当前位置:文档之家› 分光光度计的原理与应用解析

分光光度计的原理与应用解析

分光光度计的原理与应用解析
分光光度计的原理与应用解析

紫外可见分光光度计的原理与应用

分光光度计就是利用分光光度法对物质进行定量定性分析的仪器。它是现代实验室检测用的常规仪器。常用于核酸、蛋白定量以及细菌生长浓度的定量。在印染方面,我们可以用分光光度计测量染色时染料的上染百分率,以及整理在织物上助剂的浓度,还可以用于颜色的测量。同时它还广泛地应用于食品检测、农药的检测及工业上石油的检测等。紫外可见分光光度计在实验中的应用非常广泛,故我们要熟悉并掌握它的原理及应用。

一、分光光度计的组成

各种型号的可见分光光度计,就其基本结构来说,都是由五个基本部分组成,即光源、单色器、吸收池、检测器及信号指示系统。

1.光源

在紫外可见分光光度计中,常用的光源有两类:热辐射光源和气体放电光源。热辐射光源用于可见光区,如钨灯和卤钨灯;气体放电光源用于紫外光区,如氢灯和氘灯。

2.单色器

单色器的主要组成:入射狭缝、出射狭缝、色散元件和准直镜等部分。单色器质量的优劣,主要决定于色散元件的质量。色散元件常用棱镜和光栅。

3.吸收池

吸收池又称比色皿或比色杯,按材料可分为玻璃吸收池和石英吸收池,前者不能用于紫外区。吸收池的种类很多,其光径可在0.1~10cm之间,其中以1cm 光径吸收池最为常用。

4、检测器

检测器的作用是检测光信号,并将光信号转变为电信号。现今使用的分光光度计大多采用光电管或光电倍增管作为检测器。

5、信号显示系统

常用的信号显示装置有直读检流计,电位调节指零装置,以及自动记录和数字显示装置等。

二、分光计的分类

国际上一般按紫外可见分光光度计的仪器结构将其分为单光束、准双光束、双光束和双波长四类。

单光束可见分光光度计光度准确度差。常见的721、751、753、754 等可见分光光度计都是单光束仪器,因为他们的分析误差较大,所以, 它们在使用上受到限制。一般来讲, 对要求较高的制药行业、质量检验行业、科研等行业不适宜使用单光束紫外可见分光光度计。

准双光束紫外可见分光光度计有两种类型: 一种是两束单色光, 一只比色皿, 两只光电转换器; 另一种是一束单色光, 一束复合光, 一只比色皿, 两只光电转换器。常见类型有TU-1800、TU-1800S、TU-1800PC、TU-1800SPC、UV-762、UV-1600 等。

双光束紫外可见分光光度计就是有两束单色光的紫外可见分光光度计。它有两种类型: 一种是两束单色光, 两只比色皿, 两只光电转换器; 另一种是两束单色光, 两只比色皿, 一只光电转换器。目前, 国内外的双光束紫外可见分光光度计中, 两只光电转换器的双光束紫外可见分光光度计仪器已很少见。

双波长紫外可见分光光度计都采用两个单色器。光源发出的光被两个单色器分别分离出波长为λ1 和λ2, 通过斩波器将两束单色光λ1 和λ2 交替入射到同一试样中, 光电倍增管交替地接收到经过试样吸收后的这两束单色光, 并把它们变成电信号。常见的类型有WFZ800-5,UV-265。

三、原理及测试方法

原理:朗伯-比尔定律:当一束平行单色光通过含有吸光物质的稀溶液时,溶液的吸光度与吸光物质浓度、液层厚度乘积成正比,即

A= εLc

式中比例常数ε与吸光物质的本性,入射光波长及温度等因素有关。c为吸光物质浓度,L为透光液层厚度。

测试方法:

(1)最大吸收波长λmax 的测定:配置任意浓度的染液,用1㎝厚的比色皿在分光光度计上测定不同波长时的吸光度值,要求读数范围在0.2~0.8。然后以波长为横坐标,吸光度为纵坐标,作出吸收光谱曲线图,从而得出该浓度下染料的最大吸收波长λmax 。

吸收光谱曲线图

(2)标准工作曲线的测定:分别测定不同浓度染液在最大吸收波长λmax 时的吸光度值,然后以染液浓度为横坐标,以测定的吸光度值为纵坐标作图,得到该染料的标准工作曲线图。

(3)测未知液的浓度:在最大吸收波长下,测出未知液的吸光值,然后在标准工作曲线上找出相应的浓度。

四、紫外分光光度计的特点

①应用广泛:紫外-

可见分光光度计应用范围很广。任何物质只要在紫外-可见波段中吸收光谱,均可用紫外-

可见分光光度计来进行定性、定量分析; ②灵敏度高:由于新的显色剂的大量合成,并在应用研究方面取得了可喜的进展,使得对元素测定的灵敏度有所推进,特别是有关多元络合物和各种表面活

性剂的应用研究,使许多元素的摩尔吸光系数由原来的几万提高到数十万;

③选择性好:目前已有些元素只要利用控制适当的显色条件就可直接进行光度法测定,如钴、铀、镍、铜、银、铁等元素的测定,已有比较满意的方法;

④准确度高:对于一般的分光光度法,其浓度测定的相对误差在1~3%范围内,如采用示差分光光度法进行测定,则误差可减少到0.X%;

④适用浓度范围广可从常量(1%~50%)到痕量(10-8~10-6%);

⑤分析成本低、操作简便、快速由于分光光度法具有以上优点,因此目前仍广泛地应用于化工、冶金、地质、医学、食品、制药等部门及环境检测系统。单在水质分析中的应用就很广,目前能有直接法和间接法测定的金属和非金属元素就有70多种。

五、紫外分光光度计的操作

1.准备工作

(1)确认环境温度、相对湿度是否满足要求(要求温度为15℃~35℃、相对湿度不大于80%);

(2)开机前打开仪器样品室盖,观察确认样品室无挡光物后再打开电源。

2.启动

(1)打开电源,仪器显示初始化工作界面,仪器将进行自检并初始化,若初始化正常结束,系统将进入仪器操作主界面;

(2)仪器需进行预热使光源达到稳定后开始测量,预热时间一般为15~30分钟。

3.运行

(1)选择数字键“3”→按“F1”→按“1”键选择工作模式为“标样法”→按“2”键用数字键将波长值输入,输入完成按“ENTER”键→按“3”键选择需要的浓度单位。

(2)继续按“F1”键进入标样法工作曲线参数设置界面→按“1”键输入标样数,输入完成按“ENTER”键→按“2”键,按照系统提示用数字键输入标样浓度,输入完成按“ENTER”键→再按“2”键,在一号池位置放置空白溶液,按“A/Z”键进行自动校零,校零结束将要测量的标样放入对应的比色池位置,接着再按“START/STOP”键对当前测试的标样进行测量→测量结束系统提示输入下一号标样的浓度值,重复以上操作,直至标准曲线测试完成。

(3)按“3”键可看到标准曲线、曲线方程及相关系数,将线性方程及相关系数记录在原始记录本上,按“RETURN”键返回定量测量参数设置界面。

(4)按“F3”键进入试样池设置→再按“1”键选择试样池为5联池→按“2”键可利用数字键对样品池数进行设置,输入完成后按“ENTER”键→继续按“3”键选择一号池空白校正为“否”→按“4”键对移动试样池数进行设置,按“RETURN”键返回到定量测量画面→在一号池位置放入空白溶液,按“A/Z”键对当前工作波长进行零吸光度校正,将测量的样品依次放入设定的使用样品池中,继续按“START/STOP”键测量样品的浓度值。

