当前位置:文档之家› 无机化学知识点归纳知识分享

无机化学知识点归纳知识分享

无机化学知识点归纳知识分享
无机化学知识点归纳知识分享

无机化学知识点归纳

第一篇:化学反应原理

第一章:气体

第一节:理想气态方程

1、气体具有两个基本特性:扩散性和可压缩性。主要表现在:

⑴气体没有固定的体积和形状。⑵不同的气体能以任意比例相互均匀的混合。⑶气体是最容易被压缩的一种聚集状态。

2、理想气体方程:nRT PV = R 为气体摩尔常数,数值为

R =8.31411--??K mol J

3、只有在高温低压条件下气体才能近似看成理想气体。

第二节:气体混合物

1、对于理想气体来说,某组分气体的分压力等于相同温度下该组分气体单独占

有与混合气体相同体积时所产生的压力。

2、分压定律:混合气体的总压等于混合气体中各组分气体的分压之和。

3、(0℃=273.15K 下压强为101.325 = 760 = 76)

第二章:热化学

第一节:热力学术语和基本概念

1、系统与环境之间可能会有物质和能量的传递。按传递情况不同,将系统分

为:

⑴封闭系统:系统与环境之间只有能量传递没有物质传递。系统质量守恒。 ⑵敞开系统:系统与环境之间既有能量传递〔以热或功的形式进行〕又有物质传递。 ⑶隔离系统:系统与环境之间既没有能量传递也没有物质传递。

2、状态是系统中所有宏观性质的综合表现。描述系统状态的物理量称为状态函

数。状态函数的变化量只与始终态有关,与系统状态的变化途径无关。

3、系统中物理性质和化学性质完全相同而与其他部分有明确界面分隔开来的任

何均匀部分叫做相。相可以由纯物质或均匀混合物组成,可以是气、液、固等不同的聚集状态。

4、化学计量数()ν对于反应物为负,对于生成物为正。

5、反应进度ν

ξ0)·(n n sai k e t -==化学计量数反应前反应后-,单位: 第二节:热力学第一定律

0、系统与环境之间由于温度差而引起的能量传递称为热。热能自动的由高温物

体传向低温物体。系统的热能变化量用Q 表示。若环境向系统传递能量,系统吸热,则Q>0;若系统向环境放热,则Q<0。

1、系统与环境之间除热以外其他的能量传递形式,称为功,用W 表示。环境对

系统做功,W>O ;系统对环境做功,W<0。

2、体积功:由于系统体积变化而与环境交换的功称为体积功。

非体积功:体积功以外的所有其他形式的功称为非体积功。

3、热力学能:在不考虑系统整体动能和势能的情况下,系统内所有微观粒子的

全部能量之和称为热力学能,又叫内能。

4、气体的标准状态—纯理想气体的标准状态是指其处于标准压力θP 下的状

态,混合气体中某组分气体的标准状态是该组分气体的分压为θP 且单独存在时的状态。

液体(固体)的标准状态—纯液体(或固体)的标准状态时指温度为T ,压力为θP 时的状态。

液体溶液中溶剂或溶质的标准状态—溶液中溶剂可近似看成纯物质的标准态。在溶液中,溶质的标准态是指压力θP P =,质量摩尔浓度θb b =,标准质量摩尔浓度11-?=kg mol b θ,并表现出无限稀释溶液特性时溶质的(假

想)状态。标准质量摩尔浓度近似等于 标准物质的量浓度。即

11-?=≈L mol c b θθ

5、物质B 的标准摩尔生成焓θm f H ?(B,相态,T )是指在温度T 下,由参考状

态单质生成物质B (1+=B ν)反应的标准摩尔焓变。

6、参考状态一般指每种物质在所讨论的温度T 和标准压力θP 时最稳定的状态。个别情况下参考状态单质并不是最稳定的,磷的参考状态是白磷4P (s,白),但白磷不及红磷和黑磷稳定。O 2(g)、H 2(g)、2(l)、I 2(s)、(l)和P 4(白

磷)是298.15K ,θP 下相应元素的最稳定单质,即其标准摩尔生成焓为零。

7、在任何温度下,参考状态单质的标准摩尔生成焓均为零。

8、物质B 的标准摩尔燃烧焓θm c H ?(B ,相态,T )是指在温度T 下,物质

B(1-=B ν)完全氧化成相同温度下指定产物时的反应的标准摩尔焓变。

第四节:定律

1、定律:化学反应不管是一步或分几步完成,其总反应所放出或吸收的热总是

相等的。其实质是化学反应的焓变只与始态和终态有关,而与途径无关。

2、焓变基本特点:

⑴某反应的θm r H ?(正)与其逆反应的θm r H ?(逆)数值相等,符号相反。

θm r H ?(正)θm r H ?(逆)。

⑵始态和终态确定之后,一步反应的θm r H ?等于多步反应的焓变之和。

3、多个化学反应计量式相加(或相减),所得化学反应计量式的θm r H ?(T )等

于原各计量式的θm r H ?(T )之和(或之差)。 第五节:反应热的求算

1、在定温定压过程中,反应的标准摩尔焓变等于产物的标准摩尔生成焓之和减

去反应物的标准摩尔生成焓之和。θm r H ?=θm f H ?(总生成物)-θm f H ?(总

反应物){如果有参考状态单质,则其标准摩尔生成焓为零}

2、在定温定压过程中,反应的标准摩尔焓变等于反应物的标准摩尔燃烧焓之和

减去产物的标准摩尔燃烧焓之和 。θm r H ?=θm c H ?(总反应物)-θm c H ?(总

生成物){参考状态单质只适用于标准摩尔生成焓,其标准摩尔燃烧焓不为零}

第三章:化学动力学基础

第一节:反应速率

第二节:浓度对反应速率的影响—速率方程

1、对化学反应zZ yY bB aA +→+来说,反应速率r 与反应物浓度的定量关系

为:βα

B A

C kc r =,该方程称为化学反应速率定律或化学反应速率方程,式中

k 称为反应速率系数,表示化学反应速率相对大小;A c ,B c 分别为反应物A 和B 的浓度,单位为1-?L mol ;α,β分别称为A ,B 的反应级数;βα+称为总反应级数。反应级数可以是零、正整数、分数,也可以是负数。零级反应得反应物浓度不影响反应速率。(反应级数不同会导致k 单位的不同。对于零级反应,k 的单位为11--??s L mol ,一级反应k 的单位为1-s ,二级反应k 的单位为11--??s L mol ,三级反应k 的单位为122--??s L mol )

2、由实验测定反应速率方程的最简单方法—初始速率法。 在一定条件下,反应开始时的瞬时速率为初始速率,由于反应刚刚开始,逆反应和其他副反应的干扰小,能较真实的反映出反应物浓度对反应速率的影响具体操作是将反应物按不同组成配置成一系列混合物。对某一系列不同组成的混合物来说,先只改变一种反应物A 的浓度。保持其他反应物浓度不变。在某一温度下反应开始进行时,记录在一定时间间隔内A 的浓度变化,作出t c A -图,确定0是的瞬时速率。也可以控制反应条件,是反应时间间隔足够短,这时可以把平均速率作为瞬时速率。

3、对于一级反应,其浓度与时间关系的通式为:㏑kt A

c A c t -=0 第三节:温度对反应速率的影响—方程

1、 速率系数与温度关系方程:()a e k k RT E a -=0,㏑{k }=㏑{0k }-()b RT

E a , ㏑()c T T RT E k k a ???

? ??-=211211,a E 实验活化能,单位为1-?mol KJ 。0k 为指前参量

又称频率因子。0k 与k 具有相同的量纲。a E 与0k 是两个经验参量,温度变化不大时视为与温度无关。

2、 对方程的进一步分析:

⑴在室温下,a E 每增加41-?mol KJ ,将使k 值降低80%。在室温相同或相近的情况下,活化能a E 大的反应,其速率系数k 则小,反应速率较小;a E 小的反应k 较大,反应速率较大。

⑵对同一反应来说,温度升高反应速率系数k 增大,一般每升高10℃,k 值将增大2~10倍。

⑶对同一反应来说,升高一定温度,在高温区,k 值增大倍数小;在低温区k 值增大倍数大。因此,对一些在较低温度下进行的反应,升高温度更有利于反应速率的提高。

⑷对于不同的反应,升高相同温度,a E 大的反应k 值增大倍数大;a E 小的反应k 值增大倍数小。即升高温度对进行的慢的反应将起到更明显的加速作用。

第四节:反应速率理论与反应机理简介

1、m r H ?=a E (正)-a E (负)

2、由普通分子转化为活化分子所需要的能量叫做活化能

第五节:催化剂与催化作用

1、催化剂是指存在少量就能显著加速反应而本身最后并无损耗的物质。催化剂

加快反应速率的作用被称为催化作用。

2、催化剂的特征:

⑴催化剂只对热力学可能发生的反应起催化作用,热力学上不可能发生的反应,催化剂对它不起作用。

⑵催化剂只改变反应途径(又称反应机理),不能改变反应的始态和终态,它同时加快了正逆反应速率,缩短了达到平衡所用的时间,并不能改变平衡状态。

⑶催化剂有选择性,不同的反应常采用不同的催化剂,即每个反应有它特有的催化剂。同种反应如果能生成多种不同的产物时,选用不同的催化剂会有利于不同种产物的生成。

⑷每种催化剂只有在特定条件下才能体现出它的活性,否则将失去活性或发生催化剂中毒。

第四章:化学平衡 熵和函数

第一节:标准平衡常数

1、平衡的组成与达成平衡的途径无关,在条件一定时,平衡的组成不随时间而

变化。平衡状态是可逆反应所能达到的最大限度。平衡组成取决于开始时的系统组成。

2、对可逆反应()()()()()()l zZ aq yY g xX s cC aq bB g aA ++=++来说,其标准平衡

常数(){}()

{}(){}(){}b a y

x c B c p A p c Y c p x p K θθθ

θθ=

3、两个或多个化学计量式相加(或相减)后得到的化学计量式的标准平衡常数

等于原各个化学计量式的化学平衡常数的积(或商),这称为多重平衡原理。

第二节:标准平衡常数的应用

1、反应进度也常用平衡转化率来表示。反应物A 的平衡转化率()A α表达式为

()()()()

A n A n A n A eq 00-=α 2、J 表示反应商。若J<θK 则反应正向进行;若θK ,则反应处于平衡状态;若

J>θK ,则反应逆向进行。

第三节:化学平衡的移动

1、浓度对化学平衡的影响:浓度虽然可以使化学平衡发生移动,但并不能改变

化学平衡常数的数值,因为在一定温度下,θK 值一定。当反应物浓度增加或产物浓度减少时,平衡正向移动;当反应物浓度减少或产物浓度增加时,平衡逆向移动。

2、压力对化学平衡的影响:综合考虑各反应物和产物分压是否改变及反应前后

气体分子数是否改变。

3、温度对化学平衡都影响:温度变化引起标准平衡常数的改变,从而使化学平

衡移动。温度对标准平衡常数的影响用’t 方程描述。

㏑???

