当前位置:文档之家› 地质雷达探测原理

地质雷达探测原理

地质雷达探测原理
地质雷达探测原理

探测原理

地质雷达是以超高频电磁波作为探测场源,由一个发射天线向地下发射一定中心频率的无载波电磁脉冲波,另一天线接收由地下不同介质界面产生的反射回波,电磁波在介质中传播时,其传播时间、电磁场强度与波形将随所通过介质的电性质(如介电常数γE )及测试目标体的几何形态的差异而产生变化,根据接收的回波旅行时间、幅度和波形等信息,可探测地下目的体的结构和位置信息。其工作原理示意图如下:

接收天线所接收的反射回波旅行时间为:

t =V x h 2

24+

式中:t 反射回波走时(ns )

h 反射体深度(m )

X 发射天线与接收天线的距离(m )

V 雷达脉冲波速(m/ns )

雷达波在物体或介质中的传播速度V 与介质的相对介电常数γE 有如下关系:》

介质1

介质2 无载波脉冲时域接收机

分析计算处理后

反射、散射脉冲

输出显示 接收反射发射电磁目的体

C

V=

E

式中C为真空中的电磁波传播速度(C=0.3m/ns)

通过雷达图像确定异常,并根据电磁波旅行时间确定异常位置。介质的弹性限度内介质的剪切应力与应变的比值称剪切模量

介质的弹性限度内介质的应力与应变的比值称之为弹性模量

地质雷达测量技术

地质雷达测量技术 内容提要:本文在简述地质雷达基本原理的基础上,介绍了地质雷达检测隧道衬砌质量的工作方法,通过理论分析、实际资料计算、实测效果等方面说明采用地质雷达技术检测隧道衬砌质量的必要性和可靠性。 关键词:地质雷达测量技术 1 前言 地质雷达(Geological Radar)又称探地雷达(Ground Penetrating Radar),是一项基于不破坏受检母体而获得各项检测数据的检测方法,在我国已在数百项工程中得到了应用,并取得了显著成效。同时,随着交通、水利、市政建设工程等基础设施的大力发展,以及国家对工程质量的日益重视,工程实施过程中仍急需用物理勘探的手段解决大量的地质难题,因此,地质雷达极其探测技术市场前景十分广阔。 地质雷达作为一项先进技术,具有以下四个显著特点:具有非破坏性;抗电磁干扰能力强;采用便携微机控制,图象直观;工作周期短,快速高效。它不仅用于管线探测,还可用于工程建筑,地质灾害,隧道探测,不同地层划分,材料,公路工程质量的无损检测,考古等等。 2 地质雷达技术原理 地质雷达是运用瞬态电磁波的基本原理,通过宽带时域发射天线向地下发射高频窄脉冲电磁波,波在地下传播过程中遇到不同电性介质界面时产生反射,由接收天线接收介质反射的回波信息,再由计算机将收到的数字信号进行分析计算和成像处理,即可识别不同层面反射体的空间形态和介质特性,并精确标定物体的深度(图1)。

图1 地质雷达检测原理图 3 雷达的使用特性 3.1无损、连续探测,不破坏原有母体,避免了后期修补工作,可节约大量的时间和费用。 3.2 操作简便,使用者经过2-3天培训就能掌握。 探测时,主机显示器实时成像,操作人员可直接从屏幕上判读探测结果,现场打印成图,为及时掌握施工质量提供资料,提高了检测速度和科学水平。并且通过数据分析,还可以了解道路的结构情况,发现道路路基的变化和隐性灾害,使日常管理和维护更加简单。 3.3 测量精度高,测试速度快。在车载工作方式下,测试速度大大提高,当车速达80Km/h时,系统仍能正常工作。 3.4 收、发天线离地面的探测高度可以针对不同的埋地目标进行调整,以达到最佳的探测能力和探测分辨率:同时还可以调节收发天线之间的距离寻找系统工作的最好效果。 3.5 测点密度不受限制,便于点测和普查。 工作方式的灵活使得用户可以连续普查某一段工程的质量,也可随时对异常区域进行重点探测 和分析。 3.6 便于维护与保养。 本系统采用了结构化设计,对于使用不当或其它原因造成的质量问题,简单地更换接插件即可保证雷达的正常工作。 3.7 可扩充配置。 通过选择相应的发射源和收发天线,再配上相应的处理软件,就可以在中、深层探测范围,如地下管线、地基空洞、钢筋分布、堤坝密实程度等方面扩大应用。 4 地质雷达在检测隧道衬砌质量中的应用 新建隧道施工中为确保隧道衬砌质量,采用传统“钻、看”的检测方法显然已不能满足“多断面、全方位”的检测要求,业主和施工单位都在探索采用无损检测技术有效监控和确保隧道衬砌质量的新方法。 隧道衬砌的质量检测包括1)隧道衬砌厚度,2)隧道衬砌背后未回填的空区,3)隧道衬砌的密实程度,4)施工时坍方位置及坍方的处理情况。5)有时还可检测围岩中地下水向隧道侵入的位置。4.1 工作方法