4.结束

测量结束将比色皿用去离子水冲洗干净倒置晾干,清理台面,关闭电源开关,并及时填写相关记录。

六、紫外分光光度计使用时的注意事项

1.比色皿使用时注意不要沾污或将比色皿的透光面磨损,应手持比色皿的毛面。

2.待测液制备好后应尽快测量,避免有色物质分解,影响测量结果。

3.测得的吸光度A最好控制在0.2~0.8之间,超过1.0时要做适当稀释。

4.开关试样室盖时动作要轻缓。

5.不要在仪器上方倾倒测试样品,以免样品污染仪器表面,损坏仪器。

6.比色皿在盛装样品前,应用所盛装样品冲洗两次,测量结束后比色皿应用蒸馏水清洗干净后倒置晾干。若比色皿内有颜色挂壁,可用无水乙醇浸泡清洗。

7.向比色皿中加样时,若样品流到比色皿外壁时,应以滤纸點干,镜头纸擦净后测量,切忌用滤纸擦拭,以免比色皿出现划痕。

8.测定紫外波长时,需选用石英比色皿。

9.测量过程中不可打开测量室的窗门,否则会影响测量结果的准确性。

七、应用

1.生物医药上的应用

可利用分光光度计进行氨基酸含量的测定、测量未知蛋白溶液的浓度及含量、新生儿血清胆红的测定以及蛋白质与核酸的结构分析等。

2.印染上的应用

可以测定纺织品上的甲醛含量、染料对织物的上染百分率、测定蛋白助剂在

织物上的均匀程度、测定整理在织物上助剂的浓度、测吸附速率曲线、半吸附时间、吸附饱和值、平衡吸附量、测吸附量与K/S值的关系、吸附助剂量与其他性能的关系(如防毡缩)等。

3.药品分析中的应用.

我国和世界上许多国家的药典都明确规定, 许多药品都要求用紫外可见分光光度计作质量控制。因此, 紫外可见分光光度计已是制药行业和药检行业必备的分析仪器。且规定, 用于药品质控的紫外可见分光光度计, 光谱带宽要求2nm 以下。紫外可见分光光度计在药品检测中的应用已经非常广泛。其中, 使用紫外可见分光光度计分析最多的药物有: 维生素、抗生素、解热药、去痛药、降血压药、安定药、镇咳药、滴眼药、磺胺类药、利尿药、某些妇科药、痢疾药、腹泻药、抗肿瘤药、抗结核药等。

4.石油油品分析

在石油开采、加工过程中, 石油有可能造成污染。在石油工业生产污水中,一般将排水中石油含量规定为10mg/ L。而在地面水中, 最高允许石油含量为0.1~0.3mg/ L。一般石油炼油厂中, 石油所含的芳烃组成是相对稳定的, 所测得标准油品的吸收峰, 都在221~225nm 和251~255nm 处。石油的两个特征吸收峰(225nm 和254nm) 是测定炼油厂污水中的含油量时要选用的吸收波长。另外, 轻油组分( 初馏约180℃) 几乎无明显紫外特征吸收, 而中油( 180~250℃) 和重油(250~280℃) , 以及蒽油( > 280℃) 等组分在225nm 处吸收较强。它代表了石油成分的主峰, 在254nm 处吸收较弱, 有时显示出某种重质油品的特性。这些分析工作, 都用紫外可见分光光度计来进行。还有, 在炼油过程中, 石油在320nm 附近有一个芳烃杂质, 也是必须要用紫外可见分光光度计来检测的。因此, 紫外可见分光光度计是石油工业中非常重要的质量控制仪器。

5.环境中有害物质检测

环境( 包括空气、水、土壤) 中许多的对人有毒有害物质的检测, 都用到紫外可见分光光度计, 如检测自来水中的木素磺酸、木质素、单宁、表面活性剂、黄腐酸、酚类、苯胺类、硝基酚类化合物等对人体有毒害的物质。有些自来水中, 含有氨氮、亚硝酸盐、总酚、总苯胺、硝基酚类等对人体有毒害的物质, 一般也是用紫外可见分光光度计来检测。

6.饲料工业中的应用

饲料的原料、添加剂、混合饲料等中的维生素A、维生素C、维生素E、维生素K、山梨酸、苯甲酸、棉酸、甲酯、乙酸酯、胡萝卜素、烟酸、总氨基酸等微

量元素钾、铁、硒、碘、铜、磷、锰等都经常用紫外可见分光光度计来检测,常用饲料添加剂中的皮蝇磷、磺胺类药物、灰黄霉素、二甲硝咪唑, 以及普鲁卡因等的测定, 基本上也都可用紫外可见分光光度计来进行检测。

7.农药及其残留物分析

施加的农药进入土壤中, 一部分被农作物吸收( 如六六六可被胡萝卜、花生等吸收)、一部分进入大气、一部分流入水中。农药残留包括农药原体、农药的有毒代谢物、农药的降解物和杂质。人们往往只把农药原体看成农药残留量, 忽略了农药原体的代谢物、降解物和杂质。其实, 代谢物、降解物的毒性与原药一样或更严重。例如, 滴滴涕的代谢物为滴滴依, 工业六六六的代谢物为乙体六六六, 农药1605 的代谢物为1601 , 这些代谢物的毒性都比原体更强。杀虫脒的代谢物的毒性, 比原药大10 倍。许多农药对人体的危害非常大, 如六六六和滴滴涕对人的肝脏组织和肝功能的损害很大, 会引起血液细胞染色体突变, 有机氯农药能透过胎盘进入胎儿体内, 危害胎儿。有机磷农药、氨基甲酸酯类农药等是神经毒物, 它抑制血液和组织中的乙酰胆碱酯酶的活性, 引起神经功能混乱、出汗、精神错乱、语言失常等病症。所以现在人们都很注重对农药及其残留物的检测。

8.水产品质量控制

紫外可见分光光度计在海水、淡水鱼类、贝类、虾类、海蜇类等的质量控制中已得到非常广泛的应用。如苯、总三卤甲烷、甲苯基三唑、多氯联苯、氟、汞等, 目前都采用紫外可见分光光度计作质量控制。因此, 紫外可见分光光度计将是渔业中必不可少的分析工具。

721型分光光度计使用及波长的检测与校正

在目标:1.掌握比色分析的基本原理 2.规范使用721型分光光度计及利用镨钕滤光片法对其波长的检测实验用品:721型分光光度计、镨钕滤光片、5%CuSO 4液、纱布、比色杯等内容: 一、721型分光光度计的使用 【原理】 利用被测物的有色溶液对某一特定波长的光谱具有选择性吸收的特性,将吸收的光谱按不同强度转变相应的电能,再将电量的变化用检流计显示出来,将显示的电量以光量强度(D或A)计算,根据朗伯-比尔定理,即D=KCL,即吸光度与溶液的浓度与厚度的乘积成正比关系。 【操作步骤】 接通电源→选择波长→粗调透光度T“O”(开盖)和透光度T“100%”(关盖)→预温20min→放入被测液→精确调节透光度T“O”(开盖)和透光度T“100%”(关盖)→测定,读取各管吸光度→收场(关电源、罩仪器罩、登记、清洗比色杯和纱布等) 【注意事项】 1.仪器需防震、防潮、避光。 2.比色时,手拿比色杯的毛面,液体倒杯高的或,比色杯不能用硬毛刷刷洗,也不能用高温烘烤。 二、721型分光光度计波长的检测与校正(镨汝滤光片法) 1.在比色槽的光路上放一张小白纸,调节波长至580nm。 2.旋动光量T100%的旋钮至最大,在小白纸上应看到桔黄色的光斑。 3.若光斑不是橘黄色,左右旋转波长调节旋钮使之出现橘黄色的光斑,粗略判断波长偏离的程度,选择检测的起始波长。

