当前位置:文档之家› 波长254nm紫外线辐照计原理及维护

波长254nm紫外线辐照计原理及维护

波长254nm紫外线辐照计原理及维护
波长254nm紫外线辐照计原理及维护

波长254nm紫外线辐照计原理及维护

原理及适用行业

波长范围为254nm紫外线辐射照度计测量原理:双积分式A/D转换。是使用专用的盲管紫外线传感器技术,不受阳光灯光等其它射线干扰、测量精度高、性能稳定。具有自动电池欠压指示及数据保持功能。整机设计紧凑,使用非常方便。适用于医院、卫生防疫部门、化工、电子、食品加工厂、娱乐场所等用于消毒的紫外线灯辐照强度的监测。与目前常用的紫外线辐射照度计相比,该仪表具有巨大的技术优势,是目前常用紫外线辐射照度计的升级换代产品。具体表现在:

盲管技术紫外线辐射照度计不受阳光灯光等其它射线干扰、测量精度高,专测254nm 紫外辐射强度。目前大家常用的辐照仪开机后都不指示为零,而且指示值每次开机都变化不定,因为它受到了可见光和其它波长杂紫外光的干扰,不能真正反映灯管的实际辐照强度,为紫外灯消毒效果留下隐患。

平衡电路紫外线辐射照度计性能稳定,数据不漂移。目前大家常用的紫外线辐射照度计数据的重现性通常都不好,特别是随着使用时间增加,同样强度的光源,每年的读数都不同,这样给经销商带来大量的麻烦,同时用户业觉得疑惑和苦恼。

保养、维护及安全操作准则

仪表应由专人养护、使用。按国家对计量产品相关要求进行校对。注意不要在高温、高湿、易燃、易爆和强磁声环境中存放、使用仪表、清洁仪表只能使用湿布和少量洗涤剂,切忌用化学溶剂擦拭表壳,如发现仪表有任何异常,应立即停止使用并送维修。

因紫外线对人体皮肤及眼睛有损害,所以测量中要注意安全防护,以免损害身体健康。请勿改变仪表内部接线,以免损坏仪表和危及安全。

紫外辐射计UV-B说明书

UV—B型紫外辐照计 该仪器适用于杀菌、光刻、水处理、医疗、育种等领域的紫外辐照度测量工作。 u主要性能指标 * 波长范围及峰值波长:(光谱响应曲线见图1) (1)UV254探头 λ:(230~300)nm;λp=254nm (2)UV297探头 λ:(275~330)nm;λp=297nm * 辐照度测量范围: (0.1~199.9×103)μW/cm2 * 紫外带外区杂光: UV254:小于0.1% UV297:小于0.05% * 准确度: ±10% * 角度响应特性: 符合国家二级光照度计标准 * 响应时间: 1秒 * 使用环境: 温度(0~40)℃;湿度<85%RH * 尺寸和重量: 180mm×80mm×36mm;0.2kg * 电源: 6F22型9V积层电池一只 u结构: 仪器由紫外探头UV254(或UV297)和读数单元两部分组成,二者通过电缆用插头

和插座连接。读数单元左侧的各按键作用分别为: “电源”:按下此键为电源接通状态,抬起此键为电源断开状态。 “保持”:按下此键为数据保持状态,抬起此键为数据采样状态。(注:测量时应抬起此键)。 “UV254”:使用254探头测量时按下此键,(同时应将“UV297”键抬起)。 “UV297”:使用297探头测量时按下此键,(同时应将“UV254”键抬起)。 “×1” “×10”量程按键 “×100” “×1000” u操作: 进行紫外辐照度测量时,首先将“电源”键按下,再根据测量需要按下“UV254”(或“UV297”)键和所选定的量程键(注意:“UV254”和“UV297”两个键切勿同时按下),然后将相应的254探头(或297探头)插入读数单元的插孔内,打开探头盖,将探头光敏面置于待测位置,此时显示窗口上显示的数字与量程因子的乘积即为辐照度值(单位:μW/cm2)。如果欲将测量数据保持,可按下“保持”键(注意:不能在未按下量程键前按下“保持”键)。读数完成后应将“保持”键抬起,恢复到采样状态。测量完毕将电源键抬起(关)。 如果显示窗口的左端只显示“1”表明辐照度值超载,或表明在按下量程键前已误将“保持”键按下了,此时应按下更大的量程键或抬起“保持”键,正确操作。 当显示窗口左上方出现“LOBAT”或“←”符号时,应更换机内电池 u维护: 仪器长期存放应在温度(0~40)℃?湿度<85%RH的洁净环境中,避免仪器受强烈振动或摔打引起的损坏。 u保证: 仪器出厂一年内,如并非因使用和维护不当而产生故障,本厂免费修理或调换。对一年后需要复检或修理的仪器,本厂提供优惠服务。

紫外辐照计照度计LH-126C使用说明书

光学辐照计广泛用于测量光源的辐射功率密度,即单位面积内的辐射功率,单位:W/㎡,本产品还可以用于测量材料对光线的透过率、阻隔率以及环境温度测试。产品使用方便、测量准确、质量可靠! 应用领域 太阳光辐射强度测量、光学实验 材料对光线的透光率、遮光率、反射率测量 气象、医疗、食品、农业等领域

优点 1.测量范围大 2.测量精度高 3.自动切换量程 4.可测量功率峰值 5.可测量透光率、遮光率 6.带温度测试功 能 7.可保存100组测试数据8.中英文双语菜单 参数 1.响应光谱:220-280nm 2.响应中心:254nm 3.分辨率:1uW/c㎡ 4.测量范围:1uW/c㎡-1000W/㎡ 5.测量误差:±4% 6.采样频率:3次/秒

7.光窗直径:13mm 8.视窗 尺寸:48*48mm 9.产品尺寸:132x71x29mm 10.包装尺寸:185x115x60mm 11.产品净重:120g 12.工作电源:4节7号(AAA) 透光率和遮光率测量 1. 开机后按M键切换到模式2 2. 将功率计前端探头窗口对准辐射源,此时A和B都显示实时功率值,“A”闪动 3. 按OK键定标,锁定功率A即总功率(此时如需重新测定 总功率再按OK可以解锁A), 此时“B”开始闪动将被测样品置于光源和功率计探头 窗之间,由于被测物的遮 挡辐射功率会被衰减,此时B显示的就是透过的光功率,仪器自动计算出透过率: 即透过功率占总功率的百分比