地质雷达在地下管线探测中的应用研究

地质雷达在地下管线探测中的应用研究 发表时间:2018-09-04T14:12:30.883Z 来源:《建筑学研究前沿》2018年第11期作者:尹凡 [导读] 在城市建设发展速度不断加快的背景下,城市地下空间的利用率也不断提升。 上海京海工程技术有限公司 200131 摘要:在城市建设发展速度不断加快的背景下,城市建设中针对地下空间管线探测的工作量日益增多。更为关键的是,随着地下管线施工工艺的发展以及管道材质的多元化完善,地下管线探测的难度也在日益增加。地质雷达作为一种高频宽度电磁波地下管线探测技术,适用于地下浅层深度的探测作业,具有分辨率高、准确可靠、安全无损、快捷连续等一系列优势,在地下管线探测领域中具有非常确切的应用价值。本文即在分析地质雷达探测原理的基础之上,概述地质雷达技术在地下管线探测中的应用优势,并就其实际应用要点展开分析与探讨,望能够引起业内人士的高度关注与重视。 关键词:地下管线;地质雷达;探测;应用 在城市建设发展速度不断加快的背景下,城市地下空间的利用率也不断提升,地下管线类型众多且在用途、材料性质以及尺寸上均存在非常明显的差异性,因此针对不同类型地下管线需应用的探测技术也会存在一定的差异性。传统意义上所选用的地下管线探测技术无法准确针对损伤程度进行评估,地下管线的铺设质量也难以得到准确的反应,由此可能导致一系列质量安全隐患的产生,对地下管线探测质量产生非常不良的影响。地质雷达作为一种高频宽度电磁波地下管线探测技术,适用于地下浅层深度的探测作业,具有分辨率高、准确可靠、安全无损、快捷连续等一系列优势,在地下管线探测领域中具有非常确切的应用价值,本文即针对地质雷达技术在地下管线探测领域中的应用问题进行分析与探讨。 1 地质雷达探测原理 地质雷达是一种用于评估并分析地下介质分布情况的高频电磁技术。地下雷达探测以地下介质在介电性方面的差异为依据,通过天线发射或接收高频电磁波信号的方式,利用工作软件处理所接收信号并成像,从而帮助工作人员得到相应探测结果。应用地质雷达技术进行地下管线探测的基本原理如下图(见图1)所示。 图1:地质雷达的技术进行地下管线探测的基本原理示意图 在应用地质雷达技术进行地下管线探测作业的过程中,最基础的操作过程是:由放置于地面的天线面向地下待探测区域发射高频电磁脉冲信号,在高频电磁脉冲信号于地下空间内进行传播的过程当中,若遭遇相对介电常数不同(及有不同电性表现)的界面时,高频电磁脉冲信号中一部分透射界面并继续向地下空间其他区域进行传播,而另一部分信号则在该位置直接反射会地面,由地面所安装接收天线进行接收并记录至主机中。在这一操作过程当中,若地下介质波速已知或地下探测空间中介质的相对介质常数已知,则可以根据所测定反射波自发射天线发出至接收天线接受耗时(以下定义为t)的具体结果,计算所地质雷达技术所探测物体的埋深以及具体位置。在这一过程当中,假定T为发射天线,R为地面接收天线,h为地下管线目标体顶部埋设深度,r为电磁波双程走时,则可建议如下所示关系:vt=(4h2+x2)-1 (1) 该式中,定义屏蔽式发射体现为t,接收天线为r,两者距离为x,若两者距离高度相近,即在x无线趋近于0的情况下,可将式(1)转换为: h=1/2vt (2) 根据上式,若电磁波在介质中的传播速度v处于已知状态,并且电磁发射博的走时的t可以加以准确计算,则就能够通过以上方式得到待测定目标物体的深度取值。 2 地质雷达技术在地下管线探测中的应用价值 第一,分辨率高。在地下管线探测过程中,应用地质雷达探测技术具有较高的分辨率,所呈现出的地下管线分布图像清晰度高,能够直接掌握所探测区域地下管线的实际分布情况,并在探测结果的辅助下展开科学有效的设计施工作业,强化地下管线设计质量,并更好的为地下管线正式施工提供服务,保障地下管线铺设的安全性与可靠性。同时,依托于地质雷达技术所提供的高分辨率图像,还能够为整个城市建设探测提供重要指导,支持对城市建设水平的综合评定与分析。 第二,准确可靠。地质雷达探测技术的准确性高,在应用地下管线探测的过程中呈现出了连续性的特点,确保所探测地下管线分布数据状态的完整性与动态性。地质雷达探测技术通过对介质介电性质以及几何形态的分析,以改变电磁场强度以及波形特征,使功能、形态以及性质存在差异的地下管线能够通过地质雷达探测图像所呈现出来,方便工作人员对地下管线进行合理的选取,确保管线铺设质量,并为后续针对地下管线的高精度探测提供指导。 第三,快捷无损。地质雷达探测技术在地下管线探测中的应用在浅层分布探测目标中有良好的适用性,检测过程安全且缺损。整个检测过程中,通过对高频宽谱无损电磁波的发射与接收,来辨别被探测区域中地下介质的分布情况,也可在现代化互联网辅助技术的支持下,转移至地面进行探测,发挥地质雷达技术高速反射的功能优势,方便相关工作人员更为及时与准确的掌握地下管线分布情况,及时对安全隐患进行识别与防控,以促进地下管线探测质量与探测效率的进一步提升与优化。 3 地质雷达技术在地下管线探测中的应用实例 在地下管线探测过程中,工作人员首先需要对探测区域内的地下管网资料进行收集与整理,展开实际调查,安排专人进入地下管线探测区域现场,寻找露头窨井,将其打开进行拍照、丈量深度、填写记录等。然后,针对现场发现的露头金属管或电力管线,应当在爱地下

地质雷达 原理

地质雷达是目前分辨率最高的工程地球物理方法,在工程质量检测、场地勘察中被广泛采用,近年来也被用于隧道超前地质预报工作。地质雷达能发现掌子面前方地层的变化,对于断裂带特别是含水带、破碎带有较高的识别能力。在深埋隧道和富水地层以及溶洞发育地区,地质雷达是一个很好的预报手段。 1、基本原理 探地雷达是一种用于确定地下介质分布情况的高频电磁技术,基于地下介质的电性差异,探地雷达通过一个天线发射高频电磁波,另一个天线接收地下介质反射的电磁波,并对接收到的信号进行处理、分析、解译。其详细工作过程是:由置于地面的天线向地下发射一高频电磁脉冲,当其在地下传播过程中遇到不同电性(主要是相对介电常数)界面时,电磁波一部分发生折射透过界面继续传播,另一部分发生反射折向地面,被接收天线接收,并由主机记录,在更深处的界面,电磁波同样发生反射与折射,直到能量被完全吸收为止。反射波从被发射天线发射到被接收天线接收的时间称为双程走时t,当求得地下介质的波速时,可根据测到的精确t值折半乘以波速求得目标体的位置或埋深,同时结合各反射波组的波幅与频率特征可以得到探地雷达的波形图像,从而了解场地内目标体的分布情况。

一般,岩体、混凝土等的物质的相对介电常数为4—8,空气相对介电常数为1,而水体的相对介电常数高达81,差异较大,如在探测范围内存在水体、溶洞、断层破碎带,则会在雷达波形图中形成强烈的反射波信号,再经后期处理,能够得到较为清晰的波形异常图。 在众多地质超前预报手段中,使用探地雷达预报属于短期预报手段,预报距离与围岩电性参数、测试环境干扰强弱有关。一般,探地雷达预报距离在15~35米。 2、探地雷达在勘查中的基本参数 ①数电磁脉冲波旅行时

