当前位置:文档之家› 第二章关系代数课后作业

第二章关系代数课后作业

第二章关系代数课后作业
第二章关系代数课后作业

()检索至少选修李军老师所授全部课程地学生姓名

()检索至少选修两门课程地学生学号

()检索选修课程包含李军老师所授课程之一地学生学号

()检索选修全部课程地学生姓名

()检索选修课程名为语言地学生学号和姓名

()检索年龄大于地男学生学号和姓名

()检索钱恒同学不学课程地课程号

()检索全部学生都选修地课程地课程号和课程名

()检索选修课程号为和地学生学号

()检索选修课程包含学号为地学生所修课程地学生学号

设有如下所示地关系()、()和(),试用关系代数表达式表示下列查询语句:文档来自于网络搜索

()检索“程军”老师所授课程地课程号()和课程名().

()检索年龄大于地男学生学号()和姓名().

()检索至少选修“程军”老师所授全部课程地学生姓名().

()检索”李强”同学不学课程地课程号().

()检索至少选修两门课程地学生学号().

()检索全部学生都选修地课程地课程号()和课程名().

()检索选修课程包含“程军”老师所授课程之一地学生学号().

()检索选修课程号为和地学生学号().

()检索选修全部课程地学生姓名().

()检索选修课程包含学号为地学生所修课程地学生学号().

()检索选修课程名为“语言”地学生学号()和姓名().

解:本题各个查询语句对应地关系代数表达式表示如下:

(). ∏(σ‘程军’())

(). ∏(σ>∧”男”())

()÷∏(σ‘程军’())]}文档来自于网络搜索

(). ∏() ∏(σ‘李强

(). ∏(σ[][]∧[]≠[] ( × ))

程军’())) (). ∏()÷∏(σ’’∨ ’’())

()÷∏()]} (). ∏()÷∏(σ’’())

语言’())]}

高等代数习题第二章

习题2-1 一、判断题 若在n 阶行列式中等于零的元素个数超过2n n -个,则这个行列式的值等于零。( ) 二、单选题 1.若行列式210 120312 x --=-, 则x =( ) A. –2 B. 2 C. -1 D. 1 2.n 阶行列式00010010 01001000 的值为( ) A. (1)n - B. 1 (1)2 (1) n n -- C. 1 (1)2 (1) n n +- D. 1 3.设ij A 是行列式A 的元素(),1,2,,ij a i j n = 的代数余子式,当i j ≠时下列各式中错误的是( ) A. 1122i j i j in jn A a A a A a A =++ B. 1122i i i i in in A a A a A a A =++ C. 1122j j j j nj nj A a A a A a A =++ D. 11220i j i j in jn a A a A a A =++ 4.行列式 0000 00000a b c d e f 的值等于( ) A. abcdef B. abdf - C. abdf D. cdf 5. 1111 2 22 2 0000000 a b c d a b c d =( ) A. 11222121a c b d a b c d - B. 22112211()()a b a b c d c d -- C. 12121212a a bb c c d d D. ()12211221()a b a b c d c d -- 6.设行列式1112 223 33,a b c D a b c a b c = 则 111111 222 2223 33 333 223223223c b c a b c c b c a b c c b c a b c +++++++++ =( ) A. -D B. D C. 2D D. -2D

近世代数第二章答案分解

近世代数第二章群论答案 §1.群的定义 1.全体整数的集合对于普通减法来说是不是一个群? 解:不是,因为普通减法不是适合结合律。 例如 () 321110 --=-= --=-=() 321312 ()() --≠-- 321321 2.举一个有两个元的群的例。 解:令G=,e a {},G的乘法由下表给出 首先,容易验证,这个代数运算满足结合律 (1) ()(),, = ∈ x y z x y z x y z G 因为,由于ea ae a ==,若是元素e在(1)中出现,那么(1)成立。(参考第一章,§4,习题3。)若是e不在(1)中出现,那么有 ()aa a ea a == a aa ae a ==() 而(1)仍成立。 其次,G有左单位元,就是e;e有左逆元,就是e,a有左逆元,就是a。所以G是一个群。 读者可以考虑一下,以上运算表是如何作出的。 3.证明,我们也可以用条件Ⅰ,Ⅱ以及下面的条件IV',V'来做群的

