当前位置:文档之家› 某车型制动系统设计计算书(后盘)

某车型制动系统设计计算书(后盘)

某车型制动系统设计计算书(后盘)
某车型制动系统设计计算书(后盘)

目录

1 概述 (1)

2 引用标准 (1)

3 计算过程 (1)

3.1整车参数 (1)

3.2理想的前、后制动器制动力分配曲线 (1)

3.3NA01制动系统性能校核 (3)

3.3.1 NA01制动系统基本参数 (3)

3.3.2 制动力分配曲线绘制及同步附着系数确定 (4)

3.3.3 前、后轴利用附着系数曲线绘制 (5)

3.3.4 空、满载制动距离校核 (7)

3.3.5 真空助力器失效时制动减速度校核 (7)

3.3.6 ESP系统失效制动减速度校核 (8)

3.3.7 任一管路失效制动减速度校核 (8)

3.3.8 制动踏板力校核 (8)

3.3.9 制动主缸排量校核 (9)

3.3.10 制动踏板行程校核 (9)

3.3.11 驻车制动校核 (10)

4 结论 (12)

参考文献 (13)

1 概述

根据NA01乘用车设计开发目标,设计和开发NA01制动系统,要求尽量沿用M2零部件。NA01制动系统共有三种配置:ESP+前盘后盘式制动器,ABS+前盘后鼓式制动器,比例阀+前盘后鼓式制动器,此三种配置需分别校核其法规要求符合性。本计算书是根据整车室提供的NA01整车的设计参数(空载质量、满载质量、轴荷、轴距及质心高度),对经过局部改善(制动主缸直径由22.22mm 更改为20.64mm)的制动系统(ESP+前盘后盘式制动器)的适宜性进行校核计算,以选择合适的参数作为NA01制动系统的设计值。 2 引用标准

GB 21670-2008 乘用车制动系统技术要求及试验方法。 GB 7258-2004 机动车运行安全技术条件 3 计算过程 3.1整车参数

3.2 理想的前、后制动器制动力分配曲线

制动时前、后车轮同时抱死,对附着条件的利用、制动时汽车方向稳定性均较为有利,此时的前、后轮制动器制动力1μF 和2μF 的关系曲线,常称为理想的前、后轮制动器制动力分配曲线。

在任何附着系数?的路面上,前、后车轮同时抱死的条件是:前、后制动器制动力之和等于附着力,并且前、后轮制动器制动力分别等于各自的附着力,即:

g F m F 21?μμ=+……………………………………(1) g

g h L h L ??μμ-+=

122

1F F (2)

经计算得:

22

1??μL

h mg L L mg F g +=…………………………(3) 212

??μL

h mg L L

mg F g -= (4)

式中:

1μF 、2μF ——前、后轮制动器制动力,N ; ?——路面附着系数; m ——整车质量,kg ; hg ——汽车质心高度,m; L ——汽车轴距,m;

1L ——质心至前轴中心线的距离,m;

2L ——质心至后轴中心线的距离,m。

将NA01车基本参数带入式(3)和(4)中,按?值(?=0.1、0.2、0.3……1.0)计算得到NA01车理想的前、后轮制动器制动力(表2),并可以根据该表格绘制出理想的前、后轮制动器制动力分配曲线(图1)。

表2 理想的空、满载附着力及制动强度

NA01

3.3.2 制动力分配曲线绘制及同步附着系数确定

前、后制动器制动力计算式:

e r R BF d p F 21

12

111πμ= (5)

e

r R BF d p F 22

22

2

22πμ= ……………………………(6) 2

11

μμμβF F F +=

……………………………………(7) 式中:

β——制动器制动力分配系数

1μF 、2μF ——前、后制动器制动力,N ; 1d 、2d ——前、后制动器分泵直径,mm ;

1R 、2R ——前、后制动器有效半径,mm ; 1BF 、2BF

——前、后制动器效能因数; e r ——前、后轮滚动半径,mm ;

1p 、2p ——为前、后制动管路液压,MPa 。

将前后制动器具体参数代入式(7),得β=0.7232。根据β值绘制实际制动力分配曲线(图2)。

、0.2、0.3……1.0)(表4)。

由同步附着系数公式:

g

h L L 2

0-=

β? (8)

得实际满载同步附着系数01?=0.9829,此时前、后轮同时抱死。 得实际空载同步附着系数02?=0.6356,此时前、后轮同时抱死。

根据我国目前的道路情况,取?=0.8作为常用路面附着系数。

实际空载同步附着系数02?=0.6356<0.8,如不采取措施,在?>0.6356的路面上将会出现后轮先抱死的情况,不满足GB21670-2008相关要求。NA01配备了ESP 系统(包含ABS 模块)调节前后制动器制动力,当ESP 系统中ABS 模块起作用时,后轮趋近于抱死但不会出现抱死状态,所以不会出现后轮先抱死的情况,可以满足GB21670-2008中相关规定。

实际满载同步附着系数01?=0.9829>0.8,满足GB21670-2008中相关规定。 因此NA01制动系统设计方案是合适的。 3.3.3 前、后轴利用附着系数曲线绘制

Gz F βμ=1................................................(9) Gz F )1(2βμ-= (10)

)(21g f zh L L G

F +=?μ (11)

)(12g r zh L L

G

F -=?μ (12)

经整理得

g f zh L zL

+=

2β? (13)

g

r zh L zL --=1)1(β? (14)

式中:

f ?、r ?——利用附着系数;

z ——制动强度;

β——实际制动力分配系数; L ——汽车轴距,m ; hg ——汽车质心高度,m;

1L ——质心至前轴中心线的距离,m; 2L ——质心至后轴中心线的距离,m。

将各参数代入公式(13)、公式(14),按不同z 值(z=0.1、0.2、0.3……1.0)计算出前、后轴利用附着系数f ?、r ?(表3),并根据该表格绘制制动强度-利用附着系数曲线(图3)。

表5 前、后轴利用附着系数

图3 利用附着系数曲线

GB21670-2008规定:车辆在所有载荷状态下,当制动强度z 处于0.15~0.80之间时,后轴附着系数利用曲线不应该位于前轴上方,从图3可以看出,满载时符合GB21670-2008要求;空载时,当z>0.6356(空载同步附着系数)时,后轴附着系数利

用曲线在前轴利用附着系数曲线上方,不满足GB21670-2008的要求。

后轴利用附着系数曲线在前轴利用附着系数曲线上方,其实就是后轮先于前轮抱死,而NA01配备了ESP 系统(包含ABS 模块)调节前后制动器制动力,当ESP 系统中ABS 模块起作用时,后轮趋近于抱死但不会出现抱死状态,所以不会出现后轮先抱死的情况,可以满足GB21670-2008中相关规定。