? ??-?=211211T T R H K K m r θθθ 第四节:自发变化和熵

1、自发变化的基本特征:

⑴在没有外界作用或干扰的情况下,系统自身发生的变化称为自发变化。 ⑵有的自发变化开始时需要引发,一旦开始,自发变化将一直进行达到平衡,或者说自发变化的最大限度是系统的平衡状态。

⑶自发变化不受时间约束,与反应速率无关。

⑷自发变化必然有一定的方向性,其逆过程是非自发变化。两者都不能违反能量守恒定律 。

⑸非自发变化和自发变化都是可能进行的。但是只有自发变化能自动发生,而非自发变化必须借助一定方式的外部作用才能发生。没有外部作用非自发变化将不能继续进行。

2、在反应过程中,系统有趋向于最低能量状态的倾向,常称其为能量最低原

理。相变化也具有这种倾向。

3、系统有趋向于最大混乱度的倾向,系统混乱度的增加有利于反应的自发进

行。

4、纯物质完整有序晶体在0K 时熵值为零;()015.298,,=+K aq H S m

θ. 5、⑴熵与物质聚集状态有关。同一种物质气态熵值最大,液态次之,固态熵值

最小。

⑵有相似分子结构且相对分子质量又相近的物质,其θm S 值相近。分子结构

相近而相对分子质量不同的物质,其标准摩尔熵值随分子质量增大而增

大。

⑶物质的相对分子质量相近时,分子构型越复杂,其标准摩尔熵值越大。

6、反应的标准摩尔熵变等于各生成物的标准摩尔熵值之和减去各反应物的标准

摩尔熵值之和

7、在任何自发过程中,系统和环境的熵变化总和是增加的。即:

0>?+?=?huanjing xitong zong S S S

0>?zong S 自发变化

0

0=?zong S 平衡状态

8、T

H S huanjing ?-=? 第五节:函数

1、函数被定义为:TS H G -=,G 被称为自由能。

2、在不做体积功和定温定压条件下,在任何自发变化中系统的函数是减少的,

由S T H G ?-?=?得

⑴当H ?<0,S ?>0时反应能正向进行。

⑵当H ?>0,S ?<0时反应在高温下能正向进行。

⑶当H ?<0,S ?<0时反应在低温下能正常进行。

⑷当H ?>0,S ?<0时反应不能正向进行。

3、当0,=??=?G S T H 时的T 在吸热熵增反应中是反应能正向进行的最低温

度;在放热熵减反应中是反应能正向进行的最高温度。因此这个温度就是反应是否能够正向进行的转变温度。

4、物质B 的标准摩尔生成函数θm f G ?(B ,相态,T )是指在温度T 下由参考状

态单质生成物质B (且1=B ν时)的标准摩尔函数变。

5、θm f G ?<-401-?mol KJ 时反应多半能正向进行;θm f G ?>401-?mol KJ 时反应大

多逆向进行;-401-?mol KJ <θm f G ?<401-?mol KJ 时要用m r G ?来判断反应方

向。

6、’t 方程:㏑()()()()a R

T S RT T H T K m r m r θθθ

?+?-= ㏑()()()???? ??-?-=212111298T T R K H T K T K m r θθθ

第五章:酸碱平衡

第一节:酸碱质子理论

1、酸碱质子理论:凡是能释放出质子的任何含氢原子的分子或离子都是酸;任

何能与质子结合的分子或离子都是碱。简言之酸是质子给予体,碱是质子接受体。

2、质子理论强调酸和碱之间的相互依赖关系。酸给出质子后生成相应的碱,而

碱结合质子后生成相应的酸。酸与碱之间的这种依赖关系称为共轭关系,相

应的一对酸和碱称为共轭酸碱对。酸给出质子后生成的碱为这种酸的共轭碱,碱得到质子后所生成的酸称为这种碱的共轭酸。

3、 酸碱解离反应是质子转移的反应。在水溶液中酸碱的电离时质子转移反应。

盐类水解反应实际上也是离子酸碱的质子转移反应。

4、 既能给出质子又能接受质子的物质称为两性物质。

5、 酸碱的强度首先取决于其本身的性质,其次与溶剂的性质等有关。酸和碱的

强度是指酸给出质子和碱接受质子能力的强弱。给出质子能力强的酸是强酸,接受质子能力强的碱是强碱;反之,就是弱酸和弱碱。

6、 溶剂的碱性越强溶质表现出来的酸性就越强,溶剂的酸性越强溶质表现出来

的碱性就越强。

第二节:水的电离平衡和溶液的

1、对反应()()()(){}(){}-+-+=+?OH c H c K aq OH aq H l O H w θ,2,θw K 被称为水的离

子积常数。25℃时,14100.1-?=θw

K 。 第三节:弱酸、弱碱解离平衡

1、酸的水溶液中存在质子转移反应:()()()()aq A aq O H l O H aq HA -++?+32,

其标准平衡常数()(){}(){}(){}θθθθθc HA c c A c c O H c HA K K a -+==3简写为()(){}(){}(){}HA c A c O H c HA K a -

+=3θ

,()HA K a

θ

称为弱酸的解离常数,弱酸解离常数的数值表明了酸的相对强弱。解离常数越大酸性越强,给出质子能力越强。θa

K 值受温度影响但变化不大。 2、在一元弱碱的水溶液中存在反应:()()()()aq OH aq BH l O H aq B -++?+2,

()(){}(){}(){}B c OH c BH c B K b -+=θ,()B K b

θ

称为一元弱碱B 的解离常数。 3、解离度α的定义为解离的分子数与总分子数的比值,即()()%1000?=

HA c HA c α,解离度越大θa K 越大,越小。解离度与解离常数关系为(){}

c HA K a θα=。对碱同样适用。

第四节:缓冲溶液

1、同离子效应:在弱酸或弱碱的溶液中,加入与这种酸或碱含相同离子的易溶

强电解质,使酸或碱的解离度降低。

2、缓冲溶液:具有能够保持相对稳定性能的溶液(也就是不因加入少量强酸或

强碱而显著改变的溶液。缓冲溶液通常由弱酸和他的共轭碱组成。缓冲溶液计算公式:()+=HA pK PH a θ㏒()()HA c A c -,()+-=-A pK pH b θ00.14㏒()

()

HA c A c - 第五节:酸碱指示剂

1、当溶液中()1-≤HIn pK pH a θ即()()10≥-

In c HIn c 时,溶液呈现出HIn 的颜色;当()1+≥HIn pK pH a θ即()()

101≤-

In c HIn c 时,溶液呈现-In 的颜色;当()HIn pK pH a θ=即()()1=-In c HIn c 时,溶液呈现两者的混合颜色。 2、指示剂的变色范围是()1±HIn pK a

θ,但是由于人的视觉对不同颜色的敏感度的差异实际变色范围常常小于两个单位。

第六节:酸碱电子理论

1、酸是任意可以接受电子对的分子或离子;酸是电子对的接受体,必须具有可

以接受电子对的空轨道。碱则是可以给出电子对的分子或离子;碱是电子的给予体,必须具有未共享的孤对电子。酸碱之间以共价键相结合,并不发生电子对转移。

第七节:配位化合物

2、在配合物中酸被称为形成体(或中心离子),碱被称为配体。配合物的定义是

形成体与一定数目的配体以配位键按一定的空间构型结合形成离子或分子。这些离子或分子被称为配位个体。形成体通常是金属离子或原子,也有少数是非金属元素()。通常作为配体的是非金属的阴离子或分子。

4、在配体中,与形成体成键的原子叫做配位原子;配位原子具有孤对电子。常

见的配位原子有等。配体中只有一个配位原子的称为单齿配体,有两个或两个以上配位原子的称为多齿配体。在配位个体中,与形成体成键的配位原子个数叫作配位数。常见多齿配体有:

5、配合物的化学式:配合物的化学式中首先应先列出配位个体中形成体的元素

符号,在列出阴离子和中性分子配体,,将整个配离子或分子的化学式括在方括号中。

6、配合物的命名:命名时,不同配体之间用·隔开。在最后一个配体名称后缀

以“合”字。

⑴含配阴离子的配合物的命名遵照无机盐命名原则。例如()[]443SO NH Cu 为硫酸四氨合铜()[]463Cl NH Pt 为氯化六氨合铂。

⑵含配阴离子的配合物,内外层间缀以“酸”字。例如()[]64CN Fe K 为六氰合铁酸钾

⑶配体的次序:

① 含有多种无机配体时,通常先列出阴离子名称,后列出中性粒子名

称。例如[]33NH PtCl K 为三氯·氨合铂酸钾

② 配体同是中性分子或同是阴离子时,按配位原子元素符号的英文字

母顺序排列,例如()[]3253Cl O H NH Co 氯化五氨·水合钴。

③ 若配位原子相同,将含原子数较少的配体排在前面,较多原子数的

配体排在后面;若配位原子相同且配体中含有的与子数目也相同,

则按结构中与配位原子相连的非配位原子元素符号的英文字母顺序

排列。例如()[]2322NH NO PtNH 为氨基·硝基·二氨合铂

④ 配体中既有无机配体又有有机配体,则无机配体排在前面有机配体

排在后面。例如()[]423H C PtCl K 为三氯·乙烯合铂酸钾。

7、简单配合物:配合物分子或离子只有一个中心离子,每个配体只有一个配位

原子与中心离子成键。

螯合物:在螯合物分子或离子中,其配体为多齿配体,配体与中心离子成键,形成环状结构。

多核配合物:多核配合物分子或离子含有两个或两个以上的中心离子,中心离子间常以配体相连。

羰合物:某些d 区元素以为配体形成的配合物称为羰合物。

烯烃配合物:某些d 区元素以不饱和烃为配体形成的配合物称为烯烃配合物。

第八节:配位反应与配位平衡

1、()[]()()()(){}(){}()(){}

++++=+?232

3323;2NH Ag c NH c Ag c K aq NH aq Ag aq NH Ag d θ,θd K 是配合物的解离常数,又称为配合物的解离常数或不稳定常数。θd K 越大,配合物越不稳定。 2、()()()[]()=?+++θf K aq NH Ag aq NH aq Ag ;2233()(){}(){}(){}2323NH c Ag c NH Ag c +