4.调节波长至起始波长,用蒸馏水或空气调T“0”和T“100%”。 5.将镨汝滤光片推入光路中,记录T或A值,退出镨汝滤光片。 6.调节波长至另一值,用蒸馏水或空气调T“0”和T“100%”。 7.再将镨汝滤光片推入光路中,记录T或A值,退出镨汝滤光片8.如此反复测定直至T值为最小或A值为最大,记录此点的指示波长。 9.将A值最大时的波长减去镨汝滤光片最大的吸收波长529nm,即得被校比色计的波长误差。 10.如波长精度超出允许误差. (360~600nm≤3nm;600~700≤5nm;700~800≤8nm),打开分光光度计左侧调节窗口盖板,用螺丝刀试调波长的调节杆。具体位置详见仪器使用说明书。 11.试调波长的调节杆后,再按步骤3~8操作,直至分光光度计的波长精度误差在其允许范围内即可。

XPS原理

第18章X射线光电子能谱分析 引言 固体表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。AES分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。SIMS和ISS由于定量效果较差,在常规表面分析中的应用相对较少。但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。本章主要介绍X射线光电子能谱的实验方法。 X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法是在六十年代由瑞典科学家Kai Siegbahn教授发展起来的。由于在光电子能谱的理论和技术上的重大贡献,1981年,Kai Siegbahn获得了诺贝尔物理奖。三十多年的来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。XPS已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。XPS的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。 在XPS谱仪技术发展方面也取得了巨大的进展。在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源;传统的固定式X射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小的束斑直径已能达到6?m大小, 使得XPS在微区分析上的应用得到了大幅度的加强。图像XPS技术的发展,大大促进了XPS在新材料研究上的应用。在谱仪的能量分析检测器方面,也从传统的单通道电子倍增器检测器发展到位置灵敏检测器和多通道检测器,使得检测灵敏度获得了大幅度的提高。计算机系统的广泛采用,使得采样速度和谱图的解析能力也有了很大的提高。 由于XPS具有很高的表面灵敏度,适合于有关涉及到表面元素定性和定量分析方面的应用,同样也可以应用于元素化学价态的研究。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。因此,XPS方法可广泛应用于化学化工,材料,机械,电子材料等领域。

分光光度计基本原理

分光光度计基本原理 分光光度计主要用于反射和透射测量。 分三种光源:S偏振光、P偏振光和自然光。 现有设备7台(2台日立U4100、1台JACSO-V650、1台JACSO-V570、2台KT1100、1台瞬间7700)主要由是由分光光度计和电脑组成,由电脑程序驱动。 1 基本部件 光源: 用于提供足够强度和稳定的连续光谱。分光光度计中常用的光源有热辐射光源和气体放电光源两类。 热辐射光源用于可见光区,如钨丝灯和卤钨灯;气体放电光源用于紫外光区,如氢灯和氘灯。钨灯和碘钨灯可使用的范围在340 -- 2500 nm。氢灯和氘灯。它们可在180 -- 375 nm范围内产生连续光源。 紫外—可见分光光度计通常都配有可见和紫外两种光源。 单色器:是从连续光谱中获得所需单色光的装置。 (1)入射狭缝 (2)准直镜(透镜或凹面反射镜),它使入射光束变为平行光束。 (3)色散元件,棱镜或光栅,它使不同波长的入射光色散开来。 (4)聚焦透镜或聚焦凹面反射镜聚焦,它使不同波长的光聚焦在焦面的不同位置。 (5)出射狭缝。 积分球:它主要用途是测定光源发出的总光通量。它的制造:首先在球内壁上涂一层腻子,作为底层;然后喷点白漆,作为中间层;最后喷一层白涂料(硫酸钡或氧化镁)作为表层。 检测器:检测器的作用是检测光信号。常用的检测器有光电管和光电倍增管。电脑,就是微处理机。一方面可对分光光度计进行操作控制,另一方面可进行数据处理。 2、先用3台光度计的特点 U4100的 V650能测位相

3、日常测量 改参数 1.光源要求(.自然光) 2、扫描速度 3、狭缝 基本的步骤 设备测量种类 U4100测量:合色棱镜(成品、PL、2P)等 V650:单层,小DVD,带位相的零件,AR的反射测量等 4.测量的原理,影响准确性的因素 单光路分光光度计V650 双光路分光光度计 U4100 它的优点:光电传感器就可以交替探测到经过样品的探测光束的强度与参考光束的光强度,然后将两束光强信号进行相除,就可以得到样品的透过率。它可以降低光源稳定性对光谱测试精度的影响。 测量的原则:入射光轴重合,出射光轴重合,难在后着。 商用的光谱仪都有很好的性能,但是如果操作测试不当,就会获得错误的光谱测试结果。主要影响准确性的因素: 透射因素: 1、测量样品口径的影响 在测量中应保证仪器的测量光束全部穿过样品。 1)、在样品室的测量光路和参考光路中同时添加小孔光阑。 2)、只在样品池添加小孔光阑。

分光光度计

第一章:产品概述 产品原理: 分光光度计的原理是利用物质对不同波长的选择性吸收现象对物质进行定性和定量分析,通过对吸收光谱的分析,普安短物质的内部结构及化学组成。 光谱系列紫外/可见分光光度计就是根据以上原理,将传统的设计制造经验与现代精密光学和最新微电子等高新科学技术合理的结合在一起,研制开发的具有当代先进水平的新型分光光度计,是化工、药品、生化、冶金、轻工、材料、环保、食品、制药以及教学等行业的必备仪器。 产品特点: 光谱系列紫外/可见分光光度计具有以下特点: 采用经改良的低杂散光、高分辨率的单光束光路以及简捷、可靠的结构设计,使仪器具有良好的单色性、稳定性、重现性和精确的测量读数。2-4nm的光谱带宽可满足大多数分析测试项目的要求。 新型微机技术的运用,使仪器具有自动设置0%T和100%T、浓度计算和数据处理、自动校正波长,自动切换滤光片,自动光源切换点、自动显示出错信息等功能。科学的设计,新技术的运用,将光、机、电以及微机技术有机的结合在一起,使仪器的稳定性指标接近或达到高级紫外可见光光度计的水平。 一起选用2×20位大屏幕点阵式带背光显示器,可现实透射比、吸光度、浓度、波长等参数,还实现了仪器人机对话功能和连接PC等功能。仪器安装了标准的RS—232C通讯接口,可向计算机输送测试参数,并可接受计算机发送的控制指令(需使用SPECTRUM用户应用软件),实现PC机对仪器进行直接操作。外接打印机,可打印实时测试参数。 仪器附有可在视窗95(WIN95)操作平台运行的PC—SPECTRUM基本应用软件,可进行透射比、吸光度测试,浓度计算和直读,并可以打印,保存和调用测试参数,使使用者轻松、方便、准确、可靠地进行分析。 仪器各部件介绍

