当前位置:文档之家› 离散数学证明题解题方法

离散数学证明题解题方法

离散数学证明题解题方法
离散数学证明题解题方法

离散数学是现代数学的一个重要分支,是计算机科学中基础理论的核心课程。离散数学以研究离散量的结构和相互间的关系为主要目标,其研究对象一般地是有限个或可数个元素,因此他充分描述了计算机科学离散性的特点。

1、定义和定理多。

离散数学是建立在大量定义上面的逻辑推理学科。因而对概念的理解是我们学习这门学科的核心。在这些概念的基础上,特别要注意概念之间的联系,而描述这些联系的实体则是大量的定理和性质。

●证明等价关系:即要证明关系有自反、对称、传递的性质。

●证明偏序关系:即要证明关系有自反、反对称、传递的性质。(特殊关系的证明就列出来两种,要证明剩下的几种只需要结合定义来进行)。

●证明满射:函数f:X Y,即要证明对于任意的y Y,都有x X,使得f(x)=y。

●证明入射:函数f:X Y,即要证明对于任意的x1、x2X,且x1≠x2,则f(x1) ≠f(x2);或者对于任意的f(x1)=f(x2),则有x1=x2。

●证明集合等势:即证明两个集合中存在双射。有三种情况:第一、证明两个具体的集合等势,用构造法,或者直接构造一个双射,或者构造两个集合相互间的入射;第二、已知某个集合的基数,如果为?,就设它和R之间存在双射f,然后通过f的性质推出另外的双射,因此等势;如果为?0,则设和N之间存在双射;第三、已知两个集合等势,然后再证明另外的两个集合等势,这时,先设已知的两个集合存在双射,然后根据剩下题设条件证明要证的两个集合存在双射。

●证明群:即要证明代数系统封闭、可结合、有幺元和逆元。(同样,这一部分能够作为证明题的概念更多,要结合定义把它们全部搞透彻)。

●证明子群:虽然子群的证明定理有两个,但如果考证明子群的话,通常是第二个定理,即设是群,S是G的非空子集,如果对于S中的任意元素a和b有a*b-1S,则的子群。对于有限子群,则可考虑第一个定理。

●证明正规子群:若是一个子群,H是G的一个子集,即要证明对于任意的a G,有aH=Ha,或者对于任意的h H,有a-1 *h*a H。这是最常见的题目中所使用的方法。

●证明格和子格:子格没有条件,因此和证明格一样,证明集合中任意两个元素的最大元和最小元都在集合中。

图论虽然方法性没有前几部分的强,但是也有一定的方法,如最长路径法、构造法等等

下面讲一下离散证明题的证明方法:

1、直接证明法

直接证明法是最常见的一种证明的方法,它通常用作证明某一类东西具有相同的性质,或者符合某一些性质必定是某一类东西。

直接证明法有两种思路,第一种是从已知的条件来推出结论,即看到条件的时候,并不知道它怎么可以推出结论,则可以先从已知条件按照定理推出一些中间的条件(这一步可能是没有目的的,要看看从已知的条件中能够推出些什么),接着,选择可以推出结论的那个条件继续往下推演;另外一种是从结论反推回条件,即看到结论的时候,首先要反推一下,看看

从哪些条件可以得出这个结论(这一步也可能是没有目的的,因为并不知道要用到哪个条件),以此类推一直到已知的条件。通常这两种思路是同时进行的。

2、反证法

反证法是证明那些“存在某一个例子或性质”,“不具有某一种的性质”,“仅存在唯一”等的题目。

它的方法是首先假设出所求命题的否命题,接着根据这个否命题和已知条件进行推演,直至推出与已知条件或定理相矛盾,则认为假设是不成立的,因此,命题得证。

3、构造法

证明“存在某一个例子或性质”的题目,我们可以用反证法,假设不存在这样的例子和性质,然后推出矛盾,也可以直接构造出这么一个例子就可以了。这就是构造法,通常这样的题目在图论中多见。值得注意的是,有一些题目其实也是本类型的题目,只不过比较隐蔽罢了,像证明两个集合等势,实际上就是证明“两个集合中存在一个双射”,我们即可以假设不存在,用反证法,也可以直接构造出这个双射。

4、数学归纳法

数学归纳法是证明与自然数有关的题目,而且这一类型的题目可以递推。作这一类型题目的时候,要注意一点就是所要归纳内容的选择。

学习离散数学的最大困难是它的抽象性和逻辑推理的严密性。在离散数学中,假设让你解一道题或证明一个命题,你应首先读懂题意,然后寻找解题或证明的思路和方法,当你相信已找到了解题或证明的思路和方法,你必须把它严格地写出来。一个写得很好的解题过程或证明是一系列的陈述,其中每一条陈述都是前面的陈述经过简单的推理而得到的。仔细地写解题过程或证明是很重要的,既能让读者理解它,又能保证解题过程或证明准确无误。一个好的解题过程或证明应该是条理清楚、论据充分、表述简洁的。针对这一要求,在讲课中老师会提供大量的典型例题供同学们参考和学习。

在学习离散数学中所遇到的这些困难,可以通过多学、多看、认真分析讲课中所给出的典型例题的解题过程,再加上多练,从而逐步得到解决。在此特别强调一点:深入地理解和掌握离散数学的基本概念、基本定理和结论,是学好离散数学的重要前提之一。所以,同学们要准确、全面、完整地记忆和理解所有这些基本定义和定理。

学好高数=基本概念透+基本定理牢+基本网络有+基本常识记+基本题型熟。数学就是一个概念+定理体系(还有推理),对概念的理解至关重要,比如说极限、导数等

再快乐的单身汉迟早也会结婚,幸福不是永久的嘛!