4. 保存的数据可在模式2下按R键读取,具体操作同模式1 5. 按H键可以锁定数据,按OK键可以保存数据并解除B锁定,如果不需要保存数据则 再按H键解除B锁定 6. 设置菜单内模式2选项内可选择测量阻隔率:即阻隔功率占总功率的百分比

热辐射计算公式

传热学课程自学辅导资料 (热动专业) 二○○八年十月

传热学课程自学进度表 教材:《传热学》教材编者:杨世铭陶文铨出版社:高教出版时间:2006 1

注:期中(第10周左右)将前半部分测验作业寄给班主任,期末面授时将后半部分测验作业直接交给任课教师。总成绩中,作业占15分。 2

传热学课程自学指导书 第一章绪论 一、本章的核心、重点及前后联系 (一)本章的核心 1、导热、对流、辐射的基本概念。 2、传热过程传热量的计算。 (二)本章重点 1、导热、对流、辐射的基本概念。 2、传热过程传热量的计算。 (三)本章前后联系 简要介绍了热量传递的三种基本方式和传热过程 二、本章的基本概念、难点及学习方法指导 (一)本章的基本概念 1、热传导 导热(Heat Conduction):物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递称为导热。 特点:从宏观的现象看,是因物体直接接触,能量从高温部分传递到低温部分,中间没有明显的物质迁移。 从微观角度分析物体的导热机理: 气体:气体分子不规则运动时相互碰撞的结果。 导电固体:自由电子不规则运动相互碰撞的结果,自由电子的运动对其导热起主导作用。 非导电固体:通过晶格结构振动所产生的弹性波来实现热量传递,即院子、分子在其平衡位置振动。 液体:第一种观点类似于气体,只是复杂些,因液体分子的间距较近,分子间的作用力对碰撞的影响比气体大;第二种观点类似于非导电固体,主要依靠弹性波(晶格的振动,原子、分子在其平衡位置附近的振动产生的)的作用。 热流量:单位时间传递的热量称为热流量,用Ф表示,单位为W。 3

水准测量原理

第二章 水准测量 高程是确定地面点位置的要素之一,在工程建设的设计、施工与管理等阶段都具有十分重要的作用。测定地面点高程的工作称为高程测量。高程测量按所使用的仪器和施测方法不同,主要有水准测量和三角高程测量等。水准测量是高程测量中最常用的一种方法。本章主要介绍水准测量原理、水准仪的构造及其使用、水准测量的施测方法与成果整理以及仪器的检验与校正等内容。 2-1 水准测量原理 水准测量不是直接测定地面点的高程,而是测出两点间的高差。即在两个点上分别竖立水准尺,利用水准测量的仪器提供的一条水平视线,瞄准并在水准尺上读数,求得两点间的高差,从而由已知点高程推求未知点高程。 如图2-1所示,设已知A 点高程为A H ,用水准测量方法求未知点B 的高程B H 。在A 、B 两点中间安置水准仪,并在A 、B 两点上分别竖立水准尺,根据水准仪提供的水平视线在A 点水准尺上读数为a ,在B 点的水准尺上读数为b ,则A 、B 两点间的高差为: b a h AB -= (2-1) 图2-1 水准测量

原理 设水准测量是由A 点向B 点进行,如图2-1中箭头所示,则规定A 点为后视点,其水准尺读数a 为后视读数;B 点为前视点,其水准尺读数b 为前视读数。由此可见,两点之间的高差一定是“后视读数”减“前视读数”。如果a >b ,则高差AB h 为正,表示B 点比A 点高;如果a

角度测量的原理及其方法

角度测量的原理及其方法 角度测量原理 一、水平角测量原理 地面上两条直线之间的夹角在水平面上的投影称为水平角。如图 3-1所示,A、B、O为地面上的任意点,通OA和OB直线各作一垂 直面,并把OA和OB分别投影到水平投影面上,其投影线Oa和Ob 的夹角∠aOb,就是∠AOB的水平角β。 如果在角顶O上安置一个带有水平刻度盘的测角仪器,其度盘 中心O′在通过测站O点的铅垂线上,设OA和OB两条方向线在水 平刻度盘上的投影读数为a1和b1,则水平角β为: β= b1 - a1(3-1) 二、竖直角测量原理 在同一竖直面内视线和水平线之间的夹角称为竖直角或称垂直 角。如图3-2所示,视线在水平线之上称为仰角,符号为正;视线在 水平线之下称为俯角,符号为负。

图3-1 水平角测量原理图图3-2 竖直角测 量原理图 如果在测站点O上安置一个带有竖直刻度盘的测角仪器,其竖盘中心通过水平视线,设照准目标点A时视线的读数为n,水平视线的读数为m,则竖直角α为: α= n - m (3-2) 光学经纬仪 一、DJ6级光学经纬仪的构造 它主要由照准部(包括望远镜、竖直度盘、水准器、读数设备)、水平度盘、基座三部分组成。现将各组成部分分别介绍如下:1.望远镜 望远镜的构造和水准仪望远镜构造基本相同,是用来照准远方目标。它和横轴固连在一起放在支架上,并要求望远镜视准轴垂直于横轴,当横轴水平时,望远镜绕横轴旋转的视准面是一个铅垂面。为了控制望远镜的俯仰程度,在照准部外壳上还设置有一套望远镜制动和