定义: IV ' G 里至少存在一个右逆元1a -,能让 =ae a 对于G 的任何元a 都成立; V ' 对于G 的每一个元a ,在G 里至少存在一个右逆元1a -,能让 1=aa e - 解:这个题的证法完全平行于本节中关于可以用条件I,II,IV,V 来做群定义的证明,但读者一定要自己写一下。 §2. 单位元、逆元、消去律 1. 若群G 的每一个元都适合方程2=x e ,那么G 是交换群。 解:令a 和b 是G 的任意两个元。由题设 ()()()2 ==ab ab ab e 另一方面 ()()22====ab ba ab a aea a e 于是有()()()()=ab ab ab ba 。利用消去律,得 =ab ba 所以G 是交换群。 2. 在一个有限群里,阶大于2的元的个数一定是偶数。 解:令G 是一个有限群。设G 有元a 而a 的阶>2n 。 考察1a -。我们有 ()1=n n a a e - ()()11==n n e a a e -- 设正整数

高等代数作业 第二章行列式答案

高等代数第四次作业 第二章 行列式 §1—§4 一、填空题 1.填上适当的数字,使72__43__1为奇排列. 6,5 2.四阶行列式 4 4?=ij a D 中,含 24 a 且带负号的项为_____. 112433421224314313243241,,a a a a a a a a a a a a 3.设.21 22221 11211d a a a a a a a a a nn n n n n = 则._____1 221 22 211 12 1=n n nn n n a a a a a a a a a (1) 2(1)n n d -- 4.行列式1 1 1 11111---x 的展开式中, x 的系数是_____. 2 二、判断题 1. 若行列式中有两行对应元素互为相反数,则行列式的值为0 ( )√ 2. 设d = nn n n n n a a a a a a a a a 21 2222111211 则 12 111222212 1 n n n nn n a a a a a a a a a =d ( )× 3. 设d = nn n n n n a a a a a a a a a 21 2222111211 则d a a a a a a a a a n nn n n n -=112112122221 ( )× 4. abcd z z z d y y c x b a =000000 ( ) √ 5. abcd d c x b y x a z y x -=0 000 00 ( )× 6. 00 00000=y x h g f e d c b a ( )√ 7. 如果行列式D 的元素都是整数,则D 的值也是整数。( )√ 8. 如果行列D 的元素都是自然数,则D 的值也是自然数。( )×

线性代数课后习题答案全)习题详解

线性代数课后习题答案全)习题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: (1)381141102---; (2)b a c a c b c b a ; (3)222111c b a c b a ; (4)y x y x x y x y y x y x +++. 解 (1)=---3 811411 02811)1()1(03)4(2??+-?-?+?-?)1()4(18)1(2310-?-?-?-?-??- =416824-++-=4- (2)=b a c a c b c b a cc c aaa bbb cba bac acb ---++3333c b a abc ---= (3)=2 221 11c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---= (4)y x y x x y x y y x y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=

2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0 (2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为 2 ) 1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 (6)逆序数为)1(-n n 3 2 1个 5 2,5 4 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个 3.写出四阶行列式中含有因子2311a a 的项.

高等代数作业第二章行列式答案

高等代数作业第二章行列 式答案 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

高等代数第四次作业 第二章 行列式 §1—§4 一、填空题 1.填上适当的数字,使72__43__1为奇排列. 6,5 2.四阶行列式4 4?=ij a D 中,含24a 且带负号的项为_____. 112433421224314313243241,,a a a a a a a a a a a a 3.设 .21 22221 11211 d a a a a a a a a a nn n n n n = 则 ._____1 221 22 211 121=n n nn n n a a a a a a a a a (1) 2(1)n n d -- 4.行列式1 1 1 111 11 ---x 的展开式中, x 的系数是_____. 2 二、判断题 1. 若行列式中有两行对应元素互为相反数,则行列式的值为0 ( )√ 2. 设d = nn n n n n a a a a a a a a a 212222111211 则 12 111222212 1 n n n nn n a a a a a a a a a =d ( )× 3. 设d = nn n n n n a a a a a a a a a 21 2222111211 则d a a a a a a a a a n nn n n n -=11211 2122221 ( )× 4. abcd z z z d y y c x b a =000000 ( ) √ 5. abcd d c x b y x a z y x -=0 000 00 ( )× 6. 00 00000=y x h g f e d c b a ( )√ 7. 如果行列式D 的元素都是整数,则D 的值也是整数。( )√ 8. 如果行列D 的元素都是自然数,则D 的值也是自然数。( )× 9. n n a a a a a a 212 1 = ( )× 10. 0 1000 2000 010 n n -=n ! ( )× 三、选择题