GB21670-2008规定:当附着系数?在0.2~0.8之间时,制动强度

)2.0(7.01.0-+≥?z (图3ECE 法规线)。从图3可以看出,空满载时均满足要求。

所以,NA01制动系统设计方案是适宜的。 3.3.4 空、满载制动距离校核

GB 21670-2008中规定:初速度100km/h ,整车最大制动距离

2max 006.01.0v v S +==70m ,充分发出的平均减速度m d ≥6.43m/s 2

配有ESP 装置的制动系统,其充分发出的平均减速及制动距离计算公式如下:

j=?g (15)

)2/(2j v cv S += (16)

式中:

c ——制动器起作用的时间,取0.4(一般取值为0.3~0.5);

v ——制动初速度,v =100km/h(27.8m/s)。

在良好的路面上(?=0.8),配有ESP 的NA01制动系统所能达到的充分发出的平均减速度max j =0.8g=7.84m/s 2≥6.43m/s 2,制动距离S=60m ≤70m 。制动距离和充分发出的平均减速度满足法规要求。

由表4可知,在?=0.8的路面上,当充分发出的平均减速度达到0.8g 时,前后轮趋近于抱死,此时最高管路压力达到7.927MPa(满载),而通常管路压力最大值可达到10~12MPa ,可以满足要求。 3.3.5 真空助力器失效时制动减速度校核

真空助力器失效时管路压力:

P=4×(1η×1i ×F-i F )/(π×D ×D) (17)

式中:

P ——管路压力,MPa ;

1η——制动踏板机械效率;

1i ——制动踏板杠杆比; F ——制动踏板力,500N ; D ——制动主缸直径,mm ;

i F ——真空助力器及制动主缸弹簧反力,N 。

将各参数带入公式(17),得真空助力器失效时管路压力P=3.7897MPa 。 经计算,前后轴制动力: 前轴制动力1F =4596.21N ; 后轴制动力2F =1759.02N 。

满载制动减速度:j=(1F +2F )/m=4.217m/s 2,大于法规2.44m/s 2。

3.3.6 ESP 系统失效制动减速度校核

由表4可知,在良好的路面上(?=0.8),ESP 系统完全失效时,空载后轮先抱死,抱死时管路压力P 1=5.027MPa ;满载时前轮先抱死,抱死时管路压力P 2=6.625MPa 。

经计算,空载时前后轴制动力: 前轴制动力1F =6038.03N ; 后轴制动力2F =2310.82N 。

空载制动减速度:j=(1F +2F )/m=6.7113m/s 2,大于法规3.86m/s 2。 经计算,满载前后轴制动力: 前轴制动力1F =8012.9N ; 后轴制动力2F =3066.6N 。

满载制动减速度:j=(1F +2F )/m=7.352m/s 2,大于法规3.86m/s 2。 3.3.7 任一管路失效制动减速度校核

在良好的路面上(?=0.8),配有ESP 的NA01制动系统,任一管路失效时所能达到的最大减速度max j =0.8g/2=3.92m/s 2,大于法规要求2.44 m/s 2。

由表4可知,在?=0.8的路面上,当充分发出的平均减速度达到0.8g 时,前后轮趋近于抱死,此时最高管路压力达到7.993MPa(满载),而通常管路压力最大值可达到10MPa ~12MPa ,可以满足要求。 3.3.8 制动踏板力校核

真空助力器最大助力点管路压力:

Pmax=4×Fmax/(π×D ×D) (18)

式中:

Pmax ——真空助力器最大助力点管路压力,MPa ; Fmax ——真空助力器最大助力点输出力,N 。 将各参数带入式(18) 得Pmax=8.5212MPa 。

由表4可知,在良好的路面上(?=0.8),配有ESP 的NA01制动系统,满载时四轮趋近抱死时管路压力为P=7.993MPa ,小于真空助力器最大助力点管路压力8.5212MPa 。

制动踏板力为:

(完整word版)半挂车设计计算书

概述 半挂车,具有机动灵活、倒车方便和适应性好的特点,这种车可以提高装载量,降低运输成本,提高运输效率。由于装载量的不同要求,对于车架的承受载荷也有不同,该半挂车的轴距较大,因而对车架的强度与刚度的要求也较高。对车架的强度与刚度进行了分析计算。 半挂车参数表 车架结构设计 本车架采用采平板式,为了具有足够的强度和刚度,所设计车架材料选用Q235钢板,采用焊接式结构。 2.1 总体布置

图1 车架总体布置图 2.2 纵梁 纵梁是车架的主要承载部件,在半挂车行驶中受弯曲应力。为了满足半挂车公路运输、道路条件差等使用性能的要求,纵梁采用具有很好抗弯性能的箱形结构,纵梁断面如图2所示。上翼板是一块覆盖整个车架的大板,图中只截取一部分。 图2 纵梁截面示意图 为了保证纵梁具有足够的强度,在牵引销座近增加了加强板;为减小局部应力集中,在一些拐角处采用圆弧过渡。在轮轴座附近也增加了加强板(图1中轮轴座附近)。由于半挂车较宽,为防止中间局部变形过大,车架的中间增加了倒T形的纵梁加强板。

图3 部分加强板示意图 2.3 横梁 横梁是车架中用来连接左右纵梁,构成车架的主要构件。横梁本身的抗扭性能及其分布直接影响着纵梁的内应力大小及其分布。本车架的19根横梁,主要结构形状为槽形。 2.4纵梁和横梁的连接 车架结构的整体刚度,除和纵梁、横梁自身的刚度有关外,还直接受节点连接刚度的影响,节点的刚度越大,车架的整体刚度也越大。因此,正确选择和合理设计横梁和纵梁的节点结构,是车架设计的重要问题,下面介绍几种节点结构。 一、 横梁和纵梁上下翼缘连接(见图4(a ))这种结构有利于提高车架的扭转刚度,但在受扭严重的情况下,易产生约束扭转,因而在纵梁翼缘处会出现较大内应力。该结构形式一般用在半挂车鹅劲区、支承装置处和后悬架支承处。 二、横梁和纵梁的腹板连接(见图4(b ))这种结构刚度较差,允许纵梁截面产生自由翘 曲,不形成约束扭转。这种结构形式多用在扭转变形较小的车架中部横梁上。 三、横梁与纵梁上翼缘和腹板连接(见图4(c ))这种结构兼有以上两种结构的特点,故应用较多。 四、横梁贯穿纵梁腹板连接(见图4(d ))这 种结构称为贯穿连接结构,是目前国内外广泛采 用的半挂车车架结构。它在贯穿出只焊接横梁腹 板,其上下翼板不焊接,并在穿孔之间留有间隙。 当纵梁产生弯曲变形时,允许纵梁相对横梁产生 微量位移,从而消除应力集中现象。但车架整体 扭转刚度较差,需要在靠近纵梁两端处加横梁来提高扭转刚度。 贯穿式横梁结构,由于采用了整体横梁,减少了焊缝,使焊接变形减少。同时还具有 (a ) (b ) (c ) 图4(d )贯穿式横梁结构 图4 半挂车纵梁和横梁的连接