微动螺旋。在照准部外壳上还设置有一套水平制动和微动螺旋,以控制水平方向的转动。当拧紧望远镜或照准部的制动螺旋后,转动微动螺旋,望远镜或照准部才能作微小的转动。 2.水平度盘 水平度盘是用光学玻璃制成圆盘,在盘上按顺时针方向从0°到360°刻有等角度的分划线。相邻两刻划线的格值有1°或30′两种。度盘固定在轴套上,轴套套在轴座上。水平度盘和照准部两者之间的转动关系,由离合器扳手或度盘变换手轮控制。 3.读数设备 我国制造的DJ6型光学经纬仪采用分微尺读数设备,它把度盘和分微尺的影像,通过一系列透镜的放大和棱镜的折射,反映到读数显微镜内进行读数。在读数显微镜内就能看到水平度盘和分微尺影像,如图3-4所示。度盘上两分划线所对的圆心角,称为度盘分划值。 在读数显微镜内所见到的长刻划线和大号数字是度盘分划线及其注记,短刻划线和小号数字是分微尺的分划线及其注记。分微尺的长度等于度盘1°的分划长度,分微尺分成6大格,每大格又分成10,每小格格值为1′,可估读到0.1′。分微尺的0°分划线是其指标线,它所指度盘上的位置与度盘分划线所截的分微尺长度就是分微尺读数值。为了直接读出小数值,使分微尺注数增大方向与度盘注数方向相反。读数时,以在分微尺上的度盘分划线为准读取度数,而后读取该度盘分划线与分微尺指标线之间的分微尺读数的分数,并估读

Uvx-254紫外辐照计使用说明

Uvx-254紫外辐照计使用说明一、标准规定: 二、产品简介: 紫外线的UVC波段,又称为短波灭菌紫外线,紫外线杀菌灯发出的就是UVC短波紫外线,紫外辐照计专业用于测量UVC紫外线强度,即单位面积的UVC紫外线辐射能功率。该UVC仪器适用于杀菌、光刻、紫外光源、水处理、医疗、育等领域的紫外辐照度测量工作。 三、UVX-254的结构和参数: 1、光谱响应:λ(230nm-280nm) λp=254nm 2、主机尺寸:长130mm宽70mm高28mm 3、分辨率:0.1uw/cm 4、测量精度:±10% 5、量程范围0-40000uw/cm 6、探头线长:1米 7、探头尺寸:直径45mm*厚16mm 8、仪器重量:250g 9、电池:1000mah可充电锂电池(不可自己更换)

10、使用环境:温度(0-40)℃,湿度<85%RH 四、按键操作: 1.参加设置 在关机状态下,长按" ",进入设置模式选择是否自动关 机(AUTOOFF:ON/OFF):短按" "选择ON/OFF选择ON,仪 器9分钟无操作,自动关机选择OFF,仪器需要手动关机,短 按设置完成,仪器进入到测量模式. 2.开机/关机短按" "键执行开机/关机操作 3. 按键 ●开机后,进入实时数据测量状态,同时显示最大值和当 前值,短按键当前值在LCD上"保持"最大值继续记录,并 且保持当前最大值和当前值在历史记录中.再次按键, 取消HOLD功能,进入实时数据测量状态. ●在测量模式,长按键,保存最大值和当前值在历史记 录中,并且清除最大值和当前值,开始新的测量。 4." "按键记录查询键,查询存储的历史保持数据.在"HOLD"状态下的数据自动存储到"历史保持数据组"中记 录组中可以存储8组数据,超过8组数据时,自动删除最旧的 记录值.在"记录查询"状态下,长按" "清除所有纪录值.记 录数据关机不丢失(更换电池时清除所有纪录值). 五、测量及事项注意: 1.仪器探头接收窗口正对紫外光源,即可获得当前测试 点的紫外线辐射能功率密度,同时显示最大值(MAX)和 当前值(RT)。 2.仪器探头背部自带磁铁,可以吸附在铁板上,方便固定. 3.不使用时,请按" "键关机. 4.避免与腐蚀性物品接触,远离高湿的环境. 5.关机后请将其放入专用包装内,妥善保管. 6.检验周期:建议校检的周期为一年. 7.把探头保存于有干燥剂的密码箱/塑料袋里。 六、紫外标尺挂钩: 为了符合国家标准测量保证UVC紫外辐照计位于灯管 下1米中央处我司也生产紫外标尺寸挂钩供选购,此 挂钩为1米长,直接挂到灯管上,以方便现场的紫外强 度测量。 七、测量特别说明: 1.对于测试数据,判定是否合格数据,看测量的MAX(最大值)即可. 2.仪器具有9分钟自动关机并保持关机前的数据功能,关 机后,重新开机的显示数据为上次关机时的数据.如果是 9分钟自动关机,重开机的数据就是上次过程中的MAX(最

核辐射测量原理复习知识要点

第一章 辐射源 1、实验室常用辐射源有哪几类?按产生机制每一类又可细分为哪几种? 带电粒子源 快电子源: β衰变 内转换 俄歇电子 重带电粒子源: α衰变 自发裂变 非带电粒子源 电子辐射源:伴随衰变的辐射、湮没辐射、伴随核反应的射线、轫致辐射、特征X 射线 中子源:自发裂变、放射性同位素(α,n )源、光致中子源、加速的带电粒子引起的反应 2、选择辐射源时,常需要考虑的几个因素是什么? 答:能量,活度,半衰期。 3、252Cf 可做哪些辐射源? 答:重带点粒子源(α衰变和自发裂变均可)、中子源。 第二章 射线与物质的相互作用 电离损失:入射带电粒子与核外电子发生库仑相互作用,以使靶物质原子电离或激发的方式而损失其能量 作用机制:入射带电粒子与靶原子的核外电子间的非弹性碰撞。 辐射损失:入射带电粒子与原子核发生库仑相互作用,以辐射光子的方式损失其能量。 作用机制:入射带电粒子与靶原子核间的非弹性碰撞。 能量歧离:单能粒子穿过一定厚度的物质后,将不再是单能的,而发生了能量的离散;这种能量损失的统计分布,称为能量歧离。 引起能量歧离的本质是:能量损失的随机性。 射程:带电粒子沿入射方向所行径的最大距离。 路程:入射粒子在物质中行径的实际轨迹长度。 入射粒子的射程:入射粒子在物质中运动时,不断损失能量,待能量耗尽就停留在物质中,它沿原来入射方向所穿过的最大距离,称为入射粒子在该物质中的射程。 重带电粒子与物质相互作用的特点: 1、主要为电离能量损失 2、单位路径上有多次作用——单位路径上会产生许多离子对 3、每次碰撞损失能量少 4、运动径迹近似为直线 5、在所有材料中的射程均很短 电离损失: 辐射损失: 快电子与物质相互作用的特点: 1、电离能量损失和辐射能量损失 2、单位路径上较少相互作用——单位路径上产生较少的离子对 3、每次碰撞损失能量大 4、路径不是直线,散射大 ?? ???242ion 0dE 4πz e -=NZB dx m v ()()??rad ion dE/dx E Z dE/dx 800 2 22NZ m E z dx dE rad ∝??? ??-21m S rad ∝E S rad ∝2 NZ S rad ∝

