11-=n n q a a 进行求解. 例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式. 分析:设数列{}n a 的公差为d ,则???-=+=+5411 1d a d a 解得???-==23 1d a ∴ ()5211+-=-+=n d n a a n 二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =( )( ) 32 321 ----n n =12-n 而111-==s a 不适合上式,() () ???≥=-=∴-22111n n a n n 三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 3 1 1= +,其中11=a ,求n a . 分析: 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a 即 3 4 1=+n n a a ()2≥n 又1123131a s a ==不适合上式 ∴ 数列{}n a 从第2项起是以 3 4 为公比的等比数列 ∴ 2 2 2343134--?? ? ??=? ? ? ??=n n n a a ()2≥n ∴()()??? ??≥? ? ? ??==-23431112n n a n n 注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1 -n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项. 四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就 可以用这种方法. 例4: ()12,011-+==+n a a a n n ,求通项n a 分析: 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a ┅ 321-=--n a a n n ()2≥n 以上各式相加得()()2 11327531-=-+++++=-n n a a n ()2≥n 又01=a ,所以()2 1-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()2 1-=n a n ( )* ∈N n 五、累乘法:它与累加法类似 ,当数列{}n a 中有 ()1 n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法. 例5:111,1 n n n a a a n -==- ()2,n n N *≥∈ 求通项n a 分析: 11n n n a a n -= - ∴11 n n a n a n -=- ()2,n n N * ≥∈ 故3241123123411231 n n n a a a a n a a n a a a a n -===- ()2,n n N *≥∈ 而11a =也适合上式,所以() n a n n N * =∈ 六、构造法: ㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是 关于1n a -的“一次函数”的形式,这时用下面的方法: 一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+

数列通项公式的几种求法

数列通项公式的几种求法 数列通项公式直接表述了数列的本质,是给出数列的一种重要方法。数列通项公式具备两大功能,第一,可以通过数列通项公式求出数列中任意一项;第二,可以通过数列通项公式判断一个数是否为数列的项以及是第几项等问题;因此,求数列通项公式是高中数学中最为常见的题型之一,它既考察等价转换与化归的数学思想,又能反映学生对数列的理解深度,具有一定的技巧性,是衡量考生数学素质的要素之一,因而经常渗透在高考和数学竞赛中。本文分别介绍几种常见的数列通项的求法,以期能给读者一些启示。 一、常规数列的通项 例1:求下列数列的通项公式 (1)22—12 ,32—13 ,42—14 ,52—15 ,… (2)-11×2 ,12×3 ,-13×4 ,14×5 ,… (3)23 ,1,107 ,179 ,2611 ,… 解:(1)a n =n 2—1n (2)a n = (-1)n n (n+1) (3) a n =n 2+12n +1 评注:认真观察所给数据的结构特征,找出a n 与n 的对应关系,正确写出对应的表达式。 二、等差、等比数列的通项 直接利用通项公式a n =a 1+(n -1)d 和a n =a 1q n -1写通项,但先要根据条件寻求首项、 公差和公比。 三、摆动数列的通项 例2:写出数列1,-1,1,-1,…的一个通项公式。 解:a n =(-1)n -1 变式1:求数列0,2,0,2,0,2,…的一个通项公式。 分析与解答:若每一项均减去1,数列相应变为-1,1,-1,1,… 故数列的通项公式为a n =1+(-1)n 变式2:求数列3,0,3,0,3,0,…的一个通项公式。 分析与解答:若每一项均乘以23 ,数列相应变为2,0,2,0,… 故数列的通项公式为a n =32 [1+(-1)n -1 ] 变式3:求数列5,1,5,1,5,1,…的一个通项公式。 分析与解答1:若每一项均减去1,数列相应变为4,0,4,0,… 故数列的通项公式为a n =1++2×23 [1+(-1)n -1 ]=1+43 [1+(-1)n -1 ] 分析与解答2:若每一项均减去3,数列相应变为2,-2,2,-2,… 故数列的通项公式为a n =3+2(-1)n -1 四、循环数列的通项 例3:写出数列0.1,0.01,0.001,0.0001,…的一个通项公式。

数列通项公式求法大全配练习及答案

数列通项公式的十种求法 一、公式法 * 11(1)()n a a n d dn a d n N =+-=+-∈ 1 *11()n n n a a a q q n N q -== ?∈ 二、累加法 )(1n f a a n n +=+ 例 1 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 2n a n = 例 2 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3 1.n n a n =+-) 三、累乘法 n n a n f a )(1=+ 例3 已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 ((1)1 2 32 5 !.n n n n a n --=???) 评注:本题解题的关键是把递推关系12(1)5n n n a n a +=+?转化为 1 2(1)5n n n a n a +=+,进而求出 1 32 112 21 n n n n a a a a a a a a a ---??? ??,即得数列{}n a 的通项公式。 例4已知数列{}n a 满足112311 23(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项 公式。(! .2 n n a =)

评注:本题解题的关键是把递推关系式1(1)(2)n n a n a n +=+≥转化为 1 1(2)n n a n n a +=+≥,进而求出 1 3 212 2 n n n n a a a a a a a ---??? ?,从而可得当2n n a ≥时,的表达式,最后再求出数列{}n a 的通项公式。 四、待定系数法 q pa a n n +=+1 ()n f pa a n n +=+1 n n n qa pa a +=++12(其中p ,q 均为常数)。 例5 已知数列{}n a 满足112356n n n a a a +=+?=,,求数列{}n a 的通项公式。 (125n n n a -=+) 评注:本题解题的关键是把递推关系式1235n n n a a +=+?转化为1152(5)n n n n a a ++-=-,从而可知数列{5}n n a -是等比数列,进而求出数列{5}n n a -的通项公式,最后再求出数列 {}n a 的通项公式。 例6 已知数列{}n a 满足1135241n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (1133522n n n a -=?-?-) 评注:本题解题的关键是把递推关系式13524n n n a a +=+?+转化为 1 15223(522)n n n n a a +++?+=+ ?+,从而可知数列{522}n n a +?+是等比数列,进而求出数列{522}n n a +?+的通项公式,最后再求数列{}n a 的通项公式。 例7 已知数列{}n a 满足2 1123451n n a a n n a +=+++=,,求数列{}n a 的通项公式。 (42 231018n n a n n +=---) 评注:本题解题的关键是把递推关系式2 12345n n a a n n +=+++转化为 2213(1)10(1)182(31018)n n a n n a n n ++++++=+++,从而可知数列

相关主题
文本预览
相关文档 最新文档