地质雷达

地质雷达在隧道超前地质预报中的应用 摘要:本文简要介绍了地质雷达基本原理及其探测深度、精度,并结合实例阐述了地质雷达的工程应用。 关键词:地质雷达;隧道超前地质预报;掌子面 引言 目前,我国修建大量穿越山岭的特长隧道。由于这些隧道大都处于地下各种复杂的水文地质、工程地质岩体中。为了摸清和预知周围的水文地质和工程地质条件,隧道地质超前预报显示出越来越重要的作用。在隧道开挖掘进过程中,提前发现隧道前方的地质变化,为施工提供较为准确的地质资料,及时调整施工工艺,减少和预防工程事故的发生非常重要。一、地质雷达基本原理及探测深度、精度 地质雷达( Ground Penetrating Radar, 简称GPR, 也称探地雷达) 是利用超高频(106Hz~109Hz)电磁脉冲波的反射探测地下目的体分布形态及特征的一种地球物理勘探方法。发射天线( T) 将信号送入地下,遇到地层界面或目的体反射后回到地面再由接收天线( R) 接收电磁波的反射信号,通过对电磁波反射信号的时域特征和振幅特征进行分析来了解地层或目的体特征(见图1)

图1 地质雷达反射探测原理图 根据波动理论,电磁波的波动方程为: P = │P│e-j(αx-αr)﹒e-βr(1)(1)式中第二个指数-βr是一个与时间无关的项,它表示电磁波在空间各点的场值随着离场源的距离增大而减小,β为吸收系数。式中第一个指数幂中αr表示电磁波传播时的相位项,α为相位系数,与电磁波传播速度V的关系为: V = ω/α(2)当电磁波的频率极高时,上式可简略为: V = c/ε1/2(3)式中c为电磁波在真空中的传播速度;ε为介质的相对介电常

地质雷达

探地雷达使用提纲 1、适用范围及适用条件 2、设计规范及收费标准 3、不同地质情况的雷达波形特征 1、适用范围及适用条件 1.1适用范围: 探地雷达法适用于基岩深度、水位深度、软土层厚度与深度,断裂构造等地质工程探查,城市路面塌陷、岩溶塌陷、土洞、滑坡面等地质灾害调查,地下水污染带监测,地基加固效果评价,路面、机场跑道、洞室衬砌检测,堤坝隐患,地下泄露,地下管线及其他埋设物探测,考古探查等。 1.2适用条件: (1)探测目的体与周边介质之间应存在明显介电常数差异,电性稳定,电磁波发射信号明显; (2)目的体在探测深度或距离范围内,其尺寸应满足探测分辨率的要求; (3)测线上天线经过的表面应相对平缓,无障碍,且易于天线移动; (4)测区内不应存在大范围金属构件、无线电发射频源等较强的电磁波干扰,或通过处理无法消除的干扰; (5)不应存在极低阻屏蔽层; (6)单孔或跨孔检测时不得有金属套管; 2地质雷达测线测点设计规范及收费标准 2.1测线测点设计规范 2.1.1工程物探应根据任务要求、探测方法、目的物的规模与埋深等因素综合确定工作比例尺,测网布置应与工作比例尺一致,测网密度应能保证异常的连续、完整和便于追踪; 2.1.2布置测线时,测线方向宜避开地形及其它干扰的影响,应垂直于或大角度相交于目的物或已知异常的走向,岩溶、采空区、防空洞等走向多变体的探测宜布设两组相互正交的测线; 2.1.3测线长度应保证异常的完整和具有足够的异常背景; 2.1.4探测范围内有已知点时,测线应通过或靠近该已知点的布设;

2.1.5点测时,测点布设位置、测量应满足资料解释推断的需要; 2.1.6工作比例尺确定后,宜参照表1选择测网密度。 表1 工作比例尺与测网密度 比例尺线距(m)点距(m)点测(点/km2)1∶25000 250 25-50 10-20 1∶10000 100 10-20 80-120 1∶5000 50 10-20 300-400 1∶2000 20 5-10 2000-2500 1∶1000 10 1-5 -- 1∶500 5 0.5-2 -- 2.2收费标准 地质雷达探测收费参见《工程勘察设计收费标准》第7章——工程物探,收费标准见表2 表2 地质雷达收费标准 地质雷达 工作方式工程勘探路面质量点测点20 (元/点)20(元/点) 连续km 13500(元/km)6300(元/km)探淤深度>10m,附加调整系数为1.3;不足4个组日按4个组日计