UV-A+B紫外辐照计操作规程

UV-A+B紫外辐照计操作规程 仪器名称:紫外辐照计 V-A型紫外辐照计 仪器操作方法: (1)将“电源”键按下。 (2)按下“ UV365”键(注意:“ UV365”和“UV420”两个键切勿同时按下)。 (3 )选定量程并按下相应量程键。如果显示窗口左端只显示“1”,表明辐照度值超载,此时应按下更大的量程键;或表明在按下量程键前已误将“HOLD”键按下,此时抬起“HOLD”键。 (4)将UV365探头插入显示单元的插孔内,打开探头盖,将探头光敏面置于待测位置。 (5)读数:显示窗口上显示数字与量程因子相乘即为辐照度值(单位:μ W/cm2)。如果欲将测量数据保持,可按下“HOLD”键(注意:不能在未按下量程键之前按下“HOLD”键)。 (6)读数结束将“HOLD”键抬起,恢复到采样状态。 (7)测量结束将电源键及其他键抬起(关)。 仪器故障排除: (1)当显示窗口左上方出现“LOBAT”或“←”符号时,应更换机内电池。(2)在量程和波段键均被正确选择的情况下,若显示窗口的左端仍显示“1”,应该更换电池。 (3)探头盖未打开,数据显示却不为零时,按下任意量程键。 (4)探头有光照的情况下显示为零时,先查看探头盖是否打开,再查看“HOLD”键是否处于抬起状态。 (5)数字显示不稳定,检查探头的插头是否插实。

(6)探头未经紫外光源照射的情况下,仍有数字输出。查看使用环境是否有其他波段强光源。本仪器只适用于在环境照度较小的条件下使用。 仪器名称:UV-B型紫外辐照计 仪器操作方法: (1)将“电源”键按下。 (2)选择探头:选择UV254探头时,按下“UV254”键(同时“UV297”键应弹起);选择UV297探头时,按下“UV297”键(同时“UV254”键应弹起)。注意:“UV254”和“UV297”两个键切勿同时按下。 (3)选定量程并按下相应量程键。如果显示窗口左端只显示“1”,表明辐照度值超载,此时应按下更大的量程键;或表明在按下量程 键前已误将“HOLD”键按下,此时抬起“HOLD”键。 (4)将相应的UV254探头(或UV297探头)插入显示单元的插孔内,打开探头盖,将探头光敏面置于待测位置。 (5)读数:显 示窗口上 显示数字与量程因子相乘即为辐 照度值(单位:μW/cm2)。如果欲将测量数据保持,可按下“HOLD”键(注意:不能在未按下量程键之前按下“HOLD”键)。 (6)读数结

紫外辐照计与辐照度的关系2

紫外辐照计与辐照度的关系 紫外辐照计是宽谱线功率测量仪,主要用于测量紫外线的辐射能功率密度,即每平方厘米的辐射能功率。 主要应用领域 1. 建筑膜,太阳膜、隔热玻璃等对紫外线的阻隔性能测试; 2. 紫外线源(太阳,紫外灯等)的辐射强度测量; 3. 紫外消毒,固化; 4. 气象和农业生产领域 紫外辐照计检测的是紫外线的辐射强度,用于光化学、探伤、紫外光源、植物栽培、大规模集成电路光刻、高分子材料老化等领域的紫外辐射强度测量。 紫外辐照即紫外辐射,是波长为100-400nm的电磁辐射。是指单位面积上紫外线的辐射强度。常用来检测紫外辐射强度的仪器称为紫外辐照计,也叫紫外照度计。虽然叫照度计,但是其实与照度学没有太大的关系,照度学考察的是人眼能看到的可见光,而紫外照度计测量的是紫外光,人眼看不见,所以与辐照度有关。 辐照度称为辐射通量密度,是辐亮度对立体角的积分。对辐照度进行面积积分可得到辐射的功率。 定义1:单位时间内投射到单位面积上的辐射能量 定义2:物体在单位时间和表面上接收到的辐射能。单位W/m2

定义3:照射到包含所述点的无限小面元上辐射通量除以该面元的面积 定义4:单位时间内投射到单位面积上的辐射能量。辐照度(Ee , E)是一种物理参数,是在某一指定表面上单位面积上所接受的辐射能量。单位:瓦特/平方米 紫外辐照计测量的波长分为UVA(320nm-380nm), UVB(280nm-320nm),UVC(200nm-280nm),联辉科技紫外辐照计 LH-126A LH-126C LH-126A可检测UVC,UVB,UVA各种波段。广泛 应用杀菌,固化,药厂检测、污水处理、疾控中心、无损探伤检测、电焊弧光检测、紫外老化实验检测等行业。