爱就像坐旋转木马,虽然永远在你爱人的身后,但隔着永恒的距离。

相互牵着的手,永不放开,直到他的出现,你离开了我.

时光就这样静静的流淌,那些在躺在草地上晒太阳的时光,那些拂面吹来的风.

明知道是让对方痛苦的爱就不要让它继续下去,割舍掉。如果不行就将它冻结在自己内心最深的角落。

离散数学题库

常熟理工学院20 ~20 学年第学期 《离散数学》考试试卷(试卷库01卷) 试题总分: 100 分考试时限:120 分钟 题号一二三四五总分阅卷人得分 一、单项选择题(每题2分,共20分) 1.下列表达式正确的有( ) (A)(B)(C)(D) 2.设P:2×2=5,Q:雪是黑的,R:2×4=8,S:太阳从东方升起,下列( )命题的真值为 真。 (A)(B)(C)(D) 3.集合A={1,2,…,10}上的关系R={|x+y=10,x,y A},则R 的性质为( ) (A)自反的(B)对称的(C)传递的,对称的(D)传递的 4.设,,其中表示模3加法,*表示模2乘法,在集合上 定义如下运算: 有称为的积代数,则的积代数幺元是( ) (A)<0,0> (B)<0,1> (C)<1,0> (D)<1,1> 5.下图中既不是Eular图,也不是Hamilton图的图是( ) 6.设为无向图,,则G一定是( ) (A)完全图(B)树(C)简单图(D)多重图 7.设P:我将去镇上,Q:我有时间。命题“我将去镇上,仅当我有时间”符号化为()。 (A) P Q (B)Q P (C)P Q (D) 8.在有n个结点的连通图中,其边数() (A)最多有n-1条(B)最多有n 条(C)至少有n-1条(D)至少有n条 9.设A-B=,则有() (A)B=(B)B(C)A B (D)A B 10.设集合A上有3个元素,则A上的不同的等价关系的个数为() (A)5 (B)7 (C)3 (D)6 二、填空题(每题2分,共20分)

1.n个命题变元组成的命题公式共有种不同的等价公式。 2.设〈L,≤〉为有界格,a为L中任意元素,如果存在元素b∈L,使,则称b是a 的补元。 3.设*,Δ是定义在集合A上的两个可交换二元运算,如果对于任意的x,y∈A,都有 ,则称运算*和运算Δ满足吸收律。 4.设T是一棵树,则T是一个连通且的图。 5.一个公式的等价式称作该公式的主合取范式是指它仅由组成。 6.量词否定等价式? ("x)P(x) ?,? ($x)P(x) ?。 7.二叉树有5个度为2的结点,则它的叶子结点数为。 8.设是一个群,是阿贝尔群的充要条件是。9.集合S={α,β,γ,δ}上的二元运算*为 * αβγδ αδαβγ βαβγδ γβγγγ δαδγδ 那么,代数系统中的幺元是,α的逆元是。 10.设A={<1,2>,<2,4>,<3,3>},B={<1,3>,<2,4>,<4,2>} = 。 = 。 三、判断题(每题1分,共10分) 1.命题公式是一个矛盾式。() 2.,若,则必有。() 3.设S为集合X上的二元关系,则S是传递的当且仅当(S S)S。() 4.任何一棵二叉树的结点可对应一个前缀码。() 5.代数系统中一个元素的左逆元一定等于该元素的右逆元。() 6.一个有限平面图,面的次数之和等于该图的边数。() 7.A′B = B′A () 8.设*定义在集合A上的一个二元运算,如果A中有关于运算*的左零元θl和右零θr,则A中 有零元。() 9.一个循环群的生成元不是唯一的。() 10.任何一个前缀码都对应一棵二叉树。() 四、解答题(5小题,共30分) 1.(5分)什么是欧拉路?如何用欧拉路判定一个图G是否可一笔画出? 2.(8分)求公式 (P∨Q)R 的主析取范式和主合取范式。

离散数学题库及答案

数理逻辑部分 选择、填空及判断 ?下列语句不就是命题的( A )。 (A) 您打算考硕士研究生不? (B) 太阳系以外的星球上有生物。 (C) 离散数学就是计算机系的一门必修课。 (D) 雪就是黑色的。 ?命题公式P→(P∨?P)的类型就是( A ) (A) 永真式(B) 矛盾式 (C) 非永真式的可满足式(D) 析取范式 ?A就是重言式,那么A的否定式就是( A ) A、矛盾式 B、重言式 C、可满足式 D、不能确定 ?以下命题公式中,为永假式的就是( C ) A、p→(p∨q∨r) B、(p→┐p)→┐p C、┐(q→q)∧p D、┐(q∨┐p)→(p∧┐p) ?命题公式P→Q的成假赋值就是( D ) A、 00,11 B、 00,01,11 C、10,11 D、 10 ?谓词公式) x xP∧ ?中,变元x就是 ( B ) R , ( x ) (y A、自由变元 B、既就是自由变元也就是约束变元 C、约束变元 D、既不就是自由变元也不就是约束变元 ?命题公式P→(Q∨?Q)的类型就是( A )。 (A) 永真式 (B) 矛盾式 (C) 非永真式的可满足式 (D) 析取范式 ?设B不含变元x,) x x→ ?等值于( A ) A ) ( (B A、B (D、B x xA→ x ?) ( ( ?C、B x∧ A ?) (B、) ?) xA→ x ) ( A x (B x∨ ?下列语句中就是真命题的就是( D )。 A.您就是杰克不? B.凡石头都可练成金。 C.如果2+2=4,那么雪就是黑的。 D.如果1+2=4,那么雪就是黑的。 ?从集合分类的角度瞧,命题公式可分为( B ) A、永真式、矛盾式 B、永真式、可满足式、矛盾式 C、可满足式、矛盾式 D、永真式、可满足式 ?命题公式﹁p∨﹁q等价于( D )。 A、﹁p∨q B、﹁(p∨q) C、﹁p∧q D、 p→﹁q ?一个公式在等价意义下,下面写法唯一的就是( D )。 (A) 范式 (B) 析取范式 (C) 合取范式 (D) 主析取范式 ?下列含有命题p,q,r的公式中,就是主析取范式的就是( D )。