第二讲 国内外地质雷达技术发展状况

第二讲国内外地质雷达技术发展状况(历史与现状) 探地雷达的历史最早可追溯到20世纪初,1904年,德国人Hulsmeyer首次将电磁波信号应用与地下金属体的探测。1910年Leimback和Lowy以专利形式在1910年的专利,他们用埋设在一组钻孔里的偶极子天线探测地下相对高的导电性质的区域,并正式提出了探地雷达的概念。1926年Hulsenbeck第一个提出应用脉冲技术确定地下结构的思路,指出只要介电常数发生变化就会在交界面会产生电磁波反射,而且该方法易于实现,优于地震方法[1,2]。但由于地下介质具有比空气强得多的电磁衰减特性,加之地下介质情况的多样性,电磁波在地下的传播比空气中复杂的多,使得探地雷达技术和应用受到了很多的限制,初期的探测仅限于对波吸收很弱的冰层厚度(1951,B.O.Steenson,1963,S.Evans)和岩石和煤矿的调查(J.C.Cook)等。随着电子技术的发展,直到70探地雷达技术才重新得到人们的重视,同时美国阿波罗月球表面探测实验的需要,更加速了对探地雷达技术的发展,其发展过程大体可分为三个阶段: 第一阶段,称为试验阶段,从20世纪70年代初期到70年代中期,在此期间美国,日本、加拿大等国都在大力研究,英国、德国也相继发表了论文和研究报告,首家生产和销售商用GPR的公司问世,即Rex Morey和Art Drake成立的美国地球物理测量系统公司(GSSI),日本电器设备大学也研制出小功率的基带脉冲雷达系统。此期间探地雷达的进展主要表现在,人们对地表附近偶极天线的辐射场以及电磁波与各种地质材料相互作用的关系有了深刻的认识,但这些设备的探测精度、地下杂乱回波中目标体的识别、分别率等方面依然存在许多问题。 第二阶段,也称为实用化阶段,从20世纪70年代中后其到80年代,在次期间技术不段发展,美国、日本、加拿大等国相继推出定型的探地雷达系统,在国际市场,主要有美国的地球物理探测设备公司(GSSI)的SIR系统,日本应用地质株式社会(OYO)的YL-R2地质雷达,英国的煤气公司的GP管道公司雷达,在70年代末,加拿大A-Cube公司的Annan和Davis等人于1998年创建了探头及软件公司(SSI),针对SIR系统的局限性以及野外实际探测的具体要求,在系统结构和探测方式上做了重大的改进,大胆采用了微型计算机控制、数字信号处理以及光缆传输高新技术,发展成了EKKO Ground Penetrating Radar 系列产品,简称EKKO GPR系列。瑞典地质公司(SGAB)也生产出RAMAC 钻孔雷达系统,此外,英国ERA公司、SPPSCAN公司,意大利IDS公司、瑞典及丹麦也都在生产和研制各种不同型号的雷达。80年代全数字化的GPR问世,具有划时代的意义,数字化GPR不仅提供了大量数据存储的解决方案,增强了实时和现场数据处理的能力,为数据的深层次后处理带来方便,更重要的是GPR 因此显露出更大的潜力,应用领域得以向纵身拓展。 第三阶段,从上个世纪80年代至今,可称为完善和提高阶段。在此期间,GPR技术突飞猛进,更多的国家开始关注探地雷达技术,出现了很多探地雷达的研究机构,如荷兰的应用科学研究组织和代尔夫大学,法国_德国的Saint-Louis 研究所(ISL),英国的DERA,瑞典的FOA,娜威科技大学和地质研究所,比利时的RMA,南非的开普敦大学,澳大利亚昆士兰大学,美国的林肯实验室和Lawrence Livermore国家实验室以及日本的一些研究机构等等。同时,探地雷达也得到了地球物理和电子工程界的更多关注,对天线的改进、信号的处理、地下目标的成像等方面提出了许多新的见解。GSSI公司在商业上取得了极大的成功,

地质雷达报告

福州绕城公路东南段 南峰隧道超前地质预报 (地质雷达) 编号:BG-CQYB-A16-001 合同段:A16合同段 施工单位:中铁十七局集团第一工程有限公司探测范围:右线出口LYK8+335~LYK8+310 编制: 校核: 检测单位:中国科学院武汉岩土力学研究所 检测日期:2013年12月27日 报告日期:2013年12月27日

一、工作概况 2013年12月27日,中国科学院武汉岩土力学研究所对福州绕城公路东南段A16合同段南峰隧道出口右洞进行了超前地质预报,采用GSSI 公司生产的SIR-20地质雷达进行数据采集,配属100MHZ 的屏蔽天线进行了探测。本次探测范围为右线出口LYK8+335~LYK8+310,共25m 。 二.预报的方法技术 (一) 地质雷达超前预报的基本原理 地质雷达(Ground Penetrating Radar ,简称GPR)是近年来应用于浅层地质构造、岩性检测的一项新技术,其特点是快速、无损、连续检测,并以实时成象方式显示地下结构剖面,使探测结果一目了然,分析、判读直观方便。因探测精度高、样点密、工作效率高而倍受关注。随着该项技术的不断完善和发展,其应用领域不断扩展。 隧道地质雷达超前预报方法是一种用于确定隧道掌子面前方介质分布变化的广谱电磁波技术。如图1所示,利用一个天线向掌子面前方发射无载波电磁脉冲,另一个天线接收由岩体中不同介质界面反射的回波,利用电磁波在岩体介质中传播时,其路径、电磁场强度与波形将随所通过介质的电性 质(如介电常数Er) 及几何形态的变化差异,根据接收到的回波旅行时间、幅度和波形等信息,来探测掌子面前方介质的地层结构与异常地质体。 理论研究与实验室模拟试验证明,电磁波在物体或介质中的传播速度v 、走时t 、与介质的相对介电常数Er 有如下关系: v x z t 2 24+= r c v ε=

隧道衬砌地质雷达无损检测技术

. . . . 隧道衬砌质量地质雷达无损检测技术 1 前言 1.1工艺概况 铁路隧道衬砌是隐蔽工程,用传统的目测或钻孔对其质量进行检测有较大的局限性;应用物理勘探的方法对隧道衬砌混凝土进行无损检测,可取得快速、安全、可靠的效果。 1.2工艺原理 电磁反射波法(地质雷达)由主机、天线和配套软件等几部分组成。根据电磁波在有耗介质中的传播特性,当发射天线向被测介质发射高频脉冲电磁波时,电磁波遇到不均匀体(接口)时会反射一部分电磁波,其反射系数主要取决于被测介质的介电常数,雷达主机通过对此部分的反射波进行适时接收和处理,达到探测识别目标物体的目的(图1)。 图1 地质雷达基本原理示意图 电磁波在特定介质中的传播速度是不变的,因此根据地质雷达记录的电磁波传播时间ΔT,即可据下式算出异常介质的埋藏深度H: H V T =??2(1)

式中,V 是电磁波在介质中的传播速度,其大小由下式表示: V C =ε (2) 式中,C 是电磁波在大气中的传播速度,约为3.0×108m/s ; ε为相对介电常数,不同的介质其介电常数亦不同。 雷达波反射信号的振幅与反射系统成正比,在以位移电流为主的低损耗介质中,反射系数可表示为: 212 1εεεε+-=r (3) 反射信号的强度主要取决于上、下层介质的电性差异,电性差越大,反射信号越强。 雷达波的穿透深度主要取决于地下介质的电性和波的频率。电导率越高,穿透深度越小;频率越高,穿透深度越小。 2 工艺特点 电磁反射波法(地质雷达)能够预测隧道施工中衬砌的各种质量问题,分辨率高,精度高,探测深度一般在0.5m ~2.0m 左右。利用高频电磁脉冲波的反射,中心工作频率400MHz/900 MHz/1500 MHz ; 采用宽带短脉冲和高采样率,分辨率较高; 采用可调程序高次迭加和多波处理等信号恢复技术,大大改善了信噪比和图像显示性能。 (1)操作简单,对工作环境要求不高; (2)对衬砌隐蔽工程质量问题性质判断一般精度较高,分辨率可达到2~5cm ,检测的深度、结构尺寸以及里程偏差或误差小于10%,缺陷类型识别准确度达95%以上; (3)通过专业的RADAN 6.0分析软件,专业的技术人员可以迅速的完成数据处理等。 3 适用范围 地质雷达有其适用范围和适用条件,目标体与周围介质是否存在足够的电性