线性代数习题集(带答案)

第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数1 3232 111 12)(x x x x x f ----= 中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 7341111 1 326 3 478 ----= D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

课后习题答案_第2章_逻辑代数及其化简

第2章逻辑代数及其化简 2-1 分别将十进制数,和转换成二进制数。 解答: 10=(1,2 …)2 10=(111,,1100, ,1100,…)2 10=(1,0111, 2-2 分别将二进制数101101.和转换成十进制数。 解答: (101101.)2=(45.)10 2=10 2-3 分别将二进制数和转换成十六进制数。 解答: =(26.9C)16 2=(0010,,1100)2 =16 2=(1,0101,,1110)2 2-4 分别将十六进制数和6C2B.4A7H转换成二进制数。解答:

16=(11,1010,,1110,1011)2 (6C2B.4A7)16=(110,1100,0010,,1010,0111)2 2-5 试用真值表法证明下列逻辑等式: (1) AB A C BC AB C (2) AB AB BC AB AB AC (3) AB BC C A AB BC CA (4) AB AB BC AC A BC (5) AB BC CD D A ABCD ABCD (6) AB AB ABC A B 证明: (1) AB A C BC AB C ++=+ 真值表如下所示:

由真值表可知,逻辑等式成立。 (2) AB AB BC AB AB AC ++=++ 真值表如下所示:

由真值表可知,逻辑等式成立。 (3) AB BC C A AB BC CA ++=++ 真值表如下所示:

由真值表可知,逻辑等式成立。 (4) AB AB BC AC A BC +++=+ 真值表如下所示:

由真值表可知,逻辑等式成立。(5) AB BC CD D A ABCD ABCD +++=+ 真值表如下所示:

线性代数课后习题1答案(谭琼华版)

线性代数课后题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: (1) ; 21-1 2 解:;5)1(1222 1-12=-?-?= (2) ;1 1 12 2 ++-x x x x 解: ; 1)1)(1(11 1232222--=-++-=++-x x x x x x x x x x (3) ;22b a b a 解: ;222 2ba ab b a b a -= (4) ;5 984131 11 解: ;59415318119318415115 984131 11=??-??-??-??+??+??= (5) ;0 00 00d c b a 解: ;00000000000000 00=??-??-??-??+??+??=d c b a d b c a d c b a (6) .132213321 解: .183211322133332221111 322133 21=??-??-??-??+??+??=

2.求下列排列的逆序数: (1)34215; 解:3在首位,前面没有比它大的数,逆序数为0;4的前面没有比它大的数,逆序数为0;2的前面有2个比它大的数,逆序数为2;1的前面有3个比它大的数,逆序数为3;5的前面没有比它大的数,逆序数为0.因此排列的逆序数为5. (2)4312; 解:4在首位,前面没有比它大的数,逆序数为0;3的前面有1个比它大的数,逆序数为1;1的前面有2个比它大的数,逆序数为2;2的前面有2个比它大的数,逆序数为2.因此排列的逆序数为5. (3)n(n-1)…21; 解:1的前面有n-1个比它大的数,逆序数为n-1;2的前面有n-2个比它大的数,逆序数为n-2;…;n-1的前面有1个比它大的数,逆序数为1;n 的前面没有比它大的数,逆序数为0.因此排列的逆序数为n(n-1)/2. (4)13…(2n-1)(2n) …42. 解:1的前面没有比它大的数,逆序数为0;3的前面没有比它大的数,逆序数为0;…;2n-1的前面没有比它大的数,逆序数为0;2的前面有2n-2个比它大的数,逆序数为2n-2;4的前面有2n-4个比它大的数,逆序数为2n-4;…;2n 的前面有2n-2n 个比它大的数,逆序数为2n-2n.因此排列的逆序数为n(n-1). 3.写出四阶行列式中含有因子2311a a 的项. 解 由定义知,四阶行列式的一般项为 43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□, 即1324或1342.对应的t 分别为 10100=+++或22000=+++ ∴44322311a a a a -和42342311a a a a 为所求. 4.计算下列各行列式: (1) 71100 251020214214 ; 解: 7110025102 021 4214343 27c c c c --0 1 14 23102021 10214 ---= 34)1(14 3 10 2211014 +-?--- =- 14 3 10 2211014 --3 2 1 132c c c c ++- 14 17172 1099 -= 0. (2) ;0111101111011 110 解: 0111101111011 1104342c c c c --0 1 1 1 1 10110111000--=14)1(1 11 101 1 1+-?-- =-1 1 1 101 01 1-- 12c c +-1 2 1111 001-=- 1 2 11-=-3.

