当前位置:文档之家› 利用支持向量机和人工神经网络填补缺失数据

利用支持向量机和人工神经网络填补缺失数据

利用支持向量机和人工神经网络填补缺失数据
利用支持向量机和人工神经网络填补缺失数据

(完整word版)支持向量机(SVM)原理及应用概述分析

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

基于BP神经网络和SVM的分类方法研究

龙源期刊网 https://www.doczj.com/doc/6a10039789.html, 基于BP神经网络和SVM的分类方法研究作者:王宏涛孙剑伟 来源:《软件》2015年第11期 摘要:介绍了BP神经网络和SVM算法的分类原理。附加动量因子和随机梯度下降法是对BP神经网络进行优化的重要方法,利用Google实验室的MNIST手写数字库研究了动量因子和随机数以及SVM不同核函数对分类性能影响,为实际应用中模型的选择提供一定依据。同时也研究了两个算法在不同样本数下的性能表现,实验表明样本数较少时SVM比BP具有更高的泛化能力。最后结合两个算法特点,给出层次分类法并做为今后研究方向。 关键词:MNIST数字库;BP神经网络;支持向量机;分类性能 中图分类号:TP391.41 文献标识码:A DOI:10.3969/j.issn.1003-6970.2015.11.024 0 引言 很多实际应用问题都可归为分类问题,如故障诊断、模式识别等,分类过程包括分类器构造和运用模型进行分类两个步骤。神经网络和支持向量机(SVM)是分类领域中两种重要方法。神经网络是模拟人脑神经系统的数学模型,具有高度并行性、较强的自学习自适应和联想记忆功能特点。Vapnik在20世纪90年代基于统计学习理论提出支持向量机,它是借助最优化方法解决问题的,求解支持向量转化为解凸二次优化问题,它能够获得全局最优解,是结构风险最小化的算法。经过多年发展神经网络和支持向量机在很多领域取得成功,但是神经网络和支持向量机参数选择没有理论上支撑,参数选择优化是算法应用成功的关键,挖掘模型参数对算法性能影响具有重要意义。本文在Google的手写数字库上研究了BP(Back Propagation)神经网络和支持向量机的附加动量因子、随机数和不同核函数等变量对准确率、计算时间以及收敛曲线的影响,比较两个算法在不同训练样本数时性能表现。最后结合BP神经网络算法和SVM的各自特点提出分层分类模型,该方法适用于具有结构分解、功能分解特点的对象,为复杂对象分类提供了一种思路。 1 BP神经网络和SVM算法 1.1 BP神经网络技术 神经网络是对人脑的抽象、模拟和简化的信息处理模型,其中神经元数学模型、网络连接方式以及神经网络学习方式是神经网络的三个关键。神经网络原理是利用网络的学习和记忆功能,让神经网络学习各个类别中的样本特征,在遇到待识别样本时神经网络利用记住的特征信