公路水运继续教育---地质雷达探测技术在路基病害检测中的应用

第1题 由于松散体内部充填不同性状的土体排列无规律,因此松散体内部在雷达图像上表现为杂乱的,随深度的增加,电磁波逐渐 A.强反射波,增大 B.强反射波,衰减 C.弱反射波,增大 D.弱反射波,衰减 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第2题 空洞内部会形成明显的多次反射波组,形态大致为一倒悬() A.双曲线 B.抛物线 C.折线 D.圆曲线 答案:A 您的答案:A 题目分数:5 此题得分:5.0 批注: 第3题 数据处理的一般流程为: 原始数据的编辑- > 滤波- >设定时间零点- >频谱分析- >()- >属性分析、剖面叠加等- >增益- >速度求取- >高程修正- >剖面输出 A.增益 B.滤波 C.去噪 D.时窗选取 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第4题 反射系数的大小主要取决于反射界面两侧介质介电常数的差异, 差

异越大反射信号(), 反之反射信号() A.越强,越差 B.越强,越好 C.越弱,越差 D.越弱,越好 答案:A 您的答案:A 题目分数:5 此题得分:5.0 批注: 第5题 地质雷达法是一种采用()电磁波信号检测地下介质分布的方法 A.宽脉冲宽带高频 B.窄脉冲宽带高频 C.宽脉冲宽带低频 D.窄脉冲宽带低频 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第6题 遇到不同的介质或介质中裂隙或孔隙发育程度不同时, 电磁波的反射系数、衰减系数、以及()是不一样的 A.传播速度 B.旅行时间 C.反射波频率 D.反射波振幅 答案:C 您的答案:C 题目分数:5 此题得分:5.0 批注: 第7题 现阶段,地质雷达探测技术可以检测道路路面以下()米范围内的空洞、疏松等路基缺陷,确定道路缺陷的位置、大小及埋深 A.4 B.5

地质雷达探测技术在路基病害检测中的应用继续教育答案

第1题 由于松散体部充填不同性状的土体排列无规律,因此松散体部在雷达图像上表现为杂乱的,随深度的增加,电磁波逐渐 A.强反射波,增大 B.强反射波,衰减 C.弱反射波,增大 D.弱反射波,衰减 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第2题 空洞部会形成明显的多次反射波组,形态大致为一倒悬() A.双曲线 B.抛物线 C.折线 D.圆曲线 答案:A 您的答案:D 题目分数:5 此题得分:0.0 批注: 第3题 数据处理的一般流程为: 原始数据的编辑- > 滤波- >设定时间零点- >频谱分析- >()- >属性分析、剖面叠加等- >增益- >速度求取- >高程修正- >剖面输出 A.增益 B.滤波 C.去噪 D.时窗选取 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第4题 反射系数的大小主要取决于反射界面两侧介质介电常数的差异, 差

异越大反射信号(), 反之反射信号() A.越强,越差 B.越强,越好 C.越弱,越差 D.越弱,越好 答案:A 您的答案:A 题目分数:5 此题得分:5.0 批注: 第5题 地质雷达法是一种采用()电磁波信号检测地下介质分布的方法 A.宽脉冲宽带高频 B.窄脉冲宽带高频 C.宽脉冲宽带低频 D.窄脉冲宽带低频 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第6题 遇到不同的介质或介质中裂隙或孔隙发育程度不同时, 电磁波的反射系数、衰减系数、以及()是不一样的 A.传播速度 B.旅行时间 C.反射波频率 D.反射波振幅 答案:C 您的答案:D 题目分数:5 此题得分:0.0 批注: 第7题 现阶段,地质雷达探测技术可以检测道路路面以下()米围的空洞、疏松等路基缺陷,确定道路缺陷的位置、大小及埋深 A.4 B.5

地质雷达探测技术说明C.doc

减免税进口仪器、设备说明 今有中国地质大学(北京)地球物理与信息技术学院进口Scintrex公司CG-5型重力仪一套。 一、仪器主要部分 1.灵敏系统:主要部件由一个矩形石英框架支撑着,用一个支杆固定在密封器顶盖上。灵敏系统的位移方式属角位移。 2.测量系统:由测读装置、测程调节装置及纵、横水准器等组成,测量出弹簧长度变化后经过电子系统转化成电流的大小,从而数字化将测量值显示到主机显示屏上。 二、仪器性能 相比较其他传统金属弹簧重力仪而言Scintrex公司生产的CG-5型重力仪不容易产生掉格现象从而保证了更高的测量精度和稳定性: (一)石英材料的滞后作用比金属材料小。对于悬挂承重的石英弹簧来说,一旦去掉承重,弹簧就会精确地恢复原状,而一个金属弹簧则会保持一定的记忆。Scintrex所制造的石英传感器是整体铸造,包括石英弹簧及其悬挂连接点是一个整体结构,它的滞后作用比类似的金属部件要小许多。

(二)传感器的所有联结点,象悬挂弹簧的支点和石英弹簧本身焊成一个整体。相反,金属弹簧重力仪的各种功能部件都是通过机械连接装配在一起的。所以整体熔凝的石英传感器不会出现部件之间的滑移或内部变形。这是使石英传感器不易产生掉格的又一个重要原因,也使它很少出现测试数据混乱的现象。 (三)石英弹簧比金属弹簧具有比较大的温度系数,并且石英弹簧传感器是垂直悬挂式弹簧,对于相同的重力值,它的弹簧伸长比金属弹簧重力仪中的金属弹簧小。三、仪器工作原理 Scintrex公司CG-5型重力仪采用无静电熔凝石英材料做为传感器,是基于一种垂直悬挂式石英弹簧,弹簧末端的重锤上悬挂一根测量弹簧。当作用在重锤上的重力发生变化时,可以伸缩测量弹簧,使摆杆改变原来的静平衡位置。这样通过测量弹簧的伸缩量来测定重力的变化。重力变化同弹簧的伸缩量成线性关系,从而勘探地表重力场变化的先进仪器。 通过测定地表各点上的重力加速度的值,对地下介质和地质体的分布做出推断。 四、仪器技术参数 传感器类型:无静电熔凝石英 测量范围:8000mGal,不用重置 自动修正:潮汐、仪器倾斜、温度、噪声、地震噪声 尺寸:30cmX21cmX22cm 重量(含电池):8kg 电池容量:2X6Ah(10.78V) 袖珍锂电池 功耗:25°C时4.5W 工作温度:-40~+45°C 环境温度修正:通常0.2microGal/°C 大气压力修正:通常0.15microGal/kPa 磁场修正:通常1microGal/Gauss(微伽/高斯) 五、仪器在教学中的应用 该仪器是我院“地球物理学”专业和“地球探测与信息技术”专业勘探地质构造、

