当前位置:文档之家› 最优化方法在数学建模中的应用

最优化方法在数学建模中的应用

最优化方法在数学建模中的应用
最优化方法在数学建模中的应用

从几个生活实例看数学建模及其应用

从几个生活实例看数学建模及其应用 [内容摘要] 本文通过几个生活中的事例,并运用数学建模,来分析问题,以便更方便的得出解决问题的方案。从中通过将数学建模的抽象理论实例化,生动化,我们能够更清楚看出数学在生活中无处不在,无处不用。 [关键词] 数学建模生活数学 数学,作为一门研究现实世界数量关系和空间形式的科学,与生活是息息相关的。作为用数学方法解决实际问题的第一步,数学建模自然有着与数学相当的意义。在各种不同的领域中,人们一直在运用数学建模来描绘,刻画某种生活规律或者生活现象,以便找到其中解决问题的最佳方案或得到最佳结论。例如,运用模拟近似法建模的方法,在社会科学,生物学,医学,经济些学等学科的实践中,来建立微分方程模型。在这些领域中的一些现象的规律性仍是未知的,或者问题太过复杂,所以在实际应用中总要通过一些简化,近似的模型来与实际情况比对,从而更加容易的得出规律性。 本文通过数学模型在生活中运用的几个例子,来了解,探讨数学模型的相关知识。 一、数学模型的简介 早在学习初等代数的时候,就已经碰到过数学模型了,例如在三个村庄之间建立一个粮仓,使其到三个村子的距离只和最短。我们可以通过建立方程组以及线性规划来解决该问题。

当然,真实实际问题的数学建模通常要复杂得多,但是建立数学建模的基本内容已经包含在解决这类代数应用题的过程中了。那就是:根据建立模型的目的和问题的背景作出必要的简化假设;用字母表示待求的未知量;利用相应的物理或其他规律,列出数学式子;求出数学上的解答;用这个答案解释问题;最后用实际现象来验证结果。 一般来说,数学模型可以描述为,对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,作出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。 二、数学模型的意义 1)在一般工程技术领域,数学建模仍然大有用武之地。 2)在高新技术领域,数学建模几乎是必不可少的工具。 3)数学迅速进入一些新领域,为数学建模开拓了许多新的处女地。 三、数学建模实例 例1、某饲养场每天投入6元资金用于饲养、设备、人力,估计可使一头60kg重的生猪每天增重。目前生猪出售的市场价格为12元/kg,但是预测每天会降低元,问该场应该什么时候出售这样的生猪问题分析投入资金可使生猪体重随时间增长,但售价随时间减少,应该存在一个最佳的出售时机,使获得利润最大。根据给出的条件,可作出如下的简化假设。 模型假设每天投入6元资金使生猪的体重每天增加的常数为r(=);生猪出售的市场价格每天降低常数g(=元)。

数学建模方法及其应用

一、层次分析法 层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用. (一) 层次分析法的基本原理 层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍.1.递阶层次结构原理 一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次. 2.测度原理 决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.

3. 排序原理 层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题. (二) 层次分析法的基本步骤 层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1]. 1. 成对比较矩阵和权向量 为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因素放在一起比较,而是两两相互对比,二是对比时采用相对尺度. 假设要比较某一层n 个因素n C C ,,1 对上层一个因素O 的影响,每次取两个因素i C 和j C ,用ij a 表示i C 和j C 对 O 的影响之比,全部比较结果可用成对比较阵 ()1 ,0,ij ij ji n n ij A a a a a ?=>= 表示,A 称为正互反矩阵. 一般地,如果一个正互反阵A 满足: ,ij jk ik a a a ?=,,1,2, ,i j k n = (1) 则A 称为一致性矩阵,简称一致阵.容易证明n 阶一致阵A 有下列性质:

五种最优化方法

五种最优化方法 1.最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 1.2最优化问题的一般形式(有约束条件): 式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。化过程就是优选X,使目标函数达到最优值。 2.牛顿法 2.1简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)是一种函数逼近法。 2.2原理和步骤

3.最速下降法(梯度法) 3.1最速下降法简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)沿函数在该点处目标函数下降最快的方向作为搜索方向; 3.2最速下降法算法原理和步骤

4.模式搜索法(步长加速法) 4.1简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤

5.评价函数法 5.1简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x)) s.t. g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权求合法介绍。 5.2线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进