热辐射实验

1.实验题目:热辐射与红外扫描成像系列实验 2.实验目的 1) 学习热辐射的背景知识及相关定律,理解科学家们创造性的思维方法和相关实验技术。 2) 学习用虚拟仪器研究热辐射基本定律,测量Planck 常数。 3) 了解红外扫描成像的基本原理,掌握扫描成像的实验方法和技术。 4) 培养学生运用热辐射的基本原理和相关技术进行基础研究和应用设计的能力。 3.实验内容 1) 验证热辐射基本定律,用黑体辐射公式测量Planck 常数 2) 研究和测定物体不同表面状态的辐射发射量 3) 研究辐射发射量与距离的关系 4) 红外扫描成像实验研究 5) 红外无损探伤实验研究 6) 红外温度计的设计与材料热性质的研究 7) 运用热辐射基本定律和本实验装置进行自主应用设计性实验 4.实验原理 1. 了解热辐射的基本概念和定律 当物体的温度高于绝对零度时,均有红外光向周围空间辐射出来,红外辐射的物理本质是热辐射。其微观机理是物体内部带电粒子不停的运动导致热辐射效应。热辐射的波长和频率在0.76?100μ之间,与电磁波一样具有反射、透射和吸收等性质。设辐射到物体上的能量为Q ,被物体吸收的能量为Q α,透过物体的能量为Q τ,被反射的能量为Q ρ。 由能量守恒定律可得: Q=Q α+Q τ+Q ρ归一化后可得: +1Q Q Q Q Q Q βαταβτ+=++= (1) 式中α为吸收率,τ为透射率,ρ为反射率。 1.1 基尔霍夫定律 基尔霍夫指出:物体的辐射发射量M 和吸收率α的比值M/α与物体的性质无关,都等同于在同一温度下的绝对黑体的辐射发射量M B ,这就是著名的基尔霍夫定律。

1 212()B M M M f t αα====L (2) 基尔霍夫定律不仅对所有波长的全辐射(或称总辐射)而言是正确的,而且对任意单色波长λ也是正确的。 1.2 绝对黑体 能完全吸收入射辐射,并具有最大辐射率的物体叫做绝对黑体。实验室中人工制作绝对黑体的条件是:1)腔壁近似等温,2)开孔面积<<腔体。 本实验中我们利用红外传感器测量辐射方盒表面的总辐射发射量M 。M 是所有波长的电磁波的光谱辐射发射量的总和,数学表达式为: M M d λλ∞ =∫ (3) 上式被称为斯蒂芬-玻尔兹曼定律。不同的物体,处于不同的温度,辐射发射量都不同,但有一定的规律。 比辐射率ε的定义:物体的辐射发射量与黑体的辐射发射量之比,即 00d =d B B T B M M M M λλλελελ ∞∞??==????∫∫物体辐射发射量黑体辐射发射量 (4) 由基尔霍夫定律可知,辐射发射量M与吸收率α的关系:B M M α= 由能量守恒定律和基尔霍夫定律,即公式(1)和(2)联立求解 1B M M αβτα++=??=? 可得: ()1B M M τρ=?? (5) 由上述知识可知,若我们测出物体的辐射发射量和黑体的辐射发射量,便可求出物体的吸收率,还可以获得物体反射率和透射率的有关信息。 2. 空气中热辐射的传播规律研究 我们知道,许多物理量都与距离 r 的反平方成正比。现代物理学认为,这很大程度上是由空间的几何结构决定的。以天体辐射为例,如果距离 r 的指数比 2 大或者比 2 小,就会影响太阳的辐射场,使地球温度过低或者过高,从而不适合碳基生命形式的存在。那么热源的辐射量与距离的关系是否也遵循这一规律呢?对于球形均值热源和各种不同形状和不同材料构成的热源的辐射量在空气中的衰减规律及其分布是否都遵循反平方定律呢? 我们首先引进几个概念。辐射功率 P :单位时间内传递的辐射能 W ,即

放射性同位素的检测方法和仪器

放射性同位素的检测方 法和仪器 Revised as of 23 November 2020

放射性同位素的检测方法和仪器 核辐射与物质间的相互作用是核辐射检测方法的物理基础。放射性同位素发出的射线与物质相互作用,会直接或间接地产生电离和激发等效应,利用这些效应,可以探测放射性的存在、放射性同位素的性质和强度。用来记录各种射线的数目,测量射线强度,分析射线能量的仪器统称为检测器。 一.核辐射的检测方法 使用相关核辐射检测仪器是检测核辐射的重要方法,利用物质衰变辐射后的电离、吸收和反射作用并结合α、β和γ射线的特点可以完成多种检测工作。对人体进行核辐射检查,主要先做物理性检测,如果发现检测指标异常,再进行生理性检测。主要采取以下方法: (一)使用核辐射在线测厚仪 核辐射在线测厚仪是利用物质对射线的吸收程度或核辐射散射与物质厚度有关的原理进行工作的。 (二)使用核辐射物位计

不同介质对γ射线的吸收能力是不同的,固体吸收能力最强,液体次之,气体最弱。若核辐射源和被测介质一定,则被测介质高度与穿过被测介质后的射线强度将被探测器将穿过被测介质的I值检测出来,并通过仪表显示H值。 (三)使用核辐射流量计 测量气体流量时,通常需将敏感元件插在被测气流中,这样会引起压差损失,若气体具有腐蚀性又会损坏敏感元件,应用核辐射测量流量即可避免上述问题。 (四)使用核辐射探伤 放射源放在被测管道内,沿着平行管道焊缝与探测器同步移动。当管道焊缝质量存在问题时,穿过管道的γ射线会产生突变,探测器将接到的信号经过放大,然后送入记录仪记录下来。 二.核辐射的检测仪器 检测核辐射有各种不同的仪器,一般将检测器分为两大类:一是“径迹型”检测器,如照像乳胶、云室、气泡室、火花室、电介质粒子探测器和光色探测器等,它们主要用于高能