+

,θf K 是配合

物生成常数,又称为稳定常数或累积稳定常数。

3、一般来说配合物的逐级稳定常数随着配位数的增加而减少。

4、以等电负性大(吸引电子能力强),半径小,难被氧化(不易失去电子),

不易变形(难被极化)的原子为配位原子的碱成为硬碱。反之则为软碱,介于二者之间的为交界碱。

5、硬酸多是电荷数较多,半径较小,外层电子被原子核束缚得较紧而不易变形

(极化率较小)的阳离子。反之则为软酸,介于两者之间的为交界酸。

6、常见的酸和碱分类如下:

7

第六章:沉淀溶解平衡

第一节:溶解度和溶度积

1、溶解度:在一定温度下,达到溶解平衡时,一定量溶剂中含有的溶质质量。

2、常见无机化合物溶解性:

常见无机酸是可溶的,硅酸是难溶的;

氨、IA 族氢氧化物,()2OH Ba 是可溶的;()()22,OH Ca OH Sr 是微溶的;其

余元素的氢氧化物都是难溶的。

几乎所有的硝酸盐都是可溶的;3BaNO 是微溶的。

大多数醋酸盐是可溶的;()2Ac Be 是难溶的。

大多数氯化物是可溶的;2PbCl 是微溶的;22,Cl Hg AgCl 是难溶的。

大多数溴化物,碘化物是可溶的;22,HgBr PbBr 是微溶的;

222222,,,,,HgI PbI I Hg AgI Br Hg AgBr 是难溶的。

大多数硫酸盐是可溶的;4424,,HgSO SO Ag CaSO 是微溶的;

4SrSO ,4BaSO ,4PbSO 是难溶的。

大多数硫化物是难溶的,第一主族,第二主族金属硫化物和()S NH 24 是可

溶的。

多数碳酸盐,磷酸盐,亚硫酸盐是难溶的;第一主族(除外)和铵离子的这

些盐是可溶的。

多数氟化物是难溶的;第一主族(除外)金属氟化物,24,,BeF AgF F NH 是

可溶的;222,,PbF BaF SrF 是微溶的。

几乎所有的氯酸盐,高氯酸盐都是可溶的;4KClO 是微溶的;

几乎所有的钠盐,钾盐均是可溶的;

()[]()()()[]62222326,93,NO Co Na K O H Ac UO Ac Zn NaAc OH Sb Na ???是难溶

的。

2、对于一般沉淀反应来说:()()()aq mB aq nA s B A n m m n -++?,溶度积的通式是

()(){}(){}m n n m m n sp B c A c B A K -+=θ

3、难溶电解质的溶度积常数的数值在稀释溶液中不受其他离子存在的影响,只

取决于温度。温度升高,多数难溶化合物的溶度积增大。

第二节:沉淀的生成和溶解

1、同离子效应:在难溶电解质的饱和溶液中,加入含有相同离子的强电解质

时,难溶电解质的溶解度将降低。同离子效应使难溶电解质的溶解度降低。

2、盐效应使难溶电解质溶解度增大。一般来说,若难溶电解质的溶度积很小

时,盐效应的影响很小,可忽略不计;若难溶电解质的溶度积较大,溶液中各种离子的总浓度也较大时,就应考虑盐效应的影响。

3、金属硫化物的溶解平衡:

()()()()()(){}(){}(){}

23222223;22++++=++?+O H c S H c M c K l O H aq S H aq M aq O H s MS spa θ, θspa K 称为在酸中的溶度积常数。

4、某些难容硫化物的溶度积常数:

第七章:氧化还原反应 电化学基础

第一节:氧化还原反应基本概念

1、有电子得失或转移的反应称为氧化还原反应。

2、表示元素氧化态的数值称为氧化数又称氧化值。

⑴在单质中元素氧化值为零。

⑵在单原子离子中,元素氧化值等于离子所带电荷数。

⑶在大多数化合物中,氢的氧化值为+1,只有在金属氢化物中,氢的氧化值为-1。

⑷通常在化合物中氧的氧化值为-2,但是在22222,,BaO O Na O H 等过氧化物中养的氧化值为-1,在氧的氟化物中,如222,F O OF 中氧的氧化值为+2,+1。

⑸在所有氟化物中氟的氧化值为-1。

⑹碱金属和碱土金属在化合物中氧化值分别为+1和+2。

⑺在中性分子中,各元素氧化值代数和为零。在多原子离子中,各元素氧化数代数和等于离子所带电荷数。

第二节:电化学电池

1、电池图示:将发生氧化反应的负极写在左边,发生还原反应的正极写在右

边;并按顺序用化学式从左到右依次排列各个相的物质组成和状态;用单垂线“︱”表示相与相间的界面,用双折线“‖”表示盐桥。

2、定律:

⑴在电化学电池中,两极所产生或消耗的物质的物质的量与通过电池的电荷量成正比。

⑵当给定的电荷量通过电池时,电极上所产生或消耗的物质的物质的量正比于物质的摩尔质量被对应于半反应每摩尔物质每摩尔物质所转移的电子数除的商。

对于半反应()()s B ze aq B z ?+-+,根据定律,第一:电极上沉淀出或消耗掉的()B m 正比于通过电池的电荷量Q 。Q 越大()B m 越大。第二:当通过电池的电荷量Q 一定时,()B m 正比于()z B M ,()B M 为B 物质的摩尔质量。

3、常量表示一摩尔电子所带的电荷量,

141231910648531.910022137.6106021773.1---??=???=mol C mol C F ,F 被称为常量

4、当原电池放电时,两极间的电势差将比该电池的最大电压要小。这是因为驱

动电流通过电池需要消耗能量或者称其为要做功,产生电流时,电池电压的降低正反映了电池内所消耗的这种能量;而且电流越大,电压降低越多。因此,只有电池中没有电流通过时,电池才具有最大电压又称其为开路电压。当通过原电池的电流趋近于零时,两电极间的最大电势差被称为原电池的电动势,用MF E 表示。

5、当电池中各物质均处于标准状态时,测定的电动势被称为标准电动势,用

θMF E 表示。

6、可逆电池必须具备以下条件。第一:电极必须是可逆的,即当相反方向的电

流通过电极是,电极反应必然逆向进行;电流停止,反应也停止。第二:要求通过电极的电流无限小,电极反应在接近于电化学平衡的条件下进行。

7、电池反应的标准摩尔函数变θθMF m r zFE G -=?。

第三节:电极电势

1、原电池的电动势是构成原电池的两个电极间的最大电势差,即正极电势()

+E 减去负极电势()-E 等于电池的电动势:()()-+-=E E E MF 。

2、电极电势的绝对值无法确定,常选取标准氢电极(简写为)作为比较的基

准,称其为参比电极。参比电极中最常用的是甘汞电极。

3、各电对的标准电极电势是以标准氢电极为参比电极并与各标准电极组成原电

池时测得的电动势。使待测半电池中各物质均处于标准状态下,将其与标准氢电极相连组成原电池,以电压表测定该电池的电动势并确定其正极和负极,进而可推算出待测半电池的标准电极电势。

4、电极电势高的电对为正极,电极电势低的电对为负极。两电极的标准电极电

势之差等于原电池的标准电极电势。即()()θ

θ

θ-+-=E E E MF .

5、()()z

V K E K E 0257.0298298-

=θ㏑()()yang c huan c , ()()z

V O O K E K E 592.298298-=θ㏑()()yang c huan c 。 6、如果电对的氧化型生成难溶化合物(配合物),则电极电势变小;若还原型

生成难溶化合物(配合物),则电极电势变大;当还原型和氧化型同时生成

难溶化合物(配合物),若θsp K (θf K )(氧化型)<θsp K (θf K )(还原型),则电极电势变小,反之则变大。

第四节:电极电势的应用

1、某电对的θE 越大,其氧化型的得电子能力(氧化性)越强,还原型失电子

能力(还原性)越弱;反之电对的θE 越小,其氧化型的得电子能力(氧化性)越弱,还原型失电子能力(还原性)越强。

2、θθMF m r zFE G -=?,㏒V zE K MF 0592.0θθ=,㏑V

zE K MF 0257.0θθ= 3、元素电势图:当某种元素形成三种或三种以上氧化值的氧化物时,这些物种

可以组成多种不同的电对,各电对的标准电极电势可用图的形式表示出来,这种图叫做元素电势图。画元素电势图,可以按元素氧化值由高到低的顺序,把各氧化物的化学式从左到右写出来,各不同氧化物之间用直线连接起来,在直线上表明不同氧化值物种所组成的电对的标准电极电势。

4、歧化反应发生的一般规则:()()C B A R E L E ??→←??

→←θ

θ,若()L E θ<()R E θ则B 能发生歧化反应

第二篇:物质结构基础

第八章:原子结构

第一节:原子结构的理论

1、电子的电量为C 1910602.1-?,电子的质量为g 2810109.9-?。

2、 每种元素的原子辐射都具有一定频率成分构成的特征光谱,它们是一条条离散的谱

线,被称为线状光谱,即原子光谱。

3、氢原子光谱的频率公式:12221151110289.3-???