离散数学第四章二元关系和函数知识点总结

集合论部分 第四章、二元关系和函数 集合的笛卡儿积与二元关系有序对 定义由两个客体x 和y,按照一定的顺序组成的 二元组称为有序对,记作 实例:点的直角坐标(3,4) 有序对性质 有序性 (当x y时) 相等的充分必要条件是= x=u y=v 例1 <2, x+5> = <3y4, y>,求x, y. 解 3y 4 = 2, x+5 = y y = 2, x = 3 定义一个有序n (n3) 元组 是一个 有序对,其中第一个元素是一个有序n-1元组,即 = < , x n> 当n=1时, 形式上可以看成有序 1 元组. 实例 n 维向量是有序 n元组. 笛卡儿积及其性质 定义设A,B为集合,A与B 的笛卡儿积记作A B,即A B ={ | x A y B } 例2 A={1,2,3}, B={a,b,c} A B ={<1,a>,<1,b>,<1,c>,<2,a>,<2,b>,<2,c>, <3,a>,<3,b>,<3,c>} B A ={,,,,,, , ,} A={}, P(A)A={<,>, <{},>} 性质:

不适合交换律A B B A (A B, A, B) 不适合结合律 (A B)C A(B C) (A, B)对于并或交运算满足分配律 A(B C)=(A B)(A C) (B C)A=(B A)(C A) A(B C)=(A B)(A C) (B C)A=(B A)(C A) 若A或B中有一个为空集,则A B就是空集. A=B= 若|A|=m, |B|=n, 则 |A B|=mn 证明A(B C)=(A B)(A C) 证任取 ∈A×(B∪C) x∈A∧y∈B∪C x∈A∧(y∈B∨y∈C) (x∈A∧y∈B)∨(x∈A∧y∈C) ∈A×B∨∈A×C ∈(A×B)∪(A×C) 所以有A×(B∪C) = (A×B)∪(A×C). 例3 (1) 证明A=B C=D A C=B D (2) A C=B D是否推出A=B C=D 为什么 解 (1) 任取 A C x A y C x B y D B D (2) 不一定. 反例如下: A={1},B={2}, C=D=, 则A C=B D 但是A B.

离散数学第一章命题逻辑知识点总结

数理逻辑部分 第1章命题逻辑 命题符号化及联结词 命题: 判断结果惟一的陈述句 命题的真值: 判断的结果 真值的取值: 真与假 真命题: 真值为真的命题 假命题: 真值为假的命题 注意: 感叹句、祈使句、疑问句都不是命题,陈述句中的悖论以及判断结果不惟一确定的也不是命题。 简单命题(原子命题):简单陈述句构成的命题 复合命题:由简单命题与联结词按一定规则复合而成的命题 简单命题符号化 用小写英文字母p, q, r, … ,p i,q i,r i (i≥1)表示 简单命题 用“1”表示真,用“0”表示假 例如,令p:是有理数,则p 的真值为 0 q:2 + 5 = 7,则q 的真值为 1 联结词与复合命题 1.否定式与否定联结词“” 定义设p为命题,复合命题“非p”(或“p的否定”)称 为p的否定式,记作p. 符号称作否定联结词,并规定p为真当且仅当p为假. 2.合取式与合取联结词“∧” 定义设p,q为二命题,复合命题“p并且q”(或“p与q”)称为p与q 的合取式,记作p∧q. ∧称作合取联结词,并规定 p∧q为真当且仅当p 与q同时为真 注意:描述合取式的灵活性与多样性 分清简单命题与复合命题 例将下列命题符号化. (1) 王晓既用功又聪明. (2) 王晓不仅聪明,而且用功. (3) 王晓虽然聪明,但不用功. (4) 张辉与王丽都是三好生. (5) 张辉与王丽是同学. 解令p:王晓用功,q:王晓聪明,则 (1) p∧q (2) p∧q (3) p∧q. 令r : 张辉是三好学生,s :王丽是三好学生 (4) r∧s. (5) 令t : 张辉与王丽是同学,t 是简单命题 . 说明:

离散数学证明题

离散数学证明题离散数学证明题:链为分配格 证明设a,b均是链A的元素,因为链中任意两个元素均可比较,即有a≤b或a≤b,如果a ≤b,则a,b的最大下界是a,最小上界是b,如果b≤a,则a,b的最大下界是b,最小上界是a,故链一定是格,下面证明分配律成立即可,对A中任意元素a,b,c分下面两种情况讨论: ⑴b≤a或c≤a ⑵a≤b且a≤c 如果是第⑴种情况,则a∪(b∩c)=a=(a∪b)∩(a∪c) 如果是第⑵种情况,则a∪(b∩c)=b∩c=(a∪b)∩(a∪c) 无论那种情况分配律均成立,故A是分配格. 一.线性插值(一次插值) 已知函数f(x)在区间[xk ,xk+1 ]的端点上的函数值yk =f(xk ), yk+1 = f(xk+1 ),求一个一次函数y=P1 (x)使得yk =f(xk ),yk+1 =f(xk+1 ), 其几何意义是已知平面上两点(xk ,yk ),(xk+1 ,yk+1 ),求一条直线过该已知两点。 1. 插值函数和插值基函数 由直线的点斜式公式可知: 把此式按照 yk 和yk+1 写成两项: 记 并称它们为一次插值基函数。该基函数的特点如下表: 从而 P1 (x) = yk lk (x) + yk+1 lk+1 (x) 此形式称之为拉格朗日型插值多项式。其中, 插值基函数与yk 、yk+1 无关,而由插值结点xk 、xk+1 所决定。一次插值多项式是插值基函数的线性组合, 相应的组合系数是该点的函数值yk 、yk+1 . 例1: 已知lg10=1,lg20=1.3010, 利用插值一次多项式求lg12的近似值。 解: f(x)=lgx,f(10)=1,f(20)=1.3010, 设 x0 =10 ,x1 =20 ,y0 =1 ,y1 =1.3010 则插值基函数为: 于是, 拉格朗日型一次插值多项式为: 故 : 即lg12 由lg10 和lg20 两个值的线性插值得到,且具有两位有效数字(精确值lg12=1.0792). 二.二次插值多项式 已知函数y=f(x)在点xk-1 ,xk ,xk+1 上的函数值yk-1 =f(xk-1 ),yk =f(xk ), yk+1 =f(xk+1 ), 求一个次数不超过二次的多项式P2 (x), 使其满足, P2 (xk-1 )=yk-1 , P2 (xk )=yk , P2 (xk+1 )=yk+1 . 其几何意义为:已知平面上的三个点 (xk-1 ,yk-1 ),(xk ,yk ),(xk+1 ,yk+1 ), 求一个二次抛物线, 使得该抛物线经过这三点。 1.插值基本多项式 有三个插值结点xk-1 ,xk ,xk+1 构造三个插值基本多项式,要求满足: (1) 基本多项式为二次多项式; (2) 它们的函数值满足下表: 因为lk-1 (xk )= 0,lk-1 (xk+1 )=0, 故有因子(x-xk )(x-xk+1 ), 而其已经是一个二次多项式, 仅相差一个常数倍, 可设 lk-1 (x)=a(x-xk )(x-xk+1 ),

离散数学试题与答案

试卷二试题与参考答案 一、填空 1、 P:您努力,Q:您失败。 2、 “除非您努力,否则您将失败”符号化为 ; “虽然您努力了,但还就是失败了”符号化为 。 2、论域D={1,2},指定谓词P P (1,1) P (1,2) P (2,1) P (2,2) T T F F 则公式x ??真值为 。 3设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则 R= (列举法)。 R 的关系矩阵M R = 。 4、设A={1,2,3},则A 上既不就是对称的又不就是反对称的关系 R= ;A 上既就是对称的又就是反对称的关系R= 。 5、设代数系统,其中A={a,b,c}, 则幺元就是 ;就是否有幂等 性 ;就是否有对称性 。 6、4阶群必就是 群或 群。 7、下面偏序格就是分配格的就是 。 8、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件就是 。 * a b c a b c a b c b b c c c b

二、选择 1、在下述公式中就是重言式为( ) A.)()(Q P Q P ∨→∧; B.))()(()(P Q Q P Q P →∧→??; C.Q Q P ∧→?)(; D.)(Q P P ∨→。 2、命题公式 )()(P Q Q P ∨?→→? 中极小项的个数为( ),成真赋值的个数为 ( )。 A.0; B.1; C.2; D.3 。 3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。 A.3; B.6; C.7; D.8 。 4、设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系 },,,, | ,,,{c b d a S S d c S S b a d c b a R +=+?>∈∈<><><<=则由 R 产 生的S S ?上一个划分共有( )个分块。 A.4; B.5; C.6; D.9 。 5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为 则R 具有( )性质。 A.自反性、对称性、传递性; B.反自反性、反对称性; C.反自反性、反对称性、传递性; D.自反性 。 6、设 ο,+ 为普通加法与乘法,则( )>+<ο,,S 就是域。 A.},,3|{Q b a b a x x S ∈+== B.},,2|{Z b a n x x S ∈== C.},12|{Z n n x x S ∈+== D.}0|{≥∧∈=x Z x x S = N 。 7、下面偏序集( )能构成格。

离散数学考试题详细答案

离散数学考试题(后附详细答案) 一、命题符号化(共6小题,每小题3分,共计18分) 1.用命题逻辑把下列命题符号化 a)假如上午不下雨,我去瞧电影,否则就在家里读书或瞧报。 设P表示命题“上午下雨”,Q表示命题“我去瞧电影”,R表示命题“在家里读书”,S表示命题“在家瞧报”,命题符号化为:(?P?Q)∧(P?R∨S) b)我今天进城,除非下雨。 设P表示命题“我今天进城”,Q表示命题“天下雨”,命题符号化为:?Q→P或?P→Q c)仅当您走,我将留下。 设P表示命题“您走”,Q表示命题“我留下”,命题符号化为: Q→P 2.用谓词逻辑把下列命题符号化 a)有些实数不就是有理数 设R(x)表示“x就是实数”,Q(x)表示“x就是有理数”,命题符号化为: ?x(R(x) ∧?Q(x)) 或??x(R(x) →Q(x)) b)对于所有非零实数x,总存在y使得xy=1。 设R(x)表示“x就是实数”,E(x,y)表示“x=y”,f(x,y)=xy, 命题符号化为: ?x(R(x) ∧?E(x,0) →?y(R(y) ∧E(f(x,y),1)))) c) f 就是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b、 设F(f)表示“f就是从A到B的函数”, A(x)表示“x∈A”, B(x)表示“x∈B”,E(x,y)表示“x=y”, 命题符号化为:F(f)??a(A(a)→?b(B(b) ∧ E(f(a),b) ∧?c(S(c) ∧ E(f(a),c) →E(a,b)))) 二、简答题(共6道题,共32分) 1.求命题公式(P→(Q→R))?(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋 值。(5分) (P→(Q→R))?(R→(Q→P))?(?P∨?Q∨R)?(P∨?Q∨?R) ?((?P∨?Q∨R)→(P∨?Q∨?R)) ∧ ((P∨?Q∨?R) →(?P∨?Q∨R))、 ?((P∧Q∧?R)∨ (P∨?Q∨?R)) ∧ ((?P∧Q∧R) ∨(?P∨?Q∨R)) ?(P∨?Q∨?R) ∧(?P∨?Q∨R) 这就是主合取范式 公式的所有成真赋值为000,001,010,100,101,111,故主析取范式为 (?P∧?Q∧?R)∨(?P∧?Q∧R)∨(?P∧Q∧?R)∨(P∧?Q∧?R)∨(P∧?Q∧R)∨(P∧Q∧R) 2.设个体域为{1,2,3},求下列命题的真值(4分) a)?x?y(x+y=4) b)?y?x (x+y=4) a) T b) F 3.求?x(F(x)→G(x))→(?xF(x)→?xG(x))的前束范式。(4分) ?x(F(x)→G(x))→(?xF(x)→?xG(x)) ??x(F(x)→G(x))→(?yF(y)→?zG(z))??x(F(x)→G(x))→?y?z(F(y)→G(z)) ??x?y?z((F(x)→G(x))→ (F(y)→G(z))) 4.判断下面命题的真假,并说明原因。(每小题2分,共4分) a)(A?B)-C=(A-B) ?(A-C) b)若f就是从集合A到集合B的入射函数,则|A|≤|B| a) 真命题。因为(A?B)-C=(A?B)?~C=(A?~C)?(B?~C)=(A-C)?(B-C) b) 真命题。因为如果f就是从集合A到集合B的入射函数,则|ranf|=|A|,且ranf?B,故命题 成立。