地质雷达探测报告

地质雷达探测报告项目名称: 委托单位: 检测类别:一般委托 二O一四年五月十五日

目录 1. 概述 (1) 2. 探测仪器及主要参数 (1) 3. 探测依据 (1) 4. 测试成果 (1) 附件:雷达探测成果图 (2)

长沙地铁一号线七标黄土岭站~涂家冲站 区间隧道上覆地层(涂家冲加油站附近)病害探测报告 1. 概述 受****************的委托,我单位会同委托单位相关技术人员,于2014年5月15日对委托单位承担的*****地铁一号线*******区间隧道上覆地层(******附近)病害情况进行了雷达探测。 2. 探测仪器及主要参数 仪器:瑞典RAMAC/GPR探地雷达 50MHz天线一对 主要参数: 采样频率:500MHz 样点数:456 迭加次数:自动迭加 时间窗口:800ns 采集方式:剖面法,收发距1米,点触发 采集点距:0.1米 探测范围:DK23+105.2~DK23+075.2 3. 探测依据 略。 4. 测试成果 根据雷达的现场测试数据,采用REFLEXW软件分析得出拟改隧道外侧壁点阵灰度雷达图(附件)。

(1)整个测线范围未见大的空洞病害; (2)左线: DK23+100~DK23+075路面下10m、(靠辅道侧) DK23+080~DK23+105路面下5m深度范围内,地层松散,北侧含水量较大; (3)右线:DK23+100~DK23+080路基层下,有明显的反射界面,可能存在脱空缺陷。 注:实际探测过程中,受过往车辆和护栏干扰较大,结果仅作参考。 以下无正文内容! 二O一四年五月十五日附件:雷达探测成果图

地质雷达检测的基本原理及其在公路隧道中的应用效果

地质雷达检测的基本原理及其在公路隧道中的应用效果 满银 贵州省交通科学研究院贵州贵阳 摘要:经济从沿海向中西部发展,带动部分地区经济的同时,也带动了部分地区交通状况的改善,各色公路在全国各地的普及,使其在修建时也面临各种不同的问题,如在山区修建公路时需要开凿隧道等问题。隧道的开凿是一项有难度的技术活,必须做到测量的准确,不能出一点差错。科技的发展使隧道在开凿过程中简便了不少,尤其是地质雷达检测系统在隧道开凿过程中的应用,彻底取代了旧时代所用的测量方法。地质雷达检测是一项非破坏性的、分辨率高、快速且准确的检测方法,它所独有的特质决定了它具有技术上的优越性。 关键词:地质雷达;检测;公路;隧道 改革开放以来,国家综合实力稳步提升,经济也逐渐从沿海一带向中内地发展,发展经济的基础首要的是交通的便利,因此,我国公路交通的建设规模日益扩大,公路的建设遍布全国各地。由于我国地形多以山地、丘陵为主,地形阶梯跨越较大,在修建公路的同时难免遇到一些障碍。当在山地和丘陵地区修建公路时,考虑到路程、安全和便捷的问题,往往需要开凿隧道,取代盘山公路。而科学技术的发展,使得隧道在开凿过程中难度大大降低,尤其是地质雷达检测在公路隧道开凿过程中的应用,大大降低了隧道开凿的测量难度。 一、地质雷达检测的应用原理 地质雷达检测是指用雷达探测地下的物体,扫除障碍以保证施工的顺利进行。地质雷达在施工过程中探测岩石层中的目标时,通过发出超高频率的以宽频带短脉冲为形式的电磁波,发出的电磁波会形成一个反射讯号。不同的地形其内部结构不同,不同结构层的电磁特性不同,因此,会产生不同频率的电磁波,并且发出反射信号。当地面上接收到地质雷达发来的检测信号,便通过接受装备将信号输入到接收器中,然后再将其放大由示波器直观的显示出来。所以,通过对接收到的电磁波发出的反射信号的频率特征等加以解析,就可以了解到所探测的地形结构的特征。 地质雷达在探测过程中所能探测到的最远的距离被称为地质雷达的探测深度,它受到两个方面的制约,分别是地质雷达检测的活动范围以及地质雷达检测

地质雷达操作手册

第一篇SIR-3000操作探讨 1.GSSI简介 便携式透地雷达美国GSSI是目前世界上最好的生产地质雷达的厂家,它的产品遍布全球,目前超过1800套,占全球销量80%以上,在中国200余套,占中国市场份额的75%以上。创始于1969年的美国地球物理探测公司(GSSI公司),是世界上第一家专业研制探地雷达的公司,其前身为美国宇航局。随着60年代末期美国宇航局专门为阿波罗计划所研制的专用仪器,成功地探测到月球表面尘埃之后,世界上第一台进入民用的商用探地雷达得以在美国推出,它就是美国GSSI公司生产的SIR系列探地雷达的前身。它用电磁波为地质勘察服务,为勘察方法起到了革命性的推动作用。

注释:不要使用Windex或其它脱氨的玻璃清洁器来清洁显示屏,因为这会损坏涂层。只需使用一个清洁的、轻微潮湿的布来轻柔地擦洗屏幕。位于该部件前部的电池槽接收10.8伏的锂离子可充电电池。完全充电电池的测量时间近似为3小时。电池是可以再充电的,方法是采用任选的电池充电器来充电,或通过简单地把电池留在该部件内,把该部件与标准交流源连接起来,然后把系统放在备用模式下进行。给一个电池再充电的时间近似为4 到5小时。务必保持电池槽遮盖在该部件上,在使用中保证没有灰尘或污垢进入该部件内部。 2.探测原理 H=vf 3.硬件连接 在该部件的背部,SIR-3000有六个连接器和一个用于记忆卡的槽。顶排五个连接器从左到右依次是:交流电源,串行输入/输出( RS232),以太网,USB-B,USB-A。