最优化方法及其应用 - 更多gbj149 相关pdf电子书下载

最优化方法及其应用 作者:郭科 出版社:高等教育出版社 类别:不限 出版日期:20070701 最优化方法及其应用 的图书简介 系统地介绍了最优化的理论和计算方法,由浅入深,突出方法的原则,对最优化技术的理论作丁适当深度的讨论,着重强调方法与应用的有机结合,包括最优化问题总论,线性规划及其对偶问题,常用无约束最优化方法,动态规划,现代优化算法简介,其中前八章为传统优化算法,最后一章还给出了部分优化问题的设计实例,也可供一般工科研究生以及数学建模竞赛参赛人员和工程技术人员参考, 最优化方法及其应用 的pdf电子书下载 最优化方法及其应用 的电子版预览 第一章 最优化问题总论1.1 最优化问题数学模型1.2 最优化问题的算法1.3 最优化算法分类1.4

组合优化问題简卉习题一第二章 最优化问题的数学基础2.1 二次型与正定矩阵2.2 方向导数与梯度2.3 Hesse矩阵及泰勒展式2.4 极小点的判定条件2.5 锥、凸集、凸锥2.6 凸函数2.7 约束问题的最优性条件习题二第三章 线性规划及其对偶问题3.1线性规划数学模型基本原理3.2 线性规划迭代算法3.3 对偶问题的基本原理3.4 线性规划问题的灵敏度习题三第四章 一维搜索法4.1 搜索区间及其确定方法4.2 对分法4.3 Newton切线法4.4 黄金分割法4.5 抛物线插值法习题四第五章 常用无约束最优化方法5.1 最速下降法5.2 Newton法5.3 修正Newton法5.4 共轭方向法5.5 共轭梯度法5.6 变尺度法5.7 坐标轮换法5.8 单纯形法习題五第六章 常用约束最优化方法6.1外点罚函数法6.2 內点罚函数法6.3 混合罚函数法6.4 约束坐标轮换法6.5 复合形法习题六第七章 动态规划7.1 动态规划基本原理7.2 动态规划迭代算法7.3 动态规划有关说明习题七第八章 多目标优化8.1 多目标最优化问题的基本原理8.2 评价函数法8.3 分层求解法8.4目标规划法习题八第九章 现代优化算法简介9.1 模拟退火算法9.2遗传算法9.3 禁忌搜索算法9.4 人工神经网络第十章 最优化问题程序设计方法10.1 最优化问题建模的一般步骤10.2 常用最优化方法的特点及选用标准10.3 最优化问题编程的一般过程10.4 优化问题设计实例参考文献 更多 最优化方法及其应用 相关pdf电子书下载

初中数学建模方法及应用

龙源期刊网 https://www.doczj.com/doc/6811087499.html, 初中数学建模方法及应用 作者:肖永刚 来源:《新课程·中学》2017年第03期 摘要:在新课标中要求培养学生的创新能力,在初中数学教学中培养学生的建模能力, 是培养数学创新能力的重要方法,也能增强学生利用数学知识解决问题的能力。对培养初中生数学建模方法及应用进行了论述。 关键词:初中数学;建模思想;数学应用 利用数学建模的方法是学习初中数学的新方法,是素质教育和新课标的要求,能为学生的数学能力发展提供全新途径,提高学生运用数学工具解决问题的能力,让学生在用数学工具解决问题中体会到数学学习的意义,从而提高数学学习兴趣。 一、数学建模的概念 数学建模就是对具体问题分析并简化后,运用数学知识,找出解决方法并利用数学式子来求解,从而使问题得以解决。数学建模方法有以下几个步骤:一是对具体问题分析并简化,然后用数学知识建立关系式(模型),二是求解数学式子,三是根据实际情况检验并选出正确答案。初中阶段数学建模常用方法有:函数模型、不等式模型、方程模型、几何模型等。 二、数学建模的方法步骤 要培养学生的数学建模方法,可按以下方法步骤进行: 1.分析问题题意为建模做准备。对具体问题包含的已知条件和数量关系进行分析,根据问题的特点,选择使用数学知识建立模型。 2.简化实际问题假设数学模型。对实际问题进行一定的简化,再根据问题的特征和要求以及解题的目的,对模型进行假设,要找出起关键作用的因素和主要变量。 3.利用恰当工具建立数学模型。通过建立恰当的数学式子,来建立模型中各变量之间的关系式,以此来完成数学模型的 建立。 4.解答数学问题找出问题答案。通过对模型中的数学问题进行解答,找出实际问题的答案。

运筹学与最优化方法习题集

一.单纯性法 1.用单纯形法求解下列线性规划问题(共 15 分) 12 2121212max 2515 6224..5 ,0 z x x x x x s t x x x x =+≤??+≤??+≤??≥? 2.用单纯形法求解下列线性规划问题(共 15 分) 12 121212max 2322 ..2210 ,0 z x x x x s t x x x x =+-≥-??+≤??≥? 3.用单纯形法求解下列线性规划问题(共 15 分) 1234 123412341234max 24564282 ..2341 ,,,z x x x x x x x x s t x x x x x x x x =-+-+-+≤? ?-+++≤??≥ ? 4.用单纯形法求解下列线性规划问题(共 15 分) 123 123123123123max 2360 210..20 ,,0 z x x x x x x x x x s t x x x x x x =-+++≤??-+≤??+-≤??≥? 5.用单纯形法求解下列线性规划问题(共 15 分) 123 12312123max 224 ..26,,0 z x x x x x x s t x x x x x =-++++≤??+≤??≥? 6.用单纯形法求解下列线性规划问题(共 15 分)

12 121212 max 105349..528 ,0z x x x x s t x x x x =++≤??+≤??≥? 7.用单纯形法求解下列线性规划问题(共 16 分) 12 121212max 254 212..3218 ,0 z x x x x s t x x x x =+≤??≤??+≤??≥?