? ??-?=s n n ν 4、原子结构理论;

⑴定态假设 原子的核外电子在轨道上运行时,只能够稳定的存在于具有分立的,固定能量的状态中,这些状态称为定态(能级),即处于定态的原子的能量是量子化的。此时原子并不辐射能量,是稳定的。

⑵跃迁规则 原子的能量变化(包括发射和吸收电磁辐射)只能在两定态之间以跃迁的方式进行。在正常情况下,原子中的电子尽可能处于离核最低的轨道上。这时原子的能量最低,即原子处于基态。当原子受到辐射,加热或通电时,获得能量后的电子可以跃迁到离核较远的轨道上去即原子被激发到高能量的轨道上,这时原子处于激发态。处于

激发态的电子不稳定,可以跃迁到离核较近的轨道上,同时释放出光子。光的频率取决于离核较远的轨道的能量(2E )与离核较近的轨道的能量(1E )之差:12E E h -=ν

第二节:微观粒子运动基本特征

1、实物粒子波长满足p

h mv h ==λ,其中m 为实物粒子质量,v 为实物粒子运动速度,p 为动量。

2、不确定原理:对运动中的微观粒子来说,并不能同时准确确定它的位置和动量。其关系式为:π

4h p x ≥???,式中x ?为微观粒子位置(或坐标)的不确定度,p ?为微观粒子动量的不确定度,该式表明微观粒子位置不确定度与动量不确定度的成绩大约等于常量的数量级。就是说,微观粒子位置不确定度越小,则相应它的动量不确定度就越大。

3、微观粒子的波动性是大量微观粒子(或者是一个粒子千万次运动)所表现出来的性质,

可以说物质的运动是具有统计意义的概率波;在空间某个区域波强度(即衍射强度)大的地方,粒子出现的机会多,波强度小的地方粒子出现的机会少。从数学角度看,这里说的机会是概率,也就是说,在空间区域内任一点波的强度与粒子出现的概率成正比。

第三节:氢原子结构的量子力学描述

1、dinger o Shr &&方程:()0822222222=-+??+??+??ψπψψψV E h

m z y x 式中ψ是坐标z y x ,,的函数,E 是系统总能量,V 是势能,m 是微观粒子质量,h 是常量。

2、⑴主量子数n 在原子的电子中最重要的量子化性质是能量。原子轨道的能量主要取决

于主量子数n ,对于氢原子和类氢原子,电子的能量值取决于n 。n 的取值为1,2,3,4,5等正整数。n 越大电子离核的平均距离越远,能量越高。因此,可将n 值所表示的电子运动状态对应于…电子层

⑵角量子数l 原子轨道的角动量有角量子数l 决定。在多原子电子中原子轨道的能量不仅取决于主量子数n ,还受角量子数l 的影响。l 受n 限制,l 只能取0到(n -1)的整数,按照光谱学的规定,对应的符号为…。n 一定,l 取不同值代表同一电子层中不同状态的亚层。角量子数l 还表明了原子轨道的分布角度形状不同。l =0,为s 轨道,其角度分布为球形对称;l =1,为p 轨道,其角度分布为哑铃型;l =2为d 轨道,其角度分布为花瓣形。对多电子原子来说,n 相同,l 越大,其能量越大。

⑶磁量子数m m 决定角动量在磁场方向的分量。其取值受角量子数l 的限制,从-l ,…,0,…,+l ,共有(2l +1)个取值。磁量子数m 决定原子轨道在核外空间的取向。

l =0,m 只有0一个取值,表示s 轨道在核外空间只有一种分布方向,即以核为球心的球形。

l =1,m 有+1,-1,0三个取值,表示p 亚层在空间有三个分别沿x 轴,y 轴,z 轴的取向轨道,即轨道z y x p p p ,,。

l =2,m 有0,-1,+1,-2,+2五个取值,表示d 亚层有五个取向的轨道,分别是轨道222,,,,y x xy yz xz z d d d d d -。

m电子除轨道运动外,还有自旋运动。电子自旋运动的自旋角动量有自

⑷自旋量子数

s

m决定。处于同一轨道上的电子自旋状态只能有两种,分别用自旋磁量子数旋量子数

s

+来确定。正是由于电子具有自旋角动量,使氢原子光谱在没有外磁场

1

2

1

-和2

时会发生微小的分裂,得到了靠的很近的谱线。

3、一个原子轨道可以用n,l,m一组三个量子数来确定,但是原子层中每个电子的运动

状态必须用n,l,m,s m四个量子数来确定。四个量子数确定之后,电子在核外空间的运动状态就确定了。

4、概率密度是空间某单位体积内电子出现的概率。电子在核外空间某区域内出现的概率等

于概率密度与该区域体体积的乘积。

5、电子云是概率密度的形象化描述。黑点密的地方电子出现的概率大;黑点稀疏的地方电

子出现的概率小。

6、电子云有等密度图和界面图两种图示。在电子云等密度图中,每一个球面上的数字表示

概率密度的相对大小。在电子云界面图中,界面实际上是一个等密度面,电子在此界面内出现的概率高于90%,在此界面外出现的概率低于10%,通常认为在界面外发现电子的概率可忽略不计。

7、氢原子各种状态的径向分布函数图中锋数N等于主量子数与角量子数之差,即

=.

N-

l

n

7、原子轨道角度分布图与电子云角度分布图。

考研无机化学_知识点总结

第一章物质存在的状态………………………………………………………………2 一、气体 .......................................................................................................... 2 二、液体 .......................................................................................................... 3 ①溶液与蒸汽压 ................................................................................................ 3 ②溶液的沸点升高和凝固点的下降 ................................................................... 3 ③渗透压 .......................................................................................................... 4 ④非电解质稀溶液的依数性 .............................................................................. 4 三、胶体 .......................................................................................................... 4 第二章 化学动力学初步……………………………………………………………5 一、化学反应速率 ............................................................................................ 5 二、化学反应速率理论 ..................................................................................... 6 三、影响化学反应速率的因素 .......................................................................... 6 2、温度 ............................................................................................................ 7 第三章 化学热力学初步……………………………………………………………8 一、热力学定律及基本定律 .............................................................................. 8 二、化学热力学四个重要的状态函数 ................................................................ 9 4、自由能 ....................................................................................................... 10 ①吉布斯自由能 .............................................................................................. 10 ②自由能G ——反应自发性的判据 .................................................................. 11 ③标准摩尔生成自由能θ m f G ? (11)

无机化学知识点归纳(高教版)

无机化学知识点归纳(高教版) 注:加黑字体为知识点,加下划线为补充内容。第一章:物质及其变化 1 第一节:物质的聚集状态 1 第二节:化学反应中的质量关系和能量关系 2 第二章化学反应速率和化学平衡 3 第二节影响反应速率的因素 3 第三节化学平衡 3 第四节化学平衡的移动4 第五节反应速率与化学平衡的综合利用4 第三章电解质溶液和离子平衡 4 第一节强电解质溶液 4 第二节水的解离和溶液的ph 4 第三节弱酸、弱碱的解离平衡 5 第四节同离子效应和缓冲溶液 5 第五节盐类的水解 5 第六节沉淀-溶解平衡 6 第七节溶度积规则及其应用 6 第四章氧化和还原 6 第一节氧化还原反应的基本概念 6

第二节氧化还原反应与原电池7 第三节电极电势7 第四节电极电势的应用7 第五章原子结构与元素周期律7 第六章分子结构与晶体结构8 第一节共价健理论 8 第三节分子间力与分子晶体8 第四节离子键与离子晶体8 第五节离子极化8 第六节其他类型晶体9 第七章配位化合物 9 第一节配位化合物的基本概念9 第二节配位化合物的结构9 第三节配位化合物在水溶液中的状况9 第四节熬合物10 第八章主族金属元素(一)碱金属和碱土金属10 第一节化学元素的自然资源10 第二节碱金属11 第三节碱土金属11 第一章:物质及其变化 第一节:物质的聚集状态 1、气体具有两个基本特性:扩散性和可压缩性。主要表现在:

⑴气体没有固定的体积和形状。⑵不同的气体能以任意比例相互均匀的混合。⑶气体是最容易被压缩的一种聚集状态。 2、理想气体方程: 为气体摩尔常数,数值为8.314 3、只有在高温低压条件下气体才能近似看成理想气体。 气体混合物 1、当两种或两种以上的气体在同一容器中混合时,每一种气体称为该混合气体的组分气体。 2、混合气体中某组分气体对器壁所施加的压力叫做该组分气体的分压。 3、对于理想气体来说,某组分气体的分压力等于相同温度下该组分气体单独占有与混合气体相同体积时所产生的压力。 4、(Dlton)分压定律:混合气体的总压等于混合气体中各组分气体的分压之和。 5、流体 6、固体 第二节:化学反应中的质量关系和能量关系 1、系统是人们将其作为研究对象的那部分物质世界,即被研究的物质和它们所占有的空间。系统的边界可以是实际的界面也可以是人为确定的用来划定研究对象的空间范围。划定范围的目的是便于研究。 2、环境是系统边界之外与之相关的物质世界。 系统与环境之间可能会有物质和能量的传递。按传递情况不同,将系统分为: ⑴封闭系统:系统与环境之间只有能量传递没有物质传递。系统质量守恒。 ⑵敞开系统:系统与环境之间既有能量传递〔以热或功的形式进行〕又有物