近世代数习题第二章

第二章 群论 近世代数习题第二章 第一组 1-13题;第二组 14-26题;第三组 27-39题;第四组 40-52 题,最后提交时间为11月25日 1、设G 是整数集,则G 对运算 4++=b a b a 是否构成群? 2、设G 是正整数集,则G 对运算 b a b a = 是否构成群? 3、证明:正整数对于普通乘法构成幺半群. 4、证明:正整数对于普通加法构成半群,不含有左右单位元. 5、G 是整数集,则G 对运算 1=b a 是否构成群? 6、设b a ,是群G 中任意两元素. 证明:在G 中存在唯一元素x ,使得b axba =. 7、设u 是群G 中任意取定的元素,证明:G 对新运算aub b a = 也作成群. 8、证:在正有理数乘群中,除1外,其余元素阶数都是无限. 9、证:在非零有理数乘群中,1的阶是1,-1的是2,其余元素阶数都是无限. 10、设群G 中元素a 阶数是n ,则 m n e a m |?=. 11、设群G 中元素a 阶数是n ,则 ) ,(||n m n a m =.,其中k 为任意整数. 设(m,n )=d,m=dk,n=dl,(k,l)=1. 则(a^m)^l=a^(ml)=a^(kdl)=(a^(n))^k=e. 设(a^m )^s=e,,即a^(ms)=e,所以n|ms,则l|ks,又因为(l,k)=1,所以l|s,即a^m 的阶数为l. 12、证明:在一个有限群中,阶数大于2的元素个数一定是偶数. 13、设G 为群,且n G 2||=,则G 中阶数等于2的一定是奇数. 14、证明:如果群G 中每个元素都满足e x =2 ,则G 是交换群. 对每个x ,从x^2=e 可得x=x^(-1),对于G 中任一元x ,y ,由于(xy )^2=e ,所以xy=(xy )^(-1)=y^(-1)*x(-1)=yx. 或者 :(ab)(ba)=a(bb)a=aea=aa=e ,故(ab)的逆为ba ,又(ab)(ab)=e ,这是因为ab 看成G 中元素,元素的平方等于e. 由逆元的唯一性,知道ab=ba 15、证明:n 阶群中元素阶数都不大于n . 16、证明:p 阶群中有1-p 个p 阶元素,p 为素数. 17、设群G 中元素a 阶数是n ,则 )(|t s n a a t s -?=. 18、群G 的任意子群交仍是子群.

(完整版)数据库第二章关系代数习题

1?设有如图所示的关系S 、SC 和C,试用关系代数表达式表示下 列查询语句: ⑴ 检索”程军”老师所授课的课程号(C#)和课程名(CNAME)。 (2) 检索年龄大于21的男学生学号(S#)和姓名(SNAME)。 (3) 检索至少选修”程军”老师所授全部课程的学生姓名 (SNAME) o (4) 检索”李强”同学不学课程的课程号(C#)o (5) 检索至少选修两门课程的课程号 (S#)o (6) 检索全部学生都选修的课程的课程号 (C#)和课程名(CNAME) o (7) 检索选修课程包含”程军”老师所授课程之一的学生学号 (S#)o (8) 检索选修课程号为 k1和k5的学生学号(S#)o (9) 检索选修全部课程的学生姓名 (SNAME) o (10) 检索选修课程包含学号为 2的学生所选修课程的学生学号 (S#) o (11) 检索选修课程名为” C 语言”的学生学号(S#)和姓名(SNAME) o (12) 检索没有一门课程成绩不及格的学生学号,姓名。 答:本题各个查询语句对应的关系代数表达式表示如下 : (1) n C#,CNAME ( ^TEACHER ='程军'(C)) ⑵ n S#,SNAME ( O -AGE>21A SEX ='男 '(S)) n SNAME (S ^*^ ( n S#,C#(SC) *n c#( b TEACHER =' 程军 ' (C)))) (4) n C #(C)- n c#(b SNAME ='李强(S) g SC) (5) n S# ( O -1=4A 2土5 (SC X SC) (6) n C#,CNAME (C g (n S #,C #(SC ) *n s%S)) (7) n S# (SC^°n C# ( ^TEACHER ='程军 '(C))) (8) n S#,C#(SC) *n c# o C#='K1'VC#='K5' (C)) (9) n sNAME (S g (n S #,C #(SC) *n c#(c ))) (10) n S #,C #(SC ) *n c#( o c#=2 (SC)) (11) n S#,SNAME (S ^n S#(SC g ( a CNAME ='C 语言 '(C)))) (12)n 学号,姓名(学生)-n 学号,姓名(a 分数<60(学生g 学习)) 2. 现有关系数据库如下: SC