制动器的设计计算

§3 制动器的设计计算 3.1制动蹄摩擦面的压力分布规律 从前面的分析可知,制动器摩擦材料的摩擦系数及所产生的摩擦力对制动器因数有很大影响。掌握制动蹄摩擦面上的压力分布规律,有助于正确分析制动器因数。在理论上对制动蹄摩擦面的压力分布规律作研究时,通常作如下一些假定: (1)制动鼓、蹄为绝对刚性; (2)在外力作用下,变形仅发生在摩擦衬片上; (3)压力与变形符合虎克定律。 1.对于绕支承销转动的制动蹄 如图29所示,制动蹄在张开力P 作用下绕 支承销O ′点转动张开,设其转角为θΔ,则蹄片 上某任意点A 的位移AB 为 AB =A O ′·θΔ 由于制动鼓刚性对制动蹄运动的限制,则其径向位移分量将受压缩,径向压缩为AC AC =AB COS β 即 AC =A O ′θΔCOS β 从图29中的几何关系可看到 A O ′COS β=D O ′=O O ′Sin ? AC =O O ′Sin ?θΔ? 因为θΔ?′O O 为常量,单位压力和变形成正比,所以蹄片上任意一点压力可写成 q=q 0Sin ? (36) 亦即,制动器蹄片上压力呈正弦分布,其最大压力作用在与O O ′连线呈90°的径向线上。 2.浮式蹄 在一般情况下,若浮式蹄的端部支承在斜支座面 上,如图30所示,则由于蹄片端部将沿支承面作滚动 或滑动,它具有两个自由度运动,而绕支承销转动的 蹄片只有一个自由度的运动,因此,其压力分布状况 和绕支承销转动的情况有所区别。 现分析浮式蹄上任意一点A 的运动情况。今设定蹄片和支座面之间摩擦足够大,制动蹄在张开力作用

下,蹄片将沿斜支座面上作滚动,设Q 为其蹄片端部圆弧面之圆心,则蹄片上任意一点A 的运动可以看成绕Q 作相对转动和跟随Q 作移动。这样A 点位移由两部分合成:相对运动位移和牵连运动位移BC ,它们各自径向位移分量之和为 (见图 30)。 AD =AB COS β+BC COS(?-α) 根据几何关系可得出 AD =(θΔ·OQ +BC Sin α) Sin ?+BC COS αCOS ? 式中θΔ为蹄片端部圆弧面绕其圆心的相对转角。 令 θΔ·OQ +BC Sin ?=C 1 BC COS α=C 2 在一定转角θΔ时,1C 和2C 都是常量。同样,认为A 点的径向变形量AD 和压力成正比。这样,蹄片上任意点A 处的压力可写成 q=q 1Sin ?+q 2COS ? 或 q=q 0Sin(?+?0) 也就是说,浮式蹄支承在任意斜支座面上时,其理论压力分布规律仍为正弦分布,但其最大压力点在何处,难以判断。 上述分析对于新的摩擦衬片是合理的,但制动器在使用过程中摩擦衬片有磨损,摩擦衬片在磨损的状况下,压力分布又应如何呢?按照理论分析,如果知道摩擦衬片的磨损特性,也可确定摩擦衬片磨损后的压力分布规律。根据国外资料,对于摩擦片 磨损具有如下关系式 fqv K W 11= 式中 W 1——磨损量; K 1——磨损常数; f ——摩擦系数; q——单位压力; v ——磨擦衬片与制动鼓之间的相对滑 动速度。 通过分析计算所得压力分布规律如图31所 示。图中表明在第11次制动后形成的单位 面积压力仍为正弦分布αsin 132=q 。如果摩 擦衬片磨损有如下关系: 2222v fq K W = 式中 2K ——磨损常数。 则其磨损后的压力分布规律为αsin C q =(C

盘式制动器课程设计方案

中北大学 课程设计说明书 学生姓名:学号: 学院(系):机电工程学院 专业:车辆工程 题目:夏利汽车盘式制动器方案设计 综合成绩: 职称: 年月日

目录 一、夏利汽车主要性能参数---------------------4 二、制动器的形式-----------------------------5 三、盘式制动器主要参数的确定-----------------7 四、盘式制动器制动力矩的设计计算-------------9 五、盘式制动器制器的校核计算----------------10 1.前轮制动器制动力矩的校核计算 2.摩擦衬片的磨损特性计算 六、经过计算最终确定后轮制动器的参数--------13 七、设计小结--------------------------------13 八、设计参考资料----------------------------13

轿车前轮制动器设计说明书前言汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。本次课程设计根据任务要求只对夏利汽车盘式制动器方案设计。

一、汽车主要性能参数 主要尺寸和参数: (1)、轴距:L=2405mm (2)、总质量:M=900kg (3)、质心高度:0.65m (4)、车轮半径:165mm (5)、轮辋内径:120mm (6)、附着系数:0.8 (7)、制动力分配比:后制动力/总制动力=0.19 (8)、前轴负荷率:60%;即质心到前后轴距离分别为 L1=L?(1?60%)=962mm L2=L?60%=1443mm (9)、轮胎参数:165/70R13; 轮胎有效半径r e为: 轮胎有效半径=轮辋半径+(名义断面宽度×高宽比) 所以轮胎有效半径r e=(240 2 +165×70%)=235.5mm (10)、制动性能要求:初速度为50KM/h时,制动距离为15m。则 满足制动性能要求的制动减速度由:S=1 3.6(τ2‘+τ2“ 2 )μ0+μ02 25.92 a bmax 计算最大减速度 a bmax,其中μ0=U =50Km/h;S=15m;τ2‘= 0.05s;τ2“=0.2s。经计算得 最大减速度 a bmax≈7.47m s2 ?