基于人工神经网络的通信信号分类识别

基于人工神经网络的通信信号分类识别 冯 涛 (中国电子科技集团公司第54研究所,河北石家庄050081) 摘 要 通信信号的分类识别是一种典型的统计模式识别问题。系统地论述了通信信号特征选择、特征提取和分类识别的原理和方法。设计了人工神经网络分类器,包括神经网络模型的选择、分类器的输入输出表示、神经网络拓扑结构和训练算法,并提出了分层结构的神经网络分类器。 关键词 模式识别;特征提取;分类器;神经网中图分类号 TP391 文献标识码 A Classification and Identification of Communication Signal Using Artificial Neural Networks FE NG Tao (T he 54th Research Institute of CETC,Shijia zhuan g Hebei 050081,China) Abstract The classification and identificati on of communication signal is a typical statistical pattern identification.The paper discusses the theory and method of feature selection,feature extraction and classi fication &identificaiton of communication signal.A classifier based on artificial neural networks is designed,includin g the selection of neural network model,the input and output expression of the classifier,neural network topology and trainin g algorithm.Finally a hierarchical archi tecture classifier based on artificial neural networks is presented. Key words pattern recognition;features extraction;classifier;neural networks 收稿日期:2005-12-16 0 引言 在通信对抗侦察中,侦察接收设备在截获敌方通信信号后,必须经过对信号的特征提取和对信号特征的分析识别,才能变为有价值的通信对抗情报。通过对信号特征的分析识别,可以得到信号种类、通信体制、网路组成等方面的情报,从而为研究通信对抗策略、研制和发展通信对抗装备提供重要参考依据。 1 通信信号分类识别的原理 通信信号的分类识别是一种典型的模式识别应用,其作用和目的就是将某一接收到的信号正确地归入某一种类型中。一般过程如图1 所示。 图1 通信信号分类识别的一般过程 下面简单介绍这几部分的作用。 信号获取:接收来自天线的信号x (t),并对信号进行变频、放大和滤波,输出一个中频信号; A/D 变换:将中频模拟信号变换为计算机可以运算的数字信号x (n); 以上2步是信号空间x (t)到观察空间x (n )的变换映射。 特征提取:为了有效地实现分类识别,必须对原始数据进行变换,得到最能反映分类差别的特征。这些特征的选择和提取是非常重要的,因为它强烈地影响着分类器的设计和性能。理想情况下,经过特征提取得到的特征向量对不同信号类型应该有明显的差别; 分类器设计和分类决策:分类问题是根据识别对象特征的观察值将其分到某个类别中去。首先,在样本训练集基础上确定合适的规则和分类器结构,然后,学习训练得到分类器参数。最后进行分类决策,把待识别信号从特征空间映射到决策空间。 2 通信信号特征参数的选择与特征提取 2 1 通信信号特征参数的选择 选择好的特征参数可以提高低信噪比下的正确 识别率,降低分类器设计的难度,是基于统计模式识别方法最为关键的一个环节。试图根据有限的信号 信号与信息处理 24 2006Radio Engineering Vo1 36No 6

神经网络在数据挖掘中的应用

神经网络在数据挖掘中的应用

————————————————————————————————作者:————————————————————————————————日期: ?

神经网络在数据挖掘中的应用 摘要:给出了数据挖掘方法的研究现状,通过分析当前一些数据挖掘方法的局限性,介绍一种基于关系数据库的数据挖掘方法——神经网络方法,目前,在数据挖掘中最常用的神经网络是BP网络。在本文最后,也提出了神经网络方法在数据挖掘中存在的一些问题. 关键词:BP算法;神经网络;数据挖掘 1.引言 在“数据爆炸但知识贫乏”的网络时代,人们希望能够对其进行更高层次的分析,以便更好地利用这些数据。数据挖掘技术应运而生。并显示出强大的生命力。和传统的数据分析不同的是数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识。所得到的信息具有先未知,有效性和实用性三个特征。它是从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示三个步骤。数据准备是从各种数据源中选取和集成用于数据挖掘的数据;规律寻找是用某种方法将数据中的规律找出来;规律表示是用尽可能符合用户习惯的方式(如可视化)将找出的规律表示出来。数据挖掘在自身发展的过程中,吸收了数理统计、数据库和人工智能中的大量技术。作为近年来来一门处理数据的新兴技术,数据挖掘的目标主要是为了帮助决策者寻找数据间潜在的关联(Relation),特征(Pattern)、趋势(Trend)等,发现被忽略的要素,对预测未来和决策行为十分有用。 数据挖掘技术在商业方面应用较早,目前已经成为电子商务中的关键技术。并且由于数据挖掘在开发信息资源方面的优越性,已逐步推广到保险、医疗、制造业和电信等各个行业的应用。 数据挖掘(Data Mining)是数据库中知识发现的核心,形成了一种全新的应用领域。数据挖掘是从大量的、有噪声的、随机的数据中,识别有效的、新颖的、有潜在应用价值及完全可理解模式的非凡过程。从而对科学研究、商业决策和企业管理提供帮助。 数据挖掘是一个高级的处理过程,它从数据集中识别出以模式来表示的知识。它的核心技术是人工智能、机器学习、统计等,但一个DM系统不是多项技术的简单组合,而是一个完整的整体,它还需要其它辅助技术的支持,才能完成数据采集、预处理、数据分析、结果表述这一系列的高级处理过程。所谓高级处理过程是指一个多步骤的处理过程,多步骤之间相互影响、反复调整,形成一种螺旋式上升过程。最后将分析结果呈现在用户面前。根据功能,整个DM系统可以大致分为三级结构。 神经网络具有自适应和学习功能,网络不断检验预测结果与实际情况是否相符。把与实际情况不符合的输入输出数据对作为新的样本,神经网络对新样本进行动态学习并动态改变网络结构和参数,这样使网络适应环境或预测对象本身结构和参数的变化,从而使预测网络模型有更强的适应性,从而得到更符合实际情况的知识和规则,辅助决策者进行更好地决策。而在ANN的