银河系热辐射和非热辐射成分分离原理

银河系热辐射和非热辐射成分分离原理 摘要银河系内射电源的辐射机制主要有两种:热的自由—自由辐射和非热的同步辐射。分别来自于带电粒子的相互作用和相对论电子在磁场中的螺旋运动,与之相对应的强射电源是电离氢区和超新星遗迹,而且银河系的大尺度结构的背景辐射也是来自于同步辐射。将这两种辐射成分进行分离是研究银河系星际介质的重要手段。本文利用多波段的射电连续谱观测数据,建立了一种新的辐射成分分离方法,通过对观测数据每一个像素点对应的银河系辐射的谱指数进行分析,以达到热辐射和非热辐射成分分离的目的,并求出同步辐射成分谱指数在银河系内的分布情况。 关键词射电连续谱;超新星遗迹;电离氢区 0引言 由于在光学波段观测银道面会有消光效应的存在,所以射电波段的观测数据成为了研究银河系结构的主要工具。在射电波段,银河系辐射主要有两种辐射机制:热的轫致辐射(自由—自由辐射)和非热的同步辐射。自由—自由辐射源于带电粒子相互碰撞,同步辐射是由相对论电子在磁场中的螺旋运动产生的。在厘米和分米波段的射电连续谱中,观测到的两种强射电源——超新星遗迹和电离氢区(HII区)的辐射机制分别是同步辐射和自由—自由辐射。将这两种辐射成分分离,对于研究银河系的意义是重大的。利用分离后的结果,可以描述银河系内不同种类电子的分布,可以发现未知的射电源以及新的超新星遗迹和HII区,也可以对已知的超新星遗迹和HII区进行验证。利用超新星遗迹,又可以研究大质量恒星的晚期演化,了解其对星际介质的加热作用、超新星爆发时的构成元素,也可以研究星际介质的磁场结构。结合复合线数据,可以求得HII区的光度,这对确定银河系的哈勃类型有着重要的作用。同时由得到的非热辐射成分的谱指数分布,也可以更准确的对丢失大尺度结构的观测数据,进行大尺度结构辐射的补偿。 分离热辐射和非热辐射成分的方法,前人已经建立了几种模型(如Hinshaw et al. (2007),Marta I. R. Alves et al. (2011),Paladini et al. (2005)),但是这些模型或者存在着很大的不确定度,或者有诸多的局限。本文中,我们将设计一种新的方法,利用多波段的射电连续谱数据,通过对谱指数的分析,来实现热辐射成分和非热辐射成分的分离,并且求得观测数据每一个像素点所对应的非热辐射成分的谱指数。 1 分离方法 1.1数据的选取 现已完成的银河系全天巡天和银道面巡天观测有很多,但是一些早期的数据灵敏度很低,分辨率也非常差,而且没有电子版的数据,这样的数据并不适合做

水准测量的方法及其实施

水准测量的方法及其实施 水准测量原理 水准测量的基本测法是:在图2-1中,已知A点的高程为H A,只要能测出A点至B点的高程之差,简称高差h AB。,则B点的高程 H B就可用下式计算求得: H B=H A+h AB (2-1) 差h AB。的原理如图2-1所示, 在A、B两点上竖立水准尺, 并在A、B两点之间安置— 图2-1 水准测量原理示意图架可以得到水平视线的仪器 即水准仪,设水准仪的水平视线截在尺上的位置分别为M、N,过A 点作一水平线与过B点的竖线相交于C。因为BC的高度就是A、B 两点之间的高差h AB。,所以由矩形MACH就可以得到计算h AB的式: h AB = a - b (2-2) 测量时,a、b的值是用水准仪瞄准水准尺时直接读取的读数值。 因为A点为已知高程的点,通常称为后视点,其读数a为后视读数,

而B点称为前视点,其读数b为前视读数。即 h AB = 后视读数-前视读数 视线高H i=H A+a (2-3)B点高程H B=H i-b (2-4)综上所述要测算地面上两点间的高差或点的高程,所依据的就是一条水平视线,如果视线不水平,上述公式不成立,测算将发生错误。因此,视线必须水平,是水准测量中要牢牢记住的操作要领。 水准仪和水准尺 一、微倾式水准仪的构造 如图2-2所示,微倾式水准仪主要由望远镜、水准器和基座组成。水准仪的望远镜能绕仪器竖轴在水平方向转动,为了能精确地提供水平视线,在仪器构造上安置了一个能使望远镜上下作微小运动的微倾螺旋,所以称微倾式水准仪。 1.望远镜 望远镜由物镜、目镜和十字丝三个主要部分组成,它的主要作用是能使我们看清远处的目标,并提供一条照准读数值用的视线。 十字丝是在玻璃片上刻线后,装在十字丝环上,用三个或四个可

紫外辐照计的使用标准

深圳市林上科技有限公司 紫外辐照计的使用标准 紫外线杀菌是现今社会上最普遍的消毒方法之一,在医疗行业、水处理行业、食品行业等都已有广泛应用,但紫外线又是一个特别敏感的东西,在使用过程中会受诸多因素的影响,特别是灯管辐射强度及应用不当会影响消毒灭菌效果,所以国家对于杀菌灯强度检测仪就有严格要求,主要有: 1、环境要求:要求电压为220V,室内温度20℃-40℃左右,相对湿度为60%-80%。 2、不要在易燃易爆的场所使用,要在室内无人的情况使用。 3、仪器要垂直放在杀菌灯下1m处。 4、仪器要开灯5分钟稳定后,方可开始测量,且测量时间要大于30分钟。 5、对使用中的杀菌灯要定期进行强度监测,当强度低于70uW/cm2的时候要及时更换灯管(其中新灯管不能低于100uW/cm2)。 6、紫外辐照计要定期每年返回厂家校验一次。 紫外线杀菌灯的应用范围: 1、物体表面消毒 物体表面消毒时要求台面干净和光滑,要使表面全部能照到,如遇到物体是粗糙表面时,要延长照射时间,且两面均要受到照射,杀菌效果才更好。可用在:家庭的地面、桌面、台面消毒,食品真空包装等。 2、水的消毒 紫外线用在水消毒上要求水必须是透明的,浑浊的水会影响到紫外线杀菌的

效果,用紫外线灯对饮水消毒时,切记不要把灯管浸泡在水中,水的深度不能超过2cm,要使水接受90000uw/cm2以上的强度照射才能达到有效的消毒。 3、空气消毒 紫外线灯可以用于家庭房间、医院病房与实验室里的空气消毒,能够改变生物体的遗传物质,从而杀死空气中的细菌。 4、食品消毒 紫外线通过对引起微生物的杀菌及除菌,达到食品品质的稳定化,延长食品的保质期,从而降低食品中有害细菌。