《最优化方法与应用》实验指导书

《最优化方法与应用》 实验指导书 信息与计算科学系编制

1 实验目的 基于单纯形法求解线性规划问题,编写算法步骤,绘制算法流程图,编写单纯形法程序,并针对实例完成计算求解。 2实验要求 程序设计语言:C++ 输入:线性规划模型(包括线性规划模型的价值系数、系数矩阵、右侧常数等) 输出:线性规划问题的最优解及目标函数值 备注:可将线性规划模型先转化成标准形式,也可以在程序中将线性规划模型从一般形式转化成标准形式。 3实验数据 123()-5-4-6=Min f x x x x 121231212320 324423230,,03-+≤??++≤??+≤??≥? x x x x x x st x x x x x

1 实验目的 基于线性搜索的对分法、Newton 切线法、黄金分割法、抛物线法等的原理及方法,编写算法步骤和算法流程图,编写程序求解一维最优化问题,并针对实例具体计算。 2实验要求 程序设计语言:C++ 输入:线性搜索模型(目标函数系数,搜索区间,误差限等) 输出:最优解及对应目标函数值 备注:可从对分法、Newton 切线法、黄金分割法、抛物线法中选择2种具体的算法进行算法编程。 3实验数据 2211 ()+-6(0.3)0.01(0.9)0.04 = -+-+Min f x x x 区间[0.3,1],ε=10-4

实验三 无约束最优化方法 1实验目的 了解最速下降法、牛顿法、共轭梯度法、DFP 法和BFGS 法等的基本原理及方法,掌握其迭代步骤和算法流程图,运用Matlab 软件求解无约束非线性多元函数的最小值问题。 2实验要求 程序设计语言:Matlab 针对实验数据,对比最速下降法、牛顿法、共轭梯度法、DFP 法和BFGS 法等算法,比较不同算法的计算速度和收敛特性。 3实验数据 Rosenbrock's function 222211()(100)+(1-)=-Min f x x x x 初始点x=[-1.9, 2],,ε=10-4

最优化方法及应用

陆吾生教授是加拿大维多利亚大学电气与计算机工程系 (Dept. of Elect. and Comp. Eng. University of Victoria) 的正教授, 且为我校兼职教授,曾多次来我校数学系电子系讲学。陆吾生教授的研究方向是:最优化理论和小波理论及其在1维和2维的数字信号处理、数字图像处理、控制系统优化方面的应用。 现陆吾生教授计划在 2007 年 10-11 月来校开设一门为期一个月的短期课程“最优化理论及其应用”(每周两次,每次两节课),对象是数学系、计算机系、电子系的教师、高年级本科生及研究生,以他在2006年出版的最优化理论的专著作为教材。欢迎数学系、计算机系、电子系的研究生及高年级本科生选修该短期课程,修毕的研究生及本科生可给学分。 上课地点及时间:每周二及周四下午2:00开始,在闵行新校区第三教学楼326教室。(自10月11日至11月8日) 下面是此课程的内容介绍。 ----------------------------------- 最优化方法及应用 I. 函数的最优化及应用 1.1 无约束和有约束的函数优化问题 1.2 有约束优化问题的Karush-Kuhn-Tucker条件 1.3 凸集、凸函数和凸规划 1.4 Wolfe对偶 1.5 线性规划与二次规划 1.6 半正定规划 1.7 二次凸锥规划 1.8 多项式规划 1.9解最优化问题的计算机软件 II 泛函的最优化及应用 2.1 有界变差函数 2.2 泛函的变分与泛函的极值问题 2.3 Euler-Lagrange方程 2.4 二维图像的Osher模型 2.5 泛函最优化方法在图像处理中的应用 2.5.1 噪声的消减 2.5.2 De-Blurring 2.5.3 Segmentation ----------------------------------------------- 注:这是一门约二十学时左右的短期课程,旨在介绍函数及泛函的最优化理论和方法,及其在信息处理中的应用。只要学过一元及多元微积分和线性代数的学生就能修读并听懂本课程。课程中涉及到的算法实现和应用举例都使用数学软件MATLAB 华东师大数学系

数学建模案例分析插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段 多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。