注:如果你没有使用测量轮的话,用户标记对记录所通过的距离是有帮助的。对记录诸如圆柱,树,凹坑等障碍物的位置来说,用户标记也是有帮助的。 3. 启动和屏幕显示 第一个是TerraSIRch。用TerraSIRch模式可以对所有数据采集参数进行完全控制。QuickStart 引导是对每个其他模式都有用的。按TerraSIRch按钮。过一会儿,你将看到屏幕被分成了三个窗口,并且有一个条运行穿过屏幕底部,该条带有上面六个功能键的命令。 按Mark 按钮将改变你要求的单位,从英制的到米制的。 在进入六个数据采集模式之一后,你可以通过点击Power (电源)按钮两次来返回该屏幕,或去掉电源再把它插入进行启动来返回该屏幕。 4. 基于时间数据采集的设置 时基数据剖面的扫描间距(水平分辨率)是系统采集数据的速度和天线移过测量界面的速率的函数。你设置的速率(每秒扫描数)越高,并且你移动天线越慢,则数据将越稠密。 时基数据没有实际距离的标记,因此软件不知道你实际要测量旅行多远。特别重要的是以常数速度移动天线,并以一致的间隔增加用户标记(点击标记按钮)。时基数据需要在RADAN中做附加处理,以创建三维图象。如果三维图象是你的目标,你应该用测量轮采集基于距离的数据。 第一步: 在系统启动后,按TerraSIRch 功能键。几秒钟后,你将看到一个分区的屏幕,右边是波形曲线,左边是参数选择树,中央是主要数据显示窗。如果你有一个已连接的天线,一个兰色的“等待”条将两

地质雷达原理

地质雷达就是目前分辨率最高得工程地球物理方法,在工程质量检测、场地勘察中被广泛采用,近年来也被用于隧道超前地质预报工作。地质雷达能发现掌子面前方地层得变化,对于断裂带特别就是含水带、破碎带有较高得识别能力。在深埋隧道与富水地层以及溶洞发育地区,地质雷达就是—个很好得预报手段。 1.基本原理 探地雷达就是一种用于确定地下介质分布情况得高频电磁技术, 基于地下介质得电性差异,探地雷达通过一个天线发射高频电磁波,另_ 个天线接收地下介质反射得电磁波,并对接收到得信号进行处理、分析、解译。其详细工作过程就是:由置于地面得天线向地下发射一高频电磁脉冲,当其在地下传播过程中遇到不同电性(主要就是相对介电常数)界面时,电磁波一部分发生折射透过界面继续传播,另一部分发生反射折向地面,被接收天线接收,并由主机记录,在更深处得界面,电磁波同样发生反射与折射,直到能量被完全吸收为止。反射波从被发射天线发射到被接收天线接收得时间称为双程走时t,当求得地下介质得波速时,可根据测到得精确t值折半乘以波速求得目标体得位置或埋深,同时结合各反射波组得波幅与频率特征可以得到探地雷达得波形图像,从而了解场地内目标体得分布情况。

图1探地雷这电磁波传播示意图亠 —般,岩体、混凝土等得物质得相对介电常数为4—8,空气相对介电常数为1,而水体得相对介电常数高达81,差异较大,如在探测范围内存在水体、溶洞、断层破碎带,则会在雷达波形图中形成强烈得反射波信号,再经后期处理,能够得到较为清晰得波形异常图。 在众多地质超前预报手段中,使用探地雷达预报属于短期预报手段,预报距离与围岩电性参数、测试环境干扰强弱有关。一般,探地雷达预报距离在15?35米。 ①数电磁脉冲波旅行时

地质雷达在隧道质量检测中的应用公路继续教育答案

第1题 某隧道采用地质雷达检测时,K0+020处实测二次衬砌双程旅行时间为14ns,K0+020处二衬厚度为70cm,则衬砌混凝土介电常数为()。 A.6 B.7 C.8 D.9 答案:D 您的答案:D 题目分数:3 此题得分:3.0 批注: 第2题 对隧道衬砌质量进行检测时,宜选用的天线为()。 A.100MHz B.500MHz C.900MHz D.1GHz 答案:B 您的答案:B 题目分数:4 此题得分:4.0 批注: 第3题 地质雷达检测隧道衬砌时天线移动速度宜为()。 A.1~3km/h B.3~5km/h C.5~8km/h D.5~10km/h 答案:B 您的答案:B 题目分数:4 此题得分:4.0 批注: 第4题 采用地质雷达检测衬砌混凝土状况,对采集数据质量进行检查时,衬砌混凝土厚度的检查点相对误差小于()为合格。 A.5%

B.10% C.15% D.20% 答案:C 您的答案:C 题目分数:4 此题得分:4.0 批注: 第5题 利用地质雷达对隧道衬砌质量进行检测,当需要分段测量时,相邻测量段接头重复长度不应小于()。 A.1m B.2m C.5m D.10m 答案:A 您的答案:A 题目分数:4 此题得分:4.0 批注: 第6题 地质雷达法采集数据检查应为总工作量的()。 A.5% B.10% C.15% D.20% 答案:A 您的答案:A 题目分数:4 此题得分:4.0 批注: 第7题 公路隧道常见病害有()。 A.衬砌裂缝 B.衬砌渗水 C.混凝土劣化 D.照明亮度不足 E.附属设施损坏

答案:A,B,C,D,E 您的答案:A,B,C,D,E 题目分数:7 此题得分:7.0 批注: 第8题 某公路隧道采用地质雷达进行衬砌检测,下列关于地质雷达检测结果的相关分析,正确的包括()。 A.空洞:反射信号强,信号同相轴呈绕射弧形,不连续且分散、杂乱 B.不密实:反射信号强,反射界面明显,下部有多次反射信号,两组信号时程差较大; C.钢架:反射信号强,图像呈分散的月牙状; D.钢筋:反射信号强,图像呈连续的小双曲线形; E.密实:反射信号弱,图像均一且反射信号不明显。 答案:C,D,E 您的答案:C,D,E 题目分数:7 此题得分:7.0 批注: 第9题 地质雷达检测衬砌混凝土前应对混凝土电磁波速做现场标定,标定方法包括:()。 A.在已知厚度部位或材料与隧道相同的其他预制件上测量; B.在洞口或洞内避车洞处使用双天线直达波法测量; C.钻孔实测; D.通过工程经验确定。 答案:A,B,C 您的答案:A,B,C 题目分数:7 此题得分:7.0 批注: 第10题 地质雷达可用下列隧道的检测项目有()。 A.衬砌厚度 B.拱架数量; C.喷层与围岩接触状况; D.钢筋搭接长度。