辐射换热的计算

电磁波波长从几万分之一米到数千米

τ ρQ Q ++1 //=+Q Q Q Q τρ

单位面积辐射体在单位时间内向半球空间发射的波长为λ(+dλ区间)的能量。 黑体辐射的理论是建立在如下几个基本定律基础上的,即: 学理论得出) 1884热力学理论)

式中 Eb λ-- 光谱辐射力,W/m3 ; λ -- 波长,m ; T -- 黑体热力学温度,K ; e -- 自然对数的底; c1 --- 第一辐射常量, 3.742×10-16 W ·m2; c2 --- 第二辐射常量, 1.438× 10-2m ·K 。 Planck 认为黑体以hv 为能量单位,不断发射和吸收频率为 v 的辐射, hv 称为能量子 2. 维恩位移定律 由Planck 定律知 E λ=f(λ,T )如图, E λ有最大值; 随着T max 向左移动 1893热力学理论得出,由Plank ’s Law 求导,并令 )(01c const c 512=??? ???-==-T T b e d d d dE λλλλλ 光谱辐射力曲线下的面积是该温度下黑体 的辐射力 例题8-1 试分别计算温度为2000K 和5800K 的黑体的最大单色辐射力所对应的波长。 解: 应用Wien 位移定律 T=2000K 时 max=2.910-3/2000=1.45 m T=5800K 时 max=2.910-3/5800=0.50 m 常见物体最大辐射力对应的波长在红外线区 太阳辐射最大辐射力对应的波长在可见光区 如不是黑体,则不完全遵守这个定律,但其变化方向是相同的,例如金属(钢锭): 当T<500oC 时,没有可见光,颜色不变;T 增大,其颜色分别为暗红、鲜红、桔黄和白色。(P365) 3. 斯忒藩-玻耳兹曼定律 1879年Stefan 实验,1884年 Boltzman 热力学理论将Plank ’s Law 积分即得: 2 40 m /W T d E E b b σλλ==?∞ 为黑体辐射常数,其值为5.67 10-8W/( m2·K4)。为计算高温辐射的方便,可 改写为: 2 4 0W/m 100C ? ?? ??=T E b s J 10626.634??=-h

水准仪测量高程的方法和步骤

水准仪测量高程的方法和步骤 2010-11-28 01:58:11| 分类:工程测量|举报|字号订阅 [教程]第二章水准测量 未知2009-12-13 16:21:06 网络 内容:理解水准测量的基本原理;掌握 DS3 型微倾式水准仪、自动安平水准仪的构造特点、水准尺和尺垫;掌握水准仪的使用及检校方法;掌握水准测量的外业实施(观测、记录和检核)及内业数据处理(高差闭合差的调整)方法;了解水准测量的注意事项、精密水准仪和电子水准仪的构造及操作方法。 重点:水准测量原理;水准测量的外业实施及内业数据处理。 难点:水准仪的检验与校正。 §2.1 高程测量( Height Measurement )的概念 测量地面上各点高程的工作 , 称为高程测量。高程测量根据所使用的仪器和施测方法的不同,分为: (1)水准测量 (leveling) (2)三角高程测量 (trigonometric leveling) (3)气压高程测量 (air pressure leveling) (4)GPS 测量 (GPS leveling) §2.2 水准测量原理 一、基本原理 水准测量的原理是利用水准仪提供的“水平视线”,测量两点间高差,从而由已知点高程推算出未知点高程。

a ——后视读数 A ——后视点 b ——前视读数 B ——前视点 1、A 、 B 两点间高差: 2、测得两点间高差后,若已知 A 点高程,则可得B点的高程: 。 3、视线高程: 4、转点 TP(turning point) 的概念:当地面上两点的距离较远,或两点的高差太大,放置一次仪器不能测定其高差时,就需增设若干个临时传递高程的立尺点,称为转点。 二、连续水准测量

UV-B紫外辐照计使用说明书

UV-B 紫外辐照计使用说明书 https://www.doczj.com/doc/694618049.html, 2011-10-13 概述 适用于杀菌、光刻、水处理、医疗、育种等领域的紫外辐照度测量工作。 UV-B 紫外辐照计 有两个测量探头一一254nm 探头和297nm 探头,254nm 探头的仪器只能在环境光照度较小 的条件下对杀菌灯(低压汞灯) 测量有效;每台仪器的探头号和仪器号是一一对应的, 有多 台仪器的用户,请注意不能将不同仪器的探头互换使用。 技术指标 波长范围及峰值波长:(1) UV254探头:入:(230?300)nm ;入P = 254nm (2) UV297 探头:入:(275 ?330)nm ;入 P =297nm UV-B 双通道紫外辐照计辐照度测量范围: (0.1?199.9 X 103)卩W/cm2 紫外带外区杂光: UV254小于0.1 % UV297 :小于0.05 % 准确度:土 10% (相对于NIM 标准) 角度响应特性:符合国家二级光照度计标准 响应时间:1秒 使用环境:温度(0?40) C; 湿度<85%RH 尺寸和重量:180mnX 80mnX 36mm 0.2kg 电源:6F22型9V 积层电池一只 结构 由紫外探头UV254(或UV297)和读数单元两部分组成,二者通过电缆用插头和插座连接。 读数单元左侧的各按键作用分别为: 电源:按下此键为电源接通状态,抬起此键为电源断开状态。 保持:按下此键为数据保持状态,抬起此键为数据样状态 UV254:使用254探头测量时按下此键, UV297:使 用297探头测量时按下此键, 量程按键: X 10” “X 100” “X 1000” 操作 进行紫外辐照度测量时, 首先将“电源”键按下,再根据测量需要按下“ UV254'(或“ UV297') 键和 所选定的量程键(注意:“ UV254'和“ UV297'两个键切勿同时按下),然后将相应的 (同时应将“ (同时应将“ (测量时应抬起)。 UV297键抬起)。 UV254'键抬起)。 “X 1 ”