数学建模模型与应用

Mathematica软件常用功能 【实验目的】 1. 用Mathematica软件进行各种数学处理; 2. 用Mathematica软件进行作图; 3. 用Mathematica软件编写程序. 【注意事项】 Mathematica中大写小写是有区别的,如Name、name、NAME等是不同的变量名或函数名。 系统所提供的功能大部分以系统函数的形式给出,内部函数一般写全称,而且一定是以大写英文字母开头,如Sin[x],Conjugate[z]等。 乘法即可以用*,又可以用空格表示,如2 3=2*3=6 ,x y,2 Sin[x]等;乘幂可以用“^”表示,如x^0.5,Tan[x]^y。 自定义的变量可以取几乎任意的名称,长度不限,但不可以数字开头。当你赋予变量任何一个值,除非你明显地改变该值或使用Clear[变量名]或“变量名=.”取消该值为止,它将始终保持原值不变。 一定要注意四种括号的用法:()圆括号表示项的结合顺序,如 (x+(y^x+1/(2x)));[]方括号表示函数,如Log[x],BesselJ[x,1];{}大括号表示一个“表”(一组数字、任意表达式、函数等的集合),如 {2x,Sin[12 Pi],{1+A,y*x}};[[]]双方括号表示“表”或“表达式”的下标,如a[[2,3]]、{1,2,3}[[1]]=1。 Mathematica的语句书写十分方便,一个语句可以分为多行写,同一行可以写多个语句(但要以分号间隔)。当语句以分号结束时,语句计算后不做输出(输出语句除外),否则将输出计算的结果。 命令行“Shift+Enter”才是执行这个命令。

运筹学课程设计-个人学习时间优化分配

个人学习时间优化分配 设计总说明(摘要) 合理的安排时间方案,采取最优化的时间组合,有利于我们充分发挥各个时间阶段的学习效益。同时可以使我们的学习符合日常行为及自身特点,不仅使时间得到有效安排,也使得我们的身心得到和谐。此次,研究分配一天中四个阶段四门课程的学习时间,就是根据学生的身心特点,和各阶段对各课程学习的收获程度,采取获得程度量化的方法,设计出一个最优的时间组合方案,从而获得最大的收获效益。即获得学习的最大价值。 在这个过程中要将运筹学的各种理论知识与具体实际情况相结合。首先是确 定所要研究的问题,考虑所需要的各种数据,根据实际需求确定所需要的数据和模拟量化的数据。将数据整理形成分析和解决问题的具体模型。其次对已得模型利用计算机进行求解,得出方程的最优解。最后结合所研究问题的实际背景,对模型的解进行评价、分析以及调整,并对解的实施与控制提出合理化的建议。 关键词:时间优化,线性规化,最优解,获得效益最大 目录 1.绪论 1.1研究的背景 (3) 1.2研究的主要内容与目的 (3) 1.3研究的意义 (3) 1.4研究的主要方法与思路 (3) 2.理论方法的选择 2.1所研究的问题的特点 (4) 2.2拟采用的运筹学理论方法的特点 (4) 2.3理论方法的适用性及有效性论证 (5) 3.模型的建立 3.1 基础数据的确定 (5) 3.2变量的设定 (6) 3.3目标函数的建立 (6) 3.4限制条件的确定 (6) 3.5模型的建立 (7) 4.模型的求解及解的分析 4.1模型的求解 (7) 4.2解的分析与评价 (9) 5.结论与建议 5.1研究结论 (11)

数学建模——excel

§10.4 EXCEL在数学建模中的应用 10.4.1 简介 Microsoft Excel是目前应用最为广泛的办公室表格处理软件之一。它在数学统计中也有广泛应用。Excel具有强有力的数据库管理功能、丰富的宏命令和函数、强有力的决策支持工具,具有分析能力强、操作简便、图表能力强等特点。 10.4.2 Excel 中的统计工具简介 1.统计函数 Excel提供78个统计函数。在主菜单中的“插入”中选择“函数”,单击后就可以得到一组常用的统计函数,如均值AVERAGE、方差VAR、中位数 MEDIAN、秩RANK、最大值MAX、最小值MIN、计数COUNT,离散和连续分布的分布函数、概率函数、分位点等,如图10.所示。在选定函数的同时,在命令的下方会出现一条说明,表明命令的意义及每个参数的含义。 图10. 例如正态分布分布函数 NORMDIST,返回给定均值和标准差的正态分布分布函数或正态分布概率密度函数。 语法:NORMDIST(x, mean, standard_dev , cumulative) 说明: x 为需要计算其分布的数值,Mean 为分布的均值,Standard_dev 为分布的标准差,Cumulative 为一逻辑值,指明函数的形式。如果 cumulative 为 TRUE,函数 NORMDIST 返回分布函数;如果为 FALSE,返回概率密度函数。 (1)如果 mean 或 stand_dev 为非数值型,函数 NORMDIST 返回错误值 #VALUE!。(2)如果 standard_dev < 0,函数 NORMDIST 返回错误值 #NUM!。 (3)如果 mean= 0 且 standard_dev = 1,函数 NORMDIST 返回标准正态分布,即函数NORMSDIST。

