当前位置:文档之家› 有限差分及有限单元法的区别

有限差分及有限单元法的区别

有限差分及有限单元法的区别
有限差分及有限单元法的区别

1 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。

构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

2 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。

在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。

根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从

权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。

对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La grange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。

对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插

值函数作为单元基函数。有限元方法中的基函数是在单元中选取的,由于各单元具有规则的几何形状,在选取基函数时可遵循一定的法则。(4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的参数值)的代数方程组,称为单元有限元方程。(5)总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程。(6)边界条件的处理:一般边界条件有三种形式,分为本质边界条件(狄里克雷边界条件)、自然边界条件(黎曼边界条件)、混合边界条件(柯西边界条件)。对于自然边界条件,一般在积分表达式中可自动得到满足。对于本质边界条件和混合边界条件,需按一定法则对总体有限元方程进行修正满足。(7)解有限元方程:根据边界条件修正的总体有限元方程组,是含所有待定未知量的封闭方程组,采用适当的数值计算方法求解,可求得各节点的函数值

3 有限体积法(Finite V olume Method)又称为控制体积法。其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的数值。为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。简言之,子区域法属于有限体积发的基本方法。有限体积法的基本思路易于理解,并能得出直接的物理解释。离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控制体积中的守恒原理一样。限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。这是有限体积法吸引人的优点。有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。就离散方法而言,有限体积法可视作有限单元法和有限差分法的中间物。有限单元法必须假定值在网格点之间的变化规律(既插值函数),并将其作为近似解。有限差分法只考虑网格点

上的数值而不考虑值在网格点之间如何变化。有限体积法只寻求的结点值,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,可以对微分方程中不同的项采取不同的插值函数。

4 多重网格方法通过在疏密不同的网格层上进行迭代,以平滑不同频率的误差分量.具有收敛速度快,精度高等优点.多重网格法基本原理微分方程的误差分量可以分为两大类,一类是频率变化较缓慢的低频分量;另一类是频率高,摆动快的高频分量。一般的迭代方法可以迅速地将摆动误差衰减,但对那些低频分量,迭代法的效果不是很显著。高频分量和低频分量是相对的,与网格尺度有关,在细网格上被视为低频的分量,在粗网格上可能为高频分量。多重网格方法作为一种快速计算方法,迭代求解由偏微分方程组离散以后组成的代数方程组,其基本原理在于一定的网格最容易消除波长与网格步长相对应的误差分量。该方法采用不同尺度的网格,不同疏密的网格消除不同波长的误差分量,首先在细网格上采用迭代法,当收敛速度变缓慢时暗示误差已经光滑,则转移到较粗的网格上消除与该层网格上相对应的较易消除的那些误差分量,这样逐层进行下去直到消除各种误差分量,再逐层返回到细网格上。目前两层网格方法从理论上已证明是收敛的,并且其收敛速度与网格尺度无关[哈克?#####迹?988]。多重网格法是迭代法与粗网格修正的组合,经过证明迭代法可迅速地将那些高频分量去掉,粗网格修正则可以帮助消除那些光滑了的低频分量,而对那些高频分量基本不起作用。科研中国https://www.doczj.com/doc/695433363.html, 在多重网格计算中,需要一些媒介把细网格上的信息传递到粗网格上去,同时还需要一些媒介把粗网格上的信息传递到细网格上去。限制算子Iih(i-1)h是把细网格i-1层上的残余限制到粗网格i层上的算子,最简单的算子是平凡单射,另外还有特殊加权限制;插值算子Iih(i-1)h是把粗网格i层上的结果插值到细网格i-1层上的算子,一般采用线性插值或完全加权限制算子。

5 近似求解的误差估计办法共有三大类:单元余量法,通量投射法及外推法.单元余量法广泛地用于以FEM离散的误差估计之中,它主要是估计精确算子的余量,

而不是整套控制方程的全局误差.这样就必须假定周围的单元误差并不相互耦合,误差计算采用逐节点算法进行.单元余量法的各种不同做法主要来自对单元误差方程的边界条件的不同处理办法.基于此,该方法能够有效处理局部的残余量,并能成功地用于网格优化程序.通量投射法的基本原理来自一个很简单的事实:精确求解偏微分方程不可能有不连续的微分,而近似求解却可以存在微分的不连续,这样产生的误差即来自微分本身,即误差为系统的光滑求解与不光滑求解之差.该方法与单元余量法一样,对节点误差采用能量范数,故也能成功地用于网格优化程序.单元余量法及通量投射法都局限于局部的误差计算(采用能量范数),误差方程的全局特性没有考虑.另外计算的可行性(指误差估计方程的计算时间应小于近似求解计算时间)不能在这两种方法中体现,因为获得的误差方程数量,阶数与流场控制方程相同.外推法是指采用后向数值误差估计思想由精确解推出近似解的误差值.各类文献中较多地采用Richardson外推方法来估计截断误差.无论是低阶还是高阶格式,随着网格的加密数值计算结果都会趋近于准确解.但由于计算机内存与计算时间的限制,实际上不能采用这种网格无限加密的办法.由Richardson所发展起来的外推方法,可以利用在不同疏密网格上得出的结果估计相应的收敛解,可以估计所用离散方法截断误差的阶数,可以估计所得数值计算的截断误差.该方法有很大的局限性,不能简单地用于复杂湍流流动;并且在数值计算中数值解必须单调地趋近于其收敛值.而文献提出的单网格后向误差估计思想,在采用有限元法FEM,有限容积法FVM时均有应用,并且还用于网格优化程序,但该方法也不能用于复杂湍流流动的数值分析.