支持向量机原理及应用(DOC)

支持向量机简介 摘要:支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以求获得最好的推广能力 。我们通常希望分类的过程是一个机器学习的过程。这些数据点是n 维实空间中的点。我们希望能够把这些点通过一个n-1维的超平面分开。通常这个被称为线性分类器。有很多分类器都符合这个要求。但是我们还希望找到分类最佳的平面,即使得属于两个不同类的数据点间隔最大的那个面,该面亦称为最大间隔超平面。如果我们能够找到这个面,那么这个分类器就称为最大间隔分类器。 关键字:VC 理论 结构风险最小原则 学习能力 1、SVM 的产生与发展 自1995年Vapnik 在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面,但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解

支持向量机训练算法综述_姬水旺

收稿日期:2003-06-13 作者简介:姬水旺(1977)),男,陕西府谷人,硕士,研究方向为机器学习、模式识别、数据挖掘。 支持向量机训练算法综述 姬水旺,姬旺田 (陕西移动通信有限责任公司,陕西西安710082) 摘 要:训练SVM 的本质是解决二次规划问题,在实际应用中,如果用于训练的样本数很大,标准的二次型优化技术就很难应用。针对这个问题,研究人员提出了各种解决方案,这些方案的核心思想是先将整个优化问题分解为多个同样性质的子问题,通过循环解决子问题来求得初始问题的解。由于这些方法都需要不断地循环迭代来解决每个子问题,所以需要的训练时间很长,这也是阻碍SVM 广泛应用的一个重要原因。文章系统回顾了SVM 训练的三种主流算法:块算法、分解算法和顺序最小优化算法,并且指出了未来发展方向。关键词:统计学习理论;支持向量机;训练算法 中图分类号:T P30116 文献标识码:A 文章编号:1005-3751(2004)01-0018-03 A Tutorial Survey of Support Vector Machine Training Algorithms JI Shu-i wang,JI Wang -tian (Shaanx i M obile Communicatio n Co.,Ltd,Xi .an 710082,China) Abstract:Trai n i ng SVM can be formulated into a quadratic programm i ng problem.For large learning tasks w ith many training exam ples,off-the-shelf opti m i zation techniques quickly become i ntractable i n their m emory and time requirem ents.T hus,many efficient tech -niques have been developed.These techniques divide the origi nal problem into several s maller sub-problems.By solving these s ub-prob -lems iteratively,the ori ginal larger problem is solved.All proposed methods suffer from the bottlen eck of long training ti me.This severely limited the w idespread application of SVM.T his paper systematically surveyed three mains tream SVM training algorithms:chunking,de -composition ,and sequenti al minimal optimization algorithms.It concludes with an illustrati on of future directions.Key words:statistical learning theory;support vector machine;trai ning algorithms 0 引 言 支持向量机(Support Vector M achine)是贝尔实验室研究人员V.Vapnik [1~3]等人在对统计学习理论三十多年的研究基础之上发展起来的一种全新的机器学习算法,也使统计学习理论第一次对实际应用产生重大影响。SVM 是基于统计学习理论的结构风险最小化原则的,它将最大分界面分类器思想和基于核的方法结合在一起,表现出了很好的泛化能力。由于SVM 方法有统计学习理论作为其坚实的数学基础,并且可以很好地克服维数灾难和过拟合等传统算法所不可规避的问题,所以受到了越来越多的研究人员的关注。近年来,关于SVM 方法的研究,包括算法本身的改进和算法的实际应用,都陆续提了出来。尽管SVM 算法的性能在许多实际问题的应用中得到了验证,但是该算法在计算上存在着一些问题,包括训练算法速度慢、算法复杂而难以实现以及检测阶段运算量大等等。 训练SVM 的本质是解决一个二次规划问题[4]: 在约束条件 0F A i F C,i =1,, ,l (1)E l i =1 A i y i =0 (2) 下,求 W(A )= E l i =1A i -1 2 E i,J A i A j y i y j {7(x i )#7(x j )} = E l i =1A i -1 2E i,J A i A j y i y j K (x i ,x j )(3)的最大值,其中K (x i ,x j )=7(x i )#7(x j )是满足Merce r 定理[4]条件的核函数。 如果令+=(A 1,A 2,,,A l )T ,D ij =y i y j K (x i ,x j )以上问题就可以写为:在约束条件 +T y =0(4)0F +F C (5) 下,求 W(+)=+T l -12 +T D +(6) 的最大值。 由于矩阵D 是非负定的,这个二次规划问题是一个凸函数的优化问题,因此Kohn -Tucker 条件[5]是最优点 第14卷 第1期2004年1月 微 机 发 展M icr ocomputer Dev elopment V ol.14 N o.1Jan.2004