最优化方法及其应用课后答案

1 2 ( ( 最优化方法部分课后习题解答 1.一直优化问题的数学模型为: 习题一 min f (x ) = (x ? 3)2 + (x ? 4)2 ? g (x ) = x ? x ? 5 ≥ ? 1 1 2 2 ? 试用图解法求出: s .t . ?g 2 (x ) = ?x 1 ? x 2 + 5 ≥ 0 ?g (x ) = x ≥ 0 ? 3 1 ??g 4 (x ) = x 2 ≥ 0 (1) 无约束最优点,并求出最优值。 (2) 约束最优点,并求出其最优值。 (3) 如果加一个等式约束 h (x ) = x 1 ? x 2 = 0 ,其约束最优解是什么? * 解 :(1)在无约束条件下, f (x ) 的可行域在整个 x 1 0x 2 平面上,不难看出,当 x =(3,4) 时, f (x ) 取最小值,即,最优点为 x * =(3,4):且最优值为: f (x * ) =0 (2)在约束条件下, f (x ) 的可行域为图中阴影部分所示,此时,求该问题的最优点就是 在约束集合即可行域中找一点 (x 1 , x 2 ) ,使其落在半径最小的同心圆上,显然,从图示中可 以看出,当 x * = 15 , 5 ) 时, f (x ) 所在的圆的半径最小。 4 4 ?g (x ) = x ? x ? 5 = 0 ? 15 ?x 1 = 其中:点为 g 1 (x ) 和 g 2 (x ) 的交点,令 ? 1 1 2 ? 2 求解得到: ? 4 5 即最优点为 x * = ? ?g 2 (x ) = ?x 1 ? x 2 + 5 = 0 15 , 5 ) :最优值为: f (x * ) = 65 ?x = ?? 2 4 4 4 8 (3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。 2.一个矩形无盖油箱的外部总面积限定为 S ,怎样设计可使油箱的容量最大?试列出这个优 化问题的数学模型,并回答这属于几维的优化问题. 解:列出这个优化问题的数学模型为: max f (x ) = x 1x 2 x 3 ?x 1x 2 + 2x 2 x 3 + 2x 1x 3 ≤ S

运筹学与最优化方法线性规划案例分析报告

案例:连续投资的优化问题 一、题目: 某企业在今后五年内考虑对下列项目投资,已知:,从第一年到第四年每年年初需要投资,并于次年末收回本利115%。项目A,但规定最大投资额不超B,第三年年初需要投资,到第五年末能收回本利125%项目40万元。过,但规定最大投资额不超,第二年年初需要投资,到第五年末能收回本利140%项目C 30万元。过6%。项目D,五年内每年年初可购买公债,于当年末归还,并加利息问它应如何确定给这些项目的每年投100万元,该企业5年内可用于投资的资金总额为资使得到第五年末获得的投资本利总额为最大? 二、建立上述问题的数学模型的投资额,它们都是待定的年初给项目A,B,C,D, X (i=1.2.3.4.5)为第i设X,X , X iDiB1AiC每年年初均可投资,年末收回本利,固每年的投资额应该等于手中拥未知量。由于项目D 有的资金额。建立该问题的线性规划模型如下: +1.06X+1.40X+1.25XMax Z=1.15X5D 2C4A3B X+X=1000000 (1) 1D1A X+X+X=1.06X (2) 1D2C2A2D X+X+X=1.15X+1.06X (3) 3A 3B 3D 1A 2D s.t. X+X=1.15X+1.06X(4) 3D 4A 4D 2A X=1.15X+1.06X (5)5D 3A4D X<=400000 (6) 3B X<=300000 (7) 2C X , X , X, X>=0 i=1,2,3,4,5 iD1AiCiB 经过整理后如下: Max Z=1.15X+1.40X+1.25X+1.06X5D 2C4A3B X+X=1000000 1D1A-1.06X+ X+X+X =0 2D2A2C1D-1.15X-1.06X+ X+X+X=0 3D3A1A3B2D s.t. -1.15X-1.06X +X+X=0 4D3D4A2A-1.15X-1.06X+ X=0 5D4D3A X<=400000 3B X<=300000 2C i=1,2,3,4,5 , X , X, X>=0 X iDiBiC1A 求解过程以及相应的结果三、Excel中进行布局并输入相应的公式)在Excel1 (