地质雷达操作规程完整

地质雷达法检测操作规程 1、地质雷达法适用围 地质雷达法可用于地层划分、岩溶和不均匀体的探测、工程质量的检测,如检测衬砌厚度、衬砌背后的回填密实度和衬砌部钢架、钢筋等分布,地下管线探查及隧道超前地质预报等。 2、地质雷达主机技术指标: (1)系统增益不低于150dB; (2)信噪比不低于60dB; (3)采样间隔一般不大于0.5ns、A/D模数转换不低于16位; (4)计时误差小于1ns; (5)具有点测与连续测量功能,连续测量时,扫描速率大于64次/秒; (6)具有可选的信号叠加、实时滤波、时窗、增益、点测与连续测量、手动与自动位置标记功能; (7)具有现场数据处理功能,实时检测与显示功能,具有多种可选方式和现场数据处理能力。 3、地质雷达应符合下列要求: (1)探测体的厚度大于天线有效波长的1/4,探测体的宽度或相邻被探测体可以分辨的最小间距大于探测天线有效波第一聂菲儿带半径。 (2)测线经过的表面相对平缓、无障碍、易于天线移动。 (3)避开高电导屏蔽层或大围的金属构件。

4、地质雷达天线可采用不同频率的天线组合,技术指标为: (1)具有屏蔽功能; (2)最大探测深度应大于2m; (3)垂直分辨率应高于2cm。 5、现场检测 (1)测线布置 1、隧道施工过程中质量检测应以纵向布线为主,横向布线为辅。纵向布线的位置应在隧道的拱顶、左右拱腰、左右边墙和隧道底部各布置一条;横向布线可按检测容和要求布设线距。一般情况线距8~12m;采用点测时每断面不少于6点。检测中发现不合格地段应加密测线或测点。 2、隧道竣工验收时质量检测应纵向布线,必要时可横向布线。纵向布线的位置应在隧道拱顶、左右拱腰和左右边墙各布一条;横向布线线距8~12m;采用点测时每断面不少于5个点。需确定回填空洞规模和围时,应加密测线和测点。 3、三线隧道应在隧道拱顶部位增加2条测线。 4、测线每5~10m应有一历程标记。 (2)介质参数的标定: 检测前应对衬砌混凝土的介电常数或电磁波速做现场标定,且每座隧道不少于一处,每处实测不少于3次,取平均值为该隧道的介电常数或电磁波速。当隧道长度大于3km、衬砌材料或含水率变化较大时,应适当增加标定点数。

地质雷达及其探测技术

应用领域:地质雷达在考古、市政建设、建筑、铁路、公路、水利、电力、采矿、航空等领域都有广泛应用。地质雷达最早用于工程场地勘查:解决覆盖层厚度、松软层厚度及分布、基岩风化层界面及分布、基岩节理和断裂带、地下水分布、普查场地地下溶洞、空洞、塌陷区、地下人工洞室、地下排污巷道、地下排污管道及地下管线等,在回填等松软层上,探查深度可达20m 以上,在致密或基岩上探查深度可达30m以上;工程质量检测及病害诊断:近年来,国内外铁路公路等地下隧道、公路及城市道路路面、机场跑道、高切坡挡墙等重要工程项目的工程质量检测及病害诊断中,广泛采用雷达技术。主要检测衬砌厚度、破损、裂隙、脱空、空洞、渗漏带、回填欠密实区、围岩扰动等,路面及跑道各层厚度、破损情况,混凝土构件中的空洞、裂隙及钢筋分布等,检测精度可达毫米级;地下埋设物与考古探察:考古是地质雷达应用较早的领域,探测古建筑基础、地下洞室、金属物品等,在城市改造中用雷达可探测地下埋设物,如电力管网、输水管道、排污管道、输汽管网、通讯管网等;隧道超前跟踪探测及预报:地质雷达可预测前方50m范围内的断层、溶洞、裂隙带、含水带等地质构造;地质雷达在矿井中的探测应用:我国煤矿及金属矿山很多,煤矿及金属矿山地质构造相当复杂,地质雷达已开始用于矿山井下,在矿井可用在掘进头前方超前探测及预测、巷道顶底板及两邦探测,主要用来探测断层、陷落柱、溶洞,裂隙带、采空区、含水带、煤厚、顶底板、瓦斯突出危险带、金属富矿带等。 技术特点:煤炭科学研究总院重庆分院吸取国内外地质雷达优点,积多年探测经验,先后研制成F、KDL系列防爆地质雷达及其探测技术,同时还引进美国SIR—10H型工程雷达和加拿大EKKO-100型雷达。F、KDL系列防爆地质雷达由防爆工业控制机、发射机、接收机、系列天线、采集和处理软件、高速通讯线缆等组成。可超前探测50米范围内的断层,陷落柱,含水带等地质构造。工作方法多样灵活,可全方位探测。仪器轻巧、操作方便,实时显示测量剖面。资料处理软件操作简单,测量结果直观,易于解释。完善的售前售后服务和及时的技术支持培训。 应用实例:京九和漳龙线103座铁路隧道质量无损检测及评估、山西引黄工程南干6#隧洞溶洞区地质雷达探测溶洞、伊朗霍梅尼国际机场跑道下隐伏坎儿井的地质雷达探测、重庆市轻轨2号线临江门车站超前预报及监测、海南东线高速公路大茅隧道左线地质雷达超前跟踪探测及灾害预报、重庆奎星楼C组团高切坡雷达探测以及J2K2挡墙锚杆检测、金开大道K0+340~k6+610 路段地质雷达检测水稳层路基厚度及沥青砼路面厚度、沙滨路高家花园引水涵洞位置雷达探测、水溪煤矿探测岩溶通道岩溶水及断层界面、开滦矿务局范各庄煤矿探测岩溶水、汾西矿业集团曙光煤业有限责任公司探测6#煤层可采边界等。 获奖:荣获国家、省部科技进步二、三等奖和北京市金桥工程一等奖。 2 无线电波透视及其探测技术

相关主题
文本预览
相关文档 最新文档