空调机组系统设计计算书汇总

家庭专用中央空调机组 设计计算书

目录 1. 机组简介 (3) 2. 设计条件[1] (3) 3. 热力计算 (3) 4. 冷凝器设计计算 (5) 4.1 有关温度参数及冷凝热负荷确定 (5) 4.2 翅片管簇结构参数选择与计算 (6) 4.3 计算冷凝风量 (7) 4.4 计算空气侧换热系数 (7) 4.5 计算制冷剂侧换热系数 (8) 4.6 计算冷凝器总传热系数K (9) 5. 室外机风叶电机的选型 (10) 6. 蒸发器的设计计算 (10) 6.1 结构规划 (10) 6.2 翅片管各部分传热面积计算 (11) 6.3 确定冷却空气的状态变化过程 (12) 6.4 计算空气侧换热系数 (13) 6.5 计算管内表面传热系数i 和传热面积A0 (14) 7. 风侧阻力计算与内风机选型 (15) 8. 毛细管的选型 (15) 9. 配管设计 (16) 9.1 压缩机吸气管管径的计算 (16) 9.2 压缩机排气管管径的计算 (17) 9.3 冷凝器到毛细管前的液体管路管径的计算 (18) 参考文献: (18)

1. 机组简介 该XXX机组主要由压缩机、蒸发器、冷凝器、节流机构以及电控系统等组成。它通过直接向空调区域送冷却空气来达到调节室内空气环境的目的,适用于面积在约10-25㎡的办公室、酒店客房、小型营业场所或家居等场所。 2. 设计条件[1] 根据GB/T 18836-2002《风管送风式空调(热泵)机组》的要求,名义制冷工况:室内侧入口空气状态干球温度27℃,湿球温度19℃,室外侧入口空气状态干球温度35℃,湿球温度24℃。 3. 热力计算 根据名义制冷工况:室内侧入口空气状态干球温度27℃,湿球温度19℃,室外侧入口空气状态干球温度35℃,湿球温度24℃,初步确定:冷凝温度t k 为47℃,对应的冷凝压力P k为18.12bar(绝对压力,下同);蒸发温度t0为4℃,对应的蒸发压力P0为5.66bar,并做如下假设:冷凝器过冷度为6℃,蒸发器过热度为6℃,蒸发器出口到压缩机入口的温升为2℃,冷凝器出口到膨胀阀前的温降为1℃。压缩机的指示效率ηi为0.8,忽略系统中的压力损失,循环参数及压焓图如下:

制动系统匹配设计计算分解

制动系统匹配设计计算 根据AA车型整车开发计划,AA车型制动系统在参考BB轿车底盘制造平台的基础上进行逆向开发设计,管路重新设计。本计算是以选配C发动机为基础。 AA车型的行车制动系统采用液压制动系统。前、后制动器分别为前通风盘式制动器和实心盘式制动器,制动踏板为吊挂式踏板,带真空助力器,制动管路为双回路对角线(X型)布置,采用ABS。驻车制动系统为机械式手动后盘式制动,采用远距离棘轮拉索操纵机构。因AA车型与参考样车BB的整车参数接近,制动系统采用了BB样车制动系统,因此,计算的目的在于校核前/后制动力、最大制动距离、制动踏板力、驻车制动手柄力及驻坡极限倾角。 设计要符合GB 12676-1999《汽车制动系统结构、性能和试验方法》;GB 13594-2003《机动车和挂车防抱制动性能和试验方法》和GB 7258-2004《机动车运行安全技术条件》的要求,其中的踏板力要求≤500N,驻车制动停驻角度为20%(12),驻车制动操纵手柄力≤400N。 制动系统设计的输入条件 整车基本参数见表1,零部件主要参数见表2。 表1 整车基本参数

表2 零部件主要参数制动系统设计计算 1.地面对前、后车轮的法向反作用力 地面对前、后车轮的法向反作用力如图1所示。 图1 制动工况受力简图由图1,对后轮接地点取力矩得:

式中:FZ1(N):地面对前轮的法向反作用力;G(N):汽车重力;b(m):汽车质心至后轴中心线的水平距离;m(kg):汽车质量;hg(m):汽车质心高度;L(m):轴距;(m/s2):汽车减速度。 对前轮接地点取力矩,得: 式中:FZ2(N):地面对后轮的法向反作用力;a(m):汽车质心至前轴中心线的距离。 2.理想前后制动力分配 在附着系数为ψ的路面上,前、后车轮同步抱死的条件是:前、后轮制动器制动力之和等于汽车的地面附着力;并且前、后轮制动器制动力Fm1、Fm2分别等于各自的附着力,即:

毕业设计盘式制动器设计说明书

汽车盘式制动器设计 摘要:本文主要是介绍盘式制动器的分类以及各种盘式制动器的优缺点,对所选车型制动器的选用方案进行了选择,针对盘式制动器做了主要的设计计算,同时分析了汽车在各种附着系数道路上的制动过程,对前后制动力分配系数和同步附着系数、利用附着系数、制动效率等做了计算。在满足制动法规要求及设计原则要求的前提下,提高了汽车的制动性能。 关键词:盘式制动器;制动力分配系数;同步附着系数;利用附着系数;制动效率

Automobile disc brake design Abstract:This paper is mainly the disc brake of the classification and various kinds of disc brake of the advantages and disadvantages are introduced, the selection scheme of the chosen vehicle brake was selected and for disc brake do the main design calculation and analysis of the car in a variety of attachment coefficient road on the braking process of, of braking force distribution coefficient and the synchronous adhesion coefficient, utilization coefficient of adhesion, braking efficiency calculated. Under the premise of meeting the requirements of the braking regulation requirement and design principle and improve the braking performance of automobile. Key words: Disc brake,Braking force distribution,coefficient,Synchronization coefficient,Synchronous adhesion coefficient,The use of adhesion coefficient,Braking efficiency

某宾馆空调设计计算书

XXX宾馆 暖通空调负荷计算书 工程名称:某宾馆 工程编号: 建设单位:某房产公司 计算人:XXX 签名: 日期: 校对人:XXX 签名: 日期: 审定人:XXX 签名: 日期:

一工程概述 本工程为本工程为苏州市和乔丽晶宾馆,钢筋混凝土错层结构,最低三层,最高八层。一至三层为商业用房,四至八层为标准间等。业主已给出建筑平面图和各个房间的功能,要求设计本宾馆的中央空调系统,实现每个有人员房间的夏季空调供冷冬季供热。 二设计依据 2.1设计任务书 <<空调制冷课程设计提纲>> 2.2设计规范及标准 (1)采暖通风与空气调节设计规范(GBJ19-87 2001版) (2)房屋建筑制图统一标准(GB/T50001-2001) (3)采暖通风与空气调节制图标准(GBJ114-88) 三设计范围 (1)中央空调系统选型,空气处理过程的确定。 (2)空调箱、风机盘管、送风口、回风口的选型,风管布置。 (3)热泵机组、水泵、膨胀水箱的选型及水系统设计。 四设计参数[1] 室外气象资料 国家:中华人民共和国 地区:江苏省 城市:南京 纬度:32.0 经度:118.8 海拔高度(m):8.9 冬季大气压力(Pa):102520.0 夏季大气压力(Pa):100400.0 冬季平均室外风速(m/s):2.6 夏季平均室外风速(m/s):2.6 冬季空调室外设计干球温度(℃):-6.0 夏季空调室外设计干球温度(℃):35.0 冬季通风室外设计干球温度(℃):2.0

夏季通风室外设计干球温度(℃):32.0 冬季采暖室外计算干球温度(℃):-3.0 夏季空调室外设计湿球温度(℃):28.3 冬季空调室外设计相对湿度(%):73.0 最大冻土深度(cm):9.0 室内设计参数 建筑物:宾馆 楼层名称房间名称房间用途房间面积总冷指标总热指标 (m^2) (W/m^2) ------------------------------------------------------------------------ 楼层1 小超市商业用房 57.0 160 75 楼层1 办公室办公室 18.0 105 70 楼层1 商务房接待室 18.0 120 70 楼层1 咖啡厅酒吧 60.0 180 70 楼层1 大堂门厅 167.0 110 85 楼层1 大包间餐厅 40.0 250 100 楼层1 小包间5 餐厅 32.0 250 110 楼层1 小包间4 餐厅 32.0 250 110 楼层1 小包间3 餐厅 32.0 250 110 楼层1 小包间2 餐厅 32.0 250 110 楼层1 小包间1 餐厅 32.0 250 110 楼层1 大餐厅餐厅 330.0 350 110 楼层2 茶楼餐厅 180.0 200 100 楼层2 美容院美容、理发室 320.0 115 80 楼层2 泡池公共休息区室内游泳池 120.0 200 400 楼层2 男更衣室办公室 42.0 105 70 楼层2 女更衣室办公室 30.0 105 70 楼层3 小会议室会议室 122.0 250 85 楼层3 办公室1 办公室 25.0 105 70

厢式车总体设计计算书

厢式车总体设计计算书 车型(一):SY006XL、SK006XL、SD006XL 车型(二):SY006X、SK006X、SD006X 一、外形参数确定 车型(一):SY006XL、SK006XL、SD006XL 1、轴距L: L=Lh+Lj+S-Lr S=250Lj=775Lh=7500取L/Lr=0.42 L+0.42L=7500+775+250L=7500+775+250/1.42=6003.5 轴距L:1800+4203取1800+4200 2、轮距:(1)、前轮距:1750(2)、后轮距:1750/1725 3、外形尺寸:L=1205+7500+250+775=9730 B=2300 H=3500 4、前悬:Lf=1205;后悬:Lr=9730-1205-1800-4200=2525 车型(二): 1、轴距L:为了同车型(一)统一轴距取相同 轴距L:取1800+4200 2、轮距:(1)、前轮距:1750(2)、后轮距:1750/1725 3、外形尺寸:L=1205+775+7100+250=9330 B=2200 H=3500 4、前悬:Lf=1205;后悬:Lr=9330-1205-1800-4200=2125 二、质量参数确定 车型(一): 1、汽车载质量:5000Kg 根据国家计重收费法规:MG=(7+7+10)+(7+7+10)×0.3-8=23.2T;允许装 载量MG=23.2T。 2、汽车整备质量:根据产品开发目标Mo≤8000Kg 3、汽车总质量:5000+8000=13000Kg 实际汽车总质量:23200+8000=31200Kg 4、汽车满载时轴荷分配:

盘式制动器设计

目录 绪论 (3) 一、设计任务书 (3) 二、盘式制动器结构形式简介 ................... 错误!未定义书签。 2.1、盘式制动器的分类...................... 错误!未定义书签。 2.2、盘式制动器的优缺点.................... 错误!未定义书签。 2.3、该车制动器结构的最终选择.............. 错误!未定义书签。 三、制动器的参数和设计 ....................... 错误!未定义书签。 3.1、制动盘直径 ........................... 错误!未定义书签。 3.2、制动盘厚度 ........................... 错误!未定义书签。 3.3、摩擦衬块的内半径和外半径.............. 错误!未定义书签。 3.4、摩擦衬块面积 ......................... 错误!未定义书签。 3.5、制动轮缸压强 ......................... 错误!未定义书签。 3.6、摩擦力的计算和摩擦系数的验算.......... 错误!未定义书签。 3.7、制动力矩的计算和验算.................. 错误!未定义书签。 3.8、驻车制动计算 ......................... 错误!未定义书签。 四、制动器的主要零部件的结构设计 ............. 错误!未定义书签。 4.1、制动盘 ............................... 错误!未定义书签。 4.2、制动钳 ............................... 错误!未定义书签。 4.3、制动块 ............................... 错误!未定义书签。 4.4、摩擦材料 ............................. 错误!未定义书签。

汽车设计计算书

设计计算书 一、 质量参数 1、 相关参数: 整备质量: 4500kg 载质量 : 8850 kg 最大总质量:13350 kg 2、 轴荷分布 空载: 转向桥: 2025 kg 驱动桥: 2475 kg 各桥负荷比: 45%、55% 满载: 转向桥: 4670 kg 驱动桥: 8675 kg 各桥负荷比: 35%、65% 二、 发动机功率选择计算 计算参数: 传动效率 ηT =0.85 汽车总质量 M t =13350KG 最高车速 V max =75km/h(满载) 85 km/h (空载) 空气阻力系数 C D =0.7 迎风面积 A=3.2m 2 滚动阻力系数 f=0.0165 最大功率 P max =3max max ***1()0.9360076140 t D M g f C A V V =63.76kw (76.7 kw 空载) 考虑空调系统和其它电器设备影响发动机使用特性曲线的P max ,(比万有特性曲线的P max 小)发动机的最大功率比设计的最大功率应大。 P max = P max *1.24=79kw (90 kw ) 比功率: 比功率=max 1000*t P M =5.92(7.12) 三、 发动机外特性曲线