6 近年来发展的多尺度计算方法包括均匀化方法[9-11]、非均匀化多尺度方法[12-15]、以及小波数值均匀化方法[16]、多尺度有限体积法[17]、多尺度有限元法[1]等。

均匀化方法是一种多尺度分析的方法。该方法通过对单胞问题的求解,把细观尺度的信息映射到宏观尺度上,从而推导出宏观尺度上的均匀化等式,即可在宏观尺度上求解原问题。均匀化方法在很多科学和工程应用中取得了巨大成功,但这种方法建立在系数细观结构周期性假设的基础上,因此应用范围受到了很大限

制。

鄂维南等[12-14]提出的非均匀化多尺度方法,是构造多尺度计算方法的一般框架。该方法有两个重要的组成部分:基于宏观变量的整体宏观格式和由微观模型来估计缺少的宏观数据,多尺度问题的解通过这两部分共同得到。

小波数值均匀化方法是由Dorbonuat、Enguqist提出的求解椭圆型方程的新型方法。该方法基于多分辨分析,在细尺度上建立原方程的离散算子,然后对离散算子进行小波变换,得到了大尺度上的数值均匀化算子。此方法在大尺度上解方程,大大地减小了计算时间。

多尺度有限元方法是由Babuska[1]等提出的。该法在宏观尺度上进行网格剖分,然后通过在每个单元里求解细观尺度的方程(构造线性或者振荡的边界条件)来获得基函数。从而把细观尺度的信息反应到有限元法的基函数里,使宏观尺度的解包含了细观尺度的信息。但多尺度有限元方法在构造基函数时需要较大的计算量。

有限单元法基本思想,原理,数值计算过程

有限单元法学习报告 在对力学问题分析求解过程中,方法可以概括为两种方法,一种为解析法,对具体问题具体分析,通过一定的推导用具体的表达式获得解答,由于实际工程中结构物的复杂性,此方法在处理工程问题是十分困难的;另一种是数值法,有限元法是其中一种方法,其数学逻辑严谨,物理概念清晰,又采用矩阵形式表达基本公式,便于计算机编程,因此在工程问题中获得广泛的应用。 有限元法基本原理是,将复杂的连续体划分为简单的单元体;将无限自由度问题化为有限自由度问题,因为单元体个数是有限的;将偏微分方程求解问题化为有限个代数方程组的求解问题。通常以位移为基本未知量,通过虚功原理和最小势能原理来求解。 基本思想是先化整为零,即离散化整体结构,把整体结构看作是由若干个通过结点相连的单元体组成的整体;再积零为整,通过结点的平衡来建立代数方程组,最后计算出结果。我将采用最简单的三结点三角形为基本单元体,解决弹性力学中的平面问题为例,解释有限单元法的基本原理、演示数值计算过程和一般性应用结论。 一、离散化 解决平面问题时,主要单元类型包括三角形单元(三结点、六结点)和四边形单元(四结点矩形、四结点四边形、八结点四边形)等。选用不同的单元会有不同的精度,划分的单元数越多,精度越高,但计算量也会越大。因此在边界曲折,应力集中处单元的尺寸要小些,但最大与最小单元的尺寸倍数不宜过大。在集中力作用点及分布力突变的点宜选为结点,不同厚度,不同材料不能划分在同一单元中。三角形单元以内角接近60°为最好。充分利用对称性与反对称性。 二、单元分析 将一个单元上的所有未知量用结点位移表示,并将分布在单元上的外力等效到结点上。 1、位移函数选取: 根据有限元法的基本思路,将连续体离散为有限的单元集合后,此时单元体满足连续性、均匀性、各向同性、完全线弹性假设。单元与单元之间通过结点连接并传递力,位移法(应用最广)以结点位移δi=(u i v i)T为基本未知量,以离散位移场代替连续位移场。单元体内的位移变化可以用位移函数(位移模式)来表示,因为有限元分析所得结果是近似结果,为了保证计算精度和收敛性,x位移函数应尽可能反应物体中的真实位移,即满足完备性和连续性的要求:

有限元基础知识归纳

有限元知识点归纳 1.、有限元解的特点、原因? 答:有限元解一般偏小,即位移解下限性 原因:单元原是连续体的一部分,具有无限多个自由度。在假定了单元的位移函数后,自由度限制为只有以节点位移表示的有限自由度,即位移函数对单元的变形进行了约束和限制,使单元的刚度较实际连续体加强了,因此,连续体的整体刚度随之增加,离散后的刚度较实际的刚度K为大,因此求得的位移近似解总体上将小于精确解。 2、形函数收敛准则(写出某种单元的形函数,并讨论收敛性)P49 (1)在节点i处N i=1,其它节点N i=0; (2)在单元之间,必须使由其定义的未知量连续; (3)应包含完全一次多项式; (4)应满足∑Ni=1 以上条件是使单元满足收敛条件所必须得。可以推证,由满足以上条件的形函数所建单元是完备协调的单元,所以一定是收敛的。 4、等参元的概念、特点、用时注意什么?(王勖成P131) 答:等参元—为了将局部坐标中几何形状规则的单元转换成总体(笛卡尔)坐标中的几何形状扭曲的单元,以满足对一般形状求解域进行离散化的需要,必须建立一个坐标变换。即: 为建立上述的变换,最方便的方法是将上式表示成插值函数的形式,即: 其中m是用以进行坐标变换的单元节点数,xi,yi,zi是这些结点在总体(笛卡尔)坐标内的坐标值,Ni’称为形状函数,实际上它也是局部坐标表示的插值函数。称前者为母单元,后者为子单元。 还可以看到坐标变换关系式和函数插值表示式:在形式上是相同的。如果坐标变换和函数插值采用相同的结点,并且采用相同的插值函数,即m=n,Ni’=Ni,则称这种变换为等参变换。 5、单元离散?P42 答:离散化既是将连续体用假想的线或面分割成有限个部分,各部分之间用有限个点相连。每个部分称为一个单元,连接点称为结点。对于平面问题,最简单、最常用的离散方式是将其分解成有限个三角形单元,单元之间在三角形顶点上相连。这种单元称为常应变三角形单元。常用的单元离散有三节点三角形单元、六节点三角形单元、四节点四边形单元、八节点四边形单元以及等参元。 6、数值积分,阶次选择的基本要求? 答:通常是选用高斯积分 积分阶次的选择—采用数值积分代替精确积分时,积分阶数的选取应适当,因为它直接影响计算精度,计算工作量。选择时主要从两方面考虑。一是要保证积分的精度,不损失收敛性;二是要避免引起结构总刚度矩阵的奇异性,导致计算的失败。

弹性力学及有限元基础复习权威版(最新)

《弹性力学及有限元基础》复习思考题 ★1.对弹性体所做的基本假设? 答:连续性假设;均匀性假设;各向同性假设;弹性假设;小变形假设; ★2.用D'Alember 原理由平衡方程推导运动微分方程? 答:微元体的平衡微分方程的表达式为: 31 112111 2332 122221 23 132333 31 23000f x x x f x x x f x x x σσσσσσσσσ????+++=?????????+++=? ????????+++=? ???? 根据D'Alember 原理,将运动物体看成是静止的,将惯性力22()u t ρ?-?当作体力加到微元体上,由上式 可以直接写出弹性动力学问题的运动微分方程: 23111211 12123232 12222221 2321323333321 23()()() u f x x x t u f x x x t u f x x x t σσσρσσσρσσσρ?????+++=????????????+++=? ???????????+++=?????? ☆3.什么是应力张量? 我们说一点的应力状态是什么涵义? 答:应力张量是一点应力状态的完整描述,它有面元方向和分解方向两个方向性,共有九个分量,由于存在对称性,其独立分量只有六个。应力张量是与坐标选择无关的不变量,但其分量与坐标有关,当已知某坐标系中的九个分量时,其他坐标系中的分量均可由应力转换公式确定。 一点的应力状态是一个具有双重方向性的物理量,其中第一个是面元的方向,用其法矢量ν表示,第二个是作用在该面元上的应力矢量方向,一般用其三个分量来表示。 4.在引出 Cauchy 应力公式时, 我们假设四面体处于平衡状态, 如不处在平衡状态则如何? 答:如果不处在平衡状态,Cauchy 应力公式仍然满足,关系式的成立与是否平衡无关。 5.在什么情况下剪应力互等定律不成立? 答:无论在变形体的内部或者表面上,若存在体力偶时,剪应力互等定律不成立。 6.任意斜截面上的正应变和剪应变的意义是什么? 答:应变张量的三个对角分量x ε、y ε、z ε称为正应变,分别等于坐标轴方向三个线元的单位伸长率,伸长为正,缩短为负。应变张量的三个非对角分量xy ε、yz ε、zx ε称为剪应变,分别等于变形前沿该分量下标所示两坐标方向的、相互正交的线元在变形后的夹角减小量之半。 7.刚性位移,刚性转动,刚体位移,刚体转动有何区别? 答:(1)刚性位移:物体内任意两点间无相对位移;(2)刚性转动:应变张量为0,转动张量不为0;(3)刚体位移:运动分为变形运动和刚体运动,每点都发生相同的位移就叫作刚体位移;(4)刚体转动:用刚性