神经网络与支持向量机的竞争与协作

神经网络与支持向量机的竞争与协作 简单介绍了神经网络与支持向量机,对比分析两者的优缺点,提出了神经网络与支持向量机的协作发展,为两者实际应用的缺欠领域创造更多可能。 标签:神经网络;支持向量机;竞争;协作 人工神经网络(Artificial Neural Network,ANN)与支持向量机(Support Vector Machine,SVM)都是非线性分类模型。1986年,Rummelhart与McClelland创造出前馈型神经网络学习算法,简称BP算法。Vapnik等人于1992年提出支持向量机的概念。神经网络为包含输入、输出以及隐含层的非线性模型,隐含层可以是单层也可以是多层,支持向量机则运用核理论将非线性问题转换为线性问题。神经网络与支持向量机同为统计学习的代表方法,其中神经网络建立在传统统计学的基础上,支持向量机则建立在统计学理论的基础上。传统统计学假定样本数据无限大,从而推导出各种算法,得到其统计性质及其渐进理论。而在实际应用中,样本数为有限数据,对神经网络算法造成了限制。为了对比分析,研究者分别对BP神经网络与支持向量机进行仿真实验,得出支持向量机具有更强的逼近能力这一结果。但从后文所述支持向量机的优缺点来看,当训练样本规模较大时,运用支持向量机的算法很难实现。一直以来,神经网络与支持向量机处于“竞争”的关系,但无论是神经网络还是支持向量机,都做不到完美无缺。 1 人工神经网络 1.1 神经网络特点 神经网络是由大量的神经细胞(亦称神经元)组成,这些神经细胞具有很高的互连程度,构成了神经网络复杂的并行结构。神经网络结构来源于对人脑结构的模仿,因而也反映了人脑的基本结构与基本特征,构成了类似人脑结构复杂程度的学习与运算系统。为前馈网络选择适当的隐含层数目与隐含层节点数目,便能以任意精度逼近非线性函数。在工业过程的控制与建模操作中,神经网络技术得以广泛应用并成果显著。神经网络具有以下特点:在线及离线学习,自学习和自适应不确定的系统;能够辨识非线性系统,逼近任意非线性函数;讯息分布存储、并行处理,因而容错性强且处理速度快;通过神经网络运算,解决自动控制计算的许多问题。具有以上特点,使神经网络良好的应用于自动控制领域。 1.2 神经网络缺陷 神经网络的缺陷性主要表现为:网络结构需事先确定,训练过程不断修正,无法保证最优网络;通过实验调整网络权系数,且有局限性;样本数目足够多时结果质量好,但需要大量训练时间;出现无法得到最优解的情况,易陷入局部最优;目前收敛速度的决定条件无法判断,定量分析训练过程的收敛速度无法实现;经验风险最小化原则的基础下,无法保证优化时神经网络的泛化能力。前馈型神经网络普遍运用于自动控制领域,但实际应用中存在的问题却不容忽视,在经验