原子吸收分光光度计工作原理

原子吸收分光光度计应用及维护 工作原理: 元素在热解石墨炉中被加热原子化,成为基态原子蒸汽,对空心阴极灯发射的特征辐射进行选择性吸收。在一定浓度范围内,其吸收强度与试液中被的含量成正比。其定量关系可用郎伯-比耳定律,A= -lg I/I o= -lgT = KCL ,式中I为透射光强度;I0为发射光强度;T为透射比;L为光通过原子化器光程(长度),每台仪器的L值是固定的;C是被测样品浓度;所以A=KC。 利用待测元素的共振辐射,通过其原子蒸汽,测定其吸光度的装置称为原子吸收分光光度计。它有单光束,双光束,双波道,多波道等结构形式。其基本结构包括光源,原子化器,光学系统和检测系统。它主要用于痕量元素杂质的分析,具有灵敏度高及选择性好两大主要优点。广泛应用于特种气体,金属有机化合物,金属醇盐中微量元素的分析。但是测定每种元素均需要相应的空心阴极灯,这对检测工作带来不便。 应用 一、实验部分 1.1、试剂 Cr标准溶液1000ug/ml Cr空心阴极灯 1.2、仪器工作条件 干燥120℃,斜坡10s,保持10s,180℃,斜坡5s,保持10s;灰化1300℃,斜坡10s,保持15s;原子化2600℃,4s,停气;清洗2800℃,5s 1.3、标准使用溶液的配置 铬标准使用溶液:吸取铬标准储备液(1mg/ml)10.0ml于100ml容量瓶中,加入2%硝酸至刻度、此溶液的浓度为100ug/ml。在逐级稀释,可分别得到标准系列溶液如下: 铬:0ug/L、5.0.0ug/L、10.0ug/L、15.0ug/L、20.0ug/L 2.试样的置备:

取空心胶囊0.50g,置氟乙烯消解罐内,加硝酸5-10ml,混匀,浸泡过夜,盖好内盖,旋紧外套,置适宜的微波消解炉内,进行消解(按仪器规定的消解程序操作)。消解完全后,取消解内罐置电热板上缓缓加热至红棕色蒸气挥尽并近干,用2%硝酸转入50ml量瓶中,并稀释至刻度,摇匀,即得。同法同时制备试剂空白溶液;。取供试品溶液与对照品溶液,以石墨炉为原子化器,照原子吸收分光光度法,在357.9nm 测定,含铬不得过百万分之二

第四章 比色分析及分光光度法

第四章比色分析及分光光度法 Colorimetric and Spectrophotometric Analysis §1 概述 许多物质本身具有明显的颜色,例如KMnO4溶液显紫色,K2Cr2O7溶液显橙色等。另外,有些物质本身并无颜色,或者颜色并不明显,可是当它们与某些化学试剂反应后,则可以生成有明显颜色的物质,例如Fe3+本身具有黄色,当与一定量的KSCN试剂反应后,生成的Fe(SCN)3具有血红色;浅蓝色的Cu2+与氨水作用后,则生成深蓝色的Cu(NH3) 42+。当这些有色物质溶液的浓度改变时,溶液颜色的深浅液会改变。浓度越大,颜色越深;浓度越小,颜色越浅。因此,可以肯定地说,溶液颜色的深浅与有色物质的含量之间有一定的关系。在分析化学中,把这种基于比较有色物质溶液的颜色深浅以确定物质含量的分析方法称为比色分析。 实践证明,无论物质有无颜色,当一定波长的光通过该物质的溶液中时,根据物质对光的吸收程度,也可以确定该物质的含量。这种方法称为分光光度法。目前的比色分析常用分光光度计将光源变为单色光,并选择对待测物质具有最大吸收的单色光进行比色测定。 比色分析法、分光光度法与前面所讲的容量分析法、重量分析法相比,具有以下优点:1.灵敏度高比色分析法和分光光度法测定物质的浓度,下限一般可以达到10-5~10-6 mol/L,可以测定相当于含量0.001~0.0001%的微量组分。如果将被测物质加以富集,灵敏度还可以提高。 2.准确度高一般比色分析的相对误差为5~20%,分光光度法的相对误差为2~5%,其准确度虽不如容量分析及重量分析,但对微量组分来说,这个灵敏度还是可以的,因为微量组分用容量分析及重量法已无法测定,更谈不上准确了。例如1滴KMnO4滴入100mL水中时,仍可得到明显的适于比色分析的颜色,但这一滴溶液在滴定分析中只相当于它的误差的大小,根本无法进行准确测定。由此看来,比色法的准确度较高,可进行微量组分的分析。 3.操作简便,测定速度快比色法和分光光度法的仪器设备都简单,操作方便。进行分析时,试样处理成溶液后,一般只经历显色和比色两个步骤,就可得出分析结果。近年来,由于新的灵敏度高、选择性好的显色剂和掩蔽剂不断出现,使得一些干扰物可以不经分离,既可以进行测定。在生产过程的分析中,一般只要几分钟就可以得出结果,对于生产中的快速分析,起了很大的作用。 4.应用广泛几乎所有的无机离子和有机化合物都可直接或间接地用比色法和分光光度法进行测定,由此可见,比色及分光光度法应用范围之广泛。在环境监测中,适用最多的也是分光光度法,绝大多数污染物都可以用分光光度法测定,大多数中小型实验室都可以配备分光光度计,因此不受仪器设备条件的限制。

XPS技术及其在材料微方面中的应用讲解

XPS分析技术及其在材料微分析方面中的应用 摘要:本文介绍了X 射线光电子能谱(XPS)分析技术的基本原理、技术特点、研究进展、分析仪器构成以及在材料微分析方面的实际应用。 关键词:XPS分析技术;微分析;应用 1、引言: 近年来,利用各种物理、化学或机械的工艺过程改变基材表面状态、化学成分、组织结构或形成特殊的表面覆层,优化材料表面,以获得原基材表面所不具备的某些性能,如高装饰性、耐腐蚀、抗高温氧化、减摩、耐磨、抗疲劳性及光、电、磁等,达到特定使用条件对产品表面性能的要求的各种表面特殊功能处理技术得到迅速发展;对表面分析技术发展提出更高要求[1]。 材料表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。目前常用的表面成分分析方法有:X射线光电子能谱(XPS),俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。AES分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究[2]。SIMS和ISS由于定量效果较差,在常规表面分析中的应用相对较少[3]。但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法是在六十年代由瑞典科学家Kai Siegbahn 教授发展起来。三十多年的来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。XPS已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。XPS的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源[6];传统的固定式X射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小 - 1 -