有限元分析及其应用思考题附答案2012

有限元分析及其应用-2010 思考题: 1、有限元法的基本思想是什么?有限元法的基本步骤有那些?其中“离散”的含义是什 么?是如何将无限自由度问题转化为有限自由度问题的? 答:基本思想:几何离散和分片插值。 基本步骤:结构离散、单元分析和整体分析。 离散的含义:用假想的线或面将连续物体分割成由有限个单元组成的集合,且单元之间仅在节点处连接,单元之间的作用仅由节点传递。当单元趋近无限小,节点无限多,则这种离散结构将趋近于实际的连续结构。 2、有限元法与经典的差分法、里兹法有何区别? 区别:差分法:均匀离散求解域,差分代替微分,要求规则边界,几何形状复杂精度较低; 里兹法:根据描述问题的微分方程和相应的定解构造等价的泛函表达式,求得近似解; 有限元:基于变分法,采用分片近似进而逼近总体的求解微分方程的数值计算方法。 3、一根单位长度重量为q的悬挂直杆,上端固定,下端受垂直向下的外力P,试 1)建立其受拉伸的微分方程及边界条件; 2)构造其泛函形式; 3)基于有限元基本思想和泛函求极值构造其有限元的计算格式(即最小势能原理)。4、以简单实例为对象,分别按虚功原理和变分原理导出有限元法的基本格式(单元刚度矩 阵)。 5、什么是节点力和节点载荷?两者有何区别? 答:节点力:单元与单元之间通过节点相互作用 节点载荷:作用于节点上的外载 6、单元刚度矩阵和整体刚度矩阵各有何特点?其中每个矩阵元素的物理意义是什么(按自 由度和节点解释)? 答:单元刚度矩阵:对称性、奇异性、主对角线恒为正 整体刚度矩阵:对称性、奇异性、主对角线恒为正、稀疏性、带状性。 Kij,表示j节点产生单位位移、其他节点位移为零时作用i节点的力,节点力等于节点位移与单元刚度元素乘积之和。 7、单元的形函数具有什么特点?有哪些性质? 答:形函数的特点:Ni为x,y的坐标函数,与位移函数有相同的阶次。 形函数Ni在i节点的值为1,而在其他节点上的值为0; 单元内任一点的形函数之和恒等于1; 形函数的值在0~1间变化。 8、描述弹性体的基本变量是什么?基本方程有哪些组成? 答:基本变量:外力、应力、应变、位移 基本方程:平衡方程、几何方程、物理方程、几何条件 9、何谓应力、应变、位移的概念?应力与强度是什么关系? 答:应力:lim△Q/△A=S △A→0 应变:物体形状的改变 位移:弹性体内质点位置的变化 10、问题的微分方程提法、等效积分提法和泛函变分提法之间有何关系?何谓“强形 式”?何谓“弱形式”,两者有何区别?建立弱形式的关键步骤是什么?

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

有限元法基本原理与应用

有限元法基本原理与应用 班级机械2081 姓名方志平 指导老师钟相强 摘要:有限元法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 关键词:有限元法;变分原理;加权余量法;函数。 Abstract:Finite element method is based on the variational principle and the weighted residual method, the basic idea is to solve the computational domain is divided into a finite number of non-overlapping units, each unit, select some appropriate function for solving the interpolation node points as , the differential variables rewritten or its derivative by the variable value of the selected node interpolation functions consisting of linear expressions, by means of variational principle or weighted residual method, the discrete differential equations to solve. Different forms of weight functions and interpolation functions, it constitutes a different finite element method. Keywords:Finite element method; variational principle; weighted residual method; function。 引言 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计

《弹性力学及有限单元法》学习指南

第一章绪 论 学习指导 在学习本章时,要求学生理解和掌握下面的主要内容: 1、弹性力学的研究内容,及其研究对象和研究方法,认清他们与材料力学的区别; 2、弹性力学的几个主要物理量的定义、量纲、正负方向及符号规定等,及其与材料力学相比的不同之处; 3、弹性力学的几个基本假定,及其在建立弹性力学基本方程时的应用。 §1-1弹性力学的内容 弹性体力学,简称弹性力学,弹性理论(Theory of Elasticity或Elasticity),研究弹性体由于受外力、边界约束或温度改变等原因而发生的应力、形变和位移。这里指出了弹性力学的研究对象是弹性体;研究的目标是变形等效应,即应力、形变和位移;而引起变形等效应的原因主要是外力作用,边界约束作用(固定约束,弹性约束,边界上的强迫位移等)以及弹性体内温度改变的作用。 首先,我们来比较几门力学的研究对象。理论力学一般不考虑物体内部的形变,把物体当成刚性体来分析其静止或运动状态。材料力学主要研究杆件,如柱体、梁和轴,在拉压、剪切、弯曲和扭转等作用下的应力、形变和位移。结构力学研究杆系结构,如桁架、刚架或两者混合

的构架等。而弹性力学研究各种形状的弹性体,除杆件外,还研究平面体、空间体,板和壳等。因此,弹性力学的研究对象要广泛得多。 其次,从研究方法来看,弹性力学和材料力学既有相似之外,又有一定区别。弹性力学研究问题,在弹性体区域内必须严格考虑静力学、几何学和物理学三方面条件,在边界上严格考虑受力条件或约束条件,由此建立微分方程和边界条件进行求解,得出较精确的解答。而材料力学虽然也考虑这几方面的条件,但不是十分严格的。例如,材料力学常引用近似的计算假设(如平面截面假设)来简化问题,使问题的求解大为简化;並在许多方面进行了近似的处理,如在梁中忽略了бy的作用,且平衡条件和边界条件也不是严格地滿足的。一般地说,由于材料力学建立的是近似理论,因此得出的是近似的解答。但是,对于细长的杆件结构而言,材料力学解答的精度是足够的,附合工程上的要求(例如误差在5%以下)。对于非杆件结构,用材料力学方法得出的解答,往往具有较大的误差。这就是为什么材料力学只研究和适用于杆件问题的原因。 弹性力学是固体力学的一个分支,实际上它也是各门固体力学的基础。因为弹性力学在区域内和边界上所考虑的一些条件,也是其他固体力学必须考虑的基本条件。弹性力学的许多基本解答,也常供其他固体力学应用或参考。 弹性力学在土木、水利、机械、航空等工程学科中占有重要的地位。这是因为,许多工程结构是非杆件形状的,须要用弹性力学方法进行分