支持向量机理论与应用研究综述_张博洋

第19期2015年10月No.19October,2015 无线互联科技 Wireless Internet Technology 支持向量机(Support Vector Machine,SVM)是通过分析统计理论基础上形成的模式分类方法。上述方式在实际实施的时候,依据最小化风险的基本原则有效增加系统的泛化作用,也是一种为了得到最小误差实施的决策有限训练样中的独立测试集,能够适当分析和解决学习问题、选择模型问题、维数灾难问题等。研究SVM主要就是分析支持向量机自身性质,此外还分析提高应用支持向量机的广度和深度,在文本分类、模式分类、分析回归、基因分类、识别手写字符、处理图像等方面得到应用。1 支持向量机的原理分析1.1 结构风险最小化 依据能够应用的有限信息样本,不能合理计算分析期望风险,所以,传统方式应用主要是经验风险最小化(ERM)标准, 利用样本对风险进行定义: 基于统计学理论分析函数集以及实际经验风险的关系,也就是推广性的界。总结分析上述问题,能够得到实际风险 和经验风险之间概率1-符合以下条件关系: 其中l是训练集样本数,h为函数集VC维,体现高低复杂 性,从上述理论基础可以发现,通过两部分构成学习机实际风险:一是置信范围;二是经验风险也就是训练误差。机器学习的时候不仅需要经验风险,还要尽可能缩小VC维符合置信范围,保证能够获得实际比较小的风险,实际上就是结构风险最小化SRM (Structure Risk Minimization)原则[1]。1.2 支持向量机 支持向量机实际上从最优化线性分析分类超平面形成技术,分析情况的时候,最基本理念就是2类线性。支持向量机学习的主要目的就是能够发现最优超平面,不仅需要正确分开2类样本,还能够具备最大的分类间隔。分类间隔就是说距离超平面最近的2类分类样本,并且可以与2类分类平面间距平行。分析线性分类问题,假设T是训练集: {(x 1,y 2),...,(x l ,y l )}∈(X×Y)l ,其中x i ∈x=R n ,yi ∈y={-1,1},i=1,2,...,l。假设(ωx)+b=0是超平面,超平面和训练集之间的集合间距就是1/ω。可以通过以下方式找到最大间隔超平面问题中的原始优化问题: b w min )(ωτ=1/2ω2 , S.t. y i ((ωx i )+b)≥1,i=1,...,l 利用Wolfe对偶定理,能够等价原始最优化问题得到相 关对偶问题: α≥0,i=1,...,l, 此时能够得到最优解就是引入松弛变量以后能够得到等价对偶问 题: 其中,C (C>0)是惩罚因子。1.3 核函数 很多不可分线性问题,在某个高位特征空间中合理筛选符合分类样本情况的非线性变换映射,确保能够得到高维空间目标样本线性可分。依据上述方式进行计算的时候,仅仅只是计算训练样本内积,需要依据原空间来实现函数,不需要分析变换形式,依据泛函基本理论,一种核函数K (x,x /)需要充分符合Mercer ,与某空间变化内积对应。 假设对应变化核函数是K (x,x /),K (x,x /)=(φ(x),φ(x /)),依据之前分析的原始对偶问题,得到相应的决策函数就是: f (x)=sgn *) ),(*(1 b i x x i K y i l i +∑=α,有3种常见的核函数,一是径向有机函数(RBF) : 二是多项式核函数: 作者简介:张博洋(1990-),男,天津,硕士研究生;研究方向:数据挖掘。 支持向量机理论与应用研究综述 张博洋 (北京交通大学 计算机与信息技术学院,北京 100044) 摘 要:文章研究支持向量机技术,分析支持向量机的运行基本原理,研究支持向量机技术中的多类问题和选择核函数,并 且从人脸检测、文本分类、处理图像、识别手写字符等方面合理分析支持向量机,为进一步应用和发展支持向量机技术提供依据和保证。关键词:支持向量机;理论;应用;综述

支持向量机(SVM)算法推导及其分类的算法实现

支持向量机算法推导及其分类的算法实现 摘要:本文从线性分类问题开始逐步的叙述支持向量机思想的形成,并提供相应的推导过程。简述核函数的概念,以及kernel在SVM算法中的核心地位。介绍松弛变量引入的SVM算法原因,提出软间隔线性分类法。概括SVM分别在一对一和一对多分类问题中应用。基于SVM在一对多问题中的不足,提出SVM 的改进版本DAG SVM。 Abstract:This article begins with a linear classification problem, Gradually discuss formation of SVM, and their derivation. Description the concept of kernel function, and the core position in SVM algorithm. Describes the reasons for the introduction of slack variables, and propose soft-margin linear classification. Summary the application of SVM in one-to-one and one-to-many linear classification. Based on SVM shortage in one-to-many problems, an improved version which called DAG SVM was put forward. 关键字:SVM、线性分类、核函数、松弛变量、DAG SVM 1. SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。 对于SVM的基本特点,小样本,并不是样本的绝对数量少,而是与问题的复杂度比起来,SVM算法要求的样本数是相对比较少的。非线性,是指SVM擅长处理样本数据线性不可分的情况,主要通过松弛变量和核函数实现,是SVM 的精髓。高维模式识别是指样本维数很高,通过SVM建立的分类器却很简洁,只包含落在边界上的支持向量。