无机化学知识点归纳

无机化学知识点归纳 一、常见物质的组成和结构 1、常见分子(或物质)的形状及键角 (1)形状:V型:H2O、H2S 直线型:CO2、CS2 、C2H2平面三角型:BF3、SO3 三角锥型:NH3正四面体型:CH4、CCl4、白磷、NH4+ 平面结构:C2H4、C6H6 (2)键角:H2O:104.5°;BF3、C2H4、C6H6、石墨:120°白磷:60° NH3:107°18′CH4、CCl4、NH4+、金刚石:109°28′ CO2、CS2、C2H2:180° 2、常见粒子的饱和结构: ①具有氦结构的粒子(2):H-、He、Li+、Be2+; ②具有氖结构的粒子(2、8):N3-、O2-、F-、Ne、Na+、Mg2+、Al3+; ③具有氩结构的粒子(2、8、8):S2-、Cl-、Ar、K+、Ca2+; ④核外电子总数为10的粒子: 阳离子:Na+、Mg2+、Al3+、NH4+、H3O+; 阴离子:N3-、O2-、F-、OH-、NH2-; 分子:Ne、HF、H2O、NH3、CH4 ⑤核外电子总数为18的粒子: 阳离子:K+、Ca 2+; 阴离子:P3-、S2-、HS-、Cl-; 分子:Ar、HCl、H2S、PH3、SiH4、F2、H2O2、C2H6、CH3OH、N2H4。 3、常见物质的构型: AB2型的化合物(化合价一般为+2、-1或+4、-2):CO2、NO2、SO2、SiO2、CS2、ClO2、CaC2、MgX2、CaX2、BeCl2、BaX2、KO2等 A2B2型的化合物:H2O2、Na2O2、C2H2等 A2B型的化合物:H2O、H2S、Na2O、Na2S、Li2O等 AB型的化合物:CO、NO、HX、NaX、MgO、CaO、MgS、CaS、SiC等 能形成A2B和A2B2型化合物的元素:H、Na与O,其中属于共价化合物(液体)的是H 和O[H2O和H2O2];属于离子化合物(固体)的是Na和O[Na2O和Na2O2]。 4、常见分子的极性: 常见的非极性分子:CO2、CS2、BF3、CH4、CCl4、、SF6、C2H4、C2H2、C6H6等 常见的极性分子:双原子化合物分子、H2O、H2S、NH3、H2O2、CH3Cl、CH2Cl2、CHCl3等5、一些物质的组成特征: (1)不含金属元素的离子化合物:铵盐 (2)含有金属元素的阴离子:MnO4-、AlO2-、Cr2O72- (3)只含阳离子不含阴离子的物质:金属晶体 二、物质的溶解性规律 1、常见酸、碱、盐的溶解性规律:(限于中学常见范围内,不全面) ①酸:只有硅酸(H2SiO3或原硅酸H4SiO4)难溶,其他均可溶; ②碱:只有NaOH、KOH、Ba(OH)2可溶,Ca(OH)2微溶,其它均难溶。 ③盐:钠盐、钾盐、铵盐、硝酸盐均可溶; 硫酸盐:仅硫酸钡、硫酸铅难溶、硫酸钙、硫酸银微溶,其它均可溶;

无机化学重点笔记

无机化学重点笔记Revised on November 25, 2020

第一章 物质的状态 理想气体:是设定气体分子本身不占空间、分子间也没有相互作用力的假想情况下的气体。 实际气体:处于高温(高于273 K )、低压(低于数百千帕)的条件下,由于气体分子间距离相当大,使得气体分子自身的体积与气体体积相比可以忽略不计,且分子间作用力非常小,可近似地将实际气体看成是理想气体。 pV = nRT (理想气体状态方程式) R 称为比例常数,也称为摩尔气体常数。 R = Pa·m3·mol-1·K-1 = kPa·L·mol-1·K-1 = ·mol-1·K-1(Pa·m3=N·m-2·m3=N·m = J ) 道尔顿理想气体分压定律 式中 xi 为某组分气体的摩尔分数。理想气体混合物中某组分气体的分压等于该组分气体的摩尔分数与总压力的乘积。 分体积定律 当几种气体混合时,起初每一种气体在各处的密度是不同的,气体总是从密度大的地方向密度小的地方迁移,直至密度达到完全相同的状态,这种现象称为扩散。 相同温度、相同压力下,某种气体的扩散速度与其密度的平方根成反比,这就是气体扩散定律。用u i 表示扩散速度,ρi 表示密度,则有: 式中u A 、u B 分别表示A 、B 两种气体的扩散速度,ρA 、ρB 分别表示A 、B 两种气体的密度。 同温同压下,气体的密度(ρ)与其摩尔质量(M )成正比,据此可以表示为:i i RT RT p p n n V V =∑=∑=i u A B u u A B u u

对理想气体状态方程进行修正 对n = 1 mol实际气体,其状态方程为: 气体分子运动论的主要内容包括以下几个假设: (1)气体由不停地作无规则运动的分子所组成; (2)气体分子本身不占体积,视为数学上的一个质点; (3)气体分子间相互作用力很小,可忽略; (4)气体分子之间及分子对容器壁的碰撞视为弹性碰撞,气体的压力是由于气体分子同容器壁产生碰撞的结果; (5)气体分子的平均动能与气体的温度成正比。 通常把蒸气压大的物质称为易挥发的物质,蒸气压小的物质称为难挥发的物质。 对同一液体来说,若温度高,则液体中动能大的分子数多,从液体中逸出的分子数就相应的多些,蒸气压就高;若温度低,则液体中动能大的分子数少,从液体中逸出的分子数就相应的少些,蒸气压就低。 克劳修斯-克拉贝龙(Clansius-Clapeyron)方程 沸点是指液体的饱和蒸气压等于外界大气压时的温度。在此温度下,气化在整个液体内部和表面同时进行(在低于该温度时气化仅在液体的表面上进行),称之为液体的沸腾。三氯甲烷、乙醇、水和醋酸的正常沸点依次分别为61.3℃, 78.4℃, 100℃和118.5℃。减压蒸馏的方法正是利用减压时液体沸点会降低的这一特征去实现分离和提纯物质的目的。这种方法适用于分离提纯沸点较高的物质以及那些在正常沸点易分解或易被空气氧化的物质。

无机化学_知识点总结

无机化学(上) 知识点总结 第一章 物质存在的状态 一、气体 1、气体分子运动论的基本理论 ①气体由分子组成,分子之间的距离>>分子直径; ②气体分子处于永恒无规则运动状态; ③气体分子之间相互作用可忽略,除相互碰撞时; ④气体分子相互碰撞或对器壁的碰撞都是弹性碰撞。碰撞时总动能保持不变,没有能量损失。 ⑤分子的平均动能与热力学温度成正比。 2、理想气体状态方程 ①假定前提:a 、分子不占体积;b 、分子间作用力忽略 ②表达式:pV=nRT ;R ≈8.314kPa 2L 2mol 1-2K 1- ③适用条件:温度较高、压力较低使得稀薄气体 ④具体应用:a 、已知三个量,可求第四个; b 、测量气体的分子量:pV=M W RT (n=M W ) c 、已知气体的状态求其密度ρ:pV=M W RT →p=MV WRT →ρMV RT =p 3、混合气体的分压定律 ①混合气体的四个概念 a 、分压:相同温度下,某组分气体与混合气体具有相同体积时的压力; b 、分体积:相同温度下,某组分气体与混合气体具有相同压力时的体积 c 、体积分数:φ= 2 1 v v d 、摩尔分数:xi= 总 n n i ②混合气体的分压定律 a 、定律:混合气体总压力等于组分气体压力之和; 某组分气体压力的大小和它在混合气体中体积分数或摩尔数成正比 b 、适用范围:理想气体及可以看作理想气体的实际气体 c 、应用:已知分压求总压或由总压和体积分数或摩尔分数求分压、 4、气体扩散定律 ①定律:T 、p 相同时,各种不同气体的扩散速率与气体密度的平方根成反比: 2 1 u u =21p p =2 1 M M (p 表示密度) ②用途:a 、测定气体的相对分子质量;b 、同位素分离 二、液体

无机化学知识点总结归纳共10页

无机化学知识点总结 1、知道典型的溶解性特征 ①加入过量硝酸从溶液中析出的白色沉淀:AgCl,原来溶液是Ag(NH3)2Cl;后者是硅酸沉淀,原来的溶液 是可溶解的硅酸盐溶液。生成淡黄的沉淀,原来的溶液中可能含有S2-,或者是S2O32- ②加入过量的硝酸不能观察到沉淀溶解的有AgCl,BaSO4;BaSO3由于转化成为BaSO4而不能观察到沉淀的溶 解。AgBr,AgI,也不溶解,但是沉淀的颜色是黄色。 ③能够和盐反应生成强酸和沉淀的极有可能是H2S气体和铅、银、铜、汞的盐溶液反应。: ④沉淀先生成后溶解的:CO2和Ca(OH)2;Al3+和氢氧化钠;AlO2-和盐酸;,氨水和硝酸银。 2、操作不同现象不同的反应: Na2CO3和盐酸;AlCl3和NaOH,NaAlO2和盐酸;AgNO3和氨水;FeCl3和Na2S;H3PO4 和Ca(OH)2反应。 3、先沉淀后澄清的反应: AlCl3溶液中加入NaOH溶液,生成沉淀,继续滴加沉淀溶解: AgNO3溶液中滴加稀氨水,先沉淀后澄清: NaAlO2溶液中滴加盐酸,也是先沉淀后澄清: 澄清石灰水通入二氧化碳,先沉淀后澄清:; 次氯酸钙溶液中通入二氧化碳,先沉淀后澄清:; KAl(SO4)2与NaOH溶液:; 4、通入二氧化碳气体最终能生成沉淀的物质:苯酚钠溶液、硅酸钠溶液、偏铝酸钠溶液(这三种都可以与 少量硝酸反应产生沉淀)、饱和碳酸钠溶液。 苯酚钠溶液:; 硅酸钠溶液:; 饱和碳酸钠溶液:; 偏铝酸钠溶液:; 5、能生成两种气体的反应: HNO3的分解:; Mg与NH4Cl溶液的反应:; 电解饱和食盐水:; C与浓HNO3加热时反应:;

大学无机化学知识点总结.