有限单元法

有限单元法 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。 对于有限元方法,其基本思路和解题步骤可归纳为 (1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。 (2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。 (3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元基函数。有限元方法中的基函数是在单元中选取的,由于各单元具有规则的几何形状,在选取基函数时可遵循一定的法则。 (4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的参数值)的代数方程组,称为单元有限元方程。 (5)总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程。

弹性力学及有限元试题

弹性力学及有限元试题 (一) 问答题(20分) 1、什么是圣维南原理?举例说明怎样把它应用于工程问题 的简化中。 2、什么叫做一点的应力状态?如何表示一点的应力状态(要 求具体说明或表达)。 3、何谓逆解法和半逆解法?它们的理论依据是什么? 4、什么是平面应力问题?什么是平面应变问题?分别写出弹性力学平面应力问题和平面应变问题的物理方程。 5、要保证有限元方法解答的收敛性,位移模式必须满足那些条 件? (二) (10分) 1.利用坐标变换从直角坐标的平衡方程推导极坐标下平衡方程(无体力)。 2.利用坐标变换从直角坐标下几何方程推导极坐标下几何方程。 (三)已知,其他应力分量为零,求位移场。(10分) (四)设有矩形截面的悬臂粱,在 自由端受有集中荷载F;体力可以不

计。试根据材料力学公式,写出弯应力σx和切应力τxy的表达式,并取挤压应力σy=0,然后证明,这些表达式满足平衡微分方程和相容方程,再说明,这些表达式是否就表示正确的解答(10分)。 (五)设半平面体在直边界上受有集中力偶,单位宽度上力偶矩为M,试求应力分量(10分)。 提示:单位厚度上的力偶矩M的量纲是LMT-2,应力只能是M/ρ2的形式,所以可假设应力函数由:Φ=Φ(φ). (六) 铅直平面内的正方形薄板,边长为2a,四边固定,图5—18,只受重力的作用。设μ=0,试取位移分量的表达式为 用瑞利—里茨法求解(15分)。

(七)试按图示网格求解结点位移,取t =1m,μ= 0(15分)。 (八)用刚度集成法求下图所示结构的整体刚度矩阵K。(10分) 要求:单元刚度矩阵元素用e k形式表示;单元刚度矩阵用e K形式表 ij 示,其中e为单元号。

有限单元法原理与应用(第三版)

122123 60 组建 周年60组建 周年 主要完成人:朱伯芳 受奖单位:水电中心/结构材料所 【创新性】 全面系统地阐述了有限单元法的基本原理及其在土木、水利工程问题中的应用,包括弹性力学平面问题和空间问题、薄板、薄壳、厚板、厚壳、弹性稳定、塑性力学、大位移、断裂、动力反应、徐变、岩土力学、极限分析、混凝土和钢筋混凝土、流体力学、渗流分析、热传导、工程反分析、仿真分析、网格自动生成、误差估计及自适应技术等。本书取材实用、由浅入深、先易后难,便于自学;对于实际工程中有用的计算方法力求讲述清楚并给出具体计算公式,便于应用;对有限元法的工程应用,注意工程的物理特性,要求采用的概化假定、计算参数和计算荷载等尽量接近实际,注重计算方法精度的适应性等,并重视有限元计算结果与实际观测资料相验证。【影响力】 我国最早的有限元专著之一,为在我国推广有限元法发挥了重要作用;本书共出版三版,第一版于1976年8月,第二版于1998年10月,第三版于2009 年6月;曾作为多所高校的有限元课程教材使 用;英文版已由清华大学出版社和美国Wiley 出版社联合出版;中国科学技术信息研究所编著的《中国高被引指数分析》(2011版)中,本书列为国内水利工程领域高被引图书第2名。 有限单元法原理与应用(第三版) 著作类成果 【Innovation】 This book expounds, in an all-round and systematic manner, the basic theory of the finite element method and its application to civil engineering and hydraulic engineering , including plane and space problems of elasticity, thin plate, thin shell, thick plate, thick shell, elastic stability, plasticity, large displacement, fracture, dynamic response, creep, rock and soil mechanics, limit analysis, concrete and reinforced concrete, fluid mechanics, seepage analysis, heat conduction, back analysis in engineering, simulated analysis, automatic generation of meshes, error estimation and adaptive technique. This book is learner-friendly because it contains practical content and expounds knowledge step by step and from easy to difficult; and is also easy to use because it strives to clarify the computing methods usable in actual engineering and gives corresponding formulas. Regarding the engineering application of the finite element method, it pays attention to the physical characteristics of projects, requires adopted conceptualized assumption, calculation parameter and calculation load be close enough to reality and accuracy of calculation methods be adaptive, and stresses the verification between the calculation result of the finite element method and actual observational data. 【Influence】 Amongst the earliest finite element books in China, this book plays an important role in generalizing the finite element method in China. It has registered three editions, with the first edition published in August, 1976, the second edition in October, 1998 and the third edition in June, 2009. It served as a finite element textbook of many colleges and universities; and its English version has been published jointly by Tsinghua University Press and the U.S.-based Wiley & Sons, Inc. This book ranks second amongst the highly-cited books of hydraulic engineering in China, according to the Analysis Report of Chinese Highly Cited Paper 2011 of the Institute of Scientific and Technical Information of China (ISTIC) Main Contributor : Zhu Bofang Award-winning Unit : Research Center for Sustainable Hydropower/Department of Structures and Materials THE FINITE ELEMENT METHOD THEORY AND APPLICATIONS(EDITION III)