国内中学数学建模及其教学的研究现状

国内中学数学建模及其教学的研究现状 一、国内中学数学建模的研究现状 随着时代的进步和科技的发展,人们越来越觉得数学素质是一个人的基本素质的重要方面之一,而掌握和运用数学模型方法是衡量一个人数学素质高低的一个重要标志。受西方国家的影响,20世纪80年代初,数学建模课程引入到我国的一些高校,短短几十年来发展非常迅速,影响很大。1989年,我国高校有4个队首次参加美国大学生数学建模竞赛。现在这项竞赛已经成为一个世界性的竞赛。在美国大学生数学建模竞赛的影响下,1992年11月底,中国工业与应用数学学会举行了我国首届大学生数学建模联赛。从那以后,数学应用、数学建模方法、数学建模教学的热潮也迅速波及到中学,使得我国有关中学数学杂志中,讨论数学应用数学建模方法、数学建模教学的文章明显多了起来。1996年9月北京市数学会组织了一部分中学生参加了“全国大学生数学建模大赛”,取得了意想不到的好成绩,赢得了评审人员、教师等有关人士的一致好评。这些竞赛与常规的数学竞赛很不一样,题目内容与生产和生活实际紧密相连,可以使用参考书和计算工具,都是要通过建立数学模型来解决实际应用问题。这也说明中学生能否进行数学建模并不在于是否具备高等数学知识,运用初等数学知识仍然可以进行数学建模,甚至有时能把问题解决得更好。 在我国,中学真正开展数学建模的时间并不长。最早进行中学数学建模的城市是上海市。1991年10月,由上海市科技局、上海工业与应用数学学会、上海金桥出口加工联合有限公司联合举办了“上海市首届…金桥杯?中学生数学知识应用竞赛”的初赛,并于1992年3月举行了决赛。以后每年进行一次,主要对象是高中学生。这项竞赛参加者最多时达到了四千多人,在培养中学生数学应用意识和数学建模能力方面起到了重要作用,也为我国其他地区举办中学生数学应用与建模竞赛起了一个带头作用。 北京市于1993年到1994年也成功举办了“北京市首届…方正杯?中学生数学知识应用竞赛”,有两千多人参加了竞赛。与此同时,举办者开始尝试让中学生写数学建模的小论文,学生所写的小论文让举办者和教师大为吃惊。到1997年北京市教委从中学数学教育改革,特别是从应试教育向素质教育转变的角度出发,批准恢复了一年一度面向高中学生的竞赛。北京市成立了由北京市数学会、北京市教委科教院、人民教育出版社、北京师范大学、首都师范大学联合组织的“高中数学应用知识竞赛”咨询委员会和组织委员会,由北京数学会作为具体承办单位,并于1997年12月举办了“第一届北京市高中数学知识应用竞赛”初赛,并于1998年3月进行了决赛,至今成为惯例,已成功举办了十一届。 2000年8月,第七届全国数学建模教学与应用会议在郑州召开。会议安排了有关中学数学应用和建模的报告。比如,北京理工大学的叶其孝教授和北京师范大学的刘来福教授分别作了题为“深入开展中学生数学知识应用活动”和“北京中学生数学知识应用竞赛”的报告。特别值得提出的是,在这次会议上,第一次有中学教师参加。 2001年7月29日至8月2日,第十届国际数学建模教学与应用会议在北京举行。会议的研讨包括“中学数学知识应用竞赛和中学数学教育改革”的报告和研讨会。部分中国与会者还就“大、中学数学建模教学活动和教育改革”,“美、中大学生数学建模竞赛赛题解析”进行了交流。我国的一些中学教师在会上作了有关中学数学建模的报告,引起了与会者的强烈反响。所有这些都为进一步推动我国的数学建模教学活动创造了良好的条件。 教育部2003年颁布的《普通高中数学课程标准(实验稿)》把数学建模纳入了内容标准中,明确指出“高中阶段至少应为学生安排一次数学建模活动”,这标志着数学建模正式进入我国高中数学,也是我国中学数学应用与建模发展的一个里程碑。 二、国内中学数学建模教学的特点

最优化求解法在实际问题中的应用

本科毕业论文 (2014届) 题目:最优化求解法在实际问题中的应用学院:计算机与科学技术学院 专业:数学与应用数学 班级:10数本班 学号:1006131084 姓名:严慧 指导老师:孙钢钢

目录 1.摘要 (3) 2.关键字 (3) 3.引言 (3) 4.最优化求解法在实际问题中的应用 (4) 4.1.无约束最优化问题的求解............................................... ....... 4.2.有约束最优化问题的求解............................................... ....... 4.3.线性规划问题的求解............................................... ........... ... 4.4.非线性规划问题的求解............................................... ........... 5.结束语................................................................................................参考书目