离散数学复习题及答案

1. 写出命题公式 ﹁(P →(P ∨ Q ))的真值表。 答案: 2.证明 答案: 3. 证明以下蕴涵关系成立: 答案: 4. 写出下列式子的主析取范式: 答案: 5. 构造下列推理的论证:p ∨q, p →r, s →t, s →r, t q 答案: ) ()(R P Q P ∨∧∧?) ()(R P Q P ∨∧?∨??) )(())(R Q P P Q P ∧?∨?∨∧?∨??) ()()()(R Q R P P Q P P ∧?∨∧?∨∧?∨∧??) ()()(Q R P R P Q R P Q ∧∧?∨?∧∧?∨∧∧??) ()()(P R Q P R Q Q R P ?∧∧?∨∧∧?∨?∧∧?∨) ()()(Q R P R P Q R P Q ∧∧?∨?∧∧?∨∧∧??) (Q R P ?∧∧?∨) ()(Q P Q P Q P ?∧?∨∧??Q) P (Q)(P P) (Q P)P (Q)(Q Q)P (P) Q)P ((Q)Q)P (P) Q (Q)P (Q P ?∧?∨∧?∧∨∧?∨?∧∨?∧??∧∨?∨?∧∨??∨?∧∨???Q Q P P ?∨∧?)() ()(R P Q P ∨∧∧?

①s →t 前提 ②t 前提 ③s ①②拒取式I12 ④s →r 前提 ⑤r ③④假言推理I11 ⑥p →r 前提 ⑦p ⑤⑥拒取式I12 ⑧p ∨q 前提 ⑨q ⑦⑧析取三段论I10 6. 用反证法证明:p →((r ∧s)→q), p, s q 7. 请将下列命题符号化: 所有鱼都生活在水中。 答案: 令 F( x ):x 是鱼 W( x ):x 生活在水中 ))((W(x)F(x)x →? 8. 请将下列命题符号化: 存在着不是有理数的实数。 答案: 令 Q ( x ):x 是有理数 R ( x ):x 是实数 Q(x))x)(R(x)(?∧? 9. 请将下列命题符号化: 尽管有人聪明,但并非一切人都聪明。 答案: 令M(x):x 是人 C(x):x 是聪明的 则上述命题符号化为 10. 请将下列命题符号化: 对于所有的正实数x,y ,都有x+y ≥x 。 答案: 令P(x):x 是正实数 S(x,y): x+y ≥x 11. 请将下列命题符号化: 每个人都要参加一些课外活动。 答案: ))) ()((())()((x C x M x x C x M x →??∧∧?)) ,()()((y x S y P x P y x →∧??

离散数学试题及答案(1)

离散数学试题及答案 一、填空题 1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; ρ(A) - ρ(B)=__________________________ . 2. 设有限集合A, |A| = n, 则|ρ(A×A)| = __________________________. 3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________. 4. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是_______________________________ __________________________________________________________. 5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为__________,分枝点数为________________. 6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_________________________; A?B =_________________________;A-B=_____________________ . 7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________, ________________________, _______________________________. 8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有__________________________, _____________________________, __________________________. 9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则 R1?R2 = ________________________,R2?R1 =____________________________, R12 =________________________. 10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = _____________________________. 11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = __________________________ , B-A = __________________________ , A∩B = __________________________ , . 13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为___________ _______________________________________________________. 14. 设一阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束范式是__________________________ _____. 15.设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。