无机化学,有机化学,物理化学,分析化学 无机化学 元素化学、无机合成化学、无机高分子化学、无机固体化学、配位化学(即络合物化学)、同位素化学、生物无机化学、金属有机化学、金属酶化学等。 有机化学 普通有机化学、有机合成化学、金属和非金属有机化学、物理有机化学、生物有机化学、有机分析化学。 物理化学 结构化学、热化学、化学热力学、化学动力学、电化学、溶液理论、界面化学、胶体化学、量子化学、催化作用及其理论等。 分析化学 化学分析、仪器和新技术分析。包括性能测定、监控、各种光谱和光化学分析、各种电化学分析方法、质谱分析法、各种电镜、成像和形貌分析方法,在线分析、活性分析、实时分析等,各种物理化学性能和生理活性的检测方法,萃取、离子交换、色谱、质谱等分离方法,分离分析联用、合成分离分析三联用等。

无机化学 第一章:气体 第一节:理想气态方程 1、气体具有两个基本特性:扩散性和可压缩性。主要表现在: ⑴气体没有固定的体积和形状。⑵不同的气体能以任意比例相互均匀的混合。⑶气体是最容易被压缩的一种聚集状态。 2、理想气体方程:nRT PV = R 为气体摩尔常数,数值为R =8.31411--??K mol J 3、只有在高温低压条件下气体才能近似看成理想气体。 第二节:气体混合物 1、对于理想气体来说,某组分气体的分压力等于相同温度下该组分气体单独占有与混合气体相同体积时所产生的压力。 2、Dlton 分压定律:混合气体的总压等于混合气体中各组分气体的分压之和。 3、(0℃=273.15K STP 下压强为101.325KPa = 760mmHg = 76cmHg) 第二章:热化学 第一节:热力学术语和基本概念 1、 系统与环境之间可能会有物质和能量的传递。按传递情况不同,将系统分为: ⑴封闭系统:系统与环境之间只有能量传递没有物质传递。系统质量守恒。 ⑵敞开系统:系统与环境之间既有能量传递〔以热或功的形式进行〕又有物质传递。 ⑶隔离系统:系统与环境之间既没有能量传递也没有物质传递。 2、 状态是系统中所有宏观性质的综合表现。描述系统状态的物理量称为状态函数。状态函 数的变化量只与始终态有关,与系统状态的变化途径无关。 3、 系统中物理性质和化学性质完全相同而与其他部分有明确界面分隔开来的任何均匀部 分叫做相。相可以由纯物质或均匀混合物组成,可以是气、液、固等不同的聚集状态。 4、 化学计量数()ν对于反应物为负,对于生成物为正。 5、反应进度νξ0 )·(n n sai k e t -==化学计量数 反应前反应后-,单位:mol 第二节:热力学第一定律 0、 系统与环境之间由于温度差而引起的能量传递称为热。热能自动的由高温物体传向低温 物体。系统的热能变化量用Q 表示。若环境向系统传递能量,系统吸热,则Q>0;若系统向环境放热,则Q<0。 1、 系统与环境之间除热以外其他的能量传递形式,称为功,用W 表示。环境对系统做功, W>O ;系统对环境做功,W<0。 2、 体积功:由于系统体积变化而与环境交换的功称为体积功。 非体积功:体积功以外的所有其他形式的功称为非体积功。 3、 热力学能:在不考虑系统整体动能和势能的情况下,系统内所有微观粒子的全部能量之 和称为热力学能,又叫内能。 4、 气体的标准状态—纯理想气体的标准状态是指其处于标准压力θ P 下的状态,混合气体 中某组分气体的标准状态是该组分气体的分压为θP 且单独存在时的状态。 液体(固体)的标准状态—纯液体(或固体)的标准状态时指温度为T ,压力为θP 时的状态。

无机化学知识点归纳

无机化学知识点归纳 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

第一篇:化学反应原理 第一章:气体 第一节:理想气态方程 1、气体具有两个基本特性:扩散性和可压缩性。主要表现在: ⑴气体没有固定的体积和形状。⑵不同的气体能以任意比例相互均匀的混合。⑶气体是最容易被压缩的一种聚集状态。 2、理想气体方程:nRT PV = R 为气体摩尔常数,数值为R =11--??K mol J 3、只有在高温低压条件下气体才能近似看成理想气体。 第二节:气体混合物 1、当两种或两种以上的气体在同一容器中混合时,每一种气体称为该混合气体的组分气体。 2、混合气体中某组分气体对器壁所施加的压力叫做该组分气体的分压。 3、对于理想气体来说,某组分气体的分压力等于相同温度下该组分气体单独占有与混合气体相同 体积时所产生的压力。 4、Dlton 分压定律:混合气体的总压等于混合气体中各组分气体的分压之和。 第三节:气体分子动理论 1、气体分子动理论基本观点: ⑴气体是由分子组成的,分子是很小的微粒,彼此间距离比分子直径大许多,分子体积与气体体积相比可以忽略不计。 ⑵气体分子以不同的速度在各个方向上处于永恒的无规则运动之中。 ⑶除了在相互碰撞时,气体分子间的相互作用是很弱的,甚至是可以忽略的。 ⑷气体分子相互碰撞和对器壁的碰撞都是弹性碰撞。碰撞时总动能保持不变,没有能量损失。 ⑸分子平均动能与气体的热力学温度成正比。

2、在一定温度下,每种气体分子速度的分布是一定的。除少数分子的速度很大或很小外,多数分 子的速度都接近于方均根速度rms V 。当温度升高时,速度分布曲线变宽,方均根速度增大。 M RT V rms 3= 。 3、分子量越大扩散越慢。 第二章:热化学 第一节:热力学术语和基本概念 1、系统是人们将其作为研究对象的那部分物质世界,即被研究的物质和它们所占有的空间。系统 的边界可以是实际的界面也可以是人为确定的用来划定研究对象的空间范围。划定范围的目的是便于研究。 2、环境是系统边界之外与之相关的物质世界。 3、系统与环境之间可能会有物质和能量的传递。按传递情况不同,将系统分为: ⑴封闭系统:系统与环境之间只有能量传递没有物质传递。系统质量守恒。 ⑵敞开系统:系统与环境之间既有能量传递〔以热或功的形式进行〕又有物质传递。 ⑶隔离系统:系统与环境之间既没有能量传递也没有物质传递。 4、状态是系统中所有宏观性质的综合表现。描述系统状态的物理量称为状态函数。状态函数的变 化量与系统状态的变化途径无关。 5、当系统的某些性质发生变化时,这种改变称为过程。系统由始态到终态所经历的过程总和被称 为途径。 6、⑴定温过程:始态和终态温度相等且变化程中始终保持这个温度。 定温变化:始态和终态温度相等但对变化过程中的温度不作要求。 ⑵定压过程:始态和终态压力相等且变化过程中始终保持这个压力。 定压变化:始态和终态压力相等但对变化过程中的压力不作要求。 ⑶定容过程:始态和终态体积相等且变化过程中始终保持这个体积。 ⑷循环过程:系统由始态开始经过一系列的变化有回到原来的状态。 7、系统中物理性质和化学性质完全相同而与其他部分有明确界面分隔开来的任何均匀部分叫做 相。相可以由纯物质或均匀混合物组成,可以是气、液、固等不同的聚集状态。 8、只含有一个相的系统叫做均相系统或单相系统。含有两个或两个以上相系统叫做非均相系统或 多相系统。 9、化学计量数()ν对于反应物为负,对于生成物为正。 0、反应进度ν ξ0n n t -= 第二节:热力学第一定律 1、系统与环境之间由于温度差而引起的能量传递称为热。热能自动的由高温物体传向低温物体。 系统的热能变化量用Q 表示。若环境向系统传递能量,系统吸热,则Q>0;若系统向环境放热,则Q<0。 2、系统与环境之间除热以外其他的能量传递形式,称为功,用W 表示。环境对系统做功,W>O ; 系统对环境做功,W<0。 3、体积功:由于系统体积变化而与环境交换的功称为体积功。 非体积功:体积功以外的所有其他形式的功称为非体积功。 4、热力学能:在不考虑系统整体动能和势能的情况下,系统内所有微观粒子的全部能量之和称为 热力学能,又叫内能。

无机化学知识点归纳

第一篇:化学反应原理 第一章:气体 第一节:理想气态方程 1、气体具有两个基本特性:扩散性和可压缩性。主要表现在: ⑴气体没有固定的体积和形状。⑵不同的气体能以任意比例相互均匀的混合。⑶气体是最容易被压缩的一种聚集状态。 2、理想气体方程:nRT PV = R 为气体摩尔常数,数值为R =8.31411--??K mol J 3、只有在高温低压条件下气体才能近似看成理想气体。 第二节:气体混合物 1、对于理想气体来说,某组分气体的分压力等于相同温度下该组分气体单独占有与混合气 体相同体积时所产生的压力。 2、Dlton 分压定律:混合气体的总压等于混合气体中各组分气体的分压之和。 3、(0℃=273.15K STP 下压强为101.325KPa = 760mmHg = 76cmHg) 第二章:热化学 第一节:热力学术语和基本概念 1、 系统与环境之间可能会有物质和能量的传递。按传递情况不同,将系统分为: ⑴封闭系统:系统与环境之间只有能量传递没有物质传递。系统质量守恒。 ⑵敞开系统:系统与环境之间既有能量传递〔以热或功的形式进行〕又有物质传递。 ⑶隔离系统:系统与环境之间既没有能量传递也没有物质传递。 2、 状态是系统中所有宏观性质的综合表现。描述系统状态的物理量称为状态函数。状态函 数的变化量只与始终态有关,与系统状态的变化途径无关。 3、 系统中物理性质和化学性质完全相同而与其他部分有明确界面分隔开来的任何均匀部 分叫做相。相可以由纯物质或均匀混合物组成,可以是气、液、固等不同的聚集状态。 4、 化学计量数()ν对于反应物为负,对于生成物为正。 5、反应进度νξ0 )·(n n sai k e t -==化学计量数 反应前反应后-,单位:mol 第二节:热力学第一定律 0、 系统与环境之间由于温度差而引起的能量传递称为热。热能自动的由高温物体传向低温 物体。系统的热能变化量用Q 表示。若环境向系统传递能量,系统吸热,则Q>0;若系统向环境放热,则Q<0。 1、 系统与环境之间除热以外其他的能量传递形式,称为功,用W 表示。环境对系统做功, W>O ;系统对环境做功,W<0。 2、 体积功:由于系统体积变化而与环境交换的功称为体积功。 非体积功:体积功以外的所有其他形式的功称为非体积功。 3、 热力学能:在不考虑系统整体动能和势能的情况下,系统内所有微观粒子的全部能量之 和称为热力学能,又叫内能。 4、 气体的标准状态—纯理想气体的标准状态是指其处于标准压力θ P 下的状态,混合气体 中某组分气体的标准状态是该组分气体的分压为θP 且单独存在时的状态。 液体(固体)的标准状态—纯液体(或固体)的标准状态时指温度为T ,压力为θP 时的状态。

无机化学知识点归纳(高教版)