近世代数习题解答张禾瑞二章

近世代数习题解答 第二章群论 1群论 1. 全体整数的集合对于普通减法来说是不是一个群? 证不是一个群,因为不适合结合律. 2. 举一个有两个元的群的例子. 证G={1,-1}对于普通乘法来说是一个群. 3. 证明,我们也可以用条件1,2以及下面的条件 4,5'来作群的定义: 4'. G至少存在一个右单位元e,能让ae = a 对于G的任何元a都成立 5 . 对于G的每一个元a,在G里至少存在一个右逆元 a ,能让aa e A_1 证(1) 一个右逆元一定是一个左逆元,意思是由aa e 得a a = e 因为由4 G有元a能使a'a =e 1 1 1 ' 所以(a a)e = (a a)(a a ) 即a a = e (2)一个右恒等元e 一定也是一个左恒等元,意即 由ae = a 得ea = a 即ea = a 这样就得到群的第二定义. (3)证ax二b可解 取x = a 这就得到群的第一定义. 反过来有群的定义得到4,5'是不困难的. 2单位元,逆元,消去律 1. 若群G的每一个元都适合方程x2二e,那么G就是交换群. 证由条件知G中的任一元等于它的逆元,因此对a,b^G有ab = (ab),= b°a,= ba . 2. 在一个有限群里阶大于2的元的个数是偶数. _1 n —1 n n —1 —1 证(1)先证a的阶是n则a 的阶也是n . a e= (a ) (a ) e e 若有m n 使(a ')m= e 即(a m)' = e因而a m=e‘ ? a m=e 这与a的阶是n矛盾「a的阶等于a °的阶 _4 _4 2 (2) a的阶大于2,则a=a 若a=a : a=e 这与a的阶大于2矛盾 (3) a b 贝U a「b' 斗

高等代数例题(全部)

高等代数例题 第一章 多项式 1.44P 2 (1)m 、p 、q 适合什么条件时,有2 3 1x mx x px q +-++ 2.45P 7 设3 2 ()(1)22f x x t x x u =++++,3 ()g x x tx u =++的最大公因式是一个二次多项式,求t 、 u 的值。 3.45P 14 证明:如果((),())1f x g x =,那么(()(),()())1f x g x f x g x += 4.45P 18 求多项式3 x px q ++有重根的条件。 5.46P 24 证明:如果(1)()n x f x -,那么(1)()n n x f x - 6.46P 25 证明:如果233 12(1)()()x x f x xf x +++,那么1(1)()x f x -,2(1)()x f x - 7.46P 26 求多项式1n x -在复数域内和实数域内的因式分解。 8.46P 28 (4)多项式1p x px ++ (p 为奇素数)在有理数域上是否可约? 9.47P 1 设1()()()f x af x bg x =+,1()()()g x cf x dg x =+,且0ad bc -≠。求证: 11((),())((),())f x g x f x g x =。 10.48P 5 多项式()m x 称为多项式()f x ,()g x 的一个最小公倍式,如果(1)()()f x m x ,()()g x m x ; (2)()f x ,()g x 的任意一个公倍式都是()m x 的倍式。我们以[(),()]f x g x 表示首项系数为1的那个最 小公倍式。证明:如果()f x ,()g x 的首项系数都为1,那么()() [(),()]((),()) f x g x f x g x f x g x = 。 11.设 m 、n 为整数,2()1g x x x =++除33()2m n f x x x =+-所得余式为 。 12. 求证:如果()d x |()f x ,()d x |()g x ,且()d x 是()f x 与()g x 的一个组合,那么()d x 是()f x 与 ()g x 的一个最大公因式。 13. 14 3 4141)g( , 21212321)(23423456 -+--=+--+-- =x x x x x x x x x x x x f 求())(),(x g x f 。 14. 设22()(1) 21m n f x x x x =+--- (m ,n 是正整数),2()g x x x =+ 。证:()g x |()f x 。