电大离散数学证明题参考题

五、证明题 1.设G 是一个n 阶无向简单图,n 是大于等于3的奇数.证明图G 与它的补图G 中的奇数度顶点个数相等. 证明:设,G V E =<>,,G V E '=<>.则E '是由n 阶无向完全图n K 的边删去E 所得到的.所以对于任意结 点u V ∈,u 在G 和G 中的度数之和等于u 在n K 中的度数.由于n 是大于等于3的奇数,从而n K 的每个结点都是偶数度的( 1 (2)n -≥度),于是若u V ∈在G 中是奇数度结点,则它在G 中也是奇数度结点.故图G 与它的补图G 中的奇数度结点个数相等. 2.设连通图G 有k 个奇数度的结点,证明在图G 中至少要添加 2 k 条边才能使其成为欧拉图. 证明:由定理3.1.2,任何图中度数为奇数的结点必是偶数,可知k 是偶数. 又根据定理4.1.1的推论,图G 是欧拉图的充分必要条件是图G 不含奇数度结点.因此只要在每对奇数度结点之间各加一条边,使图G 的所有结点的度数变为偶数,成为欧拉图. 故最少要加2 k 条边到图G 才能使其成为欧拉图. 五、证明题 1.试证明集合等式:A ? (B ?C )=(A ?B ) ? (A ?C ). 证:若x ∈A ? (B ?C ),则x ∈A 或x ∈B ?C , 即x ∈A 或x ∈B 且x ∈A 或x ∈C . 即x ∈A ?B 且x ∈A ?C , 即x ∈T =(A ?B ) ? (A ?C ), 所以A ? (B ?C )? (A ?B ) ? (A ?C ). 反之,若x ∈(A ?B ) ? (A ?C ),则x ∈A ?B 且x ∈A ?C , 即x ∈A 或x ∈B 且x ∈A 或x ∈C , 即x ∈A 或x ∈B ?C , 即x ∈A ? (B ?C ), 所以(A ?B ) ? (A ?C )? A ? (B ?C ). 因此.A ? (B ?C )=(A ?B ) ? (A ?C ). 2.对任意三个集合A , B 和C ,试证明:若A ?B = A ?C ,且A ≠?,则B = C . 证明:设x ∈A ,y ∈B ,则∈A ?B , 因为A ?B = A ?C ,故∈ A ?C ,则有y ∈C , 所以B ? C . 设x ∈A ,z ∈C ,则∈ A ?C , 因为A ?B = A ?C ,故∈A ?B ,则有z ∈B ,所以C ?B . 故得B = C . 3、设A ,B 是任意集合,试证明:若A ?A=B ?B ,则A=B . 许多同学不会做,是不应该的.我们看一看 证明:设x ∈A ,则∈A ?A , 因为A ?A=B ?B ,故∈B ?B ,则有x ∈B ,所以A ?B . 设x ∈B ,则∈B ?B , 因为A ?A=B ?B ,故∈A ?A ,则有x ∈A ,所以B ?A . 故得A=B .

离散数学章练习题及答案

离散数学练习题 第一章 一.填空 1.公式) ∨ ? ∧的成真赋值为 01;10 ? p∧ ( (q ) p q 2.设p, r为真命题,q, s 为假命题,则复合命题) ? ? →的真值为 0 p→ ( q (s ) r 3.公式) ∨ ? p∧ q ?与共同的成真赋值为 01;10 ? ∧ p ( ) ) (q q p ( 4.设A为任意的公式,B为重言式,则B A∨的类型为重言式 5.设p, q均为命题,在不能同时为真条件下,p与q的排斥也可以写成p与q的相容或。 二.将下列命题符合化 1. 7不是无理数是不对的。 解:) ? ?,其中p: 7是无理数;或p,其中p: 7是无理数。 (p 2.小刘既不怕吃苦,又很爱钻研。 解:其中 ?p: 小刘怕吃苦,q:小刘很爱钻研 p∧ ,q 3.只有不怕困难,才能战胜困难。 解:p →,其中p: 怕困难,q: 战胜困难 q? 或q →,其中p: 怕困难, q: 战胜困难 p? 4.只要别人有困难,老王就帮助别人,除非困难解决了。 解:) → ?,其中p: 别人有困难,q:老王帮助别人,r: 困难解决了 p (q r→ 或:q ?) (,其中p:别人有困难,q: 老王帮助别人,r: 困难解决了r→ ∧ p 5.整数n是整数当且仅当n能被2整除。 解:q p?,其中p: 整数n是偶数,q: 整数n能被2整除 三、求复合命题的真值 P:2能整除5, q:旧金山是美国的首都, r:在中国一年分四季 1. )) p∧ → q ∨ r → ∧ ((q r ( ) ( ) p 2.r ?) → (( → (( ∨ ) ( )) p r p ∨ p q ? ∧ ? q∧ 解:p, q 为假命题,r为真命题 1.)) p∧ → q ∨的真值为0 r → ∧ ( ) ( ) ((q p r