注:加黑字体为知识点,加下划线为补充内容。 第一章:物质及其变化 (1) 第一节:物质的聚集状态 (1) 第二节:化学反应中的质量关系和能量关系 (2) 第二章化学反应速率和化学平衡 (3) 第二节影响反应速率的因素 (3) 第三节化学平衡 (3) 第四节化学平衡的移动 (4) 第五节反应速率与化学平衡的综合利用 (4) 第三章电解质溶液和离子平衡 (4) 第一节强电解质溶液 (4) 第二节水的解离和溶液的ph (4) 第三节弱酸、弱碱的解离平衡 (5) 第四节同离子效应和缓冲溶液 (5) 第五节盐类的水解 (5) 第六节沉淀-溶解平衡 (6) 第七节溶度积规则及其应用 (6) 第四章氧化和还原 (6) 第一节氧化还原反应的基本概念 (6) 第二节氧化还原反应与原电池 (7) 第三节电极电势 (7) 第四节电极电势的应用 (7)

第五章原子结构与元素周期律 (7) 第六章分子结构与晶体结构 (8) 第一节共价健理论 (8) 第三节分子间力与分子晶体 (8) 第四节离子键与离子晶体 (8) 第五节离子极化 (8) 第六节其他类型晶体 (9) 第七章配位化合物 (9) 第一节配位化合物的基本概念 (9) 第二节配位化合物的结构 (9) 第三节配位化合物在水溶液中的状况 (9) 第四节熬合物 (10) 第八章主族金属元素(一)碱金属和碱土金属 (10) 第一节化学元素的自然资源 (10) 第二节碱金属 (11) 第三节碱土金属 (11)

第一章:物质及其变化 第一节:物质的聚集状态 1、气体具有两个基本特性:扩散性和可压缩性。主要表现在: ⑴气体没有固定的体积和形状。⑵不同的气体能以任意比例相互均匀的混合。⑶气体是最容易被压缩的一种聚集状态。 2、理想气体方程:nRT PV=R为气体摩尔常数,数值为R=8.314 -? 1- 1 mol J ?K 3、只有在高温低压条件下气体才能近似看成理想气体。 气体混合物 1、当两种或两种以上的气体在同一容器中混合时,每一种气体称为该混合气体的组分气体。 2、混合气体中某组分气体对器壁所施加的压力叫做该组分气体的分压。 3、对于理想气体来说,某组分气体的分压力等于相同温度下该组分气体单独占有与混合气体相同体积时所产生的压力。 4、(Dlton)分压定律:混合气体的总压等于混合气体中各组分气体的分压之和。 5、流体 6、固体

大学无机化学知识点总结

大学无机化学知识点总结 无机化学,有机化学,物理化学,分析化学无机化学元素化学、无机合成化学、无机高分子化学、无机固体化学、配位化学(即络合物化学)、同位素化学、生物无机化学、金属有机化学、金属酶化学等。 有机化学普通有机化学、有机合成化学、金属和非金属有机化学、物理有机化学、生物有机化学、有机分析化学。 物理化学结构化学、热化学、化学热力学、化学动力学、电化学、溶液理论、界面化学、胶体化学、量子化学、催化作用及其理论等。 分析化学化学分析、仪器和新技术分析。包括性能测定、监控、各种光谱和光化学分析、各种电化学分析方法、质谱分析法、各种电镜、成像和形貌分析方法,在线分析、活性分析、实时分析等,各种物理化学性能和生理活性的检测方法,萃取、离子交换、色谱、质谱等分离方法,分离分析联用、合成分离分析三联用等。 无机化学 第一章:气体 第一节:理想气态方程

1、气体具有两个基本特性:扩散性和可压缩性。主要表现在:⑴气体没有固定的体积和形状。⑵不同的气体能以任意比例相互均匀的混合。⑶气体是最容易被压缩的一种聚集状态。 2、理想气体方程:为气体摩尔常数,数值为= 8、314 3、只有在高温低压条件下气体才能近似看成理想气体。 第二节:气体混合物 1、对于理想气体来说,某组分气体的分压力等于相同温度下该组分气体单独占有与混合气体相同体积时所产生的压力。 2、Dlton分压定律:混合气体的总压等于混合气体中各组分气体的分压之和。 3、(0℃=273、15K STP下压强为101、325KPa =760mmHg =76cmHg) 第二章:热化学 第一节:热力学术语和基本概念 1、系统与环境之间可能会有物质和能量的传递。按传递情况不同,将系统分为:⑴封闭系统:系统与环境之间只有能量传递没有物质传递。系统质量守恒。 ⑵敞开系统:系统与环境之间既有能量传递〔以热或功的形式进行〕又有物质传递。 ⑶隔离系统:系统与环境之间既没有能量传递也没有物质传递。

无机及分析化学复习知识点---大一要点

无机化学及分析化学总结 第一章绪论 ●系统误差:由固定因素引起的误差,具有单向性、重现性、 可校正 ●偶然误差:随机的偶然因素引起的误差,大小正负难以 确定,不可校正,无法避免,服从统计规律 (1)绝对值相同的正负误差出现的概率相等 (2)大误差出现的概率小,小误差出现的概率大。 ●准确度: 在一定测量精度的条件下分析结果与真值的接 近程度,用误差衡量 ●精密度(precision):多次重复测定某一量时所得测量值的 离散程度。用偏差衡量 ●准确度与精密度的关系:精密度好是准确度好的前提;精 密度好不一定准确度高 ●测定结果的数据处理 (1)对于偏差较大的可疑数据按Q检验法进行检验,决定其取舍; (2) 计算出数据的平均值、平均偏差与标准偏差等;复习p12例题 ●有效数字及其计算规则 有效数字:实际能测得的数据,其最后一位是可疑的。对于可疑数字一般认为有±1的误差

例:滴定管读数21.09 mL 分析天平读数0.2080 g 最后一位为可疑值 注意: (1) “0”的作用:有效数字(在数字的中间或后面)定位 作用(在数字的前面) (2)对数值(pH、pOH、pM、pK等)有效数字的位数取决 于小数部分的位数。 计算规则:(1) 加减法:计算结果小数点后的位数与小数点后 位数最少的数据一样。 (2)乘除法(乘方、开方、对数)计算结果的有效位数与有效 位数最少的数据一样。 第三章化学热力学初步 基本概念:化学反应进度、体系与环境、状态与状态函数(状 态函数的特征)、热与功(热与功的符号、体积功的计算W p V)、内能和热力学第一定律(热力学定律第一定律数=-?? 学表达式ΔU = Q + W) ?r Hθm的计算 △r H m:摩尔反应焓变,对于给定的化学反应,反应进度为1mol 时的反应热 ?rHθm:化学反应中,任何物质均处于标准状态下,该反应 的摩尔反应焓变 ?f Hθm:在温度T及标准态下,由参考状态单质生成1mol物

南理工-无机化学核心考点--基础知识点框架梳理及其解析

无机化学核心考点基础知识点框架梳理及其解析 第一章气体 1.1理想气体状态方程式 理想气体状态方程式及其应用★ 1.2气体的分压定律 分压定律与应用★ (标★号是考试重点) 本章包括四个小节,理想气体状态方程式,气体混合物,气体分子运动论,真实气体。 其中前两个小节是考试的重点,理想气体状态方程式及应用,分压定律及应用。后两小节基本不考 在复习每一个知识点的过程中,首先要了解知识点,熟悉教材内容、分析教材例题,并注意应用条件,最后再通过本讲义如下内容对应的例题,从分析、解题、注意易错点到完成老师布置的作业完成相应知识点的掌握过程 知识点一 理想气体状态方程 各物理量的单位: PV nRT 压力P-Pa;体积V-dm3;气体摩尔数n- mol;气体常数R- 8.314 J.mol-1.K-1;绝对温度T-K. 如在标况下1摩尔气体,压力,温度,体积一般有如下关系P=101325 Pa; V=22.4 dm3;T=273.15 k; 从中可以算出: R=PV/nT=101325*22.4/1*273.15=8.314 J.mol-1.K-1. 知识点二 分压定律 一个容器内有几种混合气体,相互间不发生化学反应的条件下,总压强 P总与各种气体的 分压Pi之间有如下关系: P总= P1 + P2 + P3 +...+ Pn 对于理想气体,容易得证:n总=n1 + n2 + n3 +. ... + nn 左边: P总= n总RT/V 右边 = n1*RT/V +n2*RT/V+...+nn*RT/V = [n1+n2+...+nn]*RT/V

= n 总*RT/V = 左 边 例题:某容器中含有NH3、O2 、N2等气体的混合物。取样分析后,其中n (NH3)=0.320mol ,n (O2)=0.180mol ,n (N2)=0.700mol 。混合气体的总压p =133.0kPa 。试计算各组分气体的分压 解:n= n (NH3)+n (O2)+n (N2) =0.320mol+0.180mol+0.700mol =1.200mo l 30.320() 1.200 NH b b = =0.3201.200 ⅹ133.0kPa =35.5 kPa 22(O )(O )n p p n = =0.1800.320 ⅹ35.5kPa =20kPa 223()()()N NH p p p p o =-- =(133.0-35.5-20)kPa =75.5kPa 总结 这一章知识点比较简单,先熟悉课本,把例题弄明白,再分别做两道课后习题巩固一下 看课本例题1-2,1-3,1-4 课后习题做1,3,9,12 ? ? 第二章热化学 ? 2.1热力学的术语和基本概念 ? 2.2热力学第一定律 ? 热力学第一定律★、焓变和热化学方程式★、Hess 定律★