基于数据数量对支持向量机和BP神经网络性能分析

基于数据数量对支持向量机和BP神经网络性能分析 摘要 本文在阐述创新型预测模型理论的基础上,分别利用基于BP神经网络和支持向量机的玉米开盘预测模型,在样本大小不同情况下对玉米开盘价格指数进行了研究和预测。研究结果表明,基于支持向量机的预测模型在预测精度、运算时间、最优性等方面均优于基于BP神经网络的预测模型。 近年来,以GARCH类模型、SV类模型等为代表的预测模型在资产价格预测方面获得了广泛的应用,但是这些模型在研究中往往受到样本数据分布、样本容量等方面的限制。因此,包括以神经网络、支持向量机等智能算法为基础的创新型预测模型,在金融资产价格预测方面得到了广泛的应用。本文在阐述创新型预测模型理论的基础上,分别利用基于神经网络、支持向量机的预测模型,在不同样本大小的基础上,就玉米开盘价格分别用支持向量机和单隐层和双隐层的BP神经网络做预测,比较预测结果,对比分析支持向量机和BP神经网络在样本大小不同的情况下两者的性能分析。 关键词:支持向量回归BP神经网络libsvm工具箱

一、模型介绍 1、模型介绍1.1 支持向量机回归 1.1.1 支持向量机回归模型的介绍 在机器学习中,支持向量机(SVM,还支持矢量网络)是与相关的学习算法有关的监督学习模型,可以分析数据,识别模式,用于分类和回归分析。给定一组训练样本,每个标记为属于两类,一个SVM 训练算法建立了一个模型,分配新的实例为一类或其他类,使其成为非概率二元线性分类。一个SVM 模型的例子,如在空间中的点,映射,使得所述不同的类别的例子是由一个明显的差距是尽可能宽划分的表示。新的实施例则映射到相同的空间中,并预测基于它们落在所述间隙侧上属于一个类别。 除了进行线性分类,支持向量机可以使用所谓的核技巧,它们的输入隐含映射成高维特征空间中有效地进行非线性分类。1.1.2 支持向量回归求解过程图 1.1.3核函数的介绍 利用支持向量机解决回归问题时,需要根据求解问题的特性,通过使用恰当的核函数来代替内积。这个核函数不仅要在理论上要满足Mercer 条件,而且在实际应用中要能够反映训练样本数据的分布特性。因此,在使用支持向量机解决某一特定的回归问题时,选择适当的核函数是一个关键因素。在实际的应用中,最常用的核函数有4种:线性核、多项式核、径向基(简称RBF)核、多层感知机核等。函数关系表达式分别如下: (1)线性核函数 ) (),(x x x x K i i ?=

介绍人工神经网络的发展历程和分类.

介绍人工神经网络的发展历程和分类 1943年,心理学家W.S.McCulloch 和数理逻辑学家W.Pitts 建立了神经网络和数学模型,称为MP 模型。他们通过MP 模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。1949年,心理学家提出了突触联系强度可变的设想。60年代,人工神经网络的到了进一步发展,更完善的神经网络模型被提出。其中包括感知器和自适应线性元件等。M.Minsky 等仔细分析了以感知器为代表的神经网络系统的功能及局限后,于1969年出版了《Perceptron 》一书,指出感知器不能解决高阶谓词问题。他们的论点极大地影响了神经网络的研究,加之当时串行计算机和人工智能所取得的成就,掩盖了发展新型计算机和人工智能新途径的必要性和迫切性,使人工神经网络的研究处于低潮。在此期间,一些人工神经网络的研究者仍然致力于这一研究,提出了适应谐振理论(ART 网)、自组织映射、认知机网络,同时进行了神经网络数学理论的研究。以上研究为神经网络的研究和发展奠定了基础。1982年,美国加州工学院物理学家J.J.Hopfield 提出了Hopfield 神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。 1984年,他又提出了连续时间Hopfield 神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究,1985年,又有学者提出了波耳兹曼模型,在学习中采用统计热力学模拟退火技术,保证整个系统趋于全局稳定点。1986年进行认知微观结构地研究,提出了并行分布处理的理论。人工神经网络的研究受到了各个发达国家的重视,美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变为全球行为。在日本的“真实世界计算(RWC )”项目中,人工智能的研究成了一个重要的组成部分。 人工神经网络的模型很多,可以按照不同的方法进行分类。其中,常见的两种分类方法是,按照网络连接的拓朴结构分类和按照网络内部的信息流向分类。按照网络拓朴结构分类网络的拓朴结构,即神经元之间的连接方式。按此划分,可将神经网络结构分为两大类:层次型结构和互联型结构。层次型结构的神经网络将神经