最新有限单元法部分课后题答案

1.1 有限单元法中“离散”的含义是什么?有限单元法是如何将具有无限自由度的连续介质问题转变成有限自由度问题的?位移有限元法的标准化程式是怎样的? (1)离散的含义即将结构离散化,即用假想的线或面将连续体分割成数目有限的单元,并在其上设定有限个节点;用这些单元组成的单元集合体代替原来的连续体,而场函数的节点值将成为问题的基本未知量。 (2)给每个单元选择合适的位移函数或称位移模式来近似地表示单元内位移分布规律,即通过插值以单元节点位移表示单元内任意点的位移。因节点位移个数是有限的,故无限自由度问题被转变成了有限自由度问题。 (3)有限元法的标准化程式:结构或区域离散,单元分析,整体分析,数值求解。 1.3 单元刚度矩阵和整体刚度矩阵各有哪些性质?各自的物理意义是什么?两者有何区别?单元刚度矩阵的性质:对称性、奇异性(单元刚度矩阵的行列式为零)。整体刚度矩阵的性质:对称性、奇异性、稀疏性。单元 Kij 物理意义 Kij 即单元节点位移向量中第 j 个自由度发生单位位移而其他位移分量为零时,在第 j 个自由度方向引起的节点力。整体刚度矩阵 K 中每一列元素的物理意义是:要迫使结构的某节点位移自由度发生单位位移,而其他节点位移都保持为零的变形状态,在所有个节点上需要施加的节点荷载。 2.2 什么叫应变能?什么叫外力势能?试叙述势能变分原理和最小势能原理,并回答下述问题:势能变分原理代表什么控制方程和边界条件?其中附加了哪些条件? (1)在外力作用下,物体内部将产生应力σ和应变ε,外力所做的功将以变形能的形式储存起来,这种能量称为应变能。 (2)外力势能就是外力功的负值。 (3)势能变分原理可叙述如下:在所有满足边界条件的协调位移中,那些满足静力平衡条件的位移使物体势能泛函取驻值,即势能的变分为零 δ∏p=δ Uε+δV=0 此即变分方程。对于线性弹性体,势能取最小值,即 δ2∏P=δ2Uε+δ2V≥0 此时的势能变分原理就是著名的最小势能原理。 势能变分原理代表平衡方程、本构方程和应力边界条件,其中附加了几何方程和位移边界条件。 2.3 什么是强形式?什么是弱形式?两者有何区别?建立弱形式的关键步骤是什么? 等效积分形式通过分部积分,称式 ∫ΩCT(v)D(u)dΩ+∫ΓET(v)F(u)dΓ 为微分方程的弱形式,相对而言,定解问题的微分方程称为强形式。 区别:弱形式得不到解析解。建立弱形式的关键步骤:对场函数要求较低阶的连续性。2.4 为了使计算结果能够收敛于精确解,位移函数需要满足哪些条件?为什么? 只要位移函数满足两个基本要求,即完备性和协调性,计算结果便收敛于精确解。 2.6 为什么采用变分法求解通常只能得到近似解?变分法的应用常遇到什么困难?Ritz 法收敛的条件是什么? (1)在 Ritz 法中,N 决定了试探函数的基本形态,待定参数使得场函数具有一定的任意性。如果真实场函数包含在试探函数之内,则变分法得到的解答是精确的;如果试探函数取自完全的函数序列,则当项数不断增加时,近似解将趋近于精确解。然而,通常情况下试探函数不会将真实场函数完全包含在内,实际计算时也不可能取无穷多项。因此,试探函数只能是真实场函数的近似。可见,变分法就是在某个假定的范围内找出最佳解答,近似性就源于此。 (2)采用变分法近似求解,要求在整个求解区域内预先给出满足边界条件的场函数。通常情况下这是不可能的,因而变分法的应用受到了限制。 (3)Ritz 法的收敛条件是要求试探函数具有完备性和连续性,也就是说,如果试探函数满足完备性和连续性的要求,当试探函数的项数趋近于无穷时,则 Ritz 法的近似解将趋近于数学微分方程的精确解。 3.1 构造单元形函数有哪些基本原则? 形函数是定义于单元内坐标的连续函数。单元位移函数通常采用多项式,其中的待定常数应该与单元节点自由度数相等。为满足完备性要求,位移函数中必须包括常函数和一次式,即完全一次多项式。多项式的选取应由低阶到高阶,尽量选择完全多项式以提高单元的精度。若由于项数限制而不能选取完全多项式时,也应使完全多项式具有坐标的对称性,并且一