线性代数第四版同济大学课后习题答案04

第四章 向量组的线性相关性 1. 设v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求v 1-v 2及3v 1+2v 2-v 3. 解 v 1-v 2=(1, 1, 0)T -(0, 1, 1)T =(1-0, 1-1, 0-1)T =(1, 0, -1)T . 3v 1+2v 2-v 3=3(1, 1, 0)T +2(0, 1, 1)T -(3, 4, 0)T =(3?1+2?0-3, 3?1+2?1-4, 3?0+2?1-0)T =(0, 1, 2)T . 2. 设3(a 1-a )+2(a 2+a )=5(a 3+a ), 求a , 其中a 1=(2, 5, 1, 3)T , a 2=(10, 1, 5, 10)T , a 3=(4, 1, -1, 1)T . 解 由3(a 1-a )+2(a 2+a )=5(a 3+a )整理得 )523(6 1 321a a a a -+= ])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(3[61 T T T --+= =(1, 2, 3, 4)T . 3. 已知向量组 A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ; B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明 由 ????? ??-=3121 23111012421301 402230) ,(B A ??? ? ? ??-------971820751610402230 421301 ~r ???? ? ? ?------531400251552000751610 421301 ~r ??? ? ? ? ?-----000000531400751610 421301 ~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示.

高等代数作业第二章行列式答案

高等代数第四次作业 第二章行列式§—§4 —、填空题 1 ?填上适当的数字,使72__43__1为奇排列.6 , 5 2 ?四阶行列式D a j 44中,含a24且带负号的项为__________ a i1 a24a33a42 , a i2a24a3i a4 3 , a i3a2 4 a32a41 a11 a12 a1n a1n a12 a11 3 .设a21 a22 a2n d.则a2n a22 a21 a n1 a n2 a nn a nn a n2 a n1 n( n 1) (1)Fd 1 4 ?行列式11 1 1 x的展开式中,x的系数是 二、判断题 1.若行列式中有两行对应元素互为相反数,则行列式的值为0 ( a11 a12 a1 n a12 a1n L a11 2.设d = a21 a22 a2n 则a22 a2n L a21 L L L L a n1 a n2 a nn a n2 a nn L a n1 )x a11 a12 a1n a21 a22 a2n 3.设d = a21 a22 a2n 则 a n1 a n2 a nn d ( a n1 a n2 a nn a11 a12 a1 n 0 0 0 a x y z a )x 0 0b 4. 0 c y d z z abed () y z )x 6. abed 0 0 e f 0 0 g h 0 0 x y 7.如果行列式D的元素都是整数,则D的值也是整 数。 8.如果行列D的元素都是自然数,则 9. a1 a2 a1 a2 a n a n 、选择题 1 2 ()x 10. =n!()x 0 0 0 n 1 n 0 0 0 D的值也是自然数。()x