离散数学函数复习题答案

第6章 函数 一、选择题(每题3分) 1、设{,,},{1,2,3}A a b c B ==,则下列关系中能构成A 到B 函数的是( C ) A 、1{,1,,2,,3}f a a a =<><><> B 、2{,1,,1,,2}f a b b =<><><> C 、4{,1,,1,,1}f a b c =<><><> D 、1{,1,,2,,2,,3}f a a b c =<><><><> 2、设R Z N 、、分别为实数集、整数集,自然数集,则下列关系中能构成函数的是( B ) A 、)}10(),(|,{<+∧∈>< C 、)}(),(|,{2x y R y x y x =∧∈>< D 、{,|(,)(mod 3)}x y x y Z x y <>∈∧≡ 3、设Z 为整数集,则二元关系{,23}f a b a Z b Z b a =<>∈∧∈∧=+ ( B ) A 、不能构成Z 上的函数 B 、能构成Z 上的函数 C 、能构成Z 上的单射 D 、能构成Z 上的满射 4、设f 为自然数集N 上的函数,且1()0 x f x x ?=? ?若为奇数若为偶数 ,则f ( D ) A 、为单射而非满 B 、为满射而非单射 C 、为双射 D 、既非单射又非满射 5、设f 为整数集Z 上的函数,且()f x 为x 除以5的余数 ,则f ( D ) A 、为单射而非满 B 、为满射而非单射 C 、为双射 D 、既非单射又非满射 6、设R Z 、分别为实数集、整数集,则下列函数为满射而非单射的是( C ) A 、:,()6f R R f x x →=+ B 、2 :,()(6)f R R f x x →=+ C 、:,()[]f R Z f x x →= D 、6 :, ()6f R R f x x x →=+ 7、设R R Z +、、分别为实数集、非负实数集、正整数集,下列函数为单射而非满射的是( B ) A 、2 :,()71f R R f x x x →=-+- B 、x x f R Z f ln )(,:=→+ ; C 、:, ()f R R f x x →= D 、:,()71f R R f x x →=+ 8、设Z N E 、、分别为整数集,自然数集,偶数集,则下列函数是双射的为( A ) A 、f : Z E → , ()2f x x = B 、f : Z E → , ()8f x x = C 、f : Z Z →, ()8f x = D 、f : N N N →?, (),1f n n n =<+> 9、设3,4X Y ==,则从X 到Y 可以生成不同的单射个数为( B ). A 、12 B 、24 C 、64 D 、81 10、设3,2X Y ==,则从X 到Y 可以生成不同的满射个数为( B ). A 、6 B 、8 C 、9 D 、64 11、设函数:f B C →,:g A B →都是单射,则:f g A C → ( A ) A 、是单射 B 、是满射 C 、是双射 D 、既非单射又非满射 12、设函数:f B C →,:g A B →都是满射,则:f g A C → ( B ) A 、是单射 B 、是满射 C 、是双射 D 、既非单射又非满射 13、设函数:f B C →,:g A B →都是双射,则:f g A C → ( C ) A 、是单射 B 、是满射 C 、是双射 D 、既非单射又非满射 14、设函数:f B C →,:g A B →,若:f g A C → 是单射,则( B ) A 、f 是单射 B 、g 是单射 C 、f 是满射 D 、g 是满射 15、设函数:f B C →,:g A B →,若:f g A C → 是满射,则( C ) A 、f 是单射 B 、g 是单射 C 、f 是满射 D 、g 是满射 16、设函数:f B C →,:g A B →,若:f g A C → 是双射,则( D ) A 、,f g 都是单射 B 、,f g 都是满射 C 、f 是单射, g 是满射 D 、f 是满射, g 是单射

《离散数学》题库及答案

《离散数学》题库与答案 一、选择或填空 (数理逻辑部分) 1、下列哪些公式为永真蕴含式?( A ) (1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P 答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别) 2、下列公式中哪些是永真式?( ) (1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q) 答:(2),(3),(4)可用蕴含等值式证明 3、设有下列公式,请问哪几个是永真蕴涵式?( ) (1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q (4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P 答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式 4、公式?x((A(x)→B(y,x))∧?z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。 答:x,y, x,z(考察定义在公式?x A和?x A中,称x为指导变元,A为量词的辖域。在?x A和?x A的辖域中,x的所有出现都称为约束出现,即称x为约束变元,A中不是约束出现的其他变项则称为自由变元。于是A(x)、B(y,x)和?z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x为自由变元) 5、判断下列语句是不是命题。若是,给出命题的真值。( ) (1)北京是中华人民共和国的首都。 (2) 陕西师大是一座工厂。 (3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。 (5) 前进! (6) 给我一杯水吧!

离散数学及答案

全国2010年7月自学考试离散数学试题 课程代码:02324 一、单项选择题(本大题共15小题,每小题1分,共15分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.下列句子不是..命题的是( D ) A .中华人民共和国的首都是北京 B .张三是学生 C .雪是黑色的 D .太好了! 2.下列式子不是..谓词合式公式的是( B ) A .(?x )P (x )→R (y ) B .(?x ) ┐P (x )?(?x )(P (x )→Q (x )) C .(?x )(?y )(P (x )∧Q (y ))→(?x )R (x ) D .(?x )(P (x ,y )→Q (x ,z ))∨(?z )R (x ,z ) 3.下列式子为重言式的是( ) A .(┐P ∧R )→Q B .P ∨Q ∧R →┐R C .P ∨(P ∧Q ) D .(┐P ∨Q )?(P →Q ) 4.在指定的解释下,下列公式为真的是( ) A .(?x )(P (x )∨Q (x )),P (x ):x =1,Q (x ):x =2,论域:{1,2} B .(?x )(P (x )∧Q (x )),P (x ):x =1,Q (x ):x =2,论域: {1,2} C .(?x )(P (x ) →Q (x )),P (x ):x >2,Q (x ):x =0,论域:{3,4} D .(?x )(P (x )→Q (x )),P (x ):x >2,Q (x ):x =0,论域:{3,4} 5.对于公式(?x ) (?y )(P (x )∧Q (y ))→(?x )R (x ,y ),下列说法正确的是( ) A .y 是自由变元 B .y 是约束变元 C .(?x )的辖域是R(x , y ) D .(?x )的辖域是(?y )(P (x )∧Q (y ))→(?x )R (x ,y ) 6.设论域为{1,2},与公式(?x )A (x )等价的是( ) A .A (1)∨A (2) B .A (1)→A (2) C .A (1)∧A (2) D .A (2)→A (1) 7.设Z +是正整数集,R 是实数集,f :Z +→R , f (n )=log 2n ,则f ( ) A .仅是入射 B .仅是满射 C .是双射 D .不是函数 8.下列关系矩阵所对应的关系具有反对称性的是( ) A .???? ? ?????001110101 B .???? ? ?????101110001