人工神经网络在数据挖掘中的潜在应用

人工神经网络在数据挖掘中的潜在应用 摘要:随着存储在文件,数据库,和其他的库中的数据量巨大,数据正在变得越来越重要,开发用于分析或解释这些数据和用于提取有趣的知识的强有力的手段可以帮助决策。数据挖掘,也普遍被称为数据库中的知识发现(KDD),是指从数据库中的数据中提取隐含的,先前未知的,潜在地有用的信息。因此,数据挖掘的过程就是从大型数据库中自动提取隐藏的,预测的信息。数据挖掘,包括:提取,转换和加载到数据仓库系统的数据。神经网络已经成功地广泛的应用在监督和无监督的学习应用当中。神经网络方法不常用于数据挖掘任务当中,因为它们可能会结构复杂,训练时间长,结果的表示不易理解并且经常产生不可理解的模型。然而,神经网络对嘈杂的高精度的数据具有高度的接受能力在数据挖掘中的应用是可取的。在本论文中,调查探索人工神经网络在数据挖掘技术的应用,关键技术和实现基于神经网络的数据挖掘研究方法。鉴于目前的行业状态,神经网络作为一个工具盒在数据挖掘领域是非常有价值的一点。 关键词:数据挖掘;KDD;SOM;数据挖掘的过程 一、引言 数据挖掘,从大型数据库中提取隐藏的预测性信息,是一个功能强大的具有巨大潜力的新技术在帮助公司集中重要的信息在他们的数据仓库中。数据挖掘工具预测未来的趋势和行为,允许企业作出主动的,知识驱动的决策。所提供的数据挖掘超越过去的事件进行回顾性工具的典型的决策支持系统提供了自动、前瞻性的分析。数据挖掘工具可以回答那些,传统上耗费太多的时间来解决的业务问题。他们寻找隐藏的模式数据库,寻找专家们可能由于超出在他们期望之外而错过的预测信息。不同类型的数据挖掘工具,在市场上是可用的,每个都有自己的长处和弱点。内部审计人员需要了解数据挖掘工具的不同种类和推荐的工具,满足组织电流检测的需要。这应该在项目的生命周期中尽早考虑,甚至可行性研究。 数据挖掘通常包括四类任务。 分类:把这些数据整理到组。例如一个电子邮件程序会试图将一封电子邮件分类为合法的或垃圾邮件。常见的算法包括决策树学习,最近邻,朴素贝叶斯分类和神经网络算法。 聚类:就像分类但这些组却没有被预定义,因此该算法会尝试将类似的物品放在一起进行分组。 回归:试图找到一个以最小的误差的数据函数模型。 关联规则的学习:变量之间的关系搜索。例如,超市会对将消费者的购买习惯的数据集合起来。利用关联规则的学习,超市可以决定哪些产品经常一起购买和利用此信息实现营销的目的。有时将这种方法称为“市场分析”。 人工神经网络是一个基于人类大脑的松散的系统建模。现场有许多名字,如联结,并行分布处理,神经计算,自然智能系统,机器学习算法,人工神经网络。它必须考虑任何功能的依赖性。网络发现(学习,模型)无需提示的依赖性。最初的数据挖掘应用中神经网络不被使用是由于其结构复杂,训练时间长,且操作性较差。而神经网络是解决许多现实世界的问题的一个有力的技术。他们从经验中学习,以提高其性能和适应变化的能力环境。此外,他们能够处理不完备信息或嘈杂的数据,特别是在无法定义的规则或步骤导致一个问题的解决方案的情况下是非常有效的。