四、动力性计算 设计参数:总质量M t=8850KG 总重量 G T= M t*g=86730 滚动阻力系数 f=0.0165 滚动阻力 F f= G T*f=5637.45N 空气阻力系数 C D=0.7 主减速比 i0=5.833 1档传动比 i1=7.312 传动效率η=0.85 轮胎滚动半径 r=0.407m 发动机最大扭矩T=265 发动机最大扭矩时转速 n=1600rpm 迎风面积 A=3.5 1、最高车速 ⑴、各档最大功率及对应车速和发动机转速 ⑵、利用软件进行分析得出相关数据(满载) 2 / 2

制动系统计算说明书

制动器的计算分析 整车参数 2、制动器的计算分析 2.1前制动器制动力 前制动器规格为?310×100mm,铸造底板,采用无石棉摩擦片,制动调整臂臂长,气室有效面积。当工作压力为P=6×105Pa时,前制动器产生的制动力: F1=2*A c*L/a*BF*?*R/R e*P 桥厂提供数据在P=6×105Pa时,单个制动器最大制动力为F1=3255kgf

以上各式中:A c—气室有效面积 L—调整臂长度 a—凸轮基圆直径 BF—制动器效能因数 R—制动鼓半径 R e—车轮滚动半径 ?—制动系效率 P—工作压力 2.2后制动器制动力 后制动器规格为?310×100mm,铸造底板,采用无石棉摩擦片,制动调整臂臂长,气室有效面积。当工作压力为P=6×105Pa时,前制动器产生的制动力: F2=2*A c*L/a*BF*?*R/R e*P 桥厂提供数据在P=6×105Pa时,单个制动器最大制动力为 F2 =3467kgf

2.3满载制动时的地面附着力 满载制动时的地面附着力是地面能够提供给车轮的最大制动力,正常情况下制动气制动力大于地面附着力是判断整车制动力是否足够的一个标准。地面附着力除了与整车参数有关之外,还与地面的附着系数有关,在正常的沥青路面上制动时,附着系数?值一般在0.5~0.8之间,我们现在按照路面附着系数为0.7来计算前后地面附着力:F?前=G满1×?+G×? 2 =2200×0.7+6000×× =2002kgf F?后=G满2×?-G×? 2 3800×0.7-6000×× = =1487kgf

因为前面计算的前后制动器最大制动力分别为 F1=3255kgf F2=3467kgf 3、制动器热容量、比摩擦力的计算分析 3.1单个制动器的比能量耗散率的计算分析 前制动器的衬片面积A1=2×πR1××L1= 式中(L1=100mm摩擦片的宽度 w1=110°) 后制动器的衬片面积A2=2×πR2××L2= 式中(L2=100m m 摩擦片的宽度w2=) 比能量耗散率 e1=β= e2=β= 上式中:G—满载汽车总质量 V1—制动初速度,计算时取V1=18m/s β—满载制动力分配系数 t—制动时间,计算时取t=3.06s 鼓式制动器的比能量耗散率以不大于1.8W/mm2为宜,故该制动器的比能量耗散率满足要求。 3.2单个制动器的比摩擦力计算分析 计算时取制动减速度j=0.6g

(完整版)毕业设计浮钳盘式制动器

原始数据: 整车质量:空载:1550kg ;满载:2000kg 质心位置:a=L 1=1.35m ;b=L 2=1.25m 质心高度:空载:hg=0.95m ;满载:hg=0.85m 轴 距:L=2.6m 轮 距: L 0=1.8m 最高车速:160km/h 车轮工作半径:370mm 轮毂直径:140mm 轮缸直径:54mm 轮 胎:195/60R14 85H 1.同步附着系数的分析 (1)当0φφ<时:制动时总是前轮先抱死,这是一种稳定工况,但丧失了转向能力; (2)当0φφ>时:制动时总是后轮先抱死,这时容易发生后轴侧滑而使汽车失去方向稳定性; (3)当0φφ=时:制动时汽车前、后轮同时抱死,是一种稳定工况,但也丧失了转向能力。 分析表明,汽车在同步附着系数为0φ的路面上制动(前、后车轮同时抱死)时,其制动减速度为g qg dt du 0φ==,即0φ=q ,q 为制动强度。而在其他附着系数φ的路面上制动时,达到前轮或后轮即将抱死的制动强度φ

根据相关资料查出轿车≥0φ0.6,故取6.00=φ. 同步附着系数:=0φ0.6 2.确定前后轴制动力矩分配系数β 常用前制动器制动力与汽车总制动力之比来表明分配的比例,称为制动器制动 力分配系数,用β表示,即:u F F u 1 =β,21u u u F F F += 式中,1u F :前制动器制动力;2u F :后制动器制动力;u F :制动器总制动力。 由于已经确定同步附着系数,则分配系数可由下式得到: 根据公式:L h L g 02φβ+= 得:68.06 .285.06.025.1=?+=β 3.制动器制动力矩的确定 为了保证汽车有良好的制动效能,要求合理地确定前,后轮制动器的制动力矩。 根据汽车满载在沥青,混凝土路面上紧急制动到前轮抱死拖滑,计算出后轮制动器的最大制动力矩2M μ 由轮胎与路面附着系数所决定的前后轴最大附着力矩: e g r qh L L G M ?υ)(1max 2-= 式中:?:该车所能遇到的最大附着系数; q :制动强度; e r :车轮有效半径; max 2μM :后轴最大制动力矩;

汽车动力性设计计算公式

汽车动力性设计计算公式 动力性计算公式 变速器各档的速度特性: 0 377 .0i i n r u gi e k ai ??= ( km/h ) ......(1) 其中:k r 为车轮滚动半径,m; 由经验公式:?? ? ???-+=)1(20254.0λb d r k (m) d----轮辋直径,in b----轮胎断面宽度,in λ---轮胎变形系数 e n 为发动机转速,r/min ;0i 为后桥主减速速比; gi i 为变速箱各档速比,)...2,1(p i i =,p 为档位数,(以下同)。 各档牵引力 汽车的牵引力: 错误!未指定书签。 t k gi a tq a ti r i i u T u F η???= )()( ( N ) (2) 其中:)(a tq u T 为对应不同转速(或车速)下发动机输出使用扭矩,N ?m ;t η为传动效率。 汽车的空气阻力: 15 .212 a d w u A C F ??= ( N ) (3) 其中:d C 为空气阻力系数,A 为汽车迎风面积,m 2。 汽车的滚动阻力: f G F a f ?= ( N ) (4)