离散数学-第1章-习题解答

习题1.1 1. 下列句子中,哪些是命题?哪些不是命题?如果是命题,指出它的真值。 ⑴中国有四大发明。 ⑵计算机有空吗? ⑶不存在最大素数。 ⑷21+3<5。 ⑸老王是山东人或河北人。 ⑹2与3都是偶数。 ⑺小李在宿舍里。 ⑻这朵玫瑰花多美丽呀! ⑼请勿随地吐痰! ⑽圆的面积等于半径的平方乘以p。 ⑾只有6是偶数,3才能是2的倍数。 ⑿雪是黑色的当且仅当太阳从东方升起。 ⒀如果天下大雨,他就乘班车上班。 解:⑴⑶⑷⑸⑹⑺⑽⑾⑿⒀是命题,其中⑴⑶⑽⑾是真命题,⑷⑹⑿是假命题,⑸⑺⒀的真值目前无法确定;⑵⑻⑼不是命题。 2. 将下列复合命题分成若干原子命题。 ⑴李辛与李末是兄弟。 ⑵因为天气冷,所以我穿了羽绒服。 ⑶天正在下雨或湿度很高。 ⑷刘英与李进上山。 ⑸王强与刘威都学过法语。 ⑹如果你不看电影,那么我也不看电影。 ⑺我既不看电视也不外出,我在睡觉。 ⑻除非天下大雨,否则他不乘班车上班。 解:⑴本命题为原子命题; ⑵p:天气冷;q:我穿羽绒服; ⑶p:天在下雨;q:湿度很高; ⑷p:刘英上山;q:李进上山; ⑸p:王强学过法语;q:刘威学过法语; ⑹p:你看电影;q:我看电影; ⑺p:我看电视;q:我外出;r:我睡觉; ⑻p:天下大雨;q:他乘班车上班。 3. 将下列命题符号化。 ⑴他一面吃饭,一面听音乐。 ⑵3是素数或2是素数。

⑶若地球上没有树木,则人类不能生存。 ⑷8是偶数的充分必要条件是8能被3整除。 ⑸停机的原因在于语法错误或程序错误。 ⑹四边形ABCD是平行四边形当且仅当它的对边平行。 ⑺如果a和b是偶数,则a+b是偶数。 解:⑴p:他吃饭;q:他听音乐;原命题符号化为:p∧q ⑵p:3是素数;q:2是素数;原命题符号化为:p∨q ⑶p:地球上有树木;q:人类能生存;原命题符号化为:p→q ⑷p:8是偶数;q:8能被3整除;原命题符号化为:p?q ⑸p:停机;q:语法错误;r:程序错误;原命题符号化为:q∨r→p ⑹p:四边形ABCD是平行四边形;q:四边形ABCD的对边平行;原命题符号化为:p?q。 ⑺p:a是偶数;q:b是偶数;r:a+b是偶数;原命题符号化为:p∧q→r 4. 将下列命题符号化,并指出各复合命题的真值。 ⑴如果3+3=6,则雪是白的。 ⑵如果3+3≠6,则雪是白的。 ⑶如果3+3=6,则雪不是白的。 ⑷如果3+3≠6,则雪不是白的。 ⑸3是无理数当且仅当加拿大位于亚洲。 ⑹2+3=5的充要条件是3是无理数。(假定是10进制) ⑺若两圆O1,O2的面积相等,则它们的半径相等,反之亦然。 ⑻当王小红心情愉快时,她就唱歌,反之,当她唱歌时,一定心情愉快。 解:设p:3+3=6。q:雪是白的。 ⑴原命题符号化为:p→q;该命题是真命题。 ⑵原命题符号化为:p→q;该命题是真命题。 ⑶原命题符号化为:p→q;该命题是假命题。 ⑷原命题符号化为:p→q;该命题是真命题。 ⑸p:3是无理数;q:加拿大位于亚洲;原命题符号化为:p?q;该命题是假命题。 ⑹p:2+3=5;q:3是无理数;原命题符号化为:p?q;该命题是真命题。 ⑺p:两圆O1,O2的面积相等;q:两圆O1,O2的半径相等;原命题符号化为:p?q;该命题是真命题。 ⑻p:王小红心情愉快;q:王小红唱歌;原命题符号化为:p?q;该命题是真命题。

离散数学期末考试试题及答案

离散数学试题(B卷答案1) 一、证明题(10分) 1)(?P∧(?Q∧R))∨(Q∧R)∨(P∧R)?R 证明: 左端?(?P∧?Q∧R)∨((Q∨P)∧R) ?((?P∧?Q)∧R))∨((Q∨P)∧R) ?(?(P∨Q)∧R)∨((Q∨P)∧R) ?(?(P∨Q)∨(Q∨P))∧R ?(?(P∨Q)∨(P∨Q))∧R ?T∧R(置换)?R 2) ?x (A(x)→B(x))??xA(x)→?xB(x) 证明:?x(A(x)→B(x))??x(?A(x)∨B(x)) ??x?A(x)∨?xB(x) ???xA(x)∨?xB(x) ??xA(x)→?xB(x) 二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)。 证明:(P∨(Q∧R))→(P∧Q∧R)??(P∨(Q∧R))∨(P∧Q∧R)) ?(?P∧(?Q∨?R))∨(P∧Q∧R) ?(?P∧?Q)∨(?P∧?R))∨(P∧Q∧R) ?(?P∧?Q∧R)∨(?P∧?Q∧?R)∨(?P∧Q∧?R))∨(?P∧?Q∧?R))∨(P∧Q∧R) ?m0∨m1∨m2∨m7 ?M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D, (C∨D)→?E,?E→(A∧?B), (A∧?B)→(R∨S)?R∨S 证明:(1) (C∨D)→?E P (2) ?E→(A∧?B) P (3) (C∨D)→(A∧?B) T(1)(2),I (4) (A∧?B)→(R∨S) P (5) (C∨D)→(R∨S) T(3)(4), I (6) C∨D P (7) R∨S T(5),I 2) ?x(P(x)→Q(y)∧R(x)),?xP(x)?Q(y)∧?x(P(x)∧R(x))

相关主题
文本预览
相关文档 最新文档