热辐射的研究

热辐射的研究 热辐射是19世纪发展起来的一门新学科,它的研究得到了热力学和光 谱学的支持,同时用到了电磁学和光学的新兴技术,因此发展很快。到19世纪末,这个领域已经达到这样的高峰,以致于量子论这个婴儿注定要从这里诞生。 热辐射实际上就是红外辐射。1800年,赫谢尔(W.Herschel)在观察太阳光谱的热效应时首先发现了红外辐射,并且证明红外辐射也遵守折射定律和反射定律,只是比可见光更易于被空气和其他介质吸收。1821年,塞贝克(T.J. Seebeck)发现温差电现象并用之于测量温度。1830年,诺比利(L. Nobili)发明了热辐射测量仪。他用温差电堆接收包括红外辐射在内的热辐射能量,再用不同材料置于其间,比较它们的折射和吸收作用。他发现岩盐对热辐射几乎是完全透明的,后来就用岩盐一类的材料做成了各种适用于热辐射的“光学”器件。 与此同时,别的国家也有人对热辐射进行研究。例如:德国的夫琅和费在观测太阳光谱的同时也对光谱的能量分布作了定性观测;英国的丁铎尔(J. Tyndall)、美国的克罗瓦(A.P.P. Crova)等人都测量了热辐射的能量分布曲线。 其实,热辐射的能量分布问题很早就在人们的生活和生产中有所触及。例如:炉温的高低可以根据炉火的颜色判断;明亮得发青的灼热物体比暗红的温度高;在冶炼金属中,人们往往根据观察凭经验判断火候。因此,很早就对热辐射的能量分布问题发生了兴趣。 美国人兰利(https://www.doczj.com/doc/694618049.html,ngley)对热辐射做过很多工作。1881年,他发明了热辐射计,可以很灵敏地测量辐射能量。图19.13就是兰利的热辐射计。他用四个铂电阻丝组成电桥,从检流计测出电阻的温度变化。为了测量热辐射的能量分布,他设计了很精巧的实验装置,用岩盐作成棱镜和透镜,仿照分光计的原理,把不同波长的热辐射投射到热辐射计中,测出能量随波长变化的曲线,从曲线可以明显地看到最大能量值随温度增高向短波方向转移的趋势(图19.14)。1886年,他用罗兰凹面光栅作色散元件,测到了相当精确的热辐射能量分布曲线。 兰利的工作大大激励了同时代的物理学家从事热辐射的研究。随后,普林舍姆(E. Pringsheim)改进了热辐射计;波伊斯(C. V. Boys)创制了微量辐射计;帕邢(F. Paschen)又将微量辐射计的灵敏度提高了多倍。这些设备为热辐射的实验研究提供了极为有力的武器。 与此同时,理论物理学家也对热辐射展开了广泛研究。1859年,基尔霍夫证明热辐射的发射本领和吸收本领的比值与辐射物体的性质无关,并提出了黑体

核辐射测量原理复习知识要点(精编文档).doc

【最新整理,下载后即可编辑】 第一章辐射源 1、实验室常用辐射源有哪几类?按产生机制每一类又可细分为哪几种? 带电粒子源 快电子源:β衰变内转换俄歇电子 重带电粒子源:α衰变自发裂变 非带电粒子源 电子辐射源:伴随衰变的辐射、湮没辐射、伴随核反应的射线、轫致辐射、特征X射线 中子源:自发裂变、放射性同位素(α,n)源、光致中子源、加速的带电粒子引起的反应 2、选择辐射源时,常需要考虑的几个因素是什么? 答:能量,活度,半衰期。 3、252Cf可做哪些辐射源? 答:重带点粒子源(α衰变和自发裂变均可)、中子源。 第二章射线与物质的相互作用 电离损失:入射带电粒子与核外电子发生库仑相互作用,以使靶物质原子电离或激发的方式而损失其能量 作用机制:入射带电粒子与靶原子的核外电子间的非弹性碰撞。辐射损失:入射带电粒子与原子核发生库仑相互作用,以辐射光子的方式损失其能量。 作用机制:入射带电粒子与靶原子核间的非弹性碰撞。 能量歧离:单能粒子穿过一定厚度的物质后,将不再是单能的,而发生了能量的离散;这种能量损失的统计分布,称为能量歧离。引起能量歧离的本质是:能量损失的随机性。 射程:带电粒子沿入射方向所行径的最大距离。 路程:入射粒子在物质中行径的实际轨迹长度。 入射粒子的射程:入射粒子在物质中运动时,不断损失能量,待能量耗尽就停留在物质中,它沿原来入射方向所穿过的最大距离,称为入射粒子在该物质中的射程。 重带电粒子与物质相互作用的特点:

1、主要为电离能量损失 2、单位路径上有多次作用——单位路径上会产生许多离子对 3、每次碰撞损失能量少 4、运动径迹近似为直线 5、在所有材料中的射程均很短 电离损失: 辐射损失: 快电子与物质相互作用的特点: 1、电离能量损失和辐射能量损失 2、单位路径上较少相互作用——单位路径上产生较少的离子对 3、每次碰撞损失能量大 4、路径不是直线,散射大 带电粒子在靶物质中的慢化: (a) 电离损失-带电粒子与靶物质原子中核外电子的非弹性碰撞过程。 (b) 辐射损失-带电粒子与靶原子核的非弹性碰撞过程。 (c) 带电粒子与靶原子核的弹性碰撞 (d) 带电粒子与核外电子弹性碰撞 即轫致辐射:带电粒子穿过物质时受物质原子核的库仑作用,其速度和运动方向发生变化,会伴随发射电磁波。 电子的散射与反散射: 电子与靶物质原子核库仑场作用时,只改变运动方向,而不辐射能量的过程称为弹性散射。由于电子质量小,因而散射的角度可以很大,而且会发生多次散射,最后偏离原来的运动方向,电子沿其入射方向发生大角度偏转,称为反散射。 反散射系数: 0 I I I η-= ?? ???242ion 0dE 4πz e -=NZB dx m v ()()?? rad ion dE/dx E Z dE/dx 8002 22NZ m E z dx dE rad ∝??? ??-21 m S rad ∝E S rad ∝2 NZ S rad ∝

相关主题
文本预览
相关文档 最新文档