有限单元法

《有限元法》复习题 一. 单选题 1.平面刚架单元坐标转换矩阵的阶数为( ) A .2?2 B .2?4 C .4?4 D .6?6 2.图示的四根杆组成的平面刚架结构,用杆单元进行有限元分析,单元和节点的划分如图示,则总体刚度矩阵的大小为( ) A.8?8阶矩阵 B.10?10阶矩阵 C.12?12阶矩阵 D.16?16阶矩阵 3.坐标转换矩阵可归类为( ) A.正交矩阵 B.奇异矩阵 C.正定矩阵 D.对称矩阵 4.图示弹簧系统的总体刚度矩阵为( ) A 111123 2224443400 0000k k k k k k k k k k k k k k -????-++-???? -+??-+?? B. 111122224443400 0000k k k k k k k k k k k k k -????-+-???? -+-??-+?? C. 111123 2322443 4 3400 00 k k k k k k k k k k k k k k k k -????-++--???? -+-??--+?? D. 111122322443 4 340 00 k k k k k k k k k k k k k k k -????-+--???? -+??--+?? 5.确定已知三角形单元的局部码为1(e),2(e),3(e),对应总码依次为3,6,4,则其单元的刚度矩阵中的元素k 24应放在总体刚度矩阵的( )。 A.1行2列 B.3行12列 C.6行12列 D.3行6列 6.对一根只受轴向载荷的杆单元,k 12为负号的物理意义可理解为( ) A.当节点2沿轴向产生位移时,在节点1引起的载荷与其方向相同 B.当节点2沿轴向产生位移时,在节点1引起的载荷与其方向相反 C.当节点2沿轴向产生位移时,在节点1引起的位移与其方向相同 D.当节点2沿轴向产生位移时,在节点1引起的位移与其方向相反 7.平面桁架中,节点3处铅直方向位移为已知,若用置大数法引入支承条件,则应将总体刚度矩阵中的( ) A.第3行和第3列上的所有元素换为大数A B.第6行第6列上的对角线元素乘以大数A C.第3行和第3列上的所有元素换为零 D.第6行和第6列上的所有元素换为零 8.在任何一个单元内( ) A.只有节点符合位移模式 B.只有边界点符合位移模式 C.只有边界点和节点符合位移模式 D.单元内任意点均符合位移模式 9.平面应力问题中(Z 轴与该平面垂直),所有非零应力分量均位于( ) A.XY 平面内 B.XZ 平面内 C.YZ 平面内 D.XYZ 空间内 12.刚架杆单元与平面三角形单元( ) A.单元刚度矩阵阶数不同 B.局部坐标系的维数不同 C.无任何不同 D.节点截荷和位移分量数不同 13.图示平面结构的总体刚度矩阵[K]和竖带矩阵[K *]的元素总数分别是( ) A.400和200 B.400和160 C.484和200 D.484和160 14.在有限元分析中,划分单元时,在应力变化大的区域应该( ) A.单元数量应多一些,单元尺寸小一些 B.单元数量应少一些,单元尺寸大一些 C.单元数量应多一些,单元尺寸大一些 D.单元尺寸和数量随便确定 15.在平面应力问题中,沿板厚方向( ) A.应变为零,但应力不为零 B.应力为零,但应变不为零 C.应变、应力都为零 D.应变、应力都不为零 16.若把平面应力问题的单元刚度矩阵改为平面应变问题的单元刚度矩阵只需将( ) A. E 换成E/(1-μ2),μ换成μ/(1-μ2) B. E 换成E/(1-μ2),μ换成μ/(1-μ) C. E 换成E/(1-μ),μ换成μ/(1-μ2) D. E 换成E/(1-μ),μ换成μ/(1-μ) 17.图示三角形单元非节点载荷的节点等效载荷为( ) A.F yi =-100KN F yj =-50KN F yk =0 B. F yi =-80KN F yj =-70KN F yk =0 C. F yi =-70KN F yj =-80KN F yk =0

弹性力学与有限元分析试题及参考答案

弹性力学与有限元分析试题及参考答案 四、分析计算题 1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的应力分量是否可能在弹性体中存在。 (1)By Ax x +=σ,Dy Cx y +=σ,Fy Ex xy +=τ; (2))(22y x A x +=σ,)(22y x B y +=σ,Cxy xy =τ; 其中,A ,B ,C ,D ,E ,F 为常数。 解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程 ????? ??=??+??=??+??0 0x y y x xy y yx x τστσ;(2)在区域内的相容方程()02222=+??? ? ????+??y x y x σσ;(3)在边界上的应力边界条件()()()() ???? ?=+=+s f l m s f m l y s xy y x s yx x τστσ;(4)对于多连体的位移单值条件。 (1)此组应力分量满足相容方程。为了满足平衡微分方程,必须A =-F ,D =-E 。此外还应满足应力边界条件。 (2)为了满足相容方程,其系数必须满足A +B =0;为了满足平衡微分方程,其系数必须满足A =B =-C /2。上两式是矛盾的,因此,此组应力分量不可能存在。 2、已知应力分量312x C Qxy x +-=σ,22 23xy C y -=σ,y x C y C xy 2 332--=τ,体力不计,Q 为常数。试利用平衡微分方程求系数C 1,C 2,C 3。 解:将所给应力分量代入平衡微分方程 ???? ?? ?=??+??=??+??00x y y x xy y yx x τστσ 得 ?? ?=--=--+-0 230 33322322212xy C xy C x C y C x C Qy 即 ()()()?? ?=+=+--0 230 333222231xy C C y C Q x C C 由x ,y 的任意性,得