72型分光光度计工作原理

72型分光光度计工作原理 72型分光光度计是可见光分光光度计,波长范围为420nm~700nm,它由三大部分组成:磁饱和稳压器、光源、单色光器和测光机构、微电计。 72型分光光度计的基本依据是朗伯—比耳定律,它是根据相对测量原理工作的,即先选定某一溶剂作为标准溶液,设定其透光率为100%,被测试样的透光率是相对于标准溶液而言的,即让单色光分别通过被测试样和标准溶液,二者能量的比值就是在一定波长下对于被测试样的透光率。如图所示,白色光源经入射狭缝、反射镜和透光镜后,变成平行光进入棱镜,色散后的单色光经镀铝的反射镜反射后,再经过透镜并聚光于出射狭缝上,狭缝宽度为0.32nm。反射镜和棱镜组装在一可旋转的转盘上并由波长调节器的凸轮所带动,转动波长调节器便可以在出光狭缝后面选择到任一波长的单色光。单色光透过样品吸收池后由一光量调节器调节为适度的光通量,最后被光电电池吸收,转换成电流后由微电计指示,从刻度标尺上直接读出透光率的值。 分光光度计已经成为现代分子生物实验室常规仪器。常用于核酸,蛋白定量以及细菌生长浓度的定量。 分光光度计的简单原理 分光光度计采用一个可以产生多个波长的光源,通过系列分光装置,从而产生特定波长的光源,光源透过测试的样品后,部分光源被

吸收,计算样品的吸光值,从而转化成样品的浓度。样品的吸光值与样品的浓度成正比。 核酸的定量 核酸的定量是分光光度计使用频率最高的功能。可以定量溶于缓冲液的寡核苷酸,单链、双链DNA,以及RNA。核酸的最高吸收峰的吸收波长260 nm。每种核酸的分子构成不一,因此其换算系数不同。定量不同类型的核酸,事先要选择对应的系数。如:1OD的吸光值分别相当于50μg/ml的dsDNA,37μg/ml的ssDNA,40μg/ml的RNA,30μg/ml的Olig。测试后的吸光值经过上述系数的换算,从而得出相应的样品浓度。测试前,选择正确的程序,输入原液和稀释液的体积,尔后测试空白液和样品液。然而,实验并非一帆风顺。读数不稳定可能是实验者最头痛的问题。灵敏度越高的仪器,表现出的吸光值漂移越大。 事实上,分光光度计的设计原理和工作原理,允许吸光值在一定范围内变化,即仪器有一定的准确度和精确度。如EppendorfBiophotometer的准确度≤1.0%(1A)。这样多次测试的结果在均值 1.0%左右之间变动,都是正常的。另外,还需考虑核酸本身物化性质和溶解核酸的缓冲液的pH值,离子浓度等:在测试时,离子浓度太高,也会导致读数漂移,因此建议使用pH值一定、离子浓度较低的缓冲液,如TE,可大大稳定读数。样品的稀释浓度同样是不可忽视的因素:由于样品中不可避免存在一些细小的颗粒,尤其是核酸样品。这些小颗粒的存在干扰测试效果。为了最大程度减少颗

721分光光度计的标定

1.正磷酸盐含量的测定 (1)方法提要 在酸性条件下,正磷酸盐与钼酸铵反应生成黄色的磷钼杂多酸,再用抗坏血 酸还原成磷钼蓝,于710nm最大吸收波长处用分光光度法测定。 (2)试剂和材料 a.磷酸二氢钾; b.硫酸溶液(1+1); c.抗坏血酸溶液(20g/L):称取10g抗坏血酸,精确至0.5g,称取0.2g乙二 胺四乙酸二钠(C10H14O8N2Na2.2H2O),精确至0.01g,溶于200mL水中,加入8.0mL甲酸,用水稀释至500mL,混匀,贮存于棕色瓶中(有效期一 个月); d.钼酸铵溶液(26g/L):称取13g钼酸铵,精确至0.5g,称取0.5g酒石酸锑 钾(KSbOC4H4O6.1/2H2O),精确至0.01g,溶于200mL水中,加入230mL 硫酸(1+1)溶液,混匀,冷却后用水稀释至500mL,混匀,贮存于棕色瓶中 (有效期两个月); e.磷标准贮备溶液(1mL含有0.5mgPO43-):准确称取0.7165g预先在 100~105℃干燥并已恒重过的磷酸二氢钾,精确至0.0002g,溶于约500mL水中,定量转移至1L容量瓶中,用水稀释至刻度,摇匀; f.磷标准溶液(1mL含有0.02mgPO43-):取20.00mL磷标准贮备溶液于 500mL容量瓶中,用水稀释至刻度,摇匀。 (3)仪器和设备 分光光度计:带有厚度为1㎝的吸收池。 (4)分析步骤 a.工作曲线的绘制:分别取0.00(空白),1.00mL,2.00mL,3.00mL, 4.00mL, 5.00mL, 6.00mL, 7.00mL, 8.00mL磷标准溶液于9个50mL容量 瓶中,依次向各瓶中加入约25mL水、2.0mL钼酸铵溶液,3.0mL抗坏血酸溶液,用水稀释至刻度,摇匀,于室温下放置10min.在分光光度计710nm处, 用1㎝吸收池,以空白调零测吸光度。以测得的吸光度为纵坐标,相对应的 PO43-量(μg)为横坐标绘制工作曲线。 b.正磷酸盐含量的测定:从试样中取20.00mL试验溶液,于50mL容量瓶中, 加入2.0mL钼酸铵溶液,3.0mL抗坏血酸溶液,用水稀释至刻度,摇匀,室温 下放置10min。在分光光度计710nm处,用1㎝吸收池,以不加试验溶液的空白调零测吸光度。 (5)分析结果的表述 以“mg/L”表示的试样中正磷酸盐(以PO43-计)的质量浓度X1按下式计算 X1= m1/V1 式中m1------从工作曲线上查得的以“μg”表示的PO43-量; V1-----移取试验溶液的体积,mL。

分光光度计的原理

(一)基本原理 分光光度法是利用物质对某种波长的光具有选择性吸收的特性建立起来的鉴别物质或测定其含量的一项技术。当一束单色光通过溶液时,一部分被吸收,一部分则透过溶液。设入射光强度为Io。,透射光强度为It,,则透光度T=It /Io,吸光度(A)或光密度(O.D)或称消光度(E)则可表示为A=-lgT。根据Lambert—Beer定律,吸光度与溶液的浓度成正比,与光束通过溶液的距离(即 光程)成正比,用数学表达式表示为: A=KLC 式中C代表该物质的浓度,L代表光程,一般以cm表示,K为摩尔消光系数,即当溶液浓度为lmol/l,光程为1cm时所测得的一定波长下的吸光度。 由于单色光透过溶液时,不仅被待测物质所吸收,而且还被比色容器与溶剂以及其它试剂吸收一部分,这部分需用空白管消除(空白液的做法即用与样本相 同的一切试剂,而不含被测定的物质) (二)波长的选择: 波长的选择一般是选择待测物质最大吸收峰的波长(λmax)。因在λmax测定吸光度,敏感度最高。在吸收峰波长处测吸光度,波长变化影响最小;而在其他波长处,波长变化对吸光度影响大,甚至测得浓度一吸光度曲线不呈直线。 选择测定某一溶液所需的波长,是可以用不同的波长作该溶液的吸收光谱曲线,从曲线上选择最适当的波长来进行这一溶液的测定工作,但是,在分析工作中,尚有个别情况,不能单凭此一原则,而应根据下列三个原则,进行实际试 测,然后全面考虑利弊,再行选定。 1.应使被测溶液有适当的光密度,一般而言,适当的光密度为0.1—0.7,而以0.2—0.6最理想。过低的光密度因仪器的读数误差而产生很大的相对误差,反之,过高的光密度则往往已超过直线范围而引入误差。 2.应使干扰影响降低至最低限度。在反应中,如遇不易去除的干扰色泽, 应选用对此干扰色泽最不灵敏的波长。 3.应使标准曲线在尽可能大的范围内接近直线。 (三)标准曲线的绘制 1.标准曲线的作用 (1)标准曲线又叫做校正曲线或工作曲线,它是比色分析法中不可缺少的步骤。从浓度——光密度直线的直线特性,可以判断所采用方法的呈色反应是 否符合Lamben—Beer氏定律。 (2)作多次平行测定绘制标准曲线,可判断在整个测定过程中操作,仪 器等误差的大小,从而确定该测定方法的可靠性。 (3)从绘制标准曲线的斜率可以比较各种方法的灵敏度。 (4)当进行大批样品分析时,可省略多次计算,从光密度值直接查阅标 准曲线而求得被测物质的浓度。