1.摘要:本文介绍最优化及相关知识在实际生活中的应用,主要是利用运筹 学来研究解决在实际生活中所遇到的一些问题,找到最优的解决方案,帮助人们提供最好的最有科学依据的最佳方法。 2.关键字:最优化,运筹学,生活,应用。 Abstract:This paper introduced the Optimization in the real life application,this is use of Operations research to solve the problem in real life,finding the best solution,and provide the best and scientifically valid solution to the people . Key words: Optimization, Operations research, life, application. 3.引言 随着社会迅速发展,各行各业中的竞争日益激烈,我们日常生活中好多事情都会牵扯到最优化,比如运输成本问题、效益分配问题等等。 什么是数学最优化问题,就是利用合理的安排和规划在一件事情或者问题上取得利润最大,时间最少,路线最短,损失最少的方法。所以最优化解决方法对实际生活现实社会的帮助作用很大。现如今,最优化解决问题已经渗透到生活中的方方面面。 一个好的决策也许会让你绝处逢生,反败为胜,譬如中国历史上田忌赛马的故事,田忌的聪明之处在于在已有的条件下,经过策划安排,选择了最好的方案,所以最后就是自己看似劣势也能取胜,筹划是非常重要的,这就是运筹学的魅力。 我们在中国的古代史上就可以看到中国古人已经具有很好的运筹学思想了,在战争中,两兵交战,各方都会有自己的军师,历史上有很多著名的军师,比如诸葛亮,刘伯温等。他们在战争中所起到的作用就是“运筹于帷幄之中,决胜于千里之外”,运筹学二字也是来源于此,了解敌方的军情,以此做出相应的对策,筹划最佳作战计划,做到“知己知彼百战不殆”,历史上也不乏一些以少胜多以弱胜强的战争,由此可见运筹学在军事中的力量有多强大。 现代社会中运筹学不仅在军事方面发挥着重要作用,同样在企业经营管理方面也是非常重要的,最优化理论最早是在工业领域产生的,它的对象可以是产

数学建模常用到的matlab函数有哪些

附录Ⅰ工具箱函数汇总 Ⅰ.1 统计工具箱函数 表Ⅰ-1 概率密度函数 函数名对应分布的概率密度函数betapdf 贝塔分布的概率密度函数binopdf 二项分布的概率密度函数 chi2pdf 卡方分布的概率密度函数 exppdf 指数分布的概率密度函数 fpdf f分布的概率密度函数 gampdf 伽玛分布的概率密度函数 geopdf 几何分布的概率密度函数hygepdf 超几何分布的概率密度函数normpdf 正态(高斯)分布的概率密度函数lognpdf 对数正态分布的概率密度函数nbinpdf 负二项分布的概率密度函数ncfpdf 非中心f分布的概率密度函数nctpdf 非中心t分布的概率密度函数 ncx2pdf 非中心卡方分布的概率密度函数poisspdf 泊松分布的概率密度函数 raylpdf 雷利分布的概率密度函数 tpdf 学生氏t分布的概率密度函数 unidpdf 离散均匀分布的概率密度函数unifpdf 连续均匀分布的概率密度函数weibpdf 威布尔分布的概率密度函数 表Ⅰ-2 累加分布函数 函数名对应分布的累加函数 betacdf 贝塔分布的累加函数 binocdf 二项分布的累加函数 chi2cdf 卡方分布的累加函数 expcdf 指数分布的累加函数 fcdf f分布的累加函数 gamcdf 伽玛分布的累加函数 geocdf 几何分布的累加函数 hygecdf 超几何分布的累加函数 logncdf 对数正态分布的累加函数nbincdf 负二项分布的累加函数 ncfcdf 非中心f分布的累加函数 nctcdf 非中心t分布的累加函数 ncx2cdf 非中心卡方分布的累加函数normcdf 正态(高斯)分布的累加函数poisscdf 泊松分布的累加函数 raylcdf 雷利分布的累加函数 tcdf 学生氏t分布的累加函数

数学建模案例之多变量最优化

数学建模案例之多变量最 优化

数学建模案例之 多变量无约束最优化 问题1[1]:一家彩电制造商计划推出两种产品:一种19英寸立体声彩色电视机,制造商建议零售价(MSRP)为339美元。另一种21英寸立体声彩色电视机,零售价399美元。公司付出的成本为19英寸彩电195美元/台,21英寸彩电225美元/台,还要加上400000美元的固定成本。在竞争的销售市场中,每年售出的彩电数量会影响彩电的平均售价。据估计,对每种类型的彩电,每多售出一台,平均销售价格会下降1美分。而且19英寸彩电的销售量会影响21英寸彩电的销售量,反之也是如此。据估计,每售出一台21英寸彩电,19英寸的彩电平均售价会下降0.3美分,而每售出一台19英寸的彩电,21英寸彩电的平均售价会下降0.4美分。问题是:每种彩电应该各生产多少台? 清晰问题:问每种彩电应该各生产多少台,使得利润最大化? 1.问题分析、假设与符号说明 这里涉及较多的变量: s:19英寸彩电的售出数量(台); t:21英寸彩电的售出数量(台); p:19英寸彩电的售出价格(美元/台); q:21英寸彩电的售出价格(美元/台); C:生产彩电的成本(美元); R:彩电销售的收入(美元); P:彩电销售的利润(美元)