近世代数习题解答张禾瑞二章

近世代数习题解答 第二章 群论 1 群论 1. 全体整数的集合对于普通减法来说是不是一个群? 证 不是一个群,因为不适合结合律. 2. 举一个有两个元的群的例子. 证 }1,1{-=G 对于普通乘法来说是一个群. 3. 证明, 我们也可以用条件1,2以及下面的条件 ''5,4来作群的定义: '4. G 至少存在一个右单位元e ,能让a ae = 对于G 的任何元a 都成立 '5. 对于G 的每一个元a ,在G 里至少存在一个右逆元,1-a 能让 e aa =-1 证 (1) 一个右逆元一定是一个左逆元,意思是由e aa =-1 得 e a a =-1 因为由'4G 有元'a 能使e a a =-'1 所以))(()('111a a a a e a a ---= 即 e a a =-1 (2) 一个右恒等元e 一定也是一个左恒等元,意即 由 a ae = 得 a ea = 即 a ea = 这样就得到群的第二定义. (3) 证 b ax =可解 取b a x 1-= 这就得到群的第一定义. 反过来有群的定义得到''5,4是不困难的. 2 单位元,逆元,消去律 1. 若群G 的每一个元都适合方程e x =2,那么G 就是交换群. 证 由条件知G 中的任一元等于它的逆元,因此对G b a ∈,有 ba a b ab ab ===---111)(. 2. 在一个有限群里阶大于2的元的个数是偶数. 证 (1) 先证a 的阶是n 则1-a 的阶也是n .e e a a e a n n n ===?=---111)()( 若有n m ? 使e a m =-)(1 即 e a m =-1)(因而 1-=e a m e a m =∴ 这与a 的阶是n 矛盾.a Θ的阶等于1-a 的阶 (2) a 的阶大于2, 则1-≠a a 若 e a a a =?=-21 这与a 的阶大

线性代数习题与答案(复旦版)1

线性代数习题及答案 习题一 1. 求下列各排列的逆序数. (1) 341782659; (2) 987654321; (3) n (n 1)…321; (4) 13…(2n 1)(2n )(2n 2)…2. 【解】 (1) τ(341782659)=11; (2) τ(987654321)=36; (3) τ(n (n 1)…3·2·1)= 0+1+2 +…+(n 1)= (1) 2 n n -; (4) τ(13…(2n 1)(2n )(2n 2)…2)=0+1+…+(n 1)+(n 1)+(n 2)+… +1+0=n (n 1). 2. 略.见教材习题参考答案. 3. 略.见教材习题参考答案. 4. 本行列式4512 3 12123 122x x x D x x x = 的展开式中包含3x 和4 x 的项. 解: 设 123412341234 () 41234(1)i i i i i i i i i i i i D a a a a τ = -∑ ,其中1234,,,i i i i 分别为不同列中对应元素 的行下标,则4D 展开式中含3 x 项有 (2134)(4231)333(1)12(1)32(3)5x x x x x x x x x ττ-????+-????=-+-=- 4D 展开式中含4x 项有 (1234)4(1)2210x x x x x τ-????=. 5. 用定义计算下列各行列式. (1) 0200 001030000004 ; (2)1230 0020 30450001 . 【解】(1) D =(1)τ(2314) 4!=24; (2) D =12. 6. 计算下列各行列式.

高等代数第二章多项式教案

第二章 多项式 教学目的要求 一元多项式在本章中占有突出的重要位置.它对培养、提高 学生的数学素质是非常必要的.应着重掌握以下问题:多项式的确切定义、多项 式的系数和次数、零多项式零次多项式的意义、整除性问题的理论及方法、多项 式与方程的联系与区别、多项式的函数观点、有里数域上多项式的有关问题、实 数域上多项式、多元多项式的定义和运算、对称多项式的定义及基本定理等. 教学内容及学时分配 多项式的定义和运算(2 学时);多项式的整除性(4 学时);最大公因式(4 学时);因式分解定理(4 学时);重因式(4 学时);多 项式函数及多项式的根(4 学时);复数域和实数域上的多项式(4 学时);有理 数域上的多项式(4 学时)多元多项式;对称多项式(2 学时);习题课(2 学时). 重点、难点 理解基本概念,掌握一元多项式次数定理,多项式的乘法消去 律;带余除法定理的证明及应用,多项式因式分解的存在唯一性定理,多项式的 可约与数域有关,多项式没有重因式的充分必要条件,余数定理,综合除法,代 数基本定理,C 、R 、Q 上多项式,多元多项式的字典排列法,初等对称多项式表 示对称多项式. 教学手段 传统教学和多媒体教学相结合. 2.1 一元多项式的定义和运算 教学目的 掌握一元多项式的定义,有关概念和基本运算性质. 重点、难点 一元多项式次数定理,多项式的乘法消去律. 教学过程 讲授练习. 1.多项式的定义 令 R 是一个数环,并且 R 含有数 1,因而 R 含有全体整数.在这一章里,凡是说到数环,都作这样的约定,不再每次重复 先讨论R 上一元多项式 定义 1 数环 R 上一个文字 x 的多项式或一元多项式指的是形式表达式 n n x a x a x a a ,2210 +++ , (1) 这里 n 是非负整数而n a a a a ,,,,210 都是 R 中的数.