无机化学重点笔记

第一章 物质的状态 理想气体:是设定气体分子本身不占空间、分子间也没有相互作用力的假想情况下的气体。 实际气体:处于高温(高于273 K )、低压(低于数百千帕)的条件下,由于气体分子间距离相当大,使得气体分子自身的体积与气体体积相比可以忽略不计,且分子间作用力非常小,可近似地将实际气体看成是理想气体。 pV = nRT (理想气体状态方程式) R 称为比例常数,也称为摩尔气体常数。 R = 8.314 Pa·m3·mol-1·K-1 = 8.314 kPa·L·mol-1·K-1 = 8.314J·mol-1·K-1(Pa·m3=N·m-2·m3=N·m = J ) 道尔顿理想气体分压定律 式中 xi 为某组分气体的摩尔分数。理想气体混合物中某组分气体的分压等于该组分气体的摩尔分数与总压力的乘积。 分体积定律 当几种气体混合时,起初每一种气体在各处的密度是不同的,气体总是从密度大的地方向密度小的地方迁移,直至密度达到完全相同的状态,这种现象称为扩散。 相同温度、相同压力下,某种气体的扩散速度与其密度的平方根成反比,这就是气体扩散定律。用u i 表示扩散速度,ρi 表示密度,则有: 或 式中u A 、u B 分别表示 A 、 B 两种气体的扩散速度,ρA 、ρB 分别表示A 、B 两种气体的密度。 同温同压下,气体的密度(ρ)与其摩尔质量(M )成正比,据此可以表示为: 对理想气体状态方程进行修正 对n = 1 mol 实际气体,其状态方程为: 气体分子运动论的主要内容包括以下几个假设: (1)气体由不停地作无规则运动的分子所组成; (2)气体分子本身不占体积,视为数学上的一个质点; i i RT RT p p n n V V =∑=∑=i i i i i p n n p p x p p n n === 或1212= = +++ i i i i n RT n RT n RT nRT V V V V p p p p =???=+???=∑ ∑ i u A B u u A B u u 2 2()()an p V nb nRT V +-=2()()m m a p V b RT V +-=

考研无机化学_知识点总结

内容概要: 一.无机化学(理论部分)知识点应用归纳 1、无机物(分子或离子)构型: (1)简单分子(或离子): (2)配合物: 2、物质的熔、沸点(包括硬度): (1)晶体类型:原子晶体,离子晶体,金属晶体,分子晶体(2)离子晶体: (3)分子晶体 (4)金属晶体:金属键(与价电子、价轨道有关) 3、物质的稳定性: (1)无机小分子: (2)配合物: 4、物质的磁性: (1)无机小分子:MO (掌握双原子分子轨道能级图) (共价双原子分子) (2)配合物: 5、物质的颜色: (1)无机小分子:极化理论 (2)配合物: 6、无机物溶解度: (1)离子晶体: (2)共价化合物: 7、物质的氧化还原性:影响因素 (1)溶液酸、碱度 (2)物质的聚集状态 8、化学反应方向:

(1)热力学数据: (2)软硬酸碱理论 9、分子极性、键的极性、键角、键长等: 10、推导元素在周期表中的位置:能级组取值, 选择—组合理量子数:四个量子数取值规则 11、溶液中有关质点浓度计算: 化学平衡,电离平衡,沉淀—溶解平衡,氧化—还原平衡,配合解离平衡: 利用多重平衡规则,K是关键 12、常见的基本概念: 对角线规则;惰性电子对效应;Lewis酸、碱;质子酸、碱;缓冲溶液;屏蔽效应;钻穿效应;同离子效应;盐效应;镧系收缩;电负性;电离势;电子亲合势;晶格能;键能;有效核电荷及求法等。 二.无机化学(元素部分) (1)结构 (2)性质: 重点是化学性质

无机化学知识点总结 1、熟悉元素周期表和元素周期律(电子排布和周期表的关系,化合价和最外层电子数、元 素所在的族序数的关系(包括数的奇偶性),微粒的半径大小和元素周期表的关系,非金属氢化物的稳定性、酸性和元素周期表的关系)。 熟悉常见的分子或单质、化合物的物质结构(水、氨气、二氧化碳、金刚石、二氧化硅的结构特点,相同电子数的微粒(10电子,18电子,H2O2和H2S,CO、N2、C2H4,O2、CH4))。 2、知道典型的溶解性特征 ①加入过量硝酸从溶液中析出的白色沉淀:AgCl,原来溶液是Ag(NH3)2Cl;后者是硅 酸沉淀,原来的溶液是可溶解的硅酸盐溶液。生成淡黄的沉淀,原来的溶液中可能含有S2-,或者是S2O32- ②加入过量的硝酸不能观察到沉淀溶解的有AgCl,BaSO4;BaSO3由于转化成为BaSO4 而不能观察到沉淀的溶解。AgBr,AgI,也不溶解,但是沉淀的颜色是黄色。 ③能够和盐反应生成强酸和沉淀的极有可能是H2S气体和铅、银、铜、汞的盐溶液反应。: ④沉淀先生成后溶解的:CO2和Ca(OH)2,Al3+和氢氧化钠,AlO2-和盐酸,氨水和硝酸银 3、操作不同现象不同的反应: Na2CO3和盐酸;AlCl3和NaOH,NaAlO2和盐酸;AgNO3和氨 水;FeCl3和Na2S;H3PO4和Ca(OH)2反应。 4、先沉淀后澄清的反应: AlCl3溶液中加入NaOH溶液,生成沉淀,继续滴加沉淀溶解: ; AgNO3溶液中滴加稀氨水,先沉淀后澄清: ; NaAlO2溶液中滴加盐酸,也是先沉淀后澄清: ; 澄清石灰水通入二氧化碳,先沉淀后澄 清:; 次氯酸钙溶液中通入二氧化碳,先沉淀后澄 清:; KAl(SO4)2与NaOH溶 液:; 5、通入二氧化碳气体最终能生成沉淀的物质:苯酚钠溶液、硅酸钠溶液、偏铝酸钠溶液(这 三种都可以与少量硝酸反应产生沉淀)、饱和碳酸钠溶液。 苯酚钠溶液:; 硅酸钠溶液:; 饱和碳酸钠溶液:; 偏铝酸钠溶液:; 6、能生成两种气体的反应: HNO3的分解:; Mg与NH4Cl溶液的反应:; 电解饱和食盐水:;

无机化学知识点归纳知识分享

无机化学知识点归纳

第一篇:化学反应原理 第一章:气体 第一节:理想气态方程 1、气体具有两个基本特性:扩散性和可压缩性。主要表现在: ⑴气体没有固定的体积和形状。⑵不同的气体能以任意比例相互均匀的混合。⑶气体是最容易被压缩的一种聚集状态。 2、理想气体方程:nRT PV = R 为气体摩尔常数,数值为 R =8.31411--??K mol J 3、只有在高温低压条件下气体才能近似看成理想气体。 第二节:气体混合物 1、对于理想气体来说,某组分气体的分压力等于相同温度下该组分气体单独占 有与混合气体相同体积时所产生的压力。 2、分压定律:混合气体的总压等于混合气体中各组分气体的分压之和。 3、(0℃=273.15K 下压强为101.325 = 760 = 76) 第二章:热化学 第一节:热力学术语和基本概念 1、系统与环境之间可能会有物质和能量的传递。按传递情况不同,将系统分 为: ⑴封闭系统:系统与环境之间只有能量传递没有物质传递。系统质量守恒。 ⑵敞开系统:系统与环境之间既有能量传递〔以热或功的形式进行〕又有物质传递。 ⑶隔离系统:系统与环境之间既没有能量传递也没有物质传递。 2、状态是系统中所有宏观性质的综合表现。描述系统状态的物理量称为状态函 数。状态函数的变化量只与始终态有关,与系统状态的变化途径无关。

3、系统中物理性质和化学性质完全相同而与其他部分有明确界面分隔开来的任 何均匀部分叫做相。相可以由纯物质或均匀混合物组成,可以是气、液、固等不同的聚集状态。 4、化学计量数()ν对于反应物为负,对于生成物为正。 5、反应进度ν ξ0)·(n n sai k e t -==化学计量数反应前反应后-,单位: 第二节:热力学第一定律 0、系统与环境之间由于温度差而引起的能量传递称为热。热能自动的由高温物 体传向低温物体。系统的热能变化量用Q 表示。若环境向系统传递能量,系统吸热,则Q>0;若系统向环境放热,则Q<0。 1、系统与环境之间除热以外其他的能量传递形式,称为功,用W 表示。环境对 系统做功,W>O ;系统对环境做功,W<0。 2、体积功:由于系统体积变化而与环境交换的功称为体积功。 非体积功:体积功以外的所有其他形式的功称为非体积功。 3、热力学能:在不考虑系统整体动能和势能的情况下,系统内所有微观粒子的 全部能量之和称为热力学能,又叫内能。 4、气体的标准状态—纯理想气体的标准状态是指其处于标准压力θP 下的状 态,混合气体中某组分气体的标准状态是该组分气体的分压为θP 且单独存在时的状态。 液体(固体)的标准状态—纯液体(或固体)的标准状态时指温度为T ,压力为θP 时的状态。 液体溶液中溶剂或溶质的标准状态—溶液中溶剂可近似看成纯物质的标准态。在溶液中,溶质的标准态是指压力θP P =,质量摩尔浓度θb b =,标准质量摩尔浓度11-?=kg mol b θ,并表现出无限稀释溶液特性时溶质的(假 想)状态。标准质量摩尔浓度近似等于 标准物质的量浓度。即 11-?=≈L mol c b θθ 5、物质B 的标准摩尔生成焓θm f H ?(B,相态,T )是指在温度T 下,由参考状 态单质生成物质B (1+=B ν)反应的标准摩尔焓变。 6、参考状态一般指每种物质在所讨论的温度T 和标准压力θP 时最稳定的状态。个别情况下参考状态单质并不是最稳定的,磷的参考状态是白磷4P (s,白),但白磷不及红磷和黑磷稳定。O 2(g)、H 2(g)、2(l)、I 2(s)、(l)和P 4(白 磷)是298.15K ,θP 下相应元素的最稳定单质,即其标准摩尔生成焓为零。 7、在任何温度下,参考状态单质的标准摩尔生成焓均为零。 8、物质B 的标准摩尔燃烧焓θm c H ?(B ,相态,T )是指在温度T 下,物质 B(1-=B ν)完全氧化成相同温度下指定产物时的反应的标准摩尔焓变。 第四节:定律 1、定律:化学反应不管是一步或分几步完成,其总反应所放出或吸收的热总是 相等的。其实质是化学反应的焓变只与始态和终态有关,而与途径无关。 2、焓变基本特点: ⑴某反应的θm r H ?(正)与其逆反应的θm r H ?(逆)数值相等,符号相反。 即

相关主题
文本预览
相关文档 最新文档