荧光分光光度计-原理

分子荧光分析法 发光光谱:物质分子或原子吸收辐射被激发后,电子以无辐射跃迁至第一电子激发态的最低振动能级,再以辐射的方式释放这一部分能量而产生的光谱称为荧光、磷光。 根据物质接受的辐射能量的大小及与辐射作用的质点不同,荧光分析法可分为以下几种: 1. X射线荧光分析法 用X射线作光源,待测物质的原子受激发后在很短时间内(10-8s)发射波长在X 射线范围内的荧光。 2. 原子荧光分析法: 待测元素的原子蒸气吸收辐射激发后,在很短的时间内(10-8s),部分将发生辐射跃迁至基态,这种二次辐射即为荧光,根据其波长可进行定性,根据谱线强度进行定量。 荧光的波长如与激发光相同,称为共振荧光。 荧光的波长比激发光波长长,称为stokes荧光;若短,称为反stokes荧光。 3. 分子荧光分析法: 有些物质的多原子分子,在用紫外、可见光(或红外光)照射时,也能发射波长在紫外、可见(红外)区荧光,根据其波长及强度可进行定性和定量分析,这就是通常的(分子)荧光分析法。

基本原理 一. 分子荧光的发生过程 (一)分子的激发态——单线激发态和三线激发态 大多数分子含有偶数电子,在基态时,这些电子成对地存在于各个原子或分子轨道中,成对自旋,方向相反,电子净自旋等于零:S=?+(-?)=0,其多重性 M =2S +1=1 (M 为 磁量子数),因此,分子是抗(反)磁性的,其能级不受外界磁场影响而分裂, 称“单线态”; 图1 单线基态(A )、单线激发态(B )和三线激发态(C ) 当基态分子的一个成对电子吸收光辐射后,被激发跃迁到能量较高的轨道上,通常它的自旋方向不改变,即?S=0,则激发态仍是单线态,即“单线(重)激发态”; 如果电子在跃迁过程中,还伴随着自旋方向的改变,这时便具有两个自旋不配对的电子,电子净自旋不等于零,而等于1: S=1/2+1/2=1 其多重性: M=2S+1=3 即分子在磁场中受到影响而产生能级分裂,这种受激态称为“三线(重)激发态”; “三线激发态” 比 “单线激发态” 能量稍低。但由于电子自旋方向的改变在光谱学上一般是禁阻的,即跃迁几率非常小,只相当于单线态 → 单线态过程的 10-6~10-7。 (二)分子去活化过程及荧光的发生: (一个分子的外层电子能级包括 S 0(基态)和各激发态S 1,S 2,…..,T 1…..,每个电子能级又包括一系列能量非常接近的振动能级) 处于激发态的分子不稳定,在较短的时间内可通过不同途径释放多余的能量(辐射或非辐射跃迁)回到激态,这个过程称为“去活化过程”,这些途径为: 1. 振动弛豫:在溶液中,处于激发态的溶质分子与溶剂分子间发生碰撞,把一部分能量以热的形式迅速传递给溶剂分子(环境),在10-11~10-13 秒时间回到同一电子激发态的

分光光度计的原理与使用

分光光度计的原理与使用 一、目的要求: 1、学会紫外-可见分光光度计的原理和使用方法 2、学会测量溶液的浓度。 二、实验原理: 1、分光光度计原理:分光光度计是目前化验室中使用比较广泛的一种分析仪器,其测定原理是利用物质对光的选择性吸收特性,以较纯的单色光作为入射光,测定物质对光的吸收,从而确定溶液中物质的含量。其特点是灵敏度高;准确度高;测量范围广;在一定条件下,可同时测定水样中两种或两种以上的物质组分含量等。 分光光度计按其波长范围可分为可见分光光度计(工作范围360~800nm)、紫外-可见分光光度计(工作范围200~1000nm)和红外分光光度计(工作范围760~400000nm)等。 2、在日常使用及维护当中应注意以下几点: 第一,在使用仪器前,必须仔细阅读其使用说明书。 第二,若大幅度改变测试波长,需稍等片刻,等灯热平衡后,重新调零及满度后,再测量。 第三,指针式仪器在未接通电源时,电表的指针必须位于零刻度上。若不是这种情况,需进行机械调零。 第四,操作人员不应轻易触动灯泡及反光镜灯,以免影响光效率。 第五,放大器灵敏度换挡后,必须重新调零。 第六,比色皿使用时要注意其方向性,并应配套使用,以延长其使用寿命。新的比色皿使用前必须进行配对选择,测定其相对厚度,互相偏差不得超过2%透光度,否则影响测定结果。使用完毕后,请立即用蒸馏水冲洗干净(测定有色溶液后,应先用相应的溶剂或(1+3)的硝酸进行浸泡,浸泡时间不宜过长,再用蒸馏水冲洗干净),并用干净柔软的纱布将水迹擦去,以防止表面光洁度被破坏,影响比色皿的透光率。

第七,比色皿架及比色皿在使用中的正确到位问题。首先,应保证比色皿不倾斜。因为稍许倾斜,就会使参比样品与待测样品的吸收光径长度不一致,还有可能使入射光不能全部通过样品池,导致测试准确度不符合要求。其次,应保证每次测试时,比色皿架推拉到位。若不到位,将影响到测试值的重复性或准确度。 第八,干燥剂的使用问题。干燥剂失效将会导致以下问题:①数显不稳,无法调零或满度。②反射镜发霉或沾污,影响光效率,杂散光增加。因此分光光度计应放置在远离水池等湿度大的地方,并且干燥剂应定期更换或烘烤。 第九,分光光度计的放置位置应符合以下条件:避免阳光直射;避免强电场;避免与较大功率的电器设备共电;避开腐蚀性气体等。 3、吸光光度法测定溶液浓度原理 基于物质对不同波长的光波具有选择性吸收的能力而建立起来的分析方法。(1)光线: 光线的波长: 200nm-400nm 紫外线,400-750nm可见光, >750nm 红外线 光具有波粒二相性,波长不同,其能量不同。 (2)物质的吸收光谱及颜色: A.物质的原子吸收光谱和原子发射光谱:原子的最外层电子可以选择性吸收特征波长的电磁波成为激发态而产生的光谱称为原子吸收光谱。激发态原子恢复到基态,则释放出特征波长的光子,形成原子发射光谱。不同的溶液其光谱不同,即不同溶液对不同波长的光其吸收能力不同,对某一特定波长的光存在吸收峰。B.可见光由赤橙黄绿青兰紫等能量不同的光线组成,当可见光穿过某一溶液时,由于特定波长的光被吸收而使溶液呈现相应的颜色。(如CuSO4由于吸收了可见光中的黄光(600nm)而成蓝色)不同颜色的溶液对不同波长的光其吸收能力不同。(3)光吸收的基本定律(Lambert-Beer 定律): 一束平行单色光(Io)通过有色的透明溶液时,一部分的光可以透过溶液(It),另一部分被溶液吸收(Ia),还有一部分被器皿表面反射(Ir),则: Io=It+Ia+Ir 。那么,该溶液透光率为: T = It / Io 。 1. Lambert 定律:设有一束平行单色光,通过液层厚度为b 的均匀透明溶液,则溶液对光的吸收能力: A=Ig(Io/It)=Ig(1/T)=k2b