两种彩电的初始定价分别为:339美元和399美元,成本分别为:195美元和225美元;每种彩电每多销售一台,平均售价下降系数a=0.01美元(称为价格弹性系数);两种彩电之间的销售相互影响系数分别为0.04美元和0.03美元;固定成本400000美元。 变量之间的相互关系确定: 假设1:对每种类型的彩电,每多售出一台,平均销售价格会下降1美分。 假设2:据估计,每售出一台21英寸彩电,19英寸的彩电平均售价会下降0.3美分,而每售出一台19英寸的彩电,21英寸彩电的平均售价会下降0.4美分。 因此,19英寸彩电的销售价格为: p=339-a×s-0.03×t,此处a=0.01 21英寸彩电的销售价格为: q=399-0.01×t-0.04×s 因此,总的销售收入为: R=p×s+q×t 生产成本为: C=400000+195×s+225×t 净利润为: P=R-C 因此,原问题转化为求s≥0和t≥0,使得P取得最大值。 2.建立数学模型 根据前面的分析,原问题的数学模型如下:

运筹学最优化方法复习

第1章 最优化问题的基本概念 §1.1最优化的概念 最优化就是依据最优化原理和方法,在满足相关要求的前提下,以尽可能高的效率求得工程问题最优解决方案的过程。 §1.2最优化问题的数学模型 1.最优化问题的一般形式 ??? ????===≤q v x x x h p u x x x g t s x x x f x x x f i n d n v n u n n ,,2,10),,,(,,2,10),,,(..),,,(m i n ,,,21212121 2.最优化问题的向量表达式 ??? ? ???=≤0)(0)(..)(m i n X H X G t s X f X f i n d 式中:T n x x x X ],,,[21 = T p X g X g X g X G )](,),(),([)(21 = T p X h X h X h X H )](,),(),([)(21 = 3.优化模型的三要素 设计变量、约束条件、目标函数称为优化设计的三要素! 设计空间:由设计变量所确定的空间。设计空间中的每一个点都代表一个设计方案。 §1.3优化问题的分类 按照优化模型中三要素的不同表现形式,优化问题有多种分类方法: 1按照模型中是否存在约束条件,分为约束优化和无约束优化问题 2按照目标函数和约束条件的性质分为线性优化和非线性优化问题 3按照目标函数个数分为单目标优化和多目标优化问题 4按照设计变量的性质不同分为连续变量优化和离散变量优化问题 第2章 最优化问题的数学基础 §2.1 n 元函数的可微性与梯度

一、可微与梯度的定义 1.可微的定义 设)(X f 是定义在n 维空间n R 的子集D 上的n 元实值函数,且D X ∈0。若存在n 维向量L ,对于任意n 维向量P ,都有 0)()(lim 000=--+→P P L X f P X f T P 则称)(X f 在0X 处可微。 2.梯度 设有函数)(X F ,T n x x x X ],,,[21 =,在其定义域内连续可导。我们把)(X F 在定义域内某点X 处的所有一阶偏导数构成的列向量,定义为)(X F 在点X 处的梯度。记为: T n k x F x F x F X F ????????????=?,,,)(21 梯度有3个性质: ⑴函数在某点的梯度方向为函数过该点的等值线的法线方向; ⑵函数值沿梯度方向增加最快,沿负梯度方向下降最快; ⑶梯度描述的只是函数某点邻域内的局部信息。 §2.2极小点及其判别条件 一、相关概念 1.极小点与最优解 设)(X f 是定义在n 维空间n R 的子集D 上的n 元实值函数,若存在D X ∈*及实数 0>δ,使得)(),(**X X D X N X ≠?∈?δ都有)()(*X f X f ≤,则称*X 为)(X f 的局部极小点;若)()(*X f X f <,则称*X 为)(X f 的严格局部极小点。 若D X ∈?,都有)()(*X f X f ≤,则称*X 为)(X f 的全局极小点,若)()(*X f X f <,则称*X 为)(X f 的全局严格极小点。 对最优化问题??? ? ???=≤0)(0)(..)(min X H X G t s X f X find 而言 满足所有约束条件的向量T n x x x X ],,,[21 =称为上述最优化问题的一个可行解,全体可行解组成的集合称为可行解集。在可行解集中,满足: )(m i n )(*X f X f =的解称为优化问题的最优解。

相关主题
文本预览
相关文档 最新文档