其中:a G =mg 为满载或空载汽车总重(N),f 为滚动阻尼系数 汽车的行驶阻力之和r F : w f r F F F += ( N ) (5) 注:可画出驱动力与行驶阻尼平衡图 各档功率计算 汽车的发动机功率: 9549 )()(e a tq a ei n u T u P ?= (kw ) (6) 其中: )(a ei u P 为第)...2,1(p i i =档对应不同转速(或车速)下发动机的功率。 汽车的阻力功率: t a w f r u F F P η3600)(+= (kw ) (7) 各档动力因子计算 a w a ti a i G F u F u D -= )()( (8) 各档额定车速按下式计算 .377 .0i i n r u i g c e k i c a = (km/h ) (9) 其中:c e n 为发动机的最高转速; )(a i u D 为第)...2,1(p i i =档对应不同转速(或车速)下的动力因子。 对各档在[0,i c a u .]内寻找a u 使得)(a i u D 达到最大,即为各档的最大动力因子m ax .i D 注:可画出各档动力因子随车速变化的曲线 最高车速计算 当汽车的驱动力与行驶阻力平衡时,车速达到最高。 根据最高档驱动力与行驶阻力平衡方程

暖通空调最常用的设计计算公式

暖通空调最常用的设计计算公式 常用设计计算公式 总热量:Unit:kcal/h 1RT=3.5kw 1P=2.324kw 1kw=860kcal/h 1k=4.27J 1.QT=QS+QL 空气冷却:QT=0.24*&*L*(h1-h2) QT-----空气的总热量QS-----空气的显热量 QL-----空气的潜热量& -----空气的比重取1.2 kg/m3 L -----室内总送风量M3/H h1 -----空气的初焓值kJ/kg H2 -----空气的终焓值kJ/kg 2,显热量: Unit:kcal/h QS=Cp*&*L*(T1-T2) Cp ---空气的比热取0.24kcal/ kg T1 --空气最初的干球温度 T2 -----空气最终的干球温度 3,潜热量: Unit:kcal/h QL=600*&*L*(W1-W2) W1 ----空气最初水分含量kg/ kg W2 ----空气最终水分含量kg/ kg 4,冷冻水量: Unit:L/S V1=Q1/4.187*(T1-T2) Q 1-----主机制冷量(KW), T1-T2 -----主机进出水温差 5,冷却水量: Unit:L/S V2=Q2/4.187*(T1-T2)

Q2=Q1+N Q2-----冷却热量KW T1-T2 -----主机冷却水进出水温度 N -----制冷机组耗电功率KW 6,电机满载电流计算: Unit:A FAL=N/1.732*U*COS@ 7,新风量: Unit:M3/H L0 =n*V n -----房间换气次数V -----房间体积 8,送风量: Unit:M3/H 空气冷却:L= QS/ Cp*&*(T1-T2) QS -----显热量kcal/h Cp ---空气的比热取0.24kcal/ kg T1 --空气最初的干球温度T2 --空气最终的干球温度 & -----空气的比重取1.2 kg/m3 9,风机功率: Unit:KW N1=L1*H1/102*n1*n2 L1 -----风机风量(L/S) H1 -----风机风压(mH2O) n1 -----风机效率n2-----传动效率,直联传动取1;皮带传动取0.9 10,水泵功率: Unit:KW N2=L2*H2*r/102*n3*n4 L2 -----水流速(L/S) H2 -----水泵压头(mH2O) n3 -----水泵效率=0.7~0.85 n4 -----传动效率=0.9~1.0 r -----液体比重(水的比重为1kg/l) 11,水管管径: Unit:mm D=35.68*根号L2/ v L2 -----水流速(L/S) v -----水设计流速(m/s) 12,空气加湿量: Unit:g R=LX*1.3*(h1-h2)

托盘车计算书

电动托盘堆垛车 设 计 计 算 书XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

一、计算所需资料 二、装卸性能计算 1、油缸上升速度计算 V=(Q/A)×10=(5/33.16)×10=1.5 m/ min (TB20) V=(Q/A)×10=(5/23.75)×10=2.1 m/ min (TB15) V=(Q/A)×10=(5/19.63)×10=2.5 m/ min (TB10) Q流量(L/min) A面积(C㎡) V(m/ min) (1)货叉满载的上升速度

1.5×2=3 m/ min=50㎜/s(TB20) 2.1×2=4.2 m/ min=70㎜/s(TB15) 2.5×2=3 m/ min=83㎜/s(TB10) 实际满载上升速度为56.4㎜/s(系统额定压力大于缸所承受的压力) 实际满载下降速度为78.02㎜/s 2、油缸承受压力计算 P=F/A=2292×2×10/0.003316㎡=13.82Mpa(TB20) P=F/A=1792×2×10/0.002375㎡=15Mpa(TB15) P=F/A=1292×2×10/0.001963㎡=13.16Mpa(TB10) P 所受压强Pa(帕斯卡) F所受的压力N A面积(㎡) 单位转换1MPa=106Pa 3、油箱最大起升计算(此计算中数据为TB20车型,同时适用于TB15、TB10) 因为油箱要留10%的散热 9.5×90%=8.55 V=A×H H=V/A=8.5×106/3316=2563㎜ S面积(㎜2) V容积(mm3) H高度㎜ 起升高度是油缸行程的2倍 2563X2=5126㎜ 因为TB20只做到4000,所以油箱容量可以满足使用要求 4、起重链条的强度计算 ⑴LH1223(用于TB10、TB15)强度计算 根据GB60774-1995 选取极限拉伸载荷Q=48.9KN(即破断载荷Fp) 根据JB3341-2005 规定堆垛车用于起重链条的安全系数S≥5 货物1500Kg、货叉134Kg 所以链条的最大工作载荷Fmax=(1500+134)*9.8=16013.2N Fmax *S=16013.2 *5=80KN 单根链条的所承受载荷为40KN Fp≥Fmax *S ,所以满足使用要求 ⑵LH1224(用于2.0t)强度计算 根据GB60774-1995 选取极限拉伸载荷Q=75.6KN(即破断载荷Fp) 根据JB3341-2005 规定堆垛车用于起重链条的安全系数S≥5 货物2000Kg、货叉134Kg 所以链条的最大工作载荷Fmax=(2000+134)*9.8=20913.2N Fmax *S=20913.2 *5=105KN 单根链条的所承受载荷为52.5KN