分光光度计的工作原理

分光光度计就是利用分光光度法对物质进行定量定性分析的仪器。该仪器是食品厂、饮用水厂办理QS、HACCP认证的必备检验设备。QS认证专用指定分光光度计而分光光度法则是通过测定被测物质在特定波长处或一定波长范围内光的吸收度,对该物质进行定性和定量分析。常用的波长范围为:(1)200~400nm的紫外光区,(2)400~760nm的可见光区,(3)2.5~25μm(按波数计为4000cm<-1>~ 400cm<-1>)的红外光区。所用仪器为紫外分光光度计、可见光分光光度计(或比色计)、红外分光光度计或原子吸收分光光度计。为保证测量的精密度和准确度,所有仪器应按照国家计量检定规程或本附录规定,定期进行校正检定。单色光辐射穿过被测物质溶液时,被该物质吸收的量与该物质的浓度和液层的厚度(光路长度)成正比,其关系如下式:A=-log(I/I。)=-lgT=kLc 式中:A 为吸收度;I。为入射的单色光强度;I 为透射的单色光强度;T 为物质的透射比;k 为吸收系数;L 为被分析物质的光程c 为物质的浓度物质对光的选择性吸收波长,以及相应的吸收系数是该物质的物理常数。当已知某纯物质在一定条件下的吸收系数后,可用同样条件将该供试品配成溶液,测定其吸收度,即可由上式计算出供试品中该物质的含量。在可见光区,除某些物质对光有吸收外,很多物质本身并没有吸收,但可在一定条件下加入显色试剂或经过处理使其显色后再测定,故又称比色分析。由于显色时影响呈色深浅的因素较多,且常使用单色光纯度较差的仪器,故测定时应用标准品或对照品同时操作。分光光度计已经成为现代分子生物实验室常规仪器。常用于核酸,蛋白定量

紫外-分光光度法原理

紫外分光光度计的使用原理和方法 紫外-可见分光光度法(ultraviolet-visible spectrophotometry, UV-VIS) 1定义: 它是利用物质的分子或离子对某一波长范围的光的吸收作用,对物质进行定性分析、定量分析及结构分析, 所依据的光谱是分子或离子吸收入射光中特定波长的光而产生的吸收光谱。 2分类: 按所吸收光的波长区域不同:分为紫外分光光度法和可见分光光度法,合称为紫外-可见分光光度法。 3、紫外-可见分光光度法的特点: (1) 其仪器设备和操作都比较简单,费用少,分析速度快;(与其它光谱分析方法相比)(2)灵敏度高; (3)选择性好; (4)精密度和准确度较高; (5)用途广泛。 §1. 紫外-可见吸收光谱 1. 物质对光的选择性吸收 物质对光的吸收是选择性的,利用被测物质对某波长的光的吸收来了解物质的特性,这就是光谱法的基础。通过测定被测物质对不同波长的光的吸收强度(吸光度),以波长为横坐标,吸光度为纵坐标作图,得出该物质在测定波长范围的吸收曲线。在吸收曲线中,通常选用最大吸收波长λmax进行物质含量的测定。 2.有机化合物的紫外-可见吸收光谱 2.1 有机化合物的电子跃迁 与紫外-可见吸收光谱有关的电子有三种,即形成单键的σ电子、形成双键的π电子以及未参与成键的n电子。跃迁类型有:σ→σ*、n→σ* 、π→π*、n→π* 四种。 饱合有机化合物的电子跃迁类型为σ→σ*,n→σ*跃迁, 吸收峰一般出现在真空紫外区,吸收峰低于200nm,实际应用价值不大。 不饱合机化合物的电子跃迁类型为n→π*,π→π*跃迁,吸收峰一般大于200nm。 生色团:是指分子中可以吸收光子而产生电子跃迁的原子基团。人们通常将能吸收紫外、可见光的原子团或结构系统定义为生色团。 助色团:是指带有非键电子对的基团,如-OH、-OR、-NHR、-SH、-Cl、-Br、-I等,它们本身不能吸收大于200nm的光,但是当它们与生色团相连时,会使生色团的吸收峰向长波方向移动,

分光光度计校正

分光光度计校正 1、仪器的主要用途:在近紫外和可见光谱区域内对样品物质作定性和定量的分析,是理化实验室常用分析仪器之一。 2、仪器的工作环境: 2.1该仪器应安放在干燥的房间内,使用温度为5°C~35°C。 2.2使用时放置在坚固平稳的工作台上,而且避免强烈震动或持续震动。 2.3室内照明不宜太强,且避免日光直射。 2.4电风扇不宜直接吹向仪器,以免影响仪器的正常使用。 2.5尽量远离高强度的磁场、电场及发生高频波的电器设备。 2.6供给仪器的电源为220伏±10%,49.5--50Hz,并须装有良好的接地线。宜使用100W以上的稳压器,以加强仪器的抗干扰性能。 2.7避免在有硫化氢、亚硫酸氟等腐蚀性气体的场所使用。 3、主要技术性能及规格: 3.1光学系统:单光束、衍射光栅。 3.2波长范围:330nm~800nm.。 3.3光源:钨卤素灯12V30W。 3.4接收元件:端窗式G1030光电管。 3.5波长精度:±2nm。 3.6波长重现性:0.5 nm。 3.7光谱带宽:6 nm。 3.8杂散光:1%(T)(在360 nm处)。 3.9透过率测量范围:0-100%(T)。 3.10吸光度测量范围:0-1.999(A)。 3.11浓度直读范围:0-2000。 3.12光度精度: 3.12.1透过率线性精度±0.5%(T)。 3.12.2吸光度精度±0.004A(在0.5A处)。 3.13透过率重现性:0.5%(T)。 3.14噪声:0.5%(T)(在550 nm处)。 3.15电源:220伏±10% 49.5-50Hz。 3.16外形尺寸:552mm× 400mm ×230mm。 3.17净重:22.5公斤。 4、仪器的工作原理 4.1分光光度计的基本原理是溶液中的物质在光的照射激发下,产生了对光吸收的效应,物质对光的吸收是具有选择性的,各种不同的物质都具有其各自的吸收光谱,因此当某单色光通过溶液时,其能量就会被吸收而减弱,光能量减弱的程度和物质的浓度有一定的比例关系,也即符合于比色原理---比耳定律。 T=I/I LogI0/I=KCL A=KCL 其中:T 透射比I0 入射光强度 I 透射光强度A 吸光度 K 吸收系数L 溶液的光径长度 C 溶液的浓度