《线性代数》同济大学版-课后习题答案详解

《线性代数》同济大学版 课后习题答案详解 第一章行列式 1.利用对角线法则计算下列三阶行列式: (1)381141102---; 解3 81141102--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2y -x 3-y 3-x 3 =-2(x 3+y 3). 2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; 解逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ??? (2n -1) 2 4 ??? (2n ); 解 逆序数为 2 ) 1(-n n :

数据库第二章关系代数习题(1)

1.现有关系数据库如下: 学生(学号,姓名,性别,专业,奖学金)。 课程(课程号,名称,学分)。 学习(学号,课程号,分数)。 用关系代数表达式实现下列1-4小题: 1. 检索"英语"专业学生所学课程的信息,包括学号、姓名、课程名和分数。 π学号,姓名,课程名,分数(б专业=英语(学生?学习?课程)) 2. 检索"数据库原理"课程成绩高于90分的所有学生的学号、姓名、专业和分数。 π学号,姓名,专业,分数(б分数>90Λ名称=数据库原理(学生?学习?课程)) 3. 检索不学课程号为"C135"课程的学生信息,包括学号,姓名和专业。 π学号,姓名,专业(学生)—π学号,姓名,专业(б课程号=C135(学生?学习)) 4. 检索没有任何一门课程成绩不及格的所有学生的信息,包括学号、姓名和专业。 π学号,姓名,专业(学习)—π学号,姓名,专业(б分数>=60(学生?学习))

2.现有关系数据库如下: 学生(学号,姓名,性别,专业、奖学金)。 课程(课程号,名称,学分)。 学习(学号,课程号,分数)。 用关系代数表达式实现下列1—4小题: 1.检索“国际贸易”专业中获得奖学金的学生信息,包括学号、姓名、课程名和分数。 π学号,姓名,专业(б奖学金>OΛ专业=国际贸易(学生?学习?课程)) 2.检索学生成绩得过满分(100分)的课程的课程号、名称和学分。 π课程号,名称,学分(б成绩=100(学生?学习?课程)) 3. 检索没有获得奖学金、同时至少有一门课程成绩在95分以上的学生信息,包括学号、姓名和专业。 π课程号,名称,学分(б奖学金=OΛ成绩>95(学生?学习?课程)) 4. 检索没有任何一门课程成绩在80分以下的学生的信息,包括学号、姓名和专业。 π学号,姓名,专业(б成绩>80(学生?学习))

高等代数作业第二章行列式答案

第二章 行列式 §1—§4 一、填空题 1.填上适当的数字,使72__43__1为奇排列. 6,5 2.四阶行列式4 4?=ij a D 中,含24a 且带负号的项为_____. 112433421224314313243241,,a a a a a a a a a a a a 3.设.21 22221 112 11 d a a a a a a a a a nn n n n n =Λ ΛΛΛΛ ΛΛ 则._____1 2 21 22211 121=n n nn n n a a a a a a a a a Λ Λ ΛΛΛΛ Λ (1) 2(1)n n d -- 4.行列式1 1 1 11 1 11 ---x 的展开式中, x 的系数是_____. 2 二、判断题 1. 若行列式中有两行对应元素互为相反数,则行列式的值为0 ( )√ 2. 设d = nn n n n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211 则1211122221 21 n n n nn n a a a a a a a a a L L L L L L L =d ( )× 3. 设d = nn n n n n a a a a a a a a a ΛΛΛΛΛΛΛ21 22221 11211 则 d a a a a a a a a a n nn n n n -=11211 2122221ΛΛΛ ΛΛΛ ΛΛ( )× 4. abcd z z z d y y c x b a =000000 ( ) √ 5. abcd d c x b y x a z y x -=0 000 00 ( )× 6. 00 00000=y x h g f e d c b a ( ) √ 7. 如果行列式D 的元素都是整数,则D 的值也是整数。( )√ 8. 如果行列D 的元素都是自然数,则D 的值也是自然数。( )× 9. n n a a a a a a ΛN 212 1 = ( )× 10. 0 10000 2000 010 Λ ΛΛΛΛΛΛ ΛΛn n -=n ! ( )× 三、选择题

相关主题
文本预览
相关文档 最新文档