盘式制动器设计说明书

错误!未找到引用源。盘式制动器设计说明书 一汽车制动系概述 使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。 对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。作用在行驶汽车上的滚动阻力,上坡阻力,空气阻力都能对汽车起制动作用,但这外力的大小是随机的,不可控制的。因此,汽车上必须设一系列专门装置,以便驾驶员能根据道路和交通等情况,借以使外界在汽车上某些部分施加一定的力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力,统称为制动力。这样的一系列专门装置即成为制动系。 1 制动系的功用:使汽车以适当的减速度降速行驶直至停车;在下坡行驶时,使汽车保持适当的稳定车速;使汽车可靠的停在原地或--=-坡道上。 2 制动系的组成 任何制动系都具有以下四个基本组成部分: (1)供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。其中,产生制动能量的部位称为制动能源。 (2)控制装置——包括产生制动动作和控制制动效果的各种部件。 (3)传动装置——包括将制动能量传输到制动器的各个部件。 (4)制动器——产生阻碍车辆的运动或运动趋势的力的部件,其中也包括辅助制动系中的缓速装置。 较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。 3 制动系的类型 (1)按制动系的功用分类 1)行车制动系——使行使中的汽车减低速度甚至停车的一套专门装置。 2)驻车制动系——是以停止的汽车驻留在原地不动的一套装置。 3)第二制动系——在行车制动系失效的情况下,保证汽车仍能实现减速或停车的一套装置。在许多国家的制动法规中规定,第二制动系是汽车必须具备的。 4)辅助制动系——在汽车长下坡时用以稳定车速的一套装置。 (2)按制动系的制动能源分类 1)人力制动系——以驾驶员的肢体作为唯一的制动能源的制动系。 2)动力制动系——完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的制动系。 3)伺服制动系——兼用人力和发动机动力进行制动的制动系。 按照制动能量的传输方式,制动系又可分为机械式、液压式、气压式和电磁等。同时采用两种以上传能方式的制动系,可称为组合式制动系。 4 设计制动系时应满足如下主要要求: 1)具有足够的制动效能。行车制动能力是用一定制动初速度下的制动减速度和制动距离两相指标来评定的;驻坡能力是以汽车在良好路面上能可靠的停驻

空调设计课程设计计算书

课程设计计算书 设计名称空调制冷设计 学院软件学院 楼宇智能化工程技术工程专业 (安全方向) 班级 101 姓名吴楠 学号 101410008 指导教师马永红 2012年10月1—2012年10设计时间 月18日

摘要 本次设计的是锦州市岳麓办公大厦空调系统。针对该办公大厦的功能要求和特点,以及该地区气象条件和空调要求,参考有关文献资料对该楼的中央空调系统进行系统规划、设计计算和设备选型。对其进行了冷、热、湿负荷的计算,还对各室的所需的新风量进行了计算。考虑到建筑本身的特点,在楼层较高的一层和二层采用全空气系统,三楼和三楼以上采用了风机盘管加新风系统,该系统具有投资低,调节灵活,运行管理方便等优点。对于冷热源的选择,考虑建筑周边没有固定的热源供给、建筑的负荷相对较小,同时由于所在的城市在能源方面非常缺乏,电力部门又有实施分峰谷、分时电价政策。因此对该建筑的冷源选择采用制冷机组加部分冰蓄冷系统,热源采用小型的燃油锅炉,以满足建筑冷热负荷的需要。并把机房布置在地下一层的设备间。同时对该系统的风管、水管,制冷、供热系统等进行了设计计算。由于建筑结构的特点,将冷却塔放在建筑两层高的裙房上,来满足制冷系统的需求。 根据计算结果,对性能和经济进行比较和分析,对设备的选择、材料的选用,确保了设备在容量、减震、消声等方面满足人们的要求,并使系统达到了经济、节能的目的,按照国家相关政策做到了环境保护。

目录 摘要 第一章绪论———————————————————————4 第二章设计概述—————————————————————5 2.1工程概况 2.2设计及气象参数 2.3围护结构参数 第三章空调系统冷、热、湿负荷的计算———————————9 3.1冷、热、湿负荷的概念 3.2主要计算公式 3.3计算结果 3.4 逐时计算结果 第四章空调房间送风量确定————————————————21 4.1 概念 4.2计算公式 4.3送风量的计算 4.4焓湿图 第五章风管道的选择计算以及设备选择———————————25 5.1风机盘管布置原则 5.2气流组织的分布 5.3风管道布置原则 5.4风管道设计

模板台车设计计算书

隧道衬砌台车设计 计算书 中煤第三建设(集团)有限责任公司二O一二年四月二十七日

隧道衬砌台车设计计算书 一、台车系统结构概述 本台车适用于中煤第三建设(集团)有限责任公司,大连市地铁2号线工程项目,湾家站至红旗西路站区间、红旗西路至南松路区间隧道衬砌的模筑混凝土施工。 台车系统由模板系统、门架支撑系统、电液控制系统组成。支收模采用液压控制,行走采用电动自动行走系统。 模板结构: 台车模板长度为9m,共5榀支撑门架,门架间距为2.05m;上上纵连梁3根,单侧支撑连梁4根(结构见台车设计图)。 面板Q235,t=10mm钢板; 连接法兰-12*220钢板; 背肋,[12#槽钢,间距300mm; 门架采用H2940*200*8*12型钢; 底梁采用H482*300*11*15型钢; 上纵连梁采用H200*200*8*12型钢; 侧面模板支撑连梁采用双拼[16a#槽钢。 顶升油缸4个,侧向油缸4个,平移油缸2个;行走系统为两组主动轮系和两组被动轮系组成。电液控制系统一套。 二、设计计算依据资料 1、甲方提供的台车性能要求及工况资料、区间断面图纸;

2、《钢结构设计规范(GB50017—2003)》 3、《模板工程技术规范(GB50113—2005)》 4、《结构设计原理》 5、《铁路桥涵施工规范(TB10230—2002)》 6、《钢结构设计与制作安装规程》 7、《现代模板工程》 三、结构计算方法与原则 台车的主受力部件为龙门架、底粱、上部纵联H钢及钢模板,只需进行抗弯强度或刚度校核。 根据衬砌台车结构形式,各主要受力部件均不需要进行剪切强度校核和稳定性校核。 四、计算荷载值确定依据 泵送混凝土施工方式以20立方米/小时计。 混凝土初凝时间为t=4.5小时。 振动设备为50插入式振动棒和高频附着式振动器。 混凝土比重值取r=2.4t/m3=24kN/m3 ; 坍落度16—20cm。 荷载检算理论依据;以《模板工程技术规范(GB50113—2005)》中附录A执行。 钢材容许应力(单位;N/mm2)

相关主题
文本预览
相关文档 最新文档