紫外可见分光光度计原理及应用

紫外可见分光光度计及其应用仪器分析进展结业作业 学院:化学学院 年级:2008级 姓名:阿地力·吾布力 学号:1233408001

紫外可见分光光度计及其应用 摘要 主要介绍了紫外—可见分光光度计的结构、原理、特点及应用。 关键词紫外—可见分光光度计;结构;原理;特点;应用 分光光度计是杜包斯克(1)uboscq)和奈斯勒(Nessler)等人在1854年将朗伯比尔定律应用于定量分析化学领域,并且设计了第一台比色计。到1918年,美国国家标准局制成了第一台紫外可见分光光度计。此后,紫外可见分光光度计经不断改进,又出现自动记录、自动打印、数字显示、微机控制等各种类型的仪器,使光度法的灵敏度和准确度也不断提高,其应用范围也不断扩大。紫外可见分光光度法从问世以来,在应用方面有了很大的发展,尤其是在相关学科发展的基础上,促使分光光度计仪器的不断创新,功能更加齐全,使得光度法的应用更拓宽了范围。目前,分光光度法已为工农业各个部门和科学研究的各个领域所广泛采用,成为人们从事生产和科研的有力测试手段。 1、结构 一般地,紫外可见分光光度计主要由光源系统、单色器系统、样品室、检测系统组成(图1)。光源发出的复合光通过单色器被分解成单色光,当单色光通过样品室时,一部分被样品吸收,其余未被吸收的光到达检测器,被转变为电信号,经电子电路的放大和数据处理后。通过显示系统给出测量结果。 图1紫外可见分光光度计结构

分光光度计的主要部件: 光源:发出所需波长范围内的连续光谱,有足够的光强度,稳定。可见光区:钨灯,碘钨脚~25a硒); 紫外区:氢灯,锹q(180~375,Ⅱn)氙灯:紫外、可见光区均可用作光源。 单色器:将光源发出的连续光谱分解为单色光的装置。 棱镜:依据不同波长光通过棱镜时折射率不同。 光栅:在镀铝的玻璃表面刻有数量很大的等宽度等间距条痕(600、1200、2400条/mm)。利用光通过光栅时发生衍射和干涉现象而分光。 吸收池:用于盛待测及参比溶液。可见光区:光学玻璃池;紫外区:石英池。检测器利用光电效应,将光能转换成电流讯号。光电池,光电管,光电倍增管。检流计(指示器):刻度显示或数字显示、自动扫描记录。 2、原理 物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量,这就是分光光度定性和定量分析的基础㈣。分光光度分析就是根据物质的吸收光谱研究物质的成分、结构和物质问相互作用的有效手段。紫外可见分光光度法的定量分析基础是朗伯一比尔(Lambert—Beel-)定律。即物质在一定浓度的吸光度与它的吸收介质的厚度呈正比,其数学表示式如下: A=abc 式中:A—吸光度;a—摩尔吸光系数;b—吸收介质的厚度;c—吸光物质的浓

紫外可见分光光度计工作原理及特点

紫外可见分光光度计工作原理及特点 摘要:紫外可见分光光度计对于分析人员来说是最有用的分析工具之一,几乎每一个分析实验室都离不开紫外可见分光光度计,在食品检测中同样也是如此,它可以用来进行食品的多种成分分析和检测,应用十分广泛。 1概述 紫外可见分光光度计对于分析人员来说是最有用的分析工具之一,几乎每一个分析实验室都离不开紫外可见分光光度计,在食品检测中同样也是如此,它可以用来进行食品的多种成分分析和检测,应用十分广泛。 1.1紫外可见分光光度法 紫外可见分光光度法是利用物质分子对紫外可见光谱区的辐射的吸收来进行分析的一种仪器分析方法。这种分子吸收光谱产生于价电子和分子轨道上的电子在电子能级间的跃迁,它广泛用于无机和有机物质的定性和定量分析。 朗伯一比耳定律(Lambert—Beer)是光吸收的基本定律,俗称光吸收定律,是分光光度法定量分析的依据和基础。当入射光波长一定时,溶液的吸光度A 是吸光物质的浓度C及吸收介质厚度l(吸收光程)的函数。其常用表达式为: A=E×l×C(式中,∈为系数) 1.2紫外可见分光光度计 紫外可见分光光度计是基于紫外可见分光光度法的原理丁作的常规分析仪器。根据光路设计的不同,紫外可见分光光度计可以分为单光束分光光度计、双光束分光光度计和双波长分光光度计。各种型号的紫外可见分光光度计,就其基本结构来说,都是由5个基本部分组成,即光源、单色器、吸收池、检测器及信号指示系统。 1.3紫外可见分光光度计的特点 1.3.1应用广泛 在国际上发表的有关分析的论文中,光度法约占28%。由于各种各样的无机物和有机物在紫外一可见区域都有吸收,均可借此方法加以测定。在食品行业,紫外可见分光光度计被广泛应用于食品检测之中,得到越来越多的重视。 1.3.2仪器价格相对低廉且分析成本低 紫外可见分光光度计价格相埘低廉,分析成本低,在使用过程中仪器儿乎没有什么耗损。食品企业大多属于中小企业,规模不大且利润薄,降低食品检测费

分光光度计的基本工作原理

分光光度计的基本工作原理是基于物质对光(对光的波长)的吸收具有选择性,不同的物质都有各自的吸收光带,所以,当光色散后的光谱通过某一溶液时,其中某些波长的光线就会被溶液吸收。在一定的波长下,溶液中物质的浓度与光能量减弱的程度有一定的比例关系,即符合比尔定律。 T = I/Io lg(Io/I)=εcb 式中,T为透过率,Io为入射光强度,I为透射光强度,A为消光值(吸光度),ε为吸收系数,b为溶液的光径长度,c为溶液的浓度。从以上公式可以看出,当入射光、吸收系数和溶液厚度一定时,透光率是根据溶液的浓度而变化的。 721型分光光度计的构造 721型分光光度计允许的测定波长范围在360~800nm,其构造比较简单,测定的灵敏度和精密度较高。因此,应用比较广泛。 721型分光光度计的仪器构造见下图。 从光源灯发出的连续辐射光线,射到聚光透镜上,会聚后,再经过平面镜转角90°,反射至入射狭缝。由此入射到单色器内,狭缝正好位于球面准直物镜的焦面上,当入射光线经过准直物镜反射后,就以一束平行光射向棱镜。光线进入棱镜后,进行色散。色散后回来的光线,再经过准直镜反射,就会聚在出光狭缝上,再通过聚光镜后进入比色皿,光线一部分被吸收,透过的光进入光电管,产生相应的光电流,经放大后在微安表上读出。 721型分光光度计的使用方法 ①首先接通电源,打开电源开关1,指示灯亮,打开比色皿暗箱盖8,预热20分钟。 ②波长选择旋钮6,选择所需的单色光波长,用灵敏度旋钮2选择所需的灵敏档。 ③放入比色皿,旋转零位旋钮5调零,将比色皿暗箱盖合上,推进比色皿拉杆3,使参比比色皿处于空白校正位置,使光电管见光,旋转透光率调节旋钮4,使微安表9指针准确处于100%。按上述方法连续几次调整零位和100%位,即可进行测定工作(仪器面板见图5-6)。 721型分光光度计使用和维护中应注意事项: ①连续使用仪器的时间不应超过2小时,最好是间歇0.5小时后,再继续使用。

相关主题
文本预览
相关文档 最新文档