人工神经网络的发展和分类

人工神经网络的发展和分类 人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。 它的构筑理念是受到生物(人或其他动物)神经网络功能的运作启发而产生的。人工神经网络通常是通过一个基于数学统计学类型的学习方法(Learning Method)得以优化,所以人工神经网络也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题(也就是说通过统计学的方法,人工神经网络能够类似人一样具有简单的决定能力和简单的判断能力),这种方法比起正式的逻辑学推理演算更具有优势。 1943年,心理学家W.S.McCulloch和数理逻辑学家W.Pitts建立了神经网络和数学模型,称为MP模型。他们通过MP模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。 1949年,心理学家提出了突触联系强度可变的设想。60年代,人工神经网络的到了进一步发展,更完善的神经网络模型被提出。其中包括感知器和自适应线性元件等。M.Minsky等仔细分析了以感知器为代表的神经网络系统的功能及局限后,于1969年出版了《Perceptron》一书,指出感知器不能解决高阶谓词问题。他们的论点极大地影响了神经网络的研究。加之当时串行计算机和人工智能所取得的成就,掩盖了发展新型计算机和人工智能新途径的必要性和迫切性,使人工神经网络的研究处于低潮。 在此期间,一些人工神经网络的研究者仍然致力于这一研究,提出了适应谐ART,同时进行了神经网络数学理论的研究。以上研究为神经网络的研究和发展奠定了基础。1982年,美国加州工学院物理学家J.J.Hopfield提出了Hopfield神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。 1984Hopfield神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究。1985年,又有学者提出了波耳兹曼模型,在学习中采用统计热力学模拟退火技术,保证整个系统趋于全局稳定点。 1986年进行认知微观结构地研究,提出了并行分布处理的理论。人工神经网络的研究受到了各个发达国家的重视。美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变 RWC项目中,人工智能的研究成了一个重要的组成部分。 人工神经网络的模型很多,可以按照不同的方法进行分类。其中,常见的两

随机森林与支持向量机分类性能比较

随机森林与支持向量机分类性能比较 黄衍,查伟雄 (华东交通大学交通运输与经济研究所,南昌 330013) 摘要:随机森林是一种性能优越的分类器。为了使国内学者更深入地了解其性能,通过将其与已在国内得到广泛应用的支持向量机进行数据实验比较,客观地展示其分类性能。实验选取了20个UCI数据集,从泛化能力、噪声鲁棒性和不平衡分类三个主要方面进行,得到的结论可为研究者选择和使用分类器提供有价值的参考。 关键词:随机森林;支持向量机;分类 中图分类号:O235 文献标识码: A Comparison on Classification Performance between Random Forests and Support Vector Machine HUANG Yan, ZHA Weixiong (Institute of Transportation and Economics, East China Jiaotong University, Nanchang 330013, China)【Abstract】Random Forests is an excellent classifier. In order to make Chinese scholars fully understand its performance, this paper compared it with Support Vector Machine widely used in China by means of data experiments to objectively show its classification performance. The experiments, using 20 UCI data sets, were carried out from three main aspects: generalization, noise robustness and imbalanced data classification. Experimental results can provide references for classifiers’ choice and use. 【Key words】Random Forests; Support Vector Machine; classification 0 引言 分类是数据挖掘领域研究的主要问题之一,分类器作为解决问题的工具一直是研究的热点。常用的分类器有决策树、逻辑回归、贝叶斯、神经网络等,这些分类器都有各自的性能特点。本文研究的随机森林[1](Random Forests,RF)是由Breiman提出的一种基于CART 决策树的组合分类器。其优越的性能使其在国外的生物、医学、经济、管理等众多领域到了广泛的应用,而国内对其的研究和应用还比较少[2]。为了使国内学者对该方法有一个更深入的了解,本文将其与分类性能优越的支持向量机[3](Support Vector Machine,SVM)进行数据实验比较,客观地展示其分类性能。本文选取了UCI机器学习数据库[4]的20个数据集作为实验数据,通过大量的数据实验,从泛化能力、噪声鲁棒性和不平衡分类三个主要方面进行比较,为研究者选择和使用分类器提供有价值的参考。 1 分类器介绍 1.1 随机森林 随机森林作为一种组合分类器,其算法由以下三步实现: 1. 采用bootstrap抽样技术从原始数据集中抽取n tree个训练集,每个训练集的大小约为原始数据集的三分之二。 2. 为每一个bootstrap训练集分别建立分类回归树(Classification and Regression Tree,CART),共产生n tree棵决策树构成一片“森林”,这些决策树均不进行剪枝(unpruned)。在作者简介:黄衍(1986-),男,硕士研究生,主要研究方向:数据挖掘与统计分析。 通信联系人:查伟雄,男,博士,教授,主要研究方向:交通运输与经济统计分析。 E-mail: huangyan189@https://www.doczj.com/doc/6a10039789.html,.

相关主题
文本预览
相关文档 最新文档