有限元分析基础复习题

《有限元分析基础》复习题 1. 有限元法有什么特点和优势? 2. 简述有限元法的基本步骤和基本思想。 3. 有限元法有哪些热点问题? 4. 单元、节点、节点力和节点载荷分别是指什么? 5. 简要分析选择位移函数的一般原则。 6. 简要分析有限元法的收敛准则。什么叫协调元、非协调元和完备元? 7. 什么叫虚功原理和最小势能原理?并列出其一般表达式。 8. 分别列出平面杆、平面梁单元的形状函数列阵、应变矩阵和应力矩阵,并说明其 中各符号的含义。 9. 写出平面杆单元的坐标变换矩阵,并给出局部坐标系下单元刚度矩阵与总体坐标 系下单元刚度矩阵的变换关系,并说明其中各符号的含义。 10. 试用最小势能原理推导杆、平面梁单元的刚度方程,并给出单元刚度矩阵的具 体表达式,并说明其中各符号的含义。 11. 简要分析Mises等效应力准则,并说明其中各符号的含义。 12. 简述二维连续体问题虚功原理及其具体表达,并说明其中各符号的含义。 13. 列出二维连续体问题的单元平衡方程、几何方程以及物理方程,并说明其中各 符号的含义。 14. 试用最小势能原理推导二维连续体问题的单元刚度方程,并说明其中各符号的 含义。 15. 简述达朗贝尔原理,并给出二维问题的具体表达,说明其中各符号的含义。 16. 列出结构动力学方程和特征方程,并说明其中各符号的含义。 17. 给出结构振动平面弹性问题的几何方程和物理方程,说明其中各符号的含义, 并分析其与静力学问题的不同之处。 18. 简述一致质量矩阵和集中质量矩阵的含义,并用杆单元加以说明。 19. 简要分析传热过程分析的重要意义。 20. 给出热传导问题的控制方程,并说明其中各符号的含义。 21. 连续体的热问题包括哪两个部分?并分析其相互影响。 22. 列出下图所示2杆桁架结构各单元在总体坐标中的刚度矩阵,并将其组装成总 体刚度矩阵,再求出各节点位移。其中,θ=45o,X2=10×106 N,Y2=5×106 N,杆1横截面积为A1=0.15 m2,杆2横截面积为Array A2=0.1 m2,弹性模量为E=210 GPa,杆2的 长度为1 m。

《弹性力学及有限元》教学大纲

《弹性力学及有限元》教学大纲 大纲说明 课程代码:5125004 总学时:40学时(讲课32学时,上机8学时) 总学分:2.5学分 课程类别:必修 适用专业:土木工程专业(本科) 预修要求:高等数学、理论力学、材料力学 课程的性质、目的、任务: 本课程是土木工程专业限选修的一门专业基础课。本课程的教学目的,是使学生在理论力学和材料力学等课程的基础上进一步掌握弹性力学的基本概念、原理和方法,了解弹性力学问题的求解思路、方法和解答,为学习相关专业课程打下初步的弹性力学基础。在此基础上,使学生掌握有限单元法的基本概念、理论、方法,了解和应用ANSYS大型结构分析程序求解简单的弹性力学问题。 课程教学的基本要求: 本课程教学环节主要包括:课堂讲授、习题课、作业、答疑、上机计算、考试。采用课堂授课方式,重点章节安排习题课。课后布置一定量的习题,以便掌握弹性力学与有限单元法的基本概念、原理和方法,用弹性力学的求解方法及大型结构分析有限单元程序求解简单的弹性力学问题。考试采用开卷方式。 大纲的使用说明: 本大纲适用于土木工程本科专业40课时的《弹性力学及有限元》课程. 大纲正文 第一章绪论学时:6学时(讲课6学时) 本章讲授要点:了解弹性力学的研究内容,理解体力、面力、应力、应变和位移等基本概念,熟悉体力、面力、应力、应变、位移等力学量的记号和符号的有关规定,理解弹性力学的基本假定;了解有限单元法的发展,掌握泛函、变分和泛函极值等基本概念;了解加权残值、里兹与伽辽金等方法。 重点:弹性力学中的应力、应变和位移等基本概念;泛函、变分、驻值等基本概念;加权残值、里兹与伽辽金等方法。 难点:应力、应变;泛函、变分、驻值;加权残值法、里兹法与伽辽金法。 第一节弹性力学的内容 第二节弹性力学中的几个基本概念 第三节弹性力学中的基本假定 第四节有限单元法的发展简介 第五节变分原理.泛函.变分.驻值 第六节加权残值法、里兹法与伽辽金法

相关主题
文本预览